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JLip versus Sobolev Spaces

on a Class of Self-Similar Fractal Foliages

Yves Achdou ∗, Thibaut Deheuvels †, Nicoletta Tchou ‡.

January 11, 2011

Abstract

For a class of self-similar sets Γ∞ in R
2, supplied with a probability measure µ called the

self-similar measure, we investigate if the Bq,q

s
(Γ∞) regularity of a function can be character-

ized using the coefficients of its expansion in the Haar wavelet basis. Using the the Lipschitz
spaces with jumps recently introduced by Jonsson, the question can be rephrased: when does
Bq,q

s
(Γ∞) coincide with JLip(s, q, q; 0; Γ∞)? When Γ∞ is totally disconnected, this question

has been positively answered by Jonsson for all s, q, 0 < s < 1 and 1 ≤ q < ∞ (in fact,
Jonsson has answered the broader question of characterizing Bp,q

s
(Γ∞), s > 0, 1 ≤ p, q < ∞,

using possibly higher degree Haar wavelets coefficients). Here, we fully answer the question
in the case when 0 < s < 1 and Γ∞ is connected.

1 Introduction

There is a growing interest in analysis on self-similar fractal sets, see for instance Kigami [16],
Strichartz [25, 26], Mosco[23, 22] and references therein. These works aim at intrinsically defining
function spaces using Dirichlet forms and a different metric from the Euclidean one. The results
in this direction are often subject to the important assumption that the set is post-critically
finite (or p.c.f.), see [16], page 23 for the definition.
In a different direction, Jonsson has studied Lipschitz functions spaces on a self-similar fractal set
S under a technical condition which yields a Markov inequality at any order, see the pioneering
works [12, 13]. More precisely, in [13], Haar wavelets of arbitrary order on S were introduced and
used for constructing a family of Lipschitz function spaces allowing jumps at some special points
in S. These function spaces are named JLip(t, p, q;m;S), where t is a positive real number, p, q
are two real numbers not smaller than 1 and m is an integer (m is the order of the Haar wavelets
used for constructing the space). Here J stands for jumps, since the considered functions may
jump at some points of S. The theory in [13], which does not need the assumption that S be
p.c.f., plays an important role in the present paper. It will be partially reviewed in § 4.1 (we
will focus on the case when m = 0, p = q and 0 < t < 1).
In the present work, for a class of self-similar sets contained in R

2, we aim at studying the
relationships between some JLip spaces and the more classical Besov spaces introduced and
studied by Jonsson and Wallin [14] for closed sets: consider a closed subset F of R
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with a Borel measure µ such that there exists a positive real number d and two positive constants
c1 and c2 with

c1r
d ≤ µ(B(x, r)) ≤ c2r

d,

for all x ∈ F and r < 1 (here B(x, r) is the ball in F with center x and radius r, with respect to
the Euclidean distance in R

n); the set F is said to be a d-set. In [14], Sobolev and Besov spaces
are defined on d-sets. For example, for 0 < s < 1, the Sobolev space Bp,p

s (F ) is defined as

Bp,p
s (F ) =

{

f ∈ Lp
µ(F );

∫

x,y∈F,|x−y|<1

|f(x) − f(y)|p
|x − y|d+sp

dµ(x)dµ(y) < ∞
}

, (1)

see the definition in [14] page 103. In the same book, results on the extension (in R
n) of func-

tions belonging to Besov and Sobolev spaces on F and trace results are proved using as a main
ingredient Whitney extension theory. In particular, there exists a continuous trace operator
from W 1,p(Rn) onto Bp,p

1−n−d
p

(F ), if max(1, n − d) < p < ∞. A more general trace theorem is

available, see Theorem 1, page 141 in [14].
The approach of Triebel [27] is somewhat different. In [27] chapter IV, paragraph 18, it is proved
that the space of the traces on F of functions in Bp,q

n−d
p

(Rn) is Lp
µ(F ) for 0 < d < n, d/n < p < ∞

and 0 < q ≤ min(1, p); Besov spaces on F are then defined as spaces of the traces of Besov
spaces on R

n and embeddings properties are studied.
In [13], Jonsson has proved that if the self-similar set S is totally disconnected, then the JLip
spaces coincide with Lipschitz or Besov spaces, more precisely that the spaces JLip(t, p, q;m;S)
coincide with the Lipschitz spaces Lip(t, p, q;m;S) also introduced in [13]. The latter are a gen-
eralization of the more classical spaces Lip(t, p, q;S) introduced in [14] since Lip(t, p, q; [t];S) =
Lip(t, p, q;S). Note that Lip(t, p, q; [t];S) = Bp,q

t (S), see[15]. When the fractal set is not totally
disconnected, the JLip space may not coincide with Lip or Besov spaces.

In the present work, we focus on a class of self-similar sets noted Γ∞ below, see for exam-
ple Figure 1. The set Γ∞ is the unique compact subset of R

2 such that

Γ∞ = f1(Γ
∞) ∪ f2(Γ

∞),

where f1 and f2 are two similitudes with rotation angles ±θ and contraction factor a, 0 < a ≤
a∗(θ). As we shall see, Γ∞ can be seen as a part of the boundary of a ramified domain Ω in R

2,
see Figure 1, and the restriction a ≤ a∗(θ) allows for the construction of Ω as a union of non-
overlapping sub-domains, see (21). In § 2.2.3, we will recall the notion of self-similar measure µ
defined in the triplet (Γ∞, f1, f2), see [16]. With the Borel regular probability measure µ, Γ∞ is
a d-set where d ≡ − log 2/ log a is the Hausdorff dimension of Γ∞.
The notion of traces on Γ∞ for functions in W 1,q(Ω) has been defined in the earlier work [2]. In
[4], some of the authors of the present paper have characterized the space of the traces on Γ∞ of
functions in W 1,q(Ω) as JLip(1− 2−d

q , q, q; 0; Γ∞), for 1 < q < ∞ (with d = − log 2/ log a). Note

that JLip(1− 2−d
q , q, q; 0; Γ∞) always contains Lip(1− 2−d

q , q, q; 0; Γ∞) = Bq,q

1− 2−d
q

(Γ∞), and that

JLip(1 − 2−d
q , q, q; 0; Γ∞) = Lip(1 − 2−d

q , q, q; 0; Γ∞) if a < a∗(θ).
Therefore, the question considered here is to know for a = a∗(θ), in which case the identity

JLip(t, q, q; 0; Γ∞) = Lip(t, q, q; 0; Γ∞) = Bq,q
t (Γ∞) (2)

holds, and if not, to find the parameters s such that JLip(t, q, q; 0; Γ∞) ⊂ Bq,q
s (Γ∞). The first

part of the question covers the following one: when do the spaces containing the traces on Γ∞
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of the functions in W 1,q(Ω) and W 1,q(R2) coincide? This is also linked to the possibility of
constructing an extension operator from W 1,q(Ω) to W 1,q(R2). Note that a partial answer was
given in [3] (before the characterization of the trace space as a JLip space was found) in the
special case when q = 2 and for a special geometry (θ = π/4).
We will see that two different situations occur:

• if there does not exist an integer p such that pθ = π/2 then f1(Γ
∞)∩f2(Γ

∞) is a singleton,
and we will see that (2) holds if qt < d.

• Otherwise, the Hausdorff dimension of f1(Γ
∞) ∩ f2(Γ

∞) is d/2 and (2) holds only for
qt < d/2.

Finally, note that the question of extensions or traces naturally arises in boundary value or
transmission problems in domains with fractal boundaries. Results in this direction have been
given in [24, 18, 17] for the Koch flake. There also, the assumption that the fractal set is p.c.f.
is generally made. Boundary value problems posed in the domains Ω displayed in Figure 1 were
studied in [2].
The paper is organized as follows: the geometry is presented in Section 2. In Section 3, we
recall some of the results of [2] on the space W 1,q(Ω) and the construction of the trace operator.
The theory proposed in [13] is reviewed in Section 4, where we also recall the characterization
of the trace space proved in [4]. The main results of the paper are Theorems 6 and 7 which are
stated in §5 and respectively proved in §5.2 and §5.3. For the ease of the reader, the geometrical
lemmas, which are crucial but technical, are proved in the Appendix at the end of the paper.

2 The Geometry

2.1 The similitudes f1 and f2 and the self-similar set Γ∞

2.1.1 Definitions

Consider four real numbers a, α, β, θ such that 0 < a < 1/
√

2, α > 0, β > 0 and 0 < θ < π/2.
Let fi, i = 1, 2 be the two similitudes in R

2 given by

f1

(
x1

x2

)

=

(
−α
β

)

+ a

(
x1 cos θ − x2 sin θ
x1 sin θ + x2 cos θ

)

,

f2

(
x1

x2

)

=

(
α
β

)

+ a

(
x1 cos θ + x2 sin θ
−x1 sin θ + x2 cos θ

)

.

(3)

The two similitudes have the same dilation ratio a and opposite angles ±θ. One can obtain f2

by composing f1 with the symmetry with respect to the axis {x1 = 0}.
We denote by Γ∞ the self-similar set associated to the similitudes f1 and f2, i.e. the unique
compact subset of R

2 such that

Γ∞ = f1(Γ
∞) ∪ f2(Γ

∞).

For n ≥ 1, we denote by

• An the set containing all the 2n mappings from {1, . . . , n} to {1, 2}

• A the set defined by A = ∪n≥1An
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• A∞ = {1, 2}N\{0} the set of the sequences σ = (σ(i) )i=1,...,∞ with values σ(i) ∈ {1, 2}.

Consider 1 ≤ m < n ≤ ∞ and σ ∈ An: We say that σm ∈ Am defined by σm(i) = σ(i),
i = 1, . . . ,m is a prefix of σ. We also define for η ∈ An and σ ∈ Ak the sequence η + σ ∈ An+k

by
η + σ = (η(1), . . . , η(n), σ(1), . . . , σ(k)). (4)

For a positive integer n and σ ∈ An, we define the similitude fσ by

fσ = fσ(1) ◦ . . . ◦ fσ(n). (5)

Similarly, if σ ∈ A∞,
fσ = lim

n→∞
fσ(1) ◦ . . . ◦ fσ(n) = lim

n→∞
fσn (6)

Let the subset Γ∞,σ of Γ∞ be defined by

Γ∞,σ = fσ(Γ∞). (7)

The definition of Γ∞ implies that for all n > 0, Γ∞ =
⋃

σ∈An
Γ∞,σ. We also define the set Ξ∞:

Ξ∞ = f1(Γ
∞) ∩ f2(Γ

∞). (8)

The following theorem was stated by Mandelbrot et al, [19] (a complete proof is given in [7]):

Theorem 1 For any θ, 0 < θ < π/2, there exists a unique positive number a∗(θ) < 1/
√

2,
(which does not depend of (α, β) see [4]) such that

0 < a < a∗(θ) ⇒ Ξ∞ = ∅ ⇒ Γ∞ is totally disconnected,
a = a∗(θ) ⇒ Ξ∞ 6= ∅ ⇒ Γ∞ is connected, (from Th. 1.6.2 in [16]).

(9)

The critical parameter a∗(θ) is the unique positive root of the polynomial equation:

p−1
∑

i=0

Xi+2 cos iθ =
1

2
, (10)

where
p is the smallest integer such that pθ ≥ π/2. (11)

Remark 1 From (10), it can be seen that θ 7→ a∗(θ) is a continuous and increasing function
from (0, π/2) onto (1/2, 1/

√
2) and that limθ→0 a∗(θ) = 1/2.

Hereafter, for a given θ, 0 < θ < π/2, we will write for brevity a∗ instead of a∗(θ) and we will
only consider a such that 0 < a ≤ a∗.

2.1.2 Characterization of Ξ∞

We aim at characterizing Ξ∞ defined in (8). We already know that Ξ∞ 6= ∅ if and only if a = a∗.
Let us denote by Λ the vertical axis: Λ = {x : x1 = 0} and by O the origin O = (0, 0). Since
f1(Γ

∞) = Γ∞ ∩ {x1 ≤ 0} and f2(Γ
∞) = Γ∞ ∩ {x1 ≥ 0}, we immediately see that Ξ∞ = Γ∞ ∩Λ.

It can be observed (see [7] for the proof) that the sequences σ ∈ A∞ such that fσ(O) ∈ Λ and
that σ(1) = 1 are characterized by the following property: for all n ≤ 1, the truncated sequence
σn achieves the maximum of the abscissa of fη(O) over all η ∈ An such that η(1) = 1.
Let us make out two cases, according to the value of p defined in (11):
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The case when pθ > π/2

Proposition 1 If pθ > π/2 and a = a∗, then Ξ∞ contains the single point

ξ = lim
n→∞

f1 ◦ f2
p+1 ◦ (f1 ◦ f2)

n(O) = lim
n→∞

f2 ◦ f1
p+1 ◦ (f2 ◦ f1)

n(O). (12)

Proof. For brevity, we skip the proof, which is available in [19, 7].

