
HAL Id: hal-00555144
https://hal.science/hal-00555144v1

Preprint submitted on 12 Jan 2011 (v1), last revised 12 Dec 2012 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Strategies as sheaves and interactive equivalences for
CCS

Tom Hirschowitz, Damien Pous

To cite this version:
Tom Hirschowitz, Damien Pous. Strategies as sheaves and interactive equivalences for CCS. 2011.
�hal-00555144v1�

https://hal.science/hal-00555144v1
https://hal.archives-ouvertes.fr


Strategies as sheaves and interactive equivalences

for CCS

Tom Hirschowitz

CNRS and Université de Savoie, France

Damien Pous

CNRS, France

I. OVERVIEW

We are concerned with reconciling, in the particular case of

Milner’s CCS [1],

• Joyal, Nielsen, and Winskel’s [2], [3] approach (JNW) to

concurrency theory, with

• the interactive approach to behavioural equivalences, as

advocated, e.g., in De Nicola and Hennessy’s testing

equivalences [4], later revisited by Beffara [5], in Krivine

realisability [6], in game semantics [7], or in Girard’s

ludics [8].

JNW propose presheaf categories as a generalisation of

transition systems, and hence as a candidate semantics for

process algebra. They accordingly equip them with a general

notion of bisimilarity, which is the queen equivalence of

concurrency theory, mainly because it is the finest. JNW

argue that their general definition indeed gives bisimilarity on

various important examples.

However, presheaf categories do not directly feature any

notion of internal interaction. Bisimilarity may be considered

interactive in a certain sense, but interaction takes place with

an external observer [9]. In game semantics, realisability,

or ludics, instead, interaction is part of the formalism, and

observability is defined relatively to the model at hand. This

is also what happens in testing equivalences in concurrency,

in particular may, must, and fair testing [4], [5].

We are here interested in refining JNW with an internal

notion of interaction, and deriving a notion of interactive

equivalence. As a first step in this direction, we study the

particular case of Milner’s CCS [1].

The idea of JNW consists in considering a category P of

(non-empty) observations and taking presheaves on it. JNW

then argue that functional bisimulations may be characterised

by a lifting property w.r.t. representable morphisms. For inter-

leaving semantics, the relevant category has:

• objects: non-empty words over an alphabet A;

• morphisms: prefix extensions, e.g., abc→ abcd.

Processes are then presheaves on P, i.e., functors Pop → Set.

Presheaves are like trees with edges labelled in A, while

natural transformations are like functional simulations. In

traditional game semantics [7], a strategy is a prefix-closed

set of plays with conditions. If the letters of A are thought

of as moves, a prefix-closed set of plays is the same as a

This work has been partially funded by French ANR projects Choco ANR-
07-BLAN-0324 and PiCoq ANR-2010-BLAN-0305.

functor Pop → 2, where 2 is the category 0 → 1. This

notion of strategy is too coarse to detect branching, namely,

two functors Pop → 2 are isomorphic when the underlying

processes are trace equivalent. E.g., this equates a.(b+ c) and

ab+bc. Replacing functors Pop → 2 with functors Pop → Set

yields a new notion of strategy, which is fine enough to detect

branching.

The starting point of this paper is to define a category of

observations E derived from CCS syntax, in a way which we

think may be made systematic (although we leave this for

further work). Observing that this category has a topological

nature, we define strategies to be not only presheaves, but

sheaves [10] over E, relative to a fixed base position X .

Sheaves are here to presheaves what innocent strategies are

to plain strategies1.

Seen as indexed over X , the categories of strategies SX

form a stack [12], which yields a notion of interaction by

amalgamation. We prove a spatial decomposition result, which

says that giving a strategy on a position X is the same as

giving a strategy for each of its sequents, a kind of atomic

position. We furthermore prove a temporal decomposition

result saying that a strategy is determined by its set of initial

states, plus what remains of each of them (as a strategy) after

each possible first move.

Finally, we investigate interactive equivalences in this

model. We first define a category of global behaviours GX

on a position X , which comes with a functor Gl : SX → GX

from strategies. We then let an observable criterion on X be

a subcategory ⊥⊥X →֒ GX , and derive from it an assignment

S 7→ S⊥⊥ of orthogonal contexts to each strategy S, and a

notion of ⊥⊥-equivalence S ∼⊥⊥ S′, holding exactly when

S⊥⊥ = S′⊥⊥.

