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Theoretical experiments were performed on silicon nitride intergranular glassy
film (IGF) models subjected to tensile loading using an accurate ab initio method.
The results were used to investigate the strain fields within IGF models. The
Green–Lagrange strain fields were calculated from the displacement gradients of
the IGF models under various loads. Significant deviations from the first-order
Cauchy–Born rule were observed for IGF models even under small load. The
strain fields were also analysed to understand atomic-scale mechanisms that lead
to intergranular and intragranular failures.

1. Introduction

Silicon nitride is a light, hard ceramic that has wide applications as a structural and
electronic material. A unique feature in silicon nitride and other polycrystalline
ceramics is the existence of thin glassy films between microcrystal grains with a
narrowly distributed width of about 1 nm [1, 2]. Although the thin intergranular
glassy films (IGF) occupy only a very small fraction of overall composition and
volume, they have a profound effect on the physical and mechanical properties of
silicon nitride. In fact, a small amount of rare earth doping in the form of sintering
aid, which usually resides at or near the IGF, leads to significant enhancement
in strength and toughness of polycrystalline ceramics [3, 4]. How the small doping
affects the overall physical and mechanical properties is still a matter of intense
current investigations [5–8]. Although several theories [9–13] have given qualitative
explanations for the role of IGFs in silicon nitride, a quantitative connection
between the structure of an IGF and the mechanical properties of silicon nitride
in the presence of IGFs remains illusive, largely due to the complexity of the
microstructures of the material. Traditional continuum mechanics becomes invalid
as the structural heterogeneity shrink to nanometre scale where energy locality is no
longer a good approximation.
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7 We have recently studied the electronic structure and bonding of supercell
models of both clean and Y-doped IGFs in Si3N4 [14–16]. In this paper, we aim at
understanding the effect of the nanometre size undoped IGF on its mechanical
behaviour. We perform theoretical tensile experiments using accurate ab initio
method and then analyse the deformation and the failure mechanism of a small
section of silicon nitride containing IGF without any dopants based on data
obtained from simulation. Our main result is the ab initio strain field distribution as
a function of tensile loading. In the following section, we outline our computational
method and modelling. The results on the strain fields and failure mechanism are
then presented and discussed in section 3. The conclusions of this study are listed
in the last section.

2. Computational method and model

The steps followed for ab initio strain field calculations in a silicon nitride IGF can be
divided into three parts: (i) construction of a fully relaxed initial periodic super-cell
atomic model of nanometre sized IGF sandwiched between �-Si3N4 crystals;
(ii) stepwise deformation of the periodic super-cell under uniaxial strain loading; and
(iii) analysis of the atomic positions at each load increment to develop local
strain fields.

2.1. IGF atomic model

Figure 1 shows an atomistic view (798 atoms with periodic boundary conditions) of
an intergranular thin film (IGF) of about 10 Å between basal [0001] surfaces of two
Si3N4 crystallites. The dimensions of the fully relaxed unit cell containing the

x 

y 

z 

Figure 1. Ball–stick models of intergranular glassy film (IGF). The disordered IGF is about
1.3 nm thick.
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7 IGF are 29.9� 22.7� 13.1 Å. The initial model was constructed by classical
molecular dynamics [14] and then fully relaxed using the VASP (Vienna ab-initio
Simulation Package). VASP is a density functional theory based ab initio method
using pseudopotentials and plane-wave expansion for the basis [17, 18]. The code has
been one of the most popular electronic structure programs in recent years, especially
for structural relaxation and geometry optimization. In the present study, a two-step
relaxation process was adopted. First, the volume of the IGF was optimized followed
by relaxation of all the atoms in the model. In the present calculation, we used
GGA–Perdue–Wang–PAW potential with one general k-point and a relatively high
energy cut-off of 400 eV. Because of the large unit cell, one general k-point is
sufficient for the k-point sampling. The resulting energy and the residual force on
each atom were converged to 0.001 eV and 0.01 eV Å�1, respectively. In general,
it takes 35 to 40 VASP relaxation steps to reach convergence. We have used the MPP
machine Seaborg at the National Energy Supercomputing Center (NERSC) in
Lawrence Berkeley Laboratory to carry out these simulations using 256, 512, and up
to 1028 processors at different times. The IGF portion of the 798-atom model
contains 76 Si, 112 O, and 50N ions. The N/(OþN) ratio of 0.31 is close to the
experimental value [4, 7]. The glassy structure in this IGF region is far from that of
an ideal network in which Si is tetrahedrally bonded to either bridging O ions or
threefold bonded N. There are a large number of under-coordinated Si and N.