The case when pθ = π/2 We need some specific notation:

• for i = 1, 2, we define ı̄ =

{
2 si i = 1
1 si i = 2

,

• we introduce
F1 = f1 ◦ f2 and F2 = f2 ◦ f1, (13)

• for η ∈ Ak, we define η(1), η(2) ∈ A2(k+1)+p by:







η(1)(1) = 1 and η(1)(`) = 2 for all ` ∈ [2, p + 2],

η(2)(1) = 2 and η(2)(`) = 1 for all ` ∈ [2, p + 2],

∀j, 1 ≤ j ≤ k,

{
η(1)(p + 2j + 1) = η(j)

η(1)(p + 2(j + 1)) = η(j)
and

{
η(2)(p + 2j + 1) = η(j)

η(2)(p + 2(j + 1)) = η(j)

(14)

In an equivalent manner,







η(1) = (1, 2, . . . , 2
︸ ︷︷ ︸

p+1

, η(1), η(1), . . . , η(k), η(k)),

η(2) = (2, 1, . . . , 1
︸ ︷︷ ︸

p+1

, η(1), η(1), . . . , η(k), η(k)),
(15)

which yields






fη(1) = f1 ◦ f2 ◦ . . . ◦ f2
︸ ︷︷ ︸

p+1

◦ Fη(1) ◦ . . . ◦ Fη(k),

fη(2) = f2 ◦ f1 ◦ . . . ◦ f1
︸ ︷︷ ︸

p+1

◦ Fη(1) ◦ . . . ◦ Fη(k).
(16)

Proposition 2 If pθ = π/2 and a = a∗, then

Ξ∞ =
{

lim
n→∞

f
σ

(1)
n

(O) = lim
n→∞

f
σ

(2)
n

(O); σ ∈ A∞

}

. (17)

Moreover, for x ∈ Ξ∞, there exists a unique σ ∈ A∞ such that

x = lim
n→∞

f
σ

(1)
n

(O) = lim
n→∞

f
σ

(2)
n

(O). (18)

The set Ξ∞ is not countable.

Proof. For brevity, we skip the proof, which is available in [7].
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2.2 Ramified domains

2.2.1 The construction

Call P1 = (−1, 0) and P2 = (1, 0) and Γ0 the line segment Γ0 = [P1, P2]. We impose that f2(P1),
and f2(P2) have positive coordinates, i.e. that

a cos θ < α and a sin θ < β. (19)

We also impose that the open domain Y 0 inside the closed polygonal line joining the points P1,
P2, f2(P2), f2(P1), f1(P2), f1(P1), P1 in this order is convex. With (19), this is true if and only
if

(α − 1) sin θ + β cos θ ≥ 0. (20)

Under assumptions (19) and (20), the domain Y 0 is either hexagonal or trapezoidal in degenerate
cases, contained in the half-plane x2 > 0 and symmetric w.r.t. the vertical axis x1 = 0.
We introduce K0 = Y 0. It is possible to glue together K0, f1(K

0) and f2(K
0) and obtain a new

polygonal domain, also symmetric with respect to the axis {x1 = 0}. The assumptions (19) and
(20) imply that Y 0 ∩ f1(Y

0) = ∅ and Y 0 ∩ f2(Y
0) = ∅. We also define the ramified open domain

Ω, see Figure 1:

Ω = Interior

(

K0 ∪
(

∪
σ∈A

fσ(K0)

))

. (21)

Note that Ω is symmetric with respect to the axis x1 = 0, and that for a < 1/
√

2, the measure
of Ω is finite.

For a given θ, with a∗ defined as above, we shall make the following assumption on (α, β):
Assumption 1 For 0 < θ < π/2, the parameters α and β satisfy (20) and (19) for a = a∗,
and are such that







i) for all a, 0 < a ≤ a∗, the sets Y 0, fσ(Y 0), σ ∈ An, n > 0, are disjoint

ii) for all a, 0 < a < a∗, f1(Ω) ∩ f2(Ω) = ∅
iii) for a = a∗, f1(Ω) ∩ f2(Ω) 6= ∅.

Remark 2 Assumption 1 implies that if a = a∗, then f1(Ω)∩f2(Ω) = ∅; to prove this, we define
the open set T = Interior

(
K0 ∪ f1(K

0) ∪ f2(K
0)
)
. It is easy to check that Ω = T ∪ ∪

σ∈A
fσ(T ).

If f1(Ω)∩ f2(Ω) 6= ∅, there exist x ∈ Ω, a positive number ρ, two positive integers n and n′, and
σ ∈ An and σ′ ∈ An′ with σ(1) = 1 and σ′(1) = 2 such that B(x, ρ) ⊂ fσ(T )∩ fσ′(T ). It is then
easy to prove that this contradicts point i) in Assumption 1.

The following theorem proved in [4] asserts that ∀θ, 0 < θ < π/2, there exists (α, β) satisfying
Assumption 1.

Theorem 2 If θ ∈ (0, π/2), then for all α > a∗ cos θ, there exists β̄ > 0 such that β̄ > a∗ sin θ
and (α − 1) sin θ + β̄ cos θ ≥ 0 and for all β ≥ β̄, (α, β) satisfies Assumption 1.

It has been proved in [3] that if a < a∗, then there exists ε > 0 and δ > 0 such that Ω is a ε − δ
domain as defined by Jones [11], see also [14] or in an equivalent manner a quasi-disk, see [20].
On the contrary, if a = a∗, then Ω is not a ε − δ domain because from Propositions 1 and 2, it

is possible to construct two sequences (x
(1)
n )n and (x

(2)
n )n, x

(1)
n ∈ f1(Ω) and x

(2)
n ∈ f2(Ω) such

that limn→∞ |x(1)
n − x

(2)
n | = 0; then, any arc contained in Ω and joining x

(1)
n to x

(2)
n has a length

bounded from below by a positive constant.
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2.2.2 The Moran condition

The Moran condition, (or open set condition), see [21, 16], is that there exists a nonempty
bounded open subset ω of R

2 such that f1(ω) ∩ f2(ω) = ∅ and f1(ω) ∪ f2(ω) ⊂ ω. For a given
θ ∈ (0, π/2), let (α, β) satisfy Assumption 1; for 0 < a ≤ a∗, the Moran condition is satisfied
with ω = Ω because

• f1(Ω) ∩ f2(Ω) = ∅, which stems from point ii) in Assumption 1 if a < a∗, and from
Remark 2 if a = a∗;

• by construction of Ω, we also have f1(Ω) ∪ f2(Ω) ⊂ Ω.

The Moran condition implies that the Hausdorff dimension of Γ∞ is

dimH(Γ∞) = d ≡ − log 2/ log a,

see [21, 16]. If 0 < θ < π/2, we have 0 < a ≤ a∗ < 1/
√

2 and thus d < 2.
It can also be seen that if pθ = π/2 and a = a∗, then the Hausdorff dimension of Ξ∞ is d/2.

2.2.3 The self-similar measure µ

To define traces on Γ∞, we recall the classical result on self-similar measures, see [8, 10] and [16]
page 26:

Theorem 3 There exists a unique Borel regular probability measure µ on Γ∞ such that for any
Borel set A ⊂ Γ∞,

µ(A) =
1

2
µ
(
f−1
1 (A)

)
+

1

2
µ
(
f−1
2 (A)

)
. (22)

The measure µ is called the self-similar measure defined in the self-similar triplet (Γ∞, f1, f2).

Proposition 3 The measure µ is a d-measure on Γ∞, with d = − log 2/ log a, according to the
definition in [14], page 28: there exists two positive constants c1 and c2 such that

c1r
d ≤ µ(B(x, r)) ≤ c2r

d,

for any r 0 < r < 1 and x ∈ Γ∞, where B(x, r) is the Euclidean ball in Γ∞ centered at x and
with radius r. In other words the closed set Γ∞ is a d-set, see [14], page 28.

Proof. The proof stems from the Moran condition. It is due to Moran [21] and has been
extended by Kigami, see [16], §1.5, especially Proposition 1.5.8 and Theorem 1.5.7.
We define Lp

µ, p ∈ [1,+∞) as the space of the measurable functions v on Γ∞ such that
∫

Γ∞ |v|pdµ < ∞, endowed with the norm ‖v‖Lp
µ

=
(∫

Γ∞ |v|pdµ
)1/p

. We also introduce L∞
µ ,

the space of essentially bounded functions with respect to the measure µ. A Hilbertian basis of
L2

µ can be constructed with e.g. Haar wavelets.

2.2.4 Example

We make the choice θ = π/4, α = 1−a/
√

2, β = 1+a/
√

2. Hence p = 2. The critical parameter
a∗(π/4) is the unique positive solution of X3 +

√
2X2−

√
2/2 = 0, i.e. a ≤ a∗(π/4) ' 0.593465.

The construction described in § 2.2.1 with the critical value a = a∗(π/4) leads to the domain Ω
shown in the left part of Figure 1. If a > 1/2, the Hausdorff dimension of Γ∞ is larger than one.
For instance, if a = a∗(π/4), then dimH(Γ∞) ' 1.3284371. In the right part of Figure 1, we
show a similar construction with θ = π/5 (for which p = 3) and a = a∗(π/5) ' 0.56658. Note
the difference between the two cases: in the former case p(θ) · θ = π/2 and the set Ξ∞ defined
in (8) is not countable whereas in the latter case, p(θ) · θ > π/2 and the set Ξ∞ is a singleton.
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Figure 1: Left: the ramified domain Ω for θ = π/4, a = a∗(π/4), α = 1−a∗/
√

2, β = 1+a∗/
√

2.
Right: a similar construction for θ = π/5 and a = a∗(π/5).

2.2.5 Additional notations

We define the sets Γσ = fσ(Γ0) and ΓN = ∪σ∈AN
Γσ. The one-dimensional Lebesgue measure of

Γσ for σ ∈ AN and of ΓN are

|Γσ| = aN |Γ0| and |ΓN | = (2a)N |Γ0|.

We will sometimes use the notation . or & to indicate that there may arise constants in the
estimates, which are independent of the index n in Γn, or of the index σ in Γσ or Γ∞,σ. We may
also write A ' B if A . B and B . A.

3 The space W 1,q(Ω)

Hereafter, we take θ in (0, π/2) and suppose that the parameters (α, β) satisfy Assumption 1.

Basic facts For a real number q ≥ 1, let W 1,q(Ω) be the space of functions in Lq(Ω) with first
order partial derivatives in Lq(Ω). The space W 1,q(Ω) is a Banach space with the norm
(

‖u‖q
Lq(Ω) + ‖ ∂u

∂x1
‖q

Lq(Ω) + ‖ ∂u
∂x2

‖q
Lq(Ω)

) 1
q
, see for example [5], p 60. Elementary calculus shows

that ‖u‖W 1,q(Ω) ≡
(

‖u‖q
Lq(Ω) + ‖∇u‖q

Lq(Ω)

) 1
q

is an equivalent norm, with ‖∇u‖q
Lq(Ω) ≡

∫

Ω |∇u|q

and |∇u| =
√

| ∂u
∂x1

|2 + | ∂u
∂x2

|2.
The spaces W 1,q(Ω) as well as elliptic boundary value problems in Ω have been studied in [2],
with, in particular Poincaré inequalities and a Rellich compactness theorem. The same results
in a similar but different geometry were proved by Berger [6] with other methods.

Traces We first discuss very briefly the less interesting case when a < 1/2. If a < 1/2,
then d < 1 and Γ∞ is totally disconnected, see [9], Lemma 4.1 page 54. This implies that
f1(Γ

∞) ∩ f2(Γ
∞) = ∅, see [16], theorem 1.6.2 page 33. The results of Jones[11] and of Jonsson
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and Wallin [14] can be combined to prove that if q > max(1, 2 − d), then the space of the
traces on Γ∞ of the functions v ∈ W 1,q(Ω) is Bq,q

1− 2−d
q

(Γ∞) (see the introduction for the defini-

tion). We will see in Theorem 4 below that in this case, Bq,q

1− 2−d
q

(Γ∞) = JLip(1− 2−d
q , q, q; 0; Γ∞).

Since the case a < 1/2 is understood, in the remaining part of the paper, we will take a
such that 1/2 ≤ a ≤ a∗, so the Hausdorff dimension d of Γ∞ is not smaller than 1. We recall
the construction of the trace operator made in [2] by taking advantage of the self-simililarity;
this trace operator, called `∞ below, is well defined even if a = a∗.
We first construct a sequence (`n)n of approximations of the trace operator: consider the se-
quence of linear operators `n : W 1,q(Ω) → Lq

µ,

`n(v) =
∑

σ∈An

(
1

|Γσ|

∫

Γσ

v dx

)

1fσ(Γ∞), (23)

where |Γσ| is the one-dimensional Lebesgue measure of Γσ.