We then instantiate this with the must criterion ⊥⊥m. Tra-

ditionally, must testing has to do with maximal traces of

a process satisfying some condition, a trace being maximal

when it is infinite. We define must testing in our setting in a

similar way. But here, thanks to the topological aspect of our

approach, an infinite observation may not be maximal. We then

define the fair criterion ⊥⊥f , mimicking its standard definition.

In the traditional setting, may and must testing differ; we show

that in our setting they coincide.

1In passing, sheaves yield a notion of non-deterministic, innocent strategy,
which might lead to an alternative to Harmer’s approach [11].



II. OBSERVATIONS AS PRESHEAVES

A. The base category

To define our category of observations, we start with a

category of positions B which is the category of presheaves

on the category C1 freely generated by the graph

. . . n . . . p . . .

⋆.0

n−1

..
.

0

p−1

...

Formally, C1 has as objects the natural numbers plus one

special object ⋆, with as non-trivial homsets the C1(⋆, n)
which are n, seen as an ordinal, i.e., 0 . . . n− 1.

Positions are like hypergraphs. For example, the presheaf F
with:

• F (⋆) = {a, b},
• F (1) = {X1, X3},
• F (2) = {X2},

• F (⋆
0
−→ 1)(X1) = a, notation: X1 · 0 = a,

• X2 · 0 = a, X2 · 1 = b,

• X3 · 0 = b.

has a category of elements looking like:

X1 X2 X3

a b.

0 0 1 0

We think of F (⋆) as the set of channels, or names, on which

the players (the other elements) will communicate.

Communication takes place via moves, which we will define

as certain cospans of presheaves on an extension C of C1,

which we now gradually construct.

Recall the syntax of finitary CCS2

P,Q, . . . ::= 0 | (P |Q) | a.P | a.P | νa.P,

where only the ν operation is binding a (which is hence

subject to α renaming). The way we locally augment C1 for

each construction is depicted in Fig. 1 (left), together with the

category of elements of an example representable (right) on

one of the introduced objects.

Let us start with input. The formation rule is

a0, . . . , an−1 ⊢ P

a0, . . . , an−1 ⊢ ai.P
·

Here, a1, . . . , an is a list of names, and the rule says that if

we have formed a process P using these names, then we may

form the process ai.P which tries to input on ai and then

continues with P . To model this, we add an object ι−n,i to C1

2We rely on finitary CCS to define C, but our model actually leaves room
for infinitary processes. We have defined a translation from CCS processes
with recursive definitions to our model, but not yet proved anything on it.

for each pair i ∈ n, with morphisms s, t : n → ι−n,i, and we

quotient out by the equations s ◦ j = t ◦ j for all j ∈ n.

Pictorially, we obtain a graph locally looking like the left of

the first row in Fig. 1. For example, the category of elements of

the representable ι−3,2 is the partially ordered set generated by

the right of the first row in Fig. 1, where we write composition

as juxtaposition, e.g., t1 = t◦1. For the output formation rule

a.P , we do exactly the same, naming the new objects ι+n,i.

For parallel composition P |Q, we add a vertex πn to C1

for each n, plus morphisms s, t1, t2 : n → πn, and quotient

out by t1 ◦ i = s ◦ i = t2 ◦ i for all i ∈ n. The extension is

depicted in Fig. 1 in the second row, following the pattern of

the first. The depicted representable is π3.

For name creation νa.P , depicted in row 3, we add a vertex

νn to C1 for each n, plus morphisms n
s
−→ νn

t
←− n + 1, and

quotient out by s◦i = t◦i for i ∈ n. The depicted representable

is ν2.

Finally, we introduce a tick move, which will be important

for observation. We add a vertex ♥n for each n to C1 with

morphisms s, t : n→ ♥n, and quotient out by s ◦ i = t ◦ i for

all i ∈ n. The depicted representable is ♥3.

Up to now, we have extended C1 to model process formation

rules. Altogether, this yields a category C2. We now model the

synchronisation relation

a.P |a.Q→ P |Q.