2.2. Atomistic simulation under mechanical loads

The mechanical behaviour of the IGF model was investigated by two sets of
theoretical uniaxial tensile experiments for different loading cases. In case 1, uniaxial
strain was applied in incremental steps to the super-cell in small increments along the
x-direction. The y- and z-dimensions of the model were kept constant while the
x-dimension is increased such that the strain components were "xx 6¼ 0, while
"yy¼ "zz¼ 0. Thus, for the x-direction loading, simulations were performed for the
overall strain levels of "xx¼ 0.23%, 0.46%, 0.93%, 1.38%, 1.85% and 2.31%. In case
2, uniaxial strain was applied to the super-cell along the y-direction. The x- and
z-dimensions of the model were kept constant such that the strain components were
"yy 6¼ 0, while "xx¼ "zz¼ 0. For the y-direction loading, simulations were performed
for the overall strain-levels of "yy¼ 2%, 4%, 6%, 8%, 10%, 12%, 14% and 16%.
At each strain level, referred to the entire periodic model, all atoms in the model were
fully relaxed using VASP until the residual force on each atom was reduced to less
than 0.01 eV Å�1. The relaxed model at a given strain serves as the starting position
for the next increment of strain before the model is fully relaxed again. This process
is carried on until the total energy (TE) and stress data show that the ‘‘sample’’
is fully fractured.

2.3. Local strain field analysis

At the end of each loading increment, the atoms displace to new equilibrium
positions. Due to the presence of IGF, the atomic motions are expected to have
a complex relationship to the applied strain. To analyse the patterns in the atomic

Ab initio calculations of strain fields and failure 3841
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motions, we divide the super-cell into a 64� 50� 30 grid and consider local groups
of atoms contained within a sphere of radius Ro centred at the nth grid point as

depicted in figure 2. We define a linear displacement field associated with the nth grid

point, such that the displacement of pth atom within this group, is given as:

u
np
i ¼ ani þ d n

ijX
p
j ð1Þ

where u
np
i is the ith component of the fitted displacement for the pth atom, X

p
f is the

position of the pth atom in the unstressed configuration, the coefficients ani denote

the rigid body displacement, and the coefficients dnij represent the local displacement

gradient. We can easily see that if all the atoms within a group move the same
amount then equation (1) reduces to u

np
i ¼ ani . In this case, there is no relative

movement between the atoms. Subscripts follow the usual tensor convention
throughout this manuscript.

The coefficients ani and dnij in equation (1) are obtained by the minimization of the

following function:
X
p

u
np
i � u

p
i

� �2
; ð2Þ

where u
p
i is the ith displacement component of pth atom obtained from the results of

VASP simulation as follows:

u
np
i ¼ x

p
j � X

p
j , ð3Þ

where x
p
j is the location of the pth atom in the deformed configuration. In our

analysis, Ro is chosen to be 4.0 Å based upon two considerations: (i) to ensure a

minimal local volume that guarantees the existence of solutions to the fitting process

used to obtain the local displacement gradient; and (ii) to obtain a maximum
resolution for the strain field in the IGF region. Too large a Ro will average out the

 

Ro 

pth-atom  
 

u
i
p

nth-grid

Figure 2. Schematic of grid used for local strain field analysis.
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7 local variations and obscure the nonlinear behaviour of IGF under stress. On the
other hand, a too small Ro will neglect the effects on the strain due to the atomistic
motions of nearby atoms. Our experience shows that a choice of Ro of 4 Å is
a reasonable one.