Proposition 4 The sequence (`n)n converges in L(W 1,q(Ω), Lq
µ) to an operator that we call `∞.

Proof. See [2].

Remark 3 For a given θ, 0 < θ < π/2, let (α, β) satisfy Assumption 1 and Ω be constructed
as in § 2.2.1, with 1/2 ≤ a ≤ a∗; in a work in progress [1], we prove that Ω is a 2-set as defined
in e.g. [14] page 205, i.e. there exist three positive constants r0, c1 and c2 such that for any
closed ball B(P, r), P ∈ Ω, 0 < r ≤ r0, c1r

2 ≤ m2(B(P, r)∩Ω) ≤ c2r
2, where m2 is the Lebesgue

measure in R
2. Since Ω is a 2-set, there is a classical definition of a trace operator on ∂Ω, see

for instance [14] page 206.
Although it has no bearing on the present paper, it is interesting to compare the operator `∞,
whose construction is based on the self-similarity properties, with the latter classical trace op-
erator. In [1], one of the goals is to prove that if q > 1, the two definitions of the trace of a
function u ∈ W 1,q(Ω) coincide µ-almost everywhere. At the present stage of our investigations,
we have proved the result for all θ ∈ (0, π/2)\{π/2k, 0 < k ∈ N} and 0 < a ≤ a∗, (and also for
all θ = π/2k, 1 < k ∈ N and 0 < a < a∗).

4 The spaces JLip(t, q, q; 0; Γ∞) for 0 < t < 1 and the trace theo-

rem

In [13], A. Jonsson has introduced Haar wavelets of arbitrary order on self-similar fractal sets
and has used these wavelets for constructing a family of Lipschitz spaces. These function spaces
are named JLip(t, p, q;m;S), where S is the fractal set, t is a nonnegative real number, p, q are
two real numbers not smaller than 1 and m is an integer (m is the order of the Haar wavelets used
for constructing the space). Here J stands for jumps, since the considered functions may jump
at some points of S. If the fractal set S is totally disconnected, then these spaces coincide with
the Lipschitz spaces Lip(t, p, q;m;S) also introduced in [13]. The latter are a generalization of
the more classical spaces Lip(t, p, q;S) introduced in [14] since Lip(t, p, q; [t];S) = Lip(t, p, q;S).
Note that Lip(t, p, q; [t];S) = Bp,q

t (S), see[15]. We will focus on the case when S = Γ∞, m = 0
and p = q, since this is sufficient for what follows.
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4.1 Definition of JLip(t, q, q; 0; Γ∞) for 0 < t < 1.

The definition of JLip(t, q, q; 0; Γ∞) presented below is adapted to the class of fractal sets Γ∞

considered in the present paper. It was proved in [4] that this definition coincides with the
original and more general one that was proposed in [13].
Consider a real number t, 0 < t < 1. Following [13], it is possible to characterize JLip(t, q, q; 0; Γ∞)
by using expansions in the standard Haar wavelet basis on Γ∞. Consider the Haar mother
wavelet g0 on Γ∞,

g0 = 1f1(Γ∞) − 1f2(Γ∞), (24)

and for n ∈ N, n > 0, σ ∈ An, let gσ be given by

gσ|Γ∞,σ = 2n/2g0 ◦ f−1
σ , and gσ|Γ∞\Γ∞,σ = 0. (25)

It is proved in [12] §5 that a function f ∈ Lq
µ can be expanded on the Haar basis as follows:

f = P0f + β0g0 +
∑

n≥1

∑

σ∈An

βσgσ,

where P0f =
∫

Γ∞ fdµ. Let b0 be a real number and (bσ)σ∈A be a sequence of real numbers; we
define ‖(b0, (bσ))‖bq,q

t
:

‖(b0, (bσ))‖bq,q
t

=

(

|b0|q +
∞∑

n=1

2qtn/d2n(1/2−1/q)q
∑

σ∈An

|bσ|q
) 1

q

.

=

(

|b0|q +
∞∑

n=1

a−qtn2n(1/2−1/q)q
∑

σ∈An

|bσ|q
) 1

q

.

(26)

Definition 1 A function f ∈ Lq
µ belongs to JLip(t, q, q; 0; Γ∞) if and only if the norm

‖f‖JLip(t,q,q;0;Γ∞) = |P0f | + |f |JLip(t,q,q;0;Γ∞) (27)

is finite, where
|f |JLip(t,q,q;0;Γ∞) = ‖(β0, (βσ))‖bq,q

t
. (28)

Remark 4 An equivalent definition of JLip(t, q, q; 0; Γ∞) can be given using projection of f on
constants on Γ∞,σ, see [13, 4].

If the fractal set Γ∞ is totally disconnected, then JLip(t, q, q; 0; Γ∞) coincides with a more
classical function space:

Theorem 4 (Jonsson) If a < a∗, then f1(Γ
∞) ∩ f2(Γ

∞) is empty and

JLip(t, q, q; 0; Γ∞) = Lip(t, q, q; 0; Γ∞) = Bq,q
t (Γ∞),

where the Lipschitz space Lip(t, q, q; 0; Γ∞) and the Sobolev space Bq,q
t (Γ∞) are defined in [14].

Proof. This is a particular case of Theorem 2 in [13], see also [12] for a partial proof.
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4.2 Characterization of the traces on Γ∞ of the function in W 1,q(Ω)

The following theorem was proved in [4].

Theorem 5 For a given θ, 0 < θ < π/2, let (α, β) satisfy Assumption 1 and Ω be constructed
as in § 2.2.1, with 1/2 ≤ a ≤ a∗; then for all q, 1 < q < ∞,

`∞
(
W 1,q(Ω)

)
= JLip(1 − 2 − d

q
, q, q; 0; Γ∞). (29)

A first consequence of Theorem 5 is that if 1/2 ≤ a < a∗, then d ≥ 1 and from Theorem 4,

`∞
(
W 1,q(Ω)

)
= Lip(1 − 2 − d

q
, q, q; 0; Γ∞) = Bq,q

1− 2−d
q

(Γ∞), ∀q ∈ (1,+∞). (30)

Remark 5 Note that (30) has been proved in [3], without relying on the JLip spaces: indeed
Ω is a ε − δ domain and Γ∞ is a d-set; in this case, the extension result of Jones [11] (from
W 1,q(Ω) to W 1,q(R2)) and the trace result of Jonsson and Wallin [14] (from W 1,q(R2) onto
Bq,q

1− 2−d
q

(Γ∞)) can be combined to obtain (30).

In what follows, we will see that when a = a∗, then (30) does not hold for every q ∈ (1,+∞).

5 Embedding of the JLip spaces in Sobolev spaces for a = a∗

5.1 Main results

Since a = a∗, it is not possible to apply Theorem 4. Similarly, Ω is not an ε − δ domain, so
Jones extension result (from W 1,q(Ω) to W 1,q(R2)) does not hold for all q ∈ [1,+∞). Note that
a = a∗ > 1/2 implies that d > 1. We are going to make out two cases: with p defined in (11),
the simpler case is when pθ > π/2, so Ξ∞ is made of a single point; the case when pθ = π/2 will
turn out to be more difficult because Ξ∞ is not countable.

Theorem 6 Assume that a = a∗ and pθ > π/2.

1. For all t ∈ (0, 1) and s > d
q , JLip(t, q, q; 0; Γ∞) 6⊂ Bq,q

s (Γ∞).

2. If 0 < t < min(d/q, 1), then JLip(t, q, q; 0; Γ∞) = Lip(t, q, q; 0; Γ∞) = Bq,q
t (Γ∞).

The following corollary stems from Theorem 6:

Corollary 1 Assume that a = a∗ and pθ > π/2. For all q > d and t ∈ [d/q, 1), JLip(t, q, q; 0; Γ∞) ⊂
Bq,q

s (Γ∞) with a continuous injection, for all s, 0 < s < d
q .

As an easy consequence of Theorem 6, it is possible to find some relationships between JLip(1−
2−d

q , q, q; 0; Γ∞), the trace space of W 1,q(Ω), see (29), and some Sobolev spaces:

Corollary 2 Assume that a = a∗ and pθ > π/2.

1. If q ≥ 2, then

(a) JLip(1 − 2−d
q , q, q; 0; Γ∞) ⊂ Bq,q

s (Γ∞), for all s, 0 < s < d
q .

(b) JLip(1 − 2−d
q , q, q; 0; Γ∞) 6⊂ Bq,q

s (Γ∞), for all s > d
q .
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2. If 1 ≤ q < 2, then JLip(1 − 2−d
q , q, q; 0; Γ∞) = Lip(1 − 2−d

q , q, q; 0; Γ∞) = Bq,q

1− 2−d
q

(Γ∞).

Theorem 7 Assume that a = a∗ and pθ = π/2.

1. For all t ∈ (0, 1) and s > d
2q , JLip(t, q, q; 0; Γ∞) 6⊂ Bq,q

s (Γ∞).

2. If 0 < t < min(d/(2q), 1), then JLip(t, q, q; 0; Γ∞) = Lip(t, q, q; 0; Γ∞) = Bq,q
t (Γ∞).

Corollary 3 Assume that a = a∗ and pθ = π/2. For all q > d/2 and t ∈ [d/(2q), 1),
JLip(t, q, q; 0; Γ∞) ⊂ Bq,q

s (Γ∞) with a continuous injection, for all s, 0 < s < d
2q .

Here again, it is possible to find some relationships between the trace space JLip(1 −
2−d

q , q, q; 0; Γ∞) and some Sobolev spaces:

Corollary 4 Assume that a = a∗ and pθ = π/2.

1. If q ≥ 2 − d/2, then

(a) JLip(1 − 2−d
q , q, q; 0; Γ∞) ⊂ Bq,q

s (Γ∞), for all s, 0 < s < d
2q .

(b) JLip(1 − 2−d
q , q, q; 0; Γ∞) 6⊂ Bq,q

s (Γ∞), for all s > d
2q .

2. If 1 ≤ q < 2−d/2, then JLip(1− 2−d
q , q, q; 0; Γ∞) = Lip(1− 2−d

q , q, q; 0; Γ∞) = Bq,q

1− 2−d
q

(Γ∞).

Hereafter, when dealing with a = a∗, we will always write a.

5.2 Proof of Theorem 6

5.2.1 Geometrical lemmas

The proofs of the lemmas below are given in appendix.
For two subsets X and Y of R

2, we define d(X,Y ) = inf
x∈X, y∈Y

|y − x|. We will need to estimate

d(Γ∞,σ,Γ∞,τ ) for σ, τ ∈ An, n ≥ 1. We start by estimating the distance between Γσ and the
horizontal line H tangent to the upper part of Γ∞, i.e. H = {x : x2 = h}, where

h = sup
x∈Ω

x2 = max
x∈Γ∞

x2 =
β + a(α sin θ + β cos θ)

1 − a2
. (31)

Lemma 1
sup

x∈f1◦f1(Ω)
x2 = sup

x∈f2◦f2(Ω)
x2 < h.

Lemma 2 Take n ≥ 1 and σ ∈ An. Let k be the largest integer such that 2k ≤ n and for all
j ∈ {1, . . . , k}, σ(2j − 1) 6= σ(2j). We have

d(Γ∞,σ,H) + an ' a2k. (32)

Remark 6 Note that Lemmas 1 and 2 hold if pθ = π/2.

Definition 2 Let us define the mapping Π : A → N as follows : for σ ∈ An, n ≥ 1,

• if n < p + 4 or σp+2 6∈ {(1, 2, . . . , 2), (2, 1, . . . , 1)}, then Π(σ) = 0,
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• else,
{

Π(σ) = max
{
k ≥ 0, ∀j ∈ {1, . . . , k}, σ(p + 2j + 1) = 1 and σ(p + 2 + 2j) = 2

}
if σ(1) = 1,

Π(σ) = max
{
k ≥ 0, ∀j ∈ {1, . . . , k}, σ(p + 2j + 1) = 2 and σ(p + 2 + 2j) = 1

}
if σ(1) = 2.

Here, in other words, Π(σ) is the largest integer k ≥ 0 such that p + 2 + 2k ≤ n and
fσp+2+2k

= f1 ◦ f2
p+1 ◦ (f1 ◦ f2)

k or fσp+2+2k
= f2 ◦ f1

p+1 ◦ (f2 ◦ f1)
k.

Therefore, if n < p+4 then Π(σ) = 0 and if n ≥ p+4, then Π(σ) takes its values in {0, . . . , [(n−
p − 2)/2]}.
Definition 3 For σ ∈ An, n ≥ 1, we say that Π(σ) is maximal if n < p + 4 (in this case
Π(σ) = 0) or if n ≥ p + 4 and Π(σ) = [(n − p − 2)/2].