We do so by adding a new object τn,i,m,j to C2, for all

i ∈ n, j ∈ m, with morphisms ι+n,i

ǫ
−→ τn,i,m,j

ρ
←− ι−m,j , and

quotienting out by ǫ ◦ s ◦ i = ρ ◦ s ◦ j (for only the given i
and j this time). The depicted representable is τ3,2,2,1.

Calling this new category C3, or C for short, this makes us

a sequence of categories C0 = {̂⋆} = Set, C1, C2, C3, which

yields a sequence of truncation functors

Ĉ3 → Ĉ2 → Ĉ1 → Ĉ0.

We further say that a presheaf has dimension i when it is empty

above Ci. We call interfaces the presheaves of dimension 0,

and positions the presheaves of dimension 1. The elements

of dimension 1, i.e., above some n, are the players, those of

dimension 2 are the moves, while those of dimension 3 are

the synchronisations.

Presheaves on C model executions, or traces, of CCS

processes, up to certain permutations. Consider for example

the process b|a. We may naively model its two maximal traces

as the colimit in Ĉ of the diagram

ι−2,1

s
←−֓ 2

t1
−֒→ π2

t2
←−֓ 2

s
−֒→ ι+2,0.

If we want to model traces of a|a, then we may replace 2 by

1 above, and there is one more maximal trace (the τ transition

a|a→ 0|0). Presheaves also model infinite executions, e.g., of

the process µX.(X|X) which indefinitely forks.

However, there are also some presheaves which do not

correspond to any sensible trace.

Example 1. The quotient of the representable ι1,0 under s = t
could be meaningful in other contexts, but here we want to rule

2



Local augmentation Example representable

⋆ n ι−n,i.

0

n− 1

s

t

···

t0

t t2

t1

ι−3,2

s0

s s2

s1.

⋆ n πn.

0

n− 1

t1

t2

s···

t10 = t20

t1 t2 t12 = t20

t11 = t21

π3

s0

s s2

s1.

νn

n n + 1

⋆.
0

n− 1 n

0

s t

·
·
· ·

·
·

t0

t t2

t1

ν2

s0

s

s1.

⋆ n ♥n.

0

n− 1

s

t

···

t0

t t2

t1

♥3

s0

s s2

s1.

τn,i,m,j

ι+n,i ι−m,j

n m

⋆0

n−1 m−1

0

s t s t

ǫ ρ

·
·
·

·
·
·

ǫt0

ǫt ǫt2 = ρt1 ρt ρt0

ǫt1

ǫ ρ

ǫs0

ǫs ǫs2 = ρs1 ρs ρs0

ǫs1.

τ3,2,2,1

Fig. 1. Augmentations of C and example representables

3



it out (actually following JNW, which systematically unfold

cyclic processes).

Example 2. The quotient of π0 under t1 = t2, in which the

two players obtained after forking are actually equal.

Example 3. The pushout

0 ♥0

♥0 U

s

s

in which one player, here s, plays two moves at the same time.

Example 4. There is a similar problem one level up: two

synchronisations may have one input or one output in common,

which should also be considered as wrong.

Example 5. The pushout

⋆ 1 ν0

1 U

0

0

t

in which the name created by ν0 is already known by the

lower-left player, or alternatively where the latter player

spontaneously appears during execution.

To control this, we now define particular classes of cospans

of presheaves, moves and observations.

B. Moves and observations

Basic moves will be certain diagrams S → Ĉ, where S is

the category generated by:

Y J

M K

X I.

(1)

In basic moves, both squares will be pullbacks, the indicated

arrows will be monos, the images of I, J, K will have dimen-

sion 0, and X and Y will be positions.

We will then use the functor category [S, Ĉ] to define general

moves as basic moves embedded in larger positions. The

intuition is close to some graph transformation formalisms:

the left border is the typical move in isolation, i.e., without

any passive context; the right border is the interface to the rest

of the world; moves will be obtained by glueing the move in

isolation to a passive context along the interface. A passive

context is a cospan of the form Z Z Z.

We will define basic moves below, but we may already

define: a move is a cospan X ′ →֒M ′ ←֓ Y ′ obtained from a

basic move X →֒M ←֓ Y as in

J Z

Y Y ′

K Z

M M ′

I Z

X X ′,

where the dashed arrows are obtained by universal property of

pushout. The dashed arrows are indeed mono (using the fact

that monos in Set are coproduct injections).