We note that the displacement field, �ui, in continuum mechanics is usually
expressed in terms of the mapping, �i, that connects the deformed configuration to
the unstressed reference configuration as follows [19]:

�ui ¼ �i Xj

� �
� Xi, ð4Þ

and the displacement gradient, dij, is written in terms of deformation gradient, Fij, as

dij ¼
@ �ui
@Xj

¼
@�i Xj

� �
@Xj

� �ij ¼ Fij � �ij: ð5Þ

Thus, the local displacement gradient at the nth grid point, d n
ij, defined in equation

(1), may be used to obtain the local deformation gradient, F n
ij, as follows:

F n
ij ¼ �ij þ d n

ij ð6Þ

where �ij is the Kronecker delta. Consequently, the local Green–Lagrange strain
tensor, "nij, is obtained as follows [19]:

"nij ¼
1

2
F n

ikF
n
kj � �ij

� �
ð7Þ

The local strain field describes the collective stiffness behaviour of a few atoms at
various locations within the atomistic model. The local field will be analysed to
understand how the material behaves under loading in terms of continuum
mechanics.

3. Results and discussion

3.1. Stress–strain behaviour of periodic cell

When the periodic cell containing the IGF is subjected to tensile uniaxial strain
loading, tensile stresses develop in both axial and lateral directions. Figures 3a and b
show the axial stress component, �xx, and the lateral stress components, �yy and �zz,
as a function of applied strains "xx and "yy, for x- and y-direction loadings,
respectively. Figure 4 shows the evolution of total energy (TE) of the supercell with
applied strain for both x- and y-direction loading. The stress–strain curves show
an initial linear portion, then an onset of nonlinearity leading to a peak stress and an
abrupt post peak softening. The TE shows an increase with applied strain until
it reaches a plateau, indicating a complete separation or fracture of the periodic cell.
We also note that at the atomistic scale of the periodic cell used in the simulation, the
stress–strain behaviour and the TE variations are highly anisotropic.

For loading in the x-direction, the stress–strain response of the model
is dominated by the behaviour of the IGF. We observe that the lateral stresses,

Ab initio calculations of strain fields and failure 3843



D
ow

nl
oa

de
d 

B
y:

 [T
ok

od
ai

 K
in

ok
un

ya
 C

o]
 A

t: 
09

:3
6 

10
 S

ep
te

m
be

r 2
00

7 

0
0 1 2 3

2

4

6

8(a)

(b)

S
tr

es
s,

 G
P

a
S

tr
es

s,
 G

P
a

εxx(%)

0 4 8 12 16

εyy(%)