The following lemma shows that the distance of Γ∞,σ to the vertical axis Λ = {x : x1 = 0} can
be estimated in terms of Π(σ):

Lemma 3 Take n ≥ 1 and σ ∈ An; for dσ defined by

dσ = d(Γ∞,σ,Λ), if Π(σ) is not maximal,

dσ = d(Γ∞,σ,Λ) + an, if Π(σ) is maximal,
(33)

we have
dσ ' a2Π(σ). (34)

Lemma 4 Take n ≥ 1 and σ, τ ∈ An such that σ(1) 6= τ(1); we have

d(Γ∞,σ,Γ∞,τ ) + an ' a2 min(Π(σ),Π(τ)) . (35)

Remark 7 From Lemma 3, we also have that for all σ, τ ∈ A with σ(1) 6= τ(1),

d(Γ∞,σ,Γ∞,τ ) . a2 min(Π(σ),Π(τ)) .

Definition 4 • Lemma 3 implies that there exists a positive constant c1, such that, for all n ≥ 1,
σ ∈ An and x ∈ Γ∞,σ,

c1a
2Π(σ) < d(x,Λ) if Π(σ) is not maximal, (36)

and for all η ∈ A such that Π(η) = 0 and fη is a similitude with rotation angle 0,

d(fη(Λ),Λ) > c1. (37)

We must have c1 < d(Λ, f1 ◦ f2(Λ)), because Π((1, 2)) = 0.
• Let us define the positive number c2 > 0 by

c2 =
d(Λ, f1 ◦ f2(Λ))

a2
. (38)

Note that

max
x∈Γ∞

x1 = max
x∈Γ∞

d(x,Λ) =
d(Λ, f1 ◦ f2(Λ))

a2
= c2. (39)

• Finally, from (34), we know that there exists a constant c3, such that for all x ∈ Γ∞,σ, σ ∈ An,

d(x,Λ) ≤ c3a
2Π(σ). (40)

We must have c3 ≥ c2.
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From (36) and (40), we deduce that for all n ≥ 1, σ ∈ An and x ∈ Γ∞,σ,

{
d(x,Λ) ≤ c3a

2Π(σ), if Π(σ) is maximal,

c1a
2Π(σ) < d(x,Λ) ≤ c3a

2Π(σ), if Π(σ) is not maximal.
(41)

Lemma 5 For any η ∈ A such that fη is a similitude with rotation angle 0,

d(Λ, fη(Λ)) > c1a
2Π(η), (42)

where c1 satisfies (36) and (37).

For what follows, we will need to partition f1(Γ
∞) into a sequence of subsets (Xi)i∈N. The

measure of the set Xi ⊂ f1(Γ
∞) and its distance to the axis Λ will be decreasing as i grows. By

similarity, (fη(Xi))i∈N will be a partition of fη ◦ f1(Γ
∞):

Definition 5 • Let us define the subsets of Γ∞:

Xi = {x ∈ f1(Γ
∞), c1a

2i ≤ d(x,Λ) < c1a
2(i−1)}, ∀i ≥ 1,

X0 = {x ∈ f1(Γ
∞), c1 ≤ d(x,Λ) ≤ c2},

(43)

where c1 satisfies (36) and (37) and c2 is given by (38), see Figure 2. The

Λ

X1X0

Figure 2: θ = π/3: the domain f1 ◦ fp+1
2 (Ω), the fractal set f1 ◦ fp+1

2 (Γ∞) and parts of X0 and
X1: X0 (resp. X1) is the intersection of Γ∞ with the dark grey half-plane (resp. light grey
strip).

• For ` ≥ 0, we define the class Z` of subsets of Γ∞:

Z` = {fη(Xi), η ∈ An, n + 2i = `}. (44)

• Let φ ∈ [0, 2π) be such that there exists a similitude fσ, σ ∈ A, with rotation angle φ.
For n ≥ 0, we define An,φ = {η ∈ An, fη is a similitude of angle φ}, and the class Z`,φ of
subsets of Γ∞:

Z`,φ = {fη(Xi), η ∈ An,φ, n + 2i = `}. (45)

14



Lemma 6 For all i ≥ 1,
µ(Xi) . 2−2i. (46)

Remark 8 A direct consequence of Lemma 6 is that for all Y ∈ Z`, µ(Y ) . 2−`.

Lemma 7 For all nonnegative integers n,m, i, j such that n + 2i = m + 2j and η ∈ An,φ,
ν ∈ Am,φ, the sets Y = fη(Xi) and Z = fν(Xj) are disjoint if (n, i, η) 6= (m, j, ν).

Remark 9 We will see that when pθ = π/2, the definition of Π differs, but once Π is defined,
the definitions of c1 and c2 are the same. In that case, Lemma 5 and Lemma 7 are still true; by
contrast, Lemma 6 does not hold, see Lemma 13.

Lemma 8 If pθ > π/2, then for any ` ≥ 0, any x ∈ Γ∞, there are at most a finite number of
(i, η), 0 ≤ 2i ≤ `, η ∈ A`−2i such that x ∈ fη(Xi), and this number is independent of `.

Remark 10 Although it seems clear that for a given Z ∈ Z`, there is a unique (iZ , ηZ) such
that 0 ≤ 2iZ ≤ `, ηZ ∈ A`−2iZ and Z = fηZ

(XiZ ), we have not found a short proof of this
assertion. For what follows, it will be enough to use the following weaker result which stems
from Lemma 8: there is at most a finite number of pairs (i, η) with 0 ≤ 2i ≤ `, η ∈ A`−2i and
Z = fη(Xi), and this number is independent of Z and `.

5.2.2 Sobolev regularity of the Haar wavelet g0

The following proposition will imply regularity results for the Haar wavelet g0:

Proposition 5 We have

∫

f1(Γ∞)

∫

f2(Γ∞)

1

|x − y|γ dµ(y) dµ(x) < +∞, if 0 ≤ γ < 2d, (47)

∫

f1(Γ∞)

∫

f2(Γ∞)

1

|x − y|γ dµ(y) dµ(x) = +∞, if γ > 2d. (48)

Proof. Take n ≥ p + 2 and let κ be the largest integer such that n ≥ p + 2 + 2κ. We have

∫

f1(Γ∞)

∫

f2(Γ∞)

dµ(y) dµ(x)

(|x − y| + an)γ
=

∑

σ∈An
σ(1)=1

∑

τ∈An
τ(1)=2

∫

Γ∞,σ

∫

Γ∞,τ

dµ(y) dµ(x)

(|x − y| + an)γ

' 2−2n
∑

σ∈An
σ(1)=1

∑

τ∈An
τ(1)=2

1

(d(Γ∞,σ,Γ∞,τ ) + an)γ
,

because if x ∈ Γ∞,σ and y ∈ Γ∞,τ , then |x − y| + an ' d(Γ∞,σ,Γ∞,τ ) + an. Thus, from Lemma
4, we have

∫

f1(Γ∞)

∫

f2(Γ∞)

dµ(y) dµ(x)

(|x − y| + an)γ
' S1 + S2,

with

S1 = 2−2n
∑

σ,τ∈An
σ(1)=1, τ(1)=2

Π(σ)≥Π(τ)

1

a2γΠ(τ)
and S2 = 2−2n

∑

σ,τ∈An
σ(1)=1, τ(1)=2

Π(σ)<Π(τ)

1

a2γΠ(σ)
.
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We can write S1 as follows:

S1 = 2−2n
∑

0≤`≤k≤κ

∑

σ∈An
σ(1)=1
Π(σ)=k

∑

τ∈An
τ(1)=2
Π(τ)=`

1

a2γ`
. (49)

On the other hand, the number of σ ∈ An such that Π(σ) = k is of the order of 2n−2k. Therefore,
(49) leads to

S1 ' 2−2n
∑

0≤`≤k≤κ

2n−2k 2n−2` 1

a2γ`
=

κ∑

k=0

2−2k
k∑

`=0

22`(−1+ γ
d ) .

κ∑

k=0

2−2k max(k, 22k(−1+ γ
d
)),

and S1 '∑κ
k=0 22k(−2+ γ

d
) if γ > 2d. The same is true for S2. Therefore, if γ > 2d, then

∫

f1(Γ∞)

∫

f2(Γ∞)

1

(|x − y| + an)γ
dµ(y) dµ(x) ' 2n(−2+ γ

d ), −→
n→∞

+ ∞,

which yields (48).
On the other hand, if γ < 2d, then

∫

f1(Γ∞)

∫

f2(Γ∞)

1

(|x − y| + an)γ
dµ(y) dµ(x) .

∞∑

`=0

2−2` max(`, 22`(−1+ γ
d
)) < ∞,

which yields (47) from the monotone convergence theorem.

Corollary 5 For any q, 1 ≤ q < ∞, g0 ∈ Bq,q
s (Γ∞) if 0 ≤ s < d

q and g0 /∈ Bq,q
s (Γ∞) if s > d

q .

Proof. The result follows from the identity |g0/2|qBq,q
s (Γ∞)

=
∫

f1(Γ∞)

∫

f2(Γ∞)
1

|x−y|d+qs dµ(y) dµ(x)

and from Proposition 5.

5.2.3 Two lemmas

Lemma 9 (discrete Hardy inequalities, [14], page 121, Lemma 3) For any γ ∈ R, any
p ≥ 1 there exists a constant C such that, for any sequence of positive real numbers (ck)k∈N

,

∑

n∈N

2γn




∑

k≤n

ck





p

≤ C
∑

n∈N

2γncn
p if γ < 0, (50)

∑

n∈N

2γn




∑

k≥n

ck





p

≤ C
∑

n∈N

2γncn
p if γ > 0. (51)

Lemma 10 For any γ > d, we have

∫

f1(Γ∞)

∫

f2(Γ∞)

|v(x)|q
|x − y|γ dµ(y) dµ(x) .

∫

f1(Γ∞)

|v(x)|q
d(x,Λ)γ−d

dµ(x), ∀v ∈ Lq(Γ∞).
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Proof. For any n ≥ p + 2, let κ be the largest integer such that n ≥ p + 2 + 2κ.

∫

f1(Γ∞)

∫

f2(Γ∞)

|v(x)|q
(|x − y| + an)γ dµ(y) dµ(x)

≤
∑

σ,τ∈An
σ(1)=1, τ(1)=2

∫

Γ∞,σ

∫

Γ∞,τ

|v(x)|q
(d(Γ∞,σ,Γ∞,τ ) + an)γ dµ(y) dµ(x)

= 2−n
∑

σ,τ∈An
σ(1)=1, τ(1)=2

1

(d(Γ∞,σ,Γ∞,τ ) + an)γ

∫

Γ∞,σ

|v(x)|q dµ(x) . S1 + S2

where, from Lemma 4,

S1 = 2−n
∑

0≤`≤k≤κ

∑

σ∈An
σ(1)=1
Π(σ)=k

∑

τ∈An
τ(1)=2
Π(τ)=`

1

a2γ`

∫

Γ∞,σ

|v(x)|q dµ(x),

S2 = 2−n
∑

0≤k≤`≤κ

∑

σ∈An
σ(1)=1
Π(σ)=k

∑

τ∈An
τ(1)=2
Π(τ)=`

1

a2γk

∫

Γ∞,σ

|v(x)|q dµ(x).

Since the number of τ ∈ An such that τ(1) = 2 et Π(τ) = ` is of the order of 2n−2`, we have

S1 '
∑

0≤`≤k≤κ

2−2`

a2γ`

∑

σ∈An
σ(1)=1
Π(σ)=k

∫

Γ∞,σ

|v(x)|q dµ(x)

=

κ∑

k=0

(
k∑

`=0

1

a2`(γ−d)

)
∑

σ∈An
σ(1)=1
Π(σ)=k

∫

Γ∞,σ

|v(x)|q dµ(x)

'
κ∑

k=0

∑

σ∈An
σ(1)=1
Π(σ)=k

∫

Γ∞,σ

|v(x)|q
a2k(γ−d)

dµ(x) '
∫

f1(Γ∞)

|v(x)|q

(d(x,Λ) + an)γ−d
dµ(x),

from Lemma 3. Similarly, S2 '
∫

f1(Γ∞)

|v(x)|q

(d(x,Λ) + an)γ−d
dµ(x).

Finally, we obtain the desired estimate by having n tend to ∞ and using the monotone conver-
gence theorem.

5.2.4 Proof of Theorem 6

Proof of 1) Point 1) in Theorem 6 stems from Corollary 5 and from the fact that the wavelet
g0 belongs to JLip(t, q, q; 0; Γ∞) for all q,t, 1 ≤ q < ∞, 0 < t < 1.