There will be six classes of basic moves, indexed by the

arity of the involved players: forking, name creation, tick,

and three classes of basic moves for synchronisation. For

synchronisation, the full synchronisation τ is not enough: we

also want to consider players synchronising with the external

world, i.e., with players not part of the position. The three

communication moves will thus be synchronisation, emission,

and reception. Let us define the six classes of basic moves

precisely.

Forking is the n-indexed family of diagrams

n | n n · ⋆

πn n · ⋆

n n · ⋆,

[t1, t2]|

s

where n · ⋆ is the n-fold coproduct of (the representable) ⋆,

which has actually n elements over ⋆ hence the notation, and

where n | n is the pushout and [t1, t2]| is the induced dashed

arrow in

n · ⋆ n

n n | n

πn.

[i]i∈n

[i]i∈n

t1

t2

All arrows from n · ⋆ are the obvious ones.

Name creation is the n-indexed family of diagrams

4



n + 1 n · ⋆

νn n · ⋆

n n · ⋆,

t

s

where the morphism n · ⋆→ n + 1 is n · ⋆
[i]i∈n
−−−→ n + 1.

The tick move is the n-indexed family of diagrams:

n n · ⋆

♥n n · ⋆

n n · ⋆.

t

s

For x ∈ {ι+n,i, ι
−
n,i}, the following (n, i)-indexed family of

diagrams

n n · ⋆

x n · ⋆

n n · ⋆

t

s

form basic moves.

Synchronisation is the diagram

n i |j m (n + m− 1) · ⋆

τn,i,m,j (n + m− 1) · ⋆

n i |j m (n + m− 1) · ⋆

b
t′

s′

where all objects are obtained as pushouts and all arrows are

induced as in Fig. 2. The diagram above commutes because

t′ ◦ b = s′ ◦ b, which follows from universal property of the

top and bottom squares of Fig. 2 as pushouts, thanks to the

commutativity of

n · ⋆ n

n ι+n,i

t

s

and

m · ⋆ m

m ι−m,j .

t

s

Before defining observations, let a restriction from X to Y

be a cospan X
id
−֒→ X ←֓ Y , where X and Y are positions.

We may now state:

Definition 1. An observation is a presheaf U ∈ Ĉ isomor-

⋆ m · ⋆

n · ⋆ (n + m− 1) · ⋆

⋆ m

n n i |j m

⋆ ι−m,j

ι+n,i τn,i,m,j

⋆ m

n n i |j m

⋆ m · ⋆

n · ⋆ (n + m− 1) · ⋆

t

s

inj i

inj j

inj i

inj j

i

j

i

j

i

j

t

s

b

t′

b

s′

Fig. 2. Construction of the synchronisation move

phic to a possibly denumerable “composition” of moves and

restrictions in Cospan(Ĉ):

X0 X1 . . . Xn Xn+1 Xn+2 . . .

M0 . . . Mn Mn+1 . . .

U.

The base is the morphism X0 →֒ U .

The category E of observations has

• objects: monos X →֒ U in Ĉ with U an observation and

X its base; and

• morphisms: all commuting squares

U V

X Y.

There is an obvious projection functor to positions π : E→
B sending (X →֒ U) to X.

III. STRATEGIES, SHEAVES, STACKS, AND SKETCHES

A. Strategies as sheaves

We now start our approach to strategies as sheaves, by

viewing the last functor π as a morphism of sites.

5



Definition 2. Let a sieve S on X →֒ U in E be view-covering

when it is jointly surjective in dimension 1.

Let a sieve S on X in B be covering when it is jointly

surjective in dimension 1.

Proposition 1. The functor π : E→ B is a morphism of sites.

We now define strategies as sheaves, for which we need to

relativise to a base position X .

Definition 3. Let (E)X have as objects U ←֓ Y → X , and

as morphisms transformations

U U ′

Y Y ′

X.

There is an obvious projection functor p : (E)X → E

sending U ←֓ Y → X to Y →֒ U , through which the

categories (E)X inherit a Grothendieck topology from E: a

sieve S covering U ←֓ Y → X iff the projection p(S) covers

Y →֒ U .

Definition 4. Let the category SX of strategies on X be

Sh((E)X).