σxx

σyy

σzz

0

10

20

30
σxx

σyy

σzz

Figure 3. Stress–strain curve of the intergranular glassy film (IGF) model under (a)
x-direction loading and (b) y-direction loading. Note the difference in the stress scale in
(a) and (b).
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Figure 4. Evolution of total energy with loading in the x- and y-directions.
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7 �yy and �zz, show very little increase in the first two load steps which correspond to
the initial linear portion of the �xx–"xx curve. This stress–strain behaviour indicates
that the initial atomic structure of the IGF is such that there is negligible coupling
between the x- and the y–z directions. However, once the �xx–"xx behaviour becomes
nonlinear for "xx40.46%, the lateral stresses �yy and �zz increase rapidly. Clearly
with increasing strain, the load carrying capacity of atomic interactions weakens in
the x-direction, the structure adjusts such that load is carried through interactions in
the y- and z-directions. It is noteworthy that this load induced evolution of the IGF
atomic structure is such that the lateral stresses keep increasing even though the
behaviour in the x-direction enters a softening regime at "xx� 1.38%. Finally at
"xx� 2.31%, all the stress components enter a softening regime, indicating an overall
failure of the material under the imposed loading path. Although the results from
uniaxial strain loading cannot be directly compared to uniaxial stress experiments,
the peak stress of 5.94GPa at the strain of 1.38% can be interpreted as the IGF
tensile strength. Experimental values of tensile strengths reported for silicon nitride
have a wide variation attributable to a number of reasons, such as processing, testing
methodology, presence of sintering agents, grain sizes, and porosities and other
large-scale defects [20]. Ab initio calculations do not model these factors and do not
include large-scale defects (see also Ogata et al. [21]). Furthermore, the tensile
strength of the IGF may not be directly related to the tensile strength of
a polycrystalline macroscopic sample in which IGF may be variously oriented
with respect to the loading direction. Consequently, we expect that the calculated
tensile strengths from ab initio calculations to be considerably larger than the
experimental values. Therefore, it is remarkable that the calculated peak stress
compares well with the tensile strength of 5.87 GPa reported by Edwards et al. [22]
for Si3N4 based upon uniaxial stress lab experiments on thin films obtained from
chemical vapour deposition process. The similarity in results could be due to
relatively defect free microstructure with reduced glassy phase at grain boundaries
possible in chemical vapour deposition process [23].

For loading in the y-direction, the stress–strain response of the model
is completely different from the x-direction loading, and is dominated by the
behaviour of the crystalline phase. We observe that up to the applied strain
"yy� 4.0%, the stress–strain behaviour is approximately linear. Assuming an isotropic
behaviour within this strain level, we obtain a Young’s modulus of 204GPa and
Poisson’s ratio of 0.22, which compares well with the bulk elastic behaviour of Si3N4

polycrystallites (see Edwards et al. [22] and references therein). For applied strain
"yy� 4.0%, the stiffness of the periodic cell reduces and the behaviour becomes
nonlinear. At a very large strain of "yy� 14.0%, all the stress components enter a rapid
softening regime leading to a complete rupture of the periodic cell.

3.2. Local strain fields

Local strain fields were computed from the atomic positions at each loading
increment using equation (7). For further analysis, the strain components were
averaged over the z-direction and plotted on the x–y plane. In figure 5, we have
plotted the "xx component of the local strain field for x-direction loading. The local

Ab initio calculations of strain fields and failure 3845
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strain field is shown both as surface and contour plots such that the local variations
and their evolution with applied strain may be clearly visualized.

Furthermore, in figure 6, we show the "yy component of the local strain field for
x-direction loading, and in figure 7 we show the "xx and "yy component of the local
strain field for y-direction loading. Clearly, the local strain field is complex and
highly heterogeneous. We also note that although the applied strain is uniaxial,
multiaxial strains develop locally within the periodic cell. The calculated local strain
fields show that local structures experience both normal as well as shear strains,
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Figure 5. Local axial strains, "xx, plotted as (1) 3D surface plots and (2) 2D contour plots
for x-direction loading at overall strain levels of (a) 0.23%, (b) 0.46%, (c) 0.93%, (d) 1.38%,
(e) 1.85%, and (f) 2.31%, showing progressive development of tensile strain band along the
interface between the intergranular glassy film (IGF) and crystalline layers, and compressive
strain band within the IGF (See online for colour version).
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such that the strain tensor is fully populated. Such behaviour can only be revealed by
detailed strain field analysis based on data obtained from rigorous ab initio quantum
mechanical calculation.