Proof of 2) Consider t, 0 < t < min(d/q, 1).

∫

Γ∞

∫

Γ∞

|v(x) − v(y)|q
|x − y|d+qt

dµ(x) dµ(y) −
2∑

i=1

∫

fi(Γ∞)×fi(Γ∞)

|v(x) − v(y)|q
|x − y|d+qt

dµ(x) dµ(y)

.I1 + I2 + I3
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where

I1 = 2

∫

x∈f1(Γ∞)

∫

y∈f2(Γ∞)

|v(x) − 〈v〉f1(Γ∞)|q
|x − y|d+qt

dµ(y) dµ(x), (52)

I2 = 2|〈v〉f2(Γ∞) − 〈v〉f1(Γ∞)|q
∫

f1(Γ∞)

∫

f2(Γ∞)

1

|x − y|d+qt
dµ(y) dµ(x), (53)

I3 = 2

∫

x∈f1(Γ∞)

∫

y∈f2(Γ∞)

|〈v〉f2(Γ∞) − v(y)|q
|x − y|d+qt

dµ(x) dµ(y). (54)

By iterating this argument and using Fatou lemma, we obtain that
∫

Γ∞

∫

Γ∞

|v(x) − v(y)|q
|x − y|d+qt

dµ(x) dµ(y) . I1 + I2 + I3 +
∑

n≥1

∑

η∈An

(I1,η + I2,η + I3,η)

where

I1,η = 2

∫

x∈fη◦f1(Γ∞)

∫

y∈fη◦f2(Γ∞)

|v(x) − 〈v〉fη◦f1(Γ∞)|q

|x − y|d+qt
dµ(y) dµ(x), (55)

I2,η = 2|〈v〉fη◦f2(Γ∞) − 〈v〉fη◦f1(Γ∞)|q
∫

fη◦f1(Γ∞)

∫

fη◦f2(Γ∞)

1

|x − y|d+qt
dµ(y) dµ(x), (56)

I3,η = 2

∫

x∈fη◦f1(Γ∞)

∫

y∈fη◦f2(Γ∞)

|〈v〉fη◦f2(Γ∞) − v(y)|q

|x − y|d+qt
dµ(x) dµ(y). (57)

Let us estimate I1 +
∑

n≥1

∑

η∈An
I1,η: the change of variables x = fη(x

′) and y = fη(y
′) yields

I1,η = 2an(d−qt)

∫

x′∈f1(Γ∞)

∫

y′∈f2(Γ∞)

|v ◦ fη(x
′) − 〈v ◦ fη〉f1(Γ∞)|q

|x′ − y′|d+qt
dµ(y′) dµ(x′).

From Lemma 10, I1,η . an(d−qt)

∫

x′∈f1(Γ∞)

|v ◦ fη(x
′) − 〈v ◦ fη〉f1(Γ∞)|q

d(x′,Λ)qt
dµ(x′). Let β0, (βσ)σ∈A

be the coefficients in the Haar basis of v: v = P0v + β0g0 +
∑

k≥1

∑

σ∈Ak

βσgσ. Note that for any

η ∈ An, v ◦ fη − 〈v ◦ fη〉Γ∞ = 2
n
2

(
βηg0 +

∑

k≥1

∑

σ∈Ak

βη+σgσ

)
, where η + σ ∈ An+k is the sequence

(η(1), . . . , η(n), σ(1), . . . , σ(k)). Thus,

I1,η . an(d−qt)2
nq
2

∫

x∈f1(Γ∞)

∣
∣
∣
∑

k>0

∑

σ∈Ak
βη+σgσ(x)

∣
∣
∣

q

d(x,Λ)qt
dµ(x)

'
∑

i≥0

2n( q
2
+ qt

d
−1)

∫

Xi

a−2iqt

∣
∣
∣
∣
∣
∣

∑

k≥0

∑

σ∈Ak

βη+σgσ(x)

∣
∣
∣
∣
∣
∣

q

dµ(x),

where Xi is defined in (43).
We are led to estimate

I1 +
∑

n≥1

∑

η∈An

I1,η .
∑

n≥0

∑

η∈An

∑

i≥0

2n( q
2
+ qt

d
−1)a−2iqt

∫

Xi

∣
∣
∣
∣
∣
∣

∑

k≥0

∑

σ∈Ak

βη+σgσ(x)

∣
∣
∣
∣
∣
∣

q

dµ(x) . S1 + S2,

(58)
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where

S1 =
∑

n≥0

∑

η∈An

∑

i≥0

2n( q
2
+ qt

d
−1)a−2iqt

∫

Xi

∣
∣
∣
∣
∣
∣

∑

k62i

∑

σ∈Ak

βη+σgσ(x)

∣
∣
∣
∣
∣
∣

q

dµ(x), (59)

S2 =
∑

n≥0

∑

η∈An

∑

i≥0

2n( q
2
+ qt

d
−1)a−2iqt

∫

Xi

∣
∣
∣
∣
∣
∣

∑

k>2i

∑

σ∈Ak

βη+σgσ(x)

∣
∣
∣
∣
∣
∣

q

dµ(x), (60)

with the convention that if n = 0, then An = {0}, f0 = Id and 0 + σ = σ. It is convenient to
rewrite S2 as follows:

S2 =
∑

n≥0

∑

η∈An

∑

i≥0

a−(2i+n)qt

∫

fη(Xi)

∣
∣
∣
∣
∣
∣

∑

k>2i

∑

σ∈Ak ,σ(1)=1

βη+σgη+σ(x)

∣
∣
∣
∣
∣
∣

q

dµ(x). (61)

We have

S2 =
∑

`≥0

a−`qt

[`/2]
∑

i=0

∑

η∈A`−2i

∫

fη(Xi)

∣
∣
∣
∣
∣
∣

∑

k>2i

∑

σ∈Ak ,σ(1)=1

βη+σgη+σ(x)

∣
∣
∣
∣
∣
∣

q

dµ(x).

From the definition of Z` in (44),

S2 .
∑

`≥0

2` qt
d

∑

Y ∈Z`

∫

Y

∣
∣
∣
∣
∣
∣

∑

k≥`

∑

ν∈Ak

βνgν(x)

∣
∣
∣
∣
∣
∣

q

dµ(x) (62)

Remark 11 Note that in (62), the sign . has been used instead of =, because we did not prove
that there exists a unique pair (i, η) such that Y ∈ Z` coincide with fη(Xi), but only that the
number of such pairs is bounded, see Remark 10.

Then from a triangle inequality,

S2 .
∑

`≥0

2` qt
d






∑

k≥`




∑

Y ∈Z`

∫

Y

∣
∣
∣
∣
∣
∣

∑

ν∈Ak

βνgν(x)

∣
∣
∣
∣
∣
∣

q

dµ(x)





1
q






q

=

=
∑

`≥0

2` qt
d






∑

k≥`




∑

ν∈Ak

|βν |q
∑

Y ∈Z`

∫

Y
|gν(x)|q dµ(x)





1
q






q

.
∑

`≥0

2` qt
d






∑

k≥`




∑

ν∈Ak

|βν |q2−k2q k
2





1
q






q

.

The latter inequality comes from Lemma 8, because any point x ∈ Γ∞ belongs to at most a
finite number of sets Y ∈ Z` (this number is independent of `).
Hardy inequality (51) in Lemma 9 can be used because qt

d > 0: this yields

S2 .
∑

`≥0

2`( qt
d

+ q
2
−1)

∑

ν∈A`

|βν |q . |v|qJLip(t,q,q;0;Γ∞). (63)

Let us turn to S1 defined in (59): we have, using a triangle inequality,

S1 ≤
∑

i≥0

22i qt
d






∑

k≤2i




∑

n≥0

∑

η∈An

2n( q
2
+ qt

d
−1)

∫

Xi

∣
∣
∣
∣
∣
∣

∑

σ∈Ak

βη+σgσ(x)

∣
∣
∣
∣
∣
∣

q

dµ(x)





1
q






q

=
∑

i≥0

22i qt
d






∑

k≤2i




∑

n≥0

∑

η∈An

2n( q
2
+ qt

d
−1)

∑

σ∈Ak

|βη+σ |q
∫

Xi

|gσ(x)|q dµ(x)





1
q






q

,

19



because the supports of gσ, σ ∈ Ak are disjoint (up to a negligeable set). This implies that

S1 .
∑

i≥0

22i qt
d






∑

k≤2i




∑

n≥0

∑

η∈An

2n( q
2
+ qt

d
−1)2k q

2

∑

σ∈Ak

|βη+σ |qµ(supp gσ ∩ Xi)





1
q






q

.

From Definition 3, Lemma 3, if Π(σ) is not maximal, then i > 1 and d(Γ∞,σ,Λ) > c1a
2Π(σ) >

c1a
2(i−1) thanks to Definition 5, and µ(supp gσ ∩ Xi) = 0. Hence, if Pk = {σ ∈ Ak, σ(1) =

1, Π(σ) maximal},

S1 .
∑

n≥0

∑

η∈An

2n( q
2
+ qt

d
−1)|βη |q +

∑

i≥1

22i( qt
d
−1)






∑

k≤2i




∑

n≥0

∑

η∈An

2n( q
2
+ qt

d
−1)2k q

2

∑

σ∈Pk

|βη+σ |q




1
q






q

≤
∑

n≥0

∑

η∈An

2n( q
2
+ qt

d
−1)|βη |q +

∑

j≥1

2j( qt
d
−1)






∑

k≤j




∑

n≥0

∑

η∈An

2n( q
2
+ qt

d
−1)2k q

2

∑

σ∈Pk

|βη+σ |q




1
q






q

.
∑

n≥0

∑

η∈An

2n( q
2
+ qt

d
−1)|βη |q +

∑

j≥1

∑

n≥0

2(n+j)( q
2
+ qt

d
−1)

∑

η∈An

∑

σ∈Pj

|βη+σ |q,

by Hardy’s inequality (50) in Lemma 9, because qt < d. For all ν ∈ A, there exist at most
N = p + 4 pairs (η, σ), η, σ ∈ A such that ν = η + σ and Π(σ) is maximal. Therefore, for all
ν ∈ A, βν appears in the latter sum at most N times. Hence,

S1 .
∑

m≥0

2m( q
2
+ qt

d
−1)

∑

ν∈Am

|βν |q . |v|JLip(t,q,q;0;Γ∞). (64)

From the bounds (63) and (64), we immediately deduce that

I1 +
∑

n≥1

∑

η∈An

I1,η . |v|qJLip(t,q,q;0;Γ∞), (65)

and the same argument shows that

I3 +
∑

n≥1

∑

η∈An

I3,η . |v|qJLip(t,q,q;0;Γ∞). (66)

We are left with estimating I2 +
∑

n≥1

∑

η∈An
I2,η. From (47) in Proposition 6 and easy scaling

arguments,

∫

fη◦f1(Γ∞)

∫

fη◦f2(Γ∞)

1

|x − y|d+qt
dµ(y) dµ(x) . 2n( qt

d
−1), ∀η ∈ An.

On the other hand, |〈v〉fη◦f2(Γ∞) − 〈v〉fη◦f1(Γ∞)| = 2
n
2
+1|βη |. Combining these two observations,

we have that for all t < min(d/q, 1),

I2 +
∑

n≥1

∑

η∈An

I2,η .
∑

n≥0

2n( qt
d
−1)2

qn
2

∑

η∈An

|βη|q . |v|qJLip(t,q,q;0;Γ∞). (67)

From (65), (66), (67), we obtain the desired result.
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5.3 Proof of Theorem 7

We now consider the case when pθ = π/2, with p defined in (11). The situation is more complex
because Ξ∞ is a non countable set whose Hausdorff dimension is d/2.

5.3.1 Geometrical lemmas

We state several useful geometrical lemmas whose proofs are given in appendix.
Here, we define the mapping Π : A → N as follows:

Definition 6 • if σ ∈ An with n < p + 4 then Π(σ) = 0,

• if n ≥ p + 4 and σp+2 6∈ {(1, 2, . . . , 2), (2, 1, . . . , 1)}, then Π(σ) = 0,

• else, Π(σ) = max
{

k ≥ 0, ∀j ∈ {1, . . . , k}, σ(p + 2j + 1) = σ(p + 2(j + 1))
}

.

In other words, with F1 and F2 defined in (13), Π(σ) is the largest integer k ≥ 0 such that
fσ2(k+1)+p

= f1 ◦ f2
p+1 ◦ Fτ(1) ◦ . . . ◦ Fτ(k) or fσ2(k+1)+p

= f2 ◦ f1
p+1 ◦ Fτ(1) ◦ . . . ◦ Fτ(k) for some

τ ∈ Ak.