For such a strategy S and observation X →֒ U , we can

think of each element of S(U) as a set of states for S at each

stage of U .

We end the section by describing a canonical covering for

observations, which will also yield a canonical covering for

positions.

A sequent is a connected position with exactly one player,

or equivalently a presheaf x obtained by pushout

n · ⋆ I

n x

e

with I of dimension 0, and e epi. A sequent is (isomorphic

to) a representable exactly when e is an isomorphism.

A elementary quasi-view V from x to y is a cospan x →֒
V ←֓ y isomorphic to a composite of

• a move from a sequent x,

• followed by a restriction to a sequent y,

i.e., a colimit

x X y

M X

V,

(2)

where x and y are sequents, and M is a move. When x is

representable, then V is an elementary view.

Lemma 1. Any such elementary view has y representable.

Proof: By case inspection.

Lemma 2. Any elementary quasi-view is the codomain of an

epimorphism from an elementary view.

Proof: By definition of moves from basic moves, and of

sequents.

Definition 5. A quasi-view is an observation isomorphic to

a possibly denumerable “composition” of elementary quasi-

views.

A view is the same with elementary views.

A consequence of Lemma 2 is:

Lemma 3. Any quasi-view is the codomain of an epimorphism

from a view.

Finite views form a canonical covering, in the sense that

the next two propositions hold.

Proposition 2. For any observation X →֒ U , the sieve

generated by morphisms from finite views into U is covering.

Proposition 3. Any covering sieve contains all morphisms

from finite views.

For proving them, we introduce the following tool. Let the

causal relation on an observation X →֒ U be the set of pairs

x ≺ y of players of U generated by:

• y = x · t or y = x · t1 or y = x · t2, or

• x = y · s.

Let also ↓x be the set of all elements y ≺ x.

Lemma 4. The causal relation on an observation X →֒ U is

a forest, whose roots are exactly the players in X .

Lemma 5. For any observation X →֒ U and element x ∈ U
of dimension 1, there is a view n →֒ V with a morphism

V U

n X,

(3)

such that x is in the image of V .

If x is furthermore maximal for ≺U , then V is unique up

to isomorphism, and for fixed V the morphism (3) is unique.

Proof: For any such element x of U , consider the smallest

subpresheaf W →֒ U containing the downwards cone ↓x. This

W is a finite quasi-view with a morphism to U

W U

y X,

where y is the bottom element of ↓x. By Lemma 3, there is

an epimorphism from a view V to W , hence the composite

morphism V → U has x in its image.

6



This V is furthermore a minimal such view, up to isomor-

phism, since any other such view would have to have the whole

↓x in its image. Thus, if x was further maximal for ≺U in its

dimension, V is a also maximal view of U , hence is unique

up to isomorphism.

Proof of Proposition 2: By Lemma 5.

Proof of Proposition 3: Consider any sieve S covering

U , and a morphism h : V → U from a finite view V .

If V is the empty composition and h amounts to x : n→ X ,

then S has a morphism h : U ′ → U with x ∈ Im(h). Let

x′ ∈ U ′ be an antecedent of x. The morphism n
x′

−→ U ′ h
−→ U

is in S and is equal to x.

If V has moves, then these are ordered linearly (via ≺V ),

and hence there is a maximum such move m ∈ V . Because S
is covering, there is a morphism h′ : U ′ → U in S with m ∈
Im(h′). Because U ′ is an observation, it has to contain ↓m,

hence there is a morphism V → U ′, and thus the composite

V → U ′ → U is in S. But this has to be h be the uniqueness

part of Lemma 5.

B. Strategies as a stack

Stepping back a little, we have defined a category SX of

strategies for each position X , but we have not yet understood

the global structure of this assignment, e.g., how strategies on

X relate to strategies on Y through a morphism of positions

Y → X .

For any morphism h : Y → X in B, composition with h
induces a functor Σh : (E)Y → (E)X sending (U ←֓ Z → Y )
to (U ←֓ Z → Y → X), which preserves covering

sieves. Restriction along this functor (i.e., composition with

its opposite) induce a functor h∗ : SX → SY between the

categories of sheaves.

Recall the Grothendieck topology on B in Definition 2, and

the definition of a stack [12].