From the strain field plots we observe that in the early part of the loading, when
the stress–strain behaviour is linear, multiaxial strains occur at locations within the
IGF and at the interface between the IGF and the crystalline phase. However, as
seen from the lateral strain contours in figures 6 and 7, the locations of multiaxial
strain spread into the crystalline phase as the loading progresses. Moreover,
the magnitude and the variability of all the strain components evolve with loading.
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Figure 7. Contours of (1) local lateral strains, "xx, and (2) local axial strains, "yy, for
y-direction loading at overall strain levels of (a) 4%, (b) 8% and (c) 12% (See online for colour
version).
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7 To illustrate the evolution of multiaxial strains, we have calculated the frequency
histograms of all the strain components. In figures 8 and 9 we have plotted the
relative frequency distribution of the three normal strain components, "xx, "yy and
"zz, for the x- and y-loading cases. We have also plotted the standard deviations of
both normal and shear strain components. From the strain field plots as well as the
frequency diagrams, we observe that there are many locations within the periodic cell
where local strains are small or close to zero while the overall strain for the periodic
cell is finite. Such cases especially arise close to failure where the local strain
is concentrated in the failure zone. In these cases, the atoms in crystalline portion
experience very little strain but large rigid body displacements, since they have
moved substantially from their original positions. Clearly, the relationship between
the local atomic motions and the overall strain of the periodic cell is extremely
complex and significantly violates the Cauchy–Born rule [24]. Moreover, modifi-
cations or extensions to the Cauchy–Born rule, such as the use of higher order
theories may also be insufficient. These results clearly indicate that for an accurate
description of the continuum scale models of complex materials containing defects or
microstructures, their behaviour at the atomistic level must be understood first.

The variations in local strain field reveal atomic-scale mechanisms that influence
the overall stress–strain behaviour of the periodic cell containing the IGF. We
observe from figures 5 and 6, that the applied strain in the x-direction is mostly
accommodated by the IGF part of the model and the crystalline part experiences
almost negligible strain during the linear part of the stress–strain curve ("xx50.46%).
Thus, the stress–strain response of the model under x-direction loading is dominated
by the behaviour of the IGF. With loading, the crystalline part experiences
increasingly higher strain, resulting in a strain gradient from the IGF region into the
crystalline part as seen in figure 5. As a result, the bond lengths across the interface
between the IGF and the crystalline layer increase. The large local tensile strains
in figure 5 result from the relative movements between the atoms in the crystalline
layers and the atoms within the IGF. As these interfacial bonds become progressively
weaker, the bond lengths within the IGF shorten. Consequently, regions of
compressive strains develop within the IGF and its close neighbourhood even
though the overall strain is tensile for the periodic cell. As the loading progresses,
these locations evolve into a persistent tensile strain concentration band along the
interface between the IGF and crystalline layers, and compressive strain concentra-
tion band within the IGF.

The overall nonlinearity in the stress–strain behaviour is caused by the
progressive weakening induced due to the strain concentrations within the bands.
As can be seen in figure 6, the strain concentrations result in an interesting periodic
pattern in the lateral strain field, "yy, composed of alternate bands of compressive
and tensile strains. We also note that as the x-direction becomes weaker the loading
is transferred to y-direction bonds or vice versa as revealed by increasing local lateral
normal strains and shear strains. Although the average lateral normal strains and
shear strains vanish, and therefore are consistent with the overall uniaxial loading,
substantial local strains are observed as shown by the relative frequency distributions
and the standard deviations of normal and shear strain components given in figure 8.

Under y-direction loading, the pattern of deformation is significantly different.
As seen from figure 7, the strain field, "yy, in the direction of loading is characterized

3848 A. Misra et al.
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by alternate bands of high and low strains whose average is consistent with the
overall applied strain. These strain bands also initiate within the IGF and spread into
the crystalline parts. This banded pattern is caused by neighbouring soft and stiff
regions within the IGF. Under an applied tensile strain, the soft region is easily
deformed and consequently undergoes further softening. Thus, the soft region
attracts progressively higher strain while the neighbouring stiff region becomes stiffer
as the applied loading increases. We also observe from figure 7, that the lateral
strains, "xx, are compressive in the crystalline region and tensile in the IGF. Thus, the
deformation pattern and the eventual failure under y-direction loading are also
influenced by the structure of the IGF. Furthermore, as in the case of x-direction
loading, y-direction loading also results in significant magnitudes of local shear
strains as well as large heterogeneity in the strain fields, as shown in figure 9.