If n < p+4 then Π(σ) = 0 and if n ≥ p+4, then Π(σ) takes its values in {0, . . . , [(n−p−2)/2]}.
For σ ∈ An, n ≥ 1, we say that Π(σ) is maximal if n < p + 4 (in this case Π(σ) = 0) or if
n ≥ p + 4 and Π(σ) = [(n − p − 2)/2].
One can estimate the distance of Γ∞,σ to Λ as a function of Π(σ):

Lemma 11 Take n ≥ 1 and σ ∈ An; with dσ defined in (33), we have

dσ ' a2Π(σ).

Estimating the distance d(Γ∞,σ,Γ∞,τ ) for σ, τ ∈ An σ(1) = 1, τ(1) = 2 must be done more
carefully than in the case when pθ > π/2: indeed, in the present case, the quantity
max (d(Γ∞,σ,Λ), d(Γ∞,τ ,Λ)) is too coarse an underestimate of d(Γ∞,σ,Γ∞,τ ), because Γ∞,σ and
Γ∞,τ may touch Λ without facing each other. This is why we have to make the following
definition:

Definition 7 For any n ≥ p + 2 and any k ≥ 0 such that p + 2 + 2k ≤ n, let P k
n be the set

containing all the pairs (σ, τ) such that







σ ∈ An and τ ∈ An,
σ(1) = 1 and τ(1) = 2,

k is the largest integer such that ∃η ∈ Ak with σp+2+2k = η(1) and τp+2+2k = η(2),

(68)

where η(1) and η(2) are defined by (14) or (15).
For example, take σ = (1, 2, . . . , 2

︸ ︷︷ ︸

p+1

, 1, 2
︸︷︷︸

, 2, 1
︸︷︷︸

, 2, 1, 1, 2) and τ = (2, 1, . . . , 1
︸ ︷︷ ︸

p+1

, 2, 1
︸︷︷︸

, 1, 2
︸︷︷︸

, 2, 1, 2, 2).

We have (σ, τ) ∈ P2
p+10, with η = (1, 2) in (68).

Lemma 12 For any n ≥ p + 2 and k ≥ 0 such that p + 2 + 2k ≤ n, for any (σ, τ) ∈ P k
n,

d(Γ∞,σ,Γ∞,τ ) + an ' a2k. (69)

Finally, as in § 5.2.1, there exist two positive constants c1 ≤ c2 such that (41) holds for all n ≥ 1,
σ ∈ An and x ∈ Γ∞,σ; the following lemma should be compared to Lemma 6.
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Lemma 13 For all integers i ≥ 1, the sets Xi defined in (43) are such that

µ (Xi) . 2−i. (70)

Remark 12 It can be seen that the set Xi is made of O(2i) disjoint connected components
whose measure is of the order of 2−2i.

5.3.2 Sobolev regularity of the Haar wavelet g0

The following proposition, which should be compared to Proposition 5, will imply regularity
results for the Haar wavelet g0:

Proposition 6 We have

∫

f1(Γ∞)

∫

f2(Γ∞)

1

|x − y|γ dµ(y) dµ(x) < ∞, if γ < 3d
2 , (71)

∫

f1(Γ∞)

∫

f2(Γ∞)

1

|x − y|γ dµ(y) dµ(x) = ∞, if γ > 3d
2 . (72)

Proof. For any n ≥ p + 2, let κ be the largest integer such that such that p + 2 + 2κ ≤ n. We
have

∫

f1(Γ∞)

∫

f2(Γ∞)

dµ(y) dµ(x)

(|x − y| + an)γ
=

∑

σ∈An
σ(1)=1

∑

τ∈An
τ(1)=2

∫

Γ∞,σ

∫

Γ∞,τ

1

(|x − y| + an)γ
dµ(y) dµ(x)

'
∑

σ∈An
σ(1)=1

∑

τ∈An
τ(1)=2

1

22n
.

1

(d(Γ∞,σ,Γ∞,τ ) + an)γ

'
κ∑

k=0

∑

(σ,τ)∈Pk
n

1

22n
.

1

a2kγ
,

from Lemma 12. It is easy to see that Pk
n has 2k · 2n−2k · 2n−2k = 22n−3k elements. Therefore,

∫

f1(Γ∞)

∫

f2(Γ∞)

1

(|x − y| + an)γ
dµ(y) dµ(x) '

κ∑

k=0

2k( 2γ
d
−3).

Thus

∫

f1(Γ∞)

∫

f2(Γ∞)

1

(|x − y| + an)γ dµ(y) dµ(x) .

∞∑

k=0

2k( 2γ
d
−3) < ∞, if γ <

3d

2
,

∫

f1(Γ∞)

∫

f2(Γ∞)

1

(|x − y| + an)γ dµ(y) dµ(x) & 2
n
2 ( 2γ

d
−3) −→

n→∞
∞, if γ >

3d

2
,

and the result follows by the monotone convergence theorem.
The following should be compared to Corollary 5:

Corollary 6 For any q, 1 ≤ q < ∞, g0 ∈ Bq,q
s (Γ∞) if 0 ≤ s < d

2q and g0 /∈ Bq,q
s (Γ∞) if s > d

2q .
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5.3.3 Two Lemmas

Lemma 14 For all γ > d, we have
∫

f1(Γ∞)

∫

f2(Γ∞)

|v(x)|q
|x − y|γ dµ(y) dµ(x) .

∫

f1(Γ∞)

|v(x)|q

d(x,Λ)γ−d
dµ(x), ∀v ∈ Lq

µ.

Proof. Consider n ≥ p+2. For any σ ∈ An, define Pk
σ =

{
τ ∈ An, (σ, τ) ∈ Pk

n

}
(see Definition

7). Lemma 12 implies that

∫

f1(Γ∞)

∫

f2(Γ∞)

|v(x)|q
(|x − y| + an)γ dµ(y) dµ(x)

≤
∑

σ∈An
σ(1)=1

∑

τ∈An
τ(1)=2

∫

Γ∞,σ

∫

Γ∞,τ

|v(x)|q
(d(Γ∞,σ,Γ∞,τ ) + an)γ

dµ(y) dµ(x)

' 2−n
∑

σ∈An
σ(1)=1

Π(σ)
∑

k=0

∑

τ∈Pk
σ

1

a2γk

∫

Γ∞,σ

|v(x)|q dµ(x).

It is easy to see that since σ ∈ An, Pk
σ has 2n−2k elements. Therefore,

∫

f1(Γ∞)

∫

f2(Γ∞)

|v(x)|q
(|x − y| + an)γ

dµ(y) dµ(x) .
∑

σ∈An
σ(1)=1





Π(σ)
∑

k=0

2−2k

a2γk





∫

Γ∞,σ

|v(x)|q dµ(x)

'
∑

σ∈An
σ(1)=1

1

a2Π(σ)(γ−d)

∫

Γ∞,σ

|v(x)|q dµ(x)

'
∑

σ∈An
σ(1)=1

∫

Γ∞,σ

|v(x)|q

(d(x,Λ) + an)γ−d
dµ(x)

=

∫

f1(Γ∞)

|v(x)|q

(d(x,Λ) + an)γ−d
dµ(x).

The desired result is obtained by letting n tend to ∞, by monotone convergence.

Remark 13 Although the statements of Lemma 10 and 14 are similar, the proofs differ.

We define Xi by (43) where c1 is the constant appearing in (41).

Lemma 15 For any i ≥ 1, k ≥ 1 and σ ∈ Ak,
∫

Xi

|gσ |q dµ . 2
k
2
(q−1)2−i, if k < 2i, (73)

∫

Xi

|gσ |q dµ . 2k( q
2
−1), if k ≥ 2i, (74)

Proof. Assume that k < 2i. It is easy to see that for σ ∈ A1,
∫

Xi
|gσ |q dµ ≤ 2

q
2 µ(Xi); this is

exactly (73) for k = 1. If k ≥ 2, let σ ∈ Ak and τ ∈ Ak be such that σ 6= τ , Π(σ) and Π(τ) are
maximal; then Γ∞,σ and Γ∞,τ can be obtained from each other by a translation with a vertical
vector (parallel to Λ). Hence,

Π(σ) and Π(τ) are maximal ⇒ µ(Xi ∩ Γ∞,σ) = µ(Xi ∩ Γ∞,τ ). (75)
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Moreover, since µ(Γ∞,τ ∩ Γ∞,σ) = 0 for σ, τ ∈ Ak, we get

µ(Xi) ≥
∑

τ∈Ak
Π(τ) maximal

µ(Xi ∩ Γ∞,τ ). (76)

On the other hand, if τ ∈ Ak and Π(τ) is not maximal, then Π(τ) ≤ k/2 − 1 and, from Lemma
11,

d(Γ∞,τ ,Λ) ≥ c1a
2Π(τ) ≥ c1a

(k−2) > c1a
2(i−1).

Therefore, if τ ∈ Ak and Π(τ) is not maximal, then Xi ∩Γ∞,τ = ∅. The latter observation, (75)
and (76) imply that for any σ ∈ Ak, µ(Xi ∩ Γ∞,σ) . 2−k/2µ(Xi) . 2−i−k/2, from Lemma 13.
Therefore,

∫

Xi

|gσ |q dµ = 2
kq
2 µ(Xi ∩ Supp(gσ)) = 2

kq
2 µ(Xi ∩ Γ∞,σ) . 2

k
2
(q−1)−i,

and we have proved (73). On the other hand,
∫

Xi

|gσ |q dµ ≤ 2
kq
2 µ(Supp(gσ)) = 2k( q

2
−1),

and we have proved (74).

5.3.4 Proof of Theorem 7

Proof of 1.) The result stems from the fact that g0 ∈ JLip(t, q, q; 0; Γ∞) and from Corollary
6.

Proof of 2.) Exactly as in the proof of Theorem 6,
∫

Γ∞

∫

Γ∞

|v(x) − v(y)|q
|x − y|d+qt

dµ(x) dµ(y) . I1 + I2 + I3 +
∑

n≥1

∑

η∈An

(I1,η + I2,η + I3,η)

where I1, I2, I3, I1,η, I2,η and I3,η are respectively given by (52) (53) (54) (55) (56) (57). As
above, we get that I1 +

∑

n≥1

∑

η∈An
I1,η . S1 + S2, where S1 and S2 are given by (59) and

(60).
Let us first find a bound on S1: exactly as in the proof of Theorem 6, we see that

S1 .
∑

n≥0

∑

η∈An

2n( q
2
+ qt

d
−1)|βη |q+

∑

i≥1

22i qt
d






∑

k≤2i




∑

n≥0

∑

η∈An

2n( q
2
+ qt

d
−1)

∑

σ∈Pk

|βη+σ |q
∫

Xi

|gσ |qdµ





1
q






q

,

where Pk = {σ ∈ Ak, σ(1) = 1, Π(σ) maximal}. Thus, from (73),

S1 .
∑

n≥0

∑

η∈An

2n( q
2
+ qt

d
−1)|βη |q +

∑

i≥1

22i qt
d






∑

k≤2i




∑

n≥0

∑

η∈An

2n( q
2
+ qt

d
−1)2

k
2
(q−1)2−i

∑

σ∈Pk

|βη+σ |q




1
q






q

≤
∑

n≥0

∑

η∈An

2n( q
2
+ qt

d
−1)|βη |q +

∑

j≥1

2j( qt
d
−1/2)






∑

k≤j




∑

n≥0

∑

η∈An

2n( q
2
+ qt

d
−1)2

k
2
(q−1)

∑

σ∈Pk

|βη+σ |q




1
q






q

.
∑

n≥0

∑

η∈An

2n( q
2
+ qt

d
−1)|βη |q +

∑

j≥1

∑

n≥0

2(n+j)( q
2
+ qt

d
−1)

∑

η∈An

∑

σ∈Pj

|βη+σ |q,
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by Hardy’s inequality (50) in Lemma 9. For all ν ∈ A, there exist at most N = p + 4 pairs
(η, σ), η, σ ∈ A such that ν = η + σ and Π(σ) is maximal. Therefore, for all ν ∈ A, βν appears
in the latter sum at most N times. Hence,

S1 .
∑

m≥0

2m( q
2
+ qt

d
−1)

∑

ν∈Am

|βν |q . |v|qJLip(t,q,q;0;Γ∞). (77)

We now consider S2. Since π/θ = 2p is an integer, the rotation angles of the similitudes fη

can take only a finite number of values in [0, 2π). Call Θ the finite set of all possible angles:
Θ = {iθ, 0 ≤ i < 4p}. It is convenient to split S2 as follows

S2 =
∑

φ∈Θ

S2,φ, with S2,φ =
∑

n≥0

∑

η∈An,φ

∑

i≥0

a−(2i+n)qt

∫

fη(Xi)

∣
∣
∣
∣
∣
∣

∑

k>2i

∑

σ∈Ak ,σ(1)=1

βη+σgη+σ(x)

∣
∣
∣
∣
∣
∣

q

dµ(x).