Proposition 4. The assignments X 7→ SX and h 7→ h∗ form

a functor S : Bop → CAT, which is a stack.

Proof: Essentially the same arguments as in Vistoli [12,

Examples 3.20 and 4.11], with the difference that the slice is

here taken through the functor π : E→ B.

In a sheaf F on any category C, seeing a covering sieve on

an object U as a subpresheaf S →֒ U of the representable U ,

the map induced by the inclusion

Ĉ(U, F )→ Ĉ(S, F )

is a bijection. Stacks are like sheaves of categories, and the

inclusion induces not only a map but a functor

Ĉ(U, F )→ Ĉ(S, F )

which is required to be not only an isomorphism but an

equivalence of categories. Since strategies SX form for each

X a proper category, they only yield a stack, not a sheaf.

Remark 1. Strictly speaking, each SX is only locally small.

Hence, S is a functor to the large category of locally small

categories.

Observe now that any position X is covered by the sieve S
generated by morphisms n → X . For any two distinct such

morphisms, their pullback I contains only channels, and hence

SI ≃ 1, i.e., there is essentially a unique strategy on I . So, giv-

ing a compatible family of strategies for the sieve S amounts to

giving a strategy on n for each n→ X , since the restrictions

on intersections, having to be the unique strategy there, are

automatically compatible. Letting Sq(X) =
∐

n X(n), we

have proved:

Proposition 5. For any position X , SX ≃
∏

(n,x)∈Sq(X)

Sn.

C. Strategies and sketches

We have just shown that in the static direction, i.e., relatively

to positions, S is a stack. We now show that in the dynamic

direction S is close to being a model for a sketch, in the fol-

lowing sense. For any representable n, we may choose exactly

one representative of each isomorphism class (considered in

En) of moves n →֒ M ←֓ XM , this yielding a (finite) set

Mn of moves. Let us denote by (M : XM → n)M∈Mn
the

corresponding family.

Definition 6. Let Ev be the (bi)category with positions as

objects, as morphisms Y → X the diagrams X →֒ U ←֓
Y where X →֒ U is an observation, and Y is a position

containing players not in the image of s, and as 2-cells all

morphisms of cospans.

We call the 1-cells of Ev stories, to emphasise the distinc-

tion with observations. Observations X →֒ U may be seen as

stories U : 0→ X .

The families (M : XM → n)M∈Mn
, seen as cones from

n in Eop
v , equip the latter with a (product) sketch structure.

Recalling that a model for a sketch C in a category D is a

functor C→ D sending the distinguished cones in C to limit

cones, S being a model for the above sketch in CAT would

amount to isomorphisms of categories

Sn
∼=

∏

M∈Mn

SXM
, (4)

for all representables n. These do not hold in general because

of non-determinism. Instead, for a category C, recall from

Jacobs [13, Definition 1.2.1] that Fam(C) denote the category

with

• objects set-indexed families of objects in C, i.e., pairs of

a set X and a mapping c : X → C0, and

• as morphisms (X, c) → (Y, c′) the pairs of a function

f : X → Y and u : X → C1 such that s ◦ u = c, and

t ◦ u = c′ ◦ f .

We will now show that S is a model for the sketch Eop
v in

the relaxed sense that for any representable n, there is an

equivalence of categories

Sn ≃ Fam

( ∏

M∈Mn

SXM

)
.

7



Comparing with (4), this is a way of taking into account

both non-determinism and pseudo-ness, not so surprising when

taking models in a 2-category instead of a category. Otherwise

said, a strategy is determined by

• its initial states, and

• what remains of them after each possible move.

But before showing that S decomposes this way, we must

exhibit it as a pseudo-functor Eop
v → CAT. A first observation

is that views induce change-of-base operations on strategies.

For any representable n′, a strategy on n′ is determined by

its value on finite views from n′, so we may view it as a

functor (Vn′)op → Set, where Vn′ is the full subcategory of

En′ consisting of finite views. So, given a strategy S ∈ Sn

and a view V : n′ → n, the following assignment determines

a strategy S(V )(S) on n′:

(Vn′)op → Set

U 7→ S(V ⊗ U)

h 7→ S(V ⊗ h) for h : U → U ′ in Vn′

Here, V ⊗ U denotes the composition

0
U
−→ n′ V

−→ n

in Ev , and V ⊗ h denotes the morphism of observations of

base n induced between the colimits of the columns in

U U ′

n′ n′

V V

n n

h

by universal property of colimits.