3.3. Failure mechanisms

Failure initiates at points that may be described as defect structures consisting of
atoms that are either under-coordinated or over-coordinated. These points serve as
local soft spots or stiff spots and, thus, attract higher deformations or forces.
Typically, as the loading progresses, the soft locations deform under tension (strain
concentration) and become weaker; at the same time the contiguous locations
undergo local compressive strains and stiffen up. The result is that local soft spots get
progressively weakened resulting in a global failure of the periodic cell. An analysis
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Figure 8. Frequency distributions of local strain field components (a) "yy, (b) "zz and (c) "xx,
and (d) the standard deviations of all local strain field components for the x-direction loading.
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of strain fields shown in figures 5–7 can provide insights to both intergranular and
intragranular failure mechanisms.

The strain field given in figure 5 shows that the largest tensile strains obtained
from ab initio calculation occur at the interface between the IGF glassy region and
the Si3N4 crystalline grain. In addition, we observe that the large tensile strains are
accompanied by compressive strains within the IGF as it shrinks towards the intact
interface. Thus, the intergranular failure occurs as the soft spots at the interface
weaken while stiff spots strengthen under loading. In recent years, an experimental
procedure for direct observation of intergranular cracks in Si3N4 using transmission
electron microscope (TEM) has been reported by Ii et al. [25]. In their procedure,
microindentation is performed inside a TEM using a 1 mm indenter driven by a piezo-
actuator with step size as low as 0.16 nm. Specimens of size 2� 2� 0.1 mm are used
and HREM images are acquired during stepwise indentation. We observe close
qualitative agreement of failure mechanism observed in these experiments and those
revealed by the local strain fields. The intergranular crack propagation pathway
observed by Ii et al. [25] always occurred at the interface between the IGF glassy
region and the Si3N4 crystalline grain. Similar interfacial crack propagation has been
observed by Blonski and Garofalini [26] in their molecular dynamics simulations of
thin calcium silicate intergranular films sandwiched between alumina crystals.

Intragranular failure mechanisms are more complex. However, as revealed by the
local strain fields from y-direction loading shown in figure 7, the IGF has an
important role in providing the seed location from where the failure initiates. Again,
as the soft spots in the IGF are unable to sustain further loading and attracts large
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Figure 9. Frequency distributions of local strain field components (a) "xx, (b) "zz and (c) "yy,
and (d) the standard deviations of all local strain field components for the y-direction loading.
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7 strain concentration, the contiguous crystalline part is also subject to higher strains.
Consequently, the crystalline part becomes heterogeneous leading to regions of strain
concentrations and overall intergranular failure.

4. Conclusions

We have studied the mechanical behaviour of a nanometre size IGF sandwiched
between silicon nitride crystals. Although the thin IGF occupies only a very small
fraction of overall composition and volume, it has a profound effect on the
mechanical behaviour of silicon nitride. The nanometre scale mechanical behaviour
of such multiphase systems is extremely complex and not easily accessible through
either experimental or theoretical methods. In this paper, we have taken a theoretical
approach and performed ab initio simulation of IGF models subjected to tensile
loading. This is the first time such ab initio results have been obtained for large
multiphase systems. To understand the deformation patterns and failure mechanisms
at atomic scales we have developed a methodology for strain field analysis based
upon the ab initio calculations. Several interesting results have been obtained for
the first time. Significant deviations from the first-order Cauchy–Born rule were
observed for IGF models even under small load. Furthermore, atomic-scale
mechanisms that lead to intergranular and intragranular failure were revealed
from the analysis of the strain fields. In the future we plan to develop methodologies
that can utilize these results for continuum-level modelling of polycrystallites.
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