We have

S2,φ =
∑

`≥0

a−`qt

[`/2]
∑

i=0

∑

η∈A`−2i,φ

∫

fη(Xi)

∣
∣
∣
∣
∣
∣

∑

k>2i

∑

σ∈Ak ,σ(1)=1

βη+σgη+σ(x)

∣
∣
∣
∣
∣
∣

q

dµ(x).

We can rewrite S2,φ as follows:

S2,φ =
∑

`≥0

2` qt
d

∑

Y ∈Z`,φ

∫

Y

∣
∣
∣
∣
∣
∣

∑

k≥`

∑

ν∈Ak

βνgν(x)

∣
∣
∣
∣
∣
∣

q

dµ(x). (78)

Thus, by the triangle inequality and the fact that the supports of gν , ν ∈ Ak are disjoint,

S2,φ ≤
∑

`≥0

2` qt
d






∑

k≥`




∑

ν∈Ak

|βν |q
∑

Y ∈Z`,φ

∫

Y
|gν(x)|q dµ(x)





1
q






q

.

From Remark 9, for all ` ≥ 0 and φ ∈ Θ, the sets Y ∈ Z`,φ are disjoint. Therefore,

S2,φ .
∑

`≥0

2` qt
d






∑

k≥`




∑

ν∈Ak

|βν |q2−k2q k
2





1
q






q

,

because any x ∈ Γ∞ belongs to at most one set Y ∈ Z`,φ.
Hardy inequality (51) in Lemma 9 can be used because qt

d > 0: this yields

S2,φ .
∑

`≥0

2`( qt
d

+ q
2
−1)

∑

ν∈A`

|βν |q . |v|qJLip(t,q,q;0;Γ∞).

Since this is true for all φ ∈ Θ and since Θ is a finite set, we get S2 . |v|qJLip(t,q,q;0;Γ∞). From

this and (77), we immediately deduce (65) and the same argument yields (66). The conclusion
of the proof is identical as that of Theorem 6.

Remark 14 For s > 1− 2−d
q , q < 2, it is interesting to construct a function u ∈ W 1,q(Ω) whose

trace `∞(u) does not belong to Bq,q
s (Γ∞). One can take the following example: let χ ∈ W 1,q(Y 0)

be such that χ|Γ0 = 0, χ|f1(Γ0) = 1 and χ|f2(Γ0) = 0. For ρ > 0, we build u by the following
iterative process:
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• u|Y 0 = χ;

• let the polygonal open domain Y n be obtained by stopping the construction at step n + 1:

Y n = Interior
(

K0 ∪
(
⋃n

p=1

⋃

σ∈Ap
fσ(K0)

))

. Let us also introduce Y σ = fσ(Y 0).

If u is already defined in Y n−1, we define u|Y σ , σ ∈ An as follows:

{

u|Y σ = 1 + ρu|Y n−1 ◦ f−1
σ(n) if Π(σ) is maximal,

u|Yσ
= γσ otherwise,

where γσ = u|Γσ for σ ∈ A (note that the function u is constant on the lines Γσ).

It is possible to prove that if ρ = 2
2−q
dq

− 1
2q

−ε, for ε > 0, then u ∈ W 1,q(Ω) and that for any
s > 1 − 2−d

q , one may choose ε small enough such that `∞(u) /∈ Bq,q
s (Γ∞).

A Proofs of the geometrical lemmas in the case pθ > π/2

Proof of Lemma 1 We have

sup
x∈f1◦f1(Ω)

x2 = sup
x∈f2◦f2(Ω)

x2 = sup
x∈f1◦f1◦f2◦f2(Y 0)

x2 + a4h.

On the other hand, with F1 defined in (13),

h = sup
x∈F1◦F1(Y 0)

x2 + a4h.

Easy algebra shows that

f2
1 ◦f2

2

(
x1

x2

)

=

(
−α + a(−α cos θ − β sin θ) + a2(α cos 2θ − β sin 2θ) + a3(α cos θ − β sin θ) + a4x1

β + a(−α sin θ + β cos θ) + a2(α sin 2θ + β cos 2θ) + a3(α sin θ + β cos θ) + a4x2

)

,

and that

F1 ◦ F1

(
x1

x2

)

=

(
−α + a(α cos θ − β sin θ) − a2α + a3(α cos θ − β sin θ) + a4x1

β + a(α sin θ + β cos θ) + a2β + a3(α sin θ + β cos θ) + a4x2

)

.

Thus, the desired result will be a consequence of the inequality

−α sin θ+β cos θ+a(α sin 2θ+β cos 2θ)+a2(α sin θ+β cos θ) < α sin θ+β cos θ+aβ+a2(α sin θ+β cos θ)

which is true, since α(−2 sin θ + a sin 2θ) + aβ(cos 2θ − 1) < 0.

Proof of Lemma 2 From the definition of k in the statement of Lemma 2,

• if k = [n/2] (where we denote by [z] the integer part of z), then at least one of the
two points lim

m→∞
fσ2k

◦ F m
1 (O), lim

m→∞
fσ2k

◦ F m
2 (O) belongs to Γ∞,σ, which implies that

d(Γ∞,σ,H) = 0. This implies that d(Γ∞,σ,H) + an ' a2k.

• otherwise, let us define i = σ(2k + 1) = σ(2k + 2), and σ ′ = σ2k+2. We have by self-
similarity that

d(fσ′(Ω),H) = a2kd(fi ◦ fi(Ω),H) > 0,
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by Lemma 1. Hence,

d(Γ∞,σ,H) ≥ d(fσ′(Ω),H) = a2kd(fi ◦ fi(Ω),H).

On the other hand,

d(Γ∞,σ,H) ≤ d(fσ′(Ω),H) + Diam(fσ′(Ω)) = a2k
(
d(fi ◦ fi(Ω),H) + a2Diam(Ω)

)
.

We have proved that d(Γ∞,σ,H) ' a2k, which implies (32).

Proof of Lemma 3 We may suppose that n ≥ p + 4. Let κ be the largest integer such that
p + 2 + 2κ ≤ n. Take σ ∈ An.
If Π(σ) = κ, then d(Γ∞,σ,Λ) = 0, which yields (34).
Suppose that Π(σ) < κ.
Suppose first that σp+2 6∈ {(1, 2, . . . , 2), (2, 1, . . . , 1)}. Without restriction, we can also suppose

that σ(1) = 1: there exists j, 0 ≤ j ≤ p such that fσj+2 = f1 ◦ f j
2 ◦ f1. Thus d(Γ∞,σ,Λ) ≥

d(f1 ◦ f j
2 ◦ f1(Ω),Λ). From §2.1.2, we know that c ≡ min0≤j≤p+1 d((f1 ◦ f j

2 ◦ f1(Ω),Λ) > 0. We
have that d(Γ∞,σ,Λ) ≥ c. On the other hand d(Γ∞,σ,Λ) ≤ Diam(Ω). We have obtained (34).
We are left with considering the case when Π(σ) < κ and σp+2 ∈ {(1, 2, . . . , 2), (2, 1, . . . , 1)}.
Without restriction, we can also suppose that σ(1) = 1: there exists τ ∈ An−p−2 and τ ′ ∈ An−p−1

such that Γ∞,σ = f1 ◦ f2
p+1(Γ∞,τ ) = f1 ◦ f2

p(Γ∞,τ ′
). We have that

σ = 1 2 . . . 2

τ
︷ ︸︸ ︷

1 2
︸︷︷︸

. . .
Π(σ)

1 2
︸︷︷︸

i j . . . . . .
︸ ︷︷ ︸

τ ′

,

with i = σ(p + 3 + 2π(σ)) and j = σ(p + 4 + 2π(σ)). The definition of Π(σ) implies that
(i, j) 6= (1, 2). We have obviously that

d(Γ∞,σ, f1 ◦ f2
p+1(H)) = ap+2d(Γ∞,τ ,H), and d(Γ∞,σ, f1 ◦ f2

p(H)) = ap+1d(Γ∞,τ ′

,H).
(79)

Three observations will prove useful, see Figure 3 : a) by self similarity, the set f1(Γ
∞) lies on

one side of the straight lines f1 ◦f2
p(H) and f1 ◦f2

p+1(H), whose intersection is Ξ∞. b) It is also
easy to see that the line f1 ◦ f2

p(H) makes an angle of π
2 − (p− 1)θ > 0 with Λ. c) Similarly, the

line f1 ◦ f2
p+1(H) makes an angle of pθ − π

2 > 0 with Λ. An elementary geometrical argument
combining points a), b) and c), leads to

d(Γ∞,σ,Λ) ≥ sin
(π

2
− (p − 1)θ

)

d(Γ∞,σ, f1 ◦ f2
p+1(H))

d(Γ∞,σ,Λ) ≥ sin
(

pθ − π

2

)

d(Γ∞,σ, f1 ◦ f2
p(H)).

(80)

The geometrical argument for the first inequality in (80) is summarized in the right part of
Figure 3.

We make out two cases:

• If i = j then Π(σ) = max{m ≥ 0 : ∀`, 1 ≤ ` ≤ m, τ(2` − 1) 6= τ(2`)}. From Lemma 2
and since Π(σ) < κ, we have that d(Γ∞,τ ,H) & a2Π(σ). Thus

d(Γ∞,σ, f1 ◦ f2
p+1(H)) & ap+2+2Π(σ). (81)

Combining the first inequality in (80) and (81) yields that d(Γ∞,σ,Λ) & a2Π(σ).
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f1 ◦ f
p

2 (H)

Λ

f1 ◦ f
p+1
2 (H)

pθ − π
2

π
2

− (p − 1)θ

Λ

d

Γ∞,σ lies here

pθ −
π
2

h > d

h sin
“

π
2

− (p − 1)θ
”

f1 ◦ f
p

2 (H)

f1 ◦ f
p+1
2 (H)

π
2

− (p − 1)θ

d = d
“

Γ∞,σ, f1 ◦ f
p+1
2

(H)
”

d

Figure 3: Left: the lines f1 ◦ f2
p(H) and f1 ◦ f2

p+1(H) (for θ = π/5). Right:
d(Γ∞,σ,Λ) ≥ sin

(
π
2 − (p − 1)θ

)
d(Γ∞,σ, f1 ◦ f2

p+1(H)).

• If (i, j) = (2, 1), then Π(σ) = max{m ≥ 0 : ∀`, 1 ≤ ` ≤ m, τ ′(2` − 1) 6= τ ′(2`)}. From
Lemma 2 and since Π(σ) < κ, we have that d(Γ∞,τ ′

,H) & a2Π(σ). Thus

d(Γ∞,σ, f1 ◦ f2
p(H)) & ap+1+2Π(σ). (82)

Combining the second inequality in (80) and (82) yields that d(Γ∞,σ,Λ) & a2Π(σ).

In both cases, we have proved that d(Γ∞,σ,Λ) & a2Π(σ). For the opposite inequality, recall
that Ξ∞ = {ξ} where the point ξ is defined by (12). There exists ζ ∈ Γ∞ such that ξ =

f1 ◦ fp+1
2 ◦ F

Π(σ)
1 (ζ). Let η ∈ An−p−2−2Π(σ) be such that fσ = f1 ◦ fp+1

2 ◦ F
Π(σ)
1 ◦ fη. We

have d(Γ∞,σ,Λ) = d(Γ∞,σ, ξ) = ap+2+2Π(σ)d(Γ∞,η, ζ) ≤ ap+2+2Π(σ)Diam(Ω), which yields that
d(Γ∞,σ,Λ) . a2Π(σ).

Proof of Lemma 4 We may suppose that n ≥ p + 4. Let κ be the largest integer such that
p + 2 + 2κ ≤ n. If Π(σ) = Π(τ) = κ, then d(Γ∞,σ,Γ∞,τ ) = 0 which yields (35).
Otherwise, min(Π(σ),Π(τ)) < κ: since Γ∞,σ and Γ∞,τ are separated by Λ, we have

d(Γ∞,σ,Γ∞,τ ) ≥ max(d(Γ∞,σ,Λ), d(Γ∞,τ ,Λ)) & a2 min(Π(σ),Π(τ)) , (83)

from Lemma 3.
On the other hand, defining k = p+2+2min(Π(σ),Π(τ)), we see that for any ` ≤ k, σ(`) = τ(`).
Thus, Γ∞,σk and Γ∞,τk are symmetric with respect to Λ. Hence,

d(Γ∞,σk ,Γ∞,τk) = 2(Γ∞,σk ,Λ) . a2 min(Π(σ),Π(τ)) ,

which implies
d(Γ∞,σ,Γ∞,τ ) ≤ d(Γ∞,σk ,Γ∞,τk) + 2akDiam(Ω). (84)

From (83) and (84), we obtain (35).
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Proof of Lemma 5

• If Π(η) = 0, then we use (37).