Now, for a morphism of sheaves f : S → S′ in Sn, the

assignment U 7→ fV ⊗U defines a morphism

S(V )(f) : S(V )(S)→ S(V )(S′),

which induces a pseudo-functor

S(V ) : Sn → Sn′ .

We may extend the construction to arbitrary positions and

stories. For an arbitrary story U : Y → X , by Proposition 5,

we have

SY ≃
∏

(n′,y)∈Sq(Y )

Sn′ .

We distinguish notationally by indicating (n′, y) as a subscript,

e.g., S(U ←֓ Y → X) means the value of S at U ←֓ Y → X ,

while S(n,x) denotes the strategy on n obtained by restricting

S along x.

Recall now Lemma 5. When we view U : Y → X as a

morphism in Ev , any x : n→ Y corresponds to an element of

U , maximal for ≺U . Let ex : Vx → U be the corresponding

morphism with Vx a view, and x in its image, and let

⌊x⌋ : nx → X be the corresponding morphism between bases.

This induces a diagram:

n Y

Vx U

nx X.

x

⌊x⌋

ex

Define then:

S(U)(S)(n,x) = S(Vx)(S(nx,⌊x⌋)). (5)

By definition, on a view V ←֓ n
x
−→ Y , we have

S(U)(S)(x, V ) = S(Vx ⊗ V ←֓ nx

⌊x⌋
−֒−→ X), (6)

which is enough to define S(U)(S) as a strategy on Y .

Proposition 6. This assignment yields a functor S(U) : SX →
SY , and thus beyond being a stack Bop → CAT, S is also a

(bi)functor Eop
v → CAT.

Let us now return to our decomposition result. Given a

strategy S ∈ Sn, let S0 = S(idn). Each s ∈ S0 determines a

substrategy S|s ⊆ S by taking pullbacks for each view V on

n:

S|s(V ) 1

S(V ) S(idn),
S(!)

s

where ! denotes the inclusion idn →֒ V . S|s is indeed a sheaf

because the property of having s as restriction to idn is stable

under amalgamation in any sheaf S. Actually, restriction to

s extends to a functor S/Sn → S|s/S!
n, where S!

n denotes

the full subcategory of Sn spanning the sheaves S′ having a

singleton as S′(idn). This functor −|s sends any α : S → S′ to

the natural transformation defined on each view V by universal

property of pullback as in

S′
|s′(V ) 1

S|s(V ) 1

S′(V ) S′(idn)

S(V ) S(idn),

S′(!)

s′

S(!)

s

αidn

αV

(α|s)V

(7)

where s′ = αidn
(s).

8



Let now E(S) : S0 →
∏

M∈Mn

SXM
be defined by

E(S)(s)(M) = S(M)(S|s).

For any morphism α : S → S′ in Sn, let E(α) be the pair of

the mapping αidn
: S0 → S′

0, and the mapping sending s ∈ S0

to the product over M ∈Mn of all

S(M)(α|s) : S(M)(S|s)→ S(M)(S′
|s′),

with α|s as in (7). This defines a functor

E : Sn → Fam

( ∏

M∈Mn

SXM

)
,

and we have

Theorem 1. E is an equivalence of categories.

Proof: The proof consists of Lemmas 8, 9, and 10 in

Appendix A, respectively showing that E is faithful, full, and

essentially surjective.

Corollary 1. For any position X , we have

SX ≃
∏

(n,x)∈Sq(X)

Fam


 ∏

M∈Mn

∏

(n′,x′)∈Sq(XM )

Sn′


 .

IV. INTERACTIVE EQUIVALENCES

A. Fair testing vs. must testing: the standard case

An important part of concurrency theory consists in study-

ing behavioural equivalences. Each behavioural equivalence

being supposed to define when two processes behave the

same, it might seem paradoxical to consider several of them.

Van Glabbeek [9] argues that each behavioural equivalence

corresponds to a physical scenario for observing processes.

A distinction we wish to make here is between fair sce-

narios, and potentially unfair ones. An example of a fair

scenario is when parallel composition of processes is thought

of as modelling different physical agents, e.g., in a game with

several players. Otherwise said, players are really independent.