• If Π(η) > 0, then Π(η) cannot be maximal: indeed, if Π(η) was maximal, then η would
be of the form η = σ(1) or η = σ(1) + 1 or η = σ(1) + 2, where σ ∈ A, and σ(1) is defined
as in (14); hence, the angle of fη would be pθ, (p − 1)θ or (p + 1)θ, so it would not be an
integer multiple of of 2π. Since Π(η) is not maximal, the result stems from (41) and the
fact that Λ and fη(Λ) are parallel.

Proof of Lemma 6 Take i ≥ 1. Since Γ∞ is symmetric w.r.t. Λ, we can estimate µ({x ∈
Γ∞, c1a

2i < d(x,Λ) ≤ c1a
2(i−1)}) instead of µ(Xi).

Consider n, n > 2I + 3 + p where I ≡ i +

[

log
“

c1
c3

”

2 log a

]

. Let us first estimate µ{x ∈ Γ∞, c1a
2i +

anDiam(Γ∞) < d(x,Λ) ≤ c1a
2(i−1)}.

Take x ∈ Γ∞ and assume that c1a
2i + anDiam(Γ∞) < d(x,Λ) ≤ c1a

2(i−1). We know that
Γ∞ = ∪σ∈AnΓ∞,σ, so there exists σ ∈ An such that x ∈ Γ∞,σ.
We have d(Γ∞,σ,Λ) > c1a

2i. The upper bounds in (41) imply that we must have Π(σ) ≤ I,
which implies that Π(σ) is not maximal.
Then, the lower bound in (41) implies that Π(σ) ≥ i.
Hence,

µ({x ∈ Γ∞, c1a
2i + anDiam(Γ∞) < d(x,Λ) ≤ c1a

2(i−1)}) ≤ µ





I⋃

Π(σ)=i

Γ∞,σ





≤ 2−n
I∑

`=i

#{σ ∈ An, Π(σ) = `}

. 2−n
I∑

`=i

2n−2` . 2−2i,

which yields (46) by letting n tend to infinity (monotone convergence).

Proof of Lemma 7 Let κ be the maximal integer k such that νk = ηk for all k ≤ κ. We must
have either κ < min(n,m) or (κ = min(n,m) and n 6= m) otherwise (m, j, ν) = (n, i, η).

• Assume that κ < min(n,m): this implies that there exist σ ∈ Aκ, ν ′ ∈ Am−κ, η′ ∈ An−κ

such that ν = σ + ν ′, η = σ + η′ and ν ′(1) 6= η′(1), with the notation defined in (4):
fη′(Γ∞) and fν′(Γ∞) lie on two different sides of Λ.
We may assume that fν′(Γ∞) lies on the right side of Λ and that fη′(Γ∞) lies on the left
side of Λ.

– If fν′(Γ∞) lies strictly on the right side of Λ, we get the desired result. This happens
in particular if Π(ν ′) is not maximal.

– If fη′(Γ∞) lies strictly on the left side of Λ, we get the desired result. This happens
in particular if Π(η′) is not maximal.

– Assume that fν′(Γ∞) ∩ Λ 6= ∅ and fη′(Γ∞) ∩ Λ 6= ∅.
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∗ if Π(ν ′) is positive then it is maximal, and fν′ is a similitude whose angle can
be −(p − 1)θ, −pθ or −(p + 1)θ. If the angle is −pθ or −(p + 1)θ, then fν′(Xj)
does not intersect Λ (because fν′(Xj) is on the left of fν′(Λ)), which yields the
desired result. If the angle is −(p − 1)θ, then the similitude fη′ has the same
angle and fη′(Xi) does not intersect Λ (because fη′(Xi) is on the left of fη′(Λ)),
which yields the desired result.

∗ Similarly, if Π(η′) is positive then it is maximal, and fη′ is a similitude whose
angle can be (p−1)θ, pθ or (p+1)θ. If the angle is (p−1)θ, then fη′(Xi) does not
intersect Λ which yields the desired result. If the angle is pθ or (p+1)θ, then the
similitude fν′ has the same angle and fν′(Xj) does not intersect Λ which yields
the desired result.

∗ We are left with the case where Π(η′) = 0 and Π(ν ′) = 0: it can be shown that
there are only three pairs (ν ′, η′) such that the related similitudes have the same
angle, Π(η′) = 0, Π(ν ′) = 0, fν′(Γ∞) ∩ Λ 6= ∅ and fη′(Γ∞) ∩ Λ 6= ∅: 1) η′ = (1)
and ν ′ = (2, 1, 1) 2) η′ = (1, 2) and ν ′ = (2, 1), 3) η′ = (1, 2, 2) and ν ′ = (2). In
these three cases, the desired result follows easily.

• If κ = min(n,m), for example κ = n < m, then Y = fη(Xi) and Z = fη ◦ fν′(Xj),
ν ′ ∈ Am′ . We have to prove that Xi ∩ fν′(Xj) = ∅. The angle of the similitude fν′ is 0
and 2i = 2j + m′.

– If fν′(1) = 2, then fν′(Xj) lies on the right side of Λ and Xi strictly lies on the left
side of Λ, which yields the result.

– If fν′(1) = 1, then d(fν′(Λ),Λ) > c1a
2Π(ν′) from Lemma 5. Therefore, from the

definition of Xi, d(fν′(Λ), Xi) > c1a
2Π(ν′) − c1a

2i−2 > 0.

Proof of Lemma 8 We can assume ` > 1.

• Suppose first that ` = 2i, i > 0, x ∈ Xi. Since we are interested in finding j < i and
η ∈ A`−2j such that the set Z = fη(Xj) contains x, we can suppose that η(1) = 1. If Π(η) is
not maximal, then Xi∩Z = ∅: indeed, from (41), Z ⊂ fη(Γ

∞) and d(fη(Γ
∞),Λ) > c1a

2Π(η).
Therefore d(Z,Xi) ≥ d(fη(Γ

∞),Λ)−c1a
2(i−1) > c1(a

2Π(η) −a2(i−1)). But 2Π(η) < 2(i−1),
so d(Z,Xi) > 0 and x /∈ Z.
We now focus on the Z = fη(Xj) ∈ Z` such that η(1) = 1 and Π(η) is maximal. Since
there are a finite number, namely 2p+2, of η such that Π(η) = 0 and Π(η) is maximal, we
can suppose that Π(η) > 0. We make out two cases:

– If p is even, then η ∈ Ap+2+2Π(η), and the angle of the similitude fη is pθ. Since the
sets Z ∈ Z`,pθ are pairwise disjoint, only one of them can contain x.

– If p is odd, then η ∈ Ap+3+2Π(η). Since η + 1 ∈ Ap+4+2Π(η), Π(η + 1) = Π(η) is not

maximal. The facts that Z = fη(Xj) ⊂ fη+1(Γ
∞) and d(fη+1(Γ

∞),Λ) > c1a
2Π(η) >

c1a
2(i−1) imply that Xi ∩ Z = ∅, so x /∈ Z.

• Suppose x ∈ Y = fν(Xi), Y ∈ Z`, with ν ∈ AnY
, nY > 0 and x 6∈ Z, Z ∈ Z`, with nZ <

nY . On the one hand, the number of the sets fν+ν′(Xj) ∈ Z` containing x coincides with
the number of the sets fν′(Xj) containing f−1

ν (x) ∈ Xi; this number has been estimated
above. On the other hand, if a set Z = fη(Xj) ∈ Z`, with nZ ≥ nY , is such that η 6= ν+ν ′,
then calling κ the maximal integer such that νk = ηk for all k ≤ κ, we know that κ < nY

and that fη(Xj) and fν(Xi) lie on different sides of fνκ(Λ), so their intersection is empty:
Z does not contain x.
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B Proofs of the geometrical lemmas in the case pθ = π/2

Proof of Lemma 11 It is enough to consider n ≥ p + 4.

• If σp+2 /∈ {(1, 2, . . . , 2), (2, 1, . . . , 1)}, then there exists a constant c independent of σ such
that d(Γ∞,σ,Λ) > c. Since d(Γ∞,σ,Λ) ≤ Diam(Ω), we obtain the desired result in this
case.

• If σp+2 ∈ {(1, 2, . . . , 2), (2, 1, . . . , 1)}, for example σp+2 = (1, 2, . . . , 2), then Γ∞,σ = f1 ◦
fp+1
2 Γ∞,τ , for some τ ∈ An−p−2. Since we also have Λ = f1 ◦ fp+1

2 (H),

d(Γ∞,σ,Λ) = d(f1 ◦ fp+1
2 (Γ∞,τ ), f1 ◦ fp+1

2 (H)) = ap+2d(Γ∞,τ ,H). (85)

We also have that Π(σ) = max{k;∀j ≤ k, τ(2j − 1) 6= τ(2j)}. Thus from Lemma 2,
d(Γ∞,τ ),H) + an−p−2 ' a2Π(σ). Combining this and (85) yields the desired result.

Proof of Lemma 12 From the definition of k, it is clear that Π(σ) ≥ k and that Π(τ) ≥ k.
Let κ be the largest integer such that p + 2 + 2κ ≤ n. With the notation defined in (15), let
η ∈ Ak be such that σp+2+2k = η(1) and τp+2+2k = η(2).

• If k = κ, then Γ∞,η(1)
is the symmetric of Γ∞,η(2)

w.r.t. Λ, and d(Γ∞,η(1)
,Γ∞,η(2)

) = 0.
This implies (69).

• If k < κ, then d(Γ∞,σ,Γ∞,τ ) ≤ d(Γ∞,η(1)
,Γ∞,η(2)

) + 2Diam(Γ∞,η(1)
) ' a2k, because

d(Γ∞,η(1)
,Γ∞,η(2)

) = 0. For the opposite inequality, since κ > k, we can define σ ′ = σp+4+2k

and τ ′ = τp+4+2k.

– If min(Π(σ),Π(τ)) = k then

d(Γ∞,σ,Γ∞,τ ) ≥ d(Γ∞,σ′

,Γ∞,τ ′

) ≥ max
(

d(Γ∞,σ′

,Λ), d(Γ∞,τ ′

,Λ)
)

' a2k.

– Otherwise, min(Π(σ),Π(τ)) > k. This implies that

σ(p + 3 + 2k) = τ(p + 3 + 2k) 6= σ(p + 4 + 2k) = τ(p + 4 + 2k).

Without restriction, we may assume that σ(p + 3 + 2k) = τ(p + 3 + 2k) = 1 and that
σ(p + 4 + 2k) = τ(p + 4 + 2k) = 2, thus σ′ = η(1)12 and τ ′ = η(2)12.
For what follows we define δ = d(Γ1,∞∩H,Γ2,∞∩H) > 0 and E as the convex subset
of R

2 located under the straight lines H, f1(H) and f2(H). It is clear that Ω ⊂ E .
Therefore, Ωσ′ ⊂ fσ′(E) and Ωτ ′ ⊂ fτ ′(E), see Figure 4.
Elementary geometrical arguments lead to

d(fσ′(E), fτ ′(E)) = β sin θ,

where β = d(fσ′(Γ∞) ∩ Λ, fτ ′(Γ∞) ∩ Λ), see Figure 4. But

d(fσ′(Γ∞) ∩ Λ, fτ ′(Γ∞) ∩ Λ) = d(fη(1)(F1(Γ
∞)) ∩ Λ, fη(2)(F1(Γ

∞)) ∩ Λ)

= d(fη(1)(F1(Γ
∞)) ∩ Λ, fη(1)(F2(Γ

∞)) ∩ Λ).

By self-similarity, β = ap+2+2kδ. Therefore d(Γ∞,σ,Γ∞,τ ) ≥ d(Γ∞,σ′
,Γ∞,τ ′

) ≥
d(fσ′(E), fτ ′(E)) & a2k.
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fτ′ (E)

fσ′ (E)

β Γη(2)

Γη(1)

Γσ′

Γτ′

Figure 4: θ = π/4: the case when σ′ = η(1)12 and when τ ′ = η(2)12

Proof of Lemma 13 The argument is the same as the one used for Lemma 6. The only
difference is that #{σ ∈ An, Π(σ) = `} . 2n−`, instead of 2n−2` in the former case. Hence,
with I defined as in the proof of Lemma 6,

µ({x ∈ Γ∞, c1a
2i + anDiam(Γ∞) < d(x,Λ) ≤ c1a

2(i−1)}) ≤ µ





i+I⋃

Π(σ)=i

Γ∞,σ





≤ 2−n
i+I∑

`=i

#{σ ∈ An, Π(σ) = `}

. 2−n
i+I∑

`=i

2n−` . 2−i,

and (70) is obtained by Fatou lemma.
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