On the other hand, an example of a potentially unfair scenario

is when parallelism is implemented via a scheduler.

Mainstream notions of processes, e.g., transition systems or

automata, are actually unfair, as the following example shows.

Consider a looping process Ω, which has a silent transition τ
to itself. The process P = (Ω|a), which in parallel plays Ω
and tries to synchronise on a, has an infinite trace

P
τ
−→ P

τ
−→ . . .

This has consequences on so-called testing equivalences [4].

Let ♥ be a fixed action.

Definition 7. A process P is must orthogonal to a context C,

notation P⊥mC, when all maximal traces of C[P ] play ♥ at

some point.

Here, maximal means either infinite or finite without exten-

sions. Let P⊥m

be the set of all contexts must orthogonal to

P .

Definition 8. P and Q are must equivalent, notation P ∼m Q,

when P⊥m

= Q⊥m

.

In transition systems, or automata, recalling P above and

letting Q = Ω, we have

P ∼m Q.

This might be surprising, because the context C = a.♥ | �
intuitively should distinguish P from Q, by being orthogonal

to P but not to Q. However, it is not orthogonal to P , because

C[P ] has an infinite looping trace giving priority to Ω.

This looping trace is unfair, because the synchronisation on

a is never performed. Thus, one may view the equivalence

P ∼m Q as taking into account potential unfairness of a

hypothetical scheduler. Usually, concurrency theorists consider

this too coarse, and resort to fair equivalence.

Definition 9. A process P is fair orthogonal to a context C,

notation P⊥fC, when all finite traces of C[P ] extend to traces

that play ♥ at some point.

Again, P⊥f

denotes the set of all contexts fair orthogonal

to P .

Definition 10. P and Q are fair equivalent, notation P ∼f Q,

when P⊥f

= Q⊥f

.

This solves the issue, i.e., P ≁f Q.

Thus, the mainstream setting for behavioural equivalences

is unfair. Our setting is more flexible, in the sense that it leaves

room for a less linear notion of a maximal trace. In the terms

of the previous section, it allows viewing the looping trace

P
τ
−→ P

τ
−→ . . .

as non-maximal. In the next sections, we define fair and must

testing in our context, and show that they coincide. We start by

defining an abstract notion of interactive equivalence (still in

the particular case of CCS), and then instantiate this to define

fair and must testing.

B. Interactive equivalence

First, testing equivalences rest on a notion of a global com-

putation, i.e., one that may not interact with the outside world.

Hence, we define an observation X →֒ U to be closed-world

when all inputs and outputs are part of a synchronisation, i.e.,

when both maps
∐

n,i

U(ι+n,i)
ǫ
←−

∐

n,i,m,j

U(τn,i,m,j)
ρ
−→
∐

n,i

U(ι−n,i) (8)

are surjective.

Definition 11. Let W →֒ E be the full subcategory of closed-

world observations.

Let W(X) be the fibre over X for the projection functor

W→ B.

Definition 12. Let the category of global behaviours on X be

simply GX = Ŵ(X).

9



The canonical inclusion W(X) →֒ (E)X induces a functor

Gl : SX → GX .

Definition 13. An observable criterion consists for all posi-

tions X , of a subcategory ⊥⊥X →֒ GX .

Definition 14. For any strategy S on X and any pushout P

I Y

X Z

(9)

of positions with I of dimension 0, let S⊥⊥P be the class of all

strategies T on Y such that Gl(S ‖ T ) ∈ ⊥⊥Z .

Here ‖ denotes amalgamation in the stack S.

Definition 15. Two strategies S, S′ ∈ SX are ⊥⊥-equivalent,

notation S ∼⊥⊥ S′, iff for all pushouts P , S⊥⊥P = S′⊥⊥P .

C. Fair vs. must

We start by defining fair and must testing. Let a closed-

world observation be successful when it contains a ♥n. Fur-

thermore, given a global behaviour G ∈ GX , an extension of

a state σ ∈ G(U) to U ′ is a σ′ ∈ G(U ′) with i : U → U ′ and

σ′ · i = σ. The extension σ′ is successful when U ′ is.

Definition 16. The fair criterion ⊥⊥f
contains all global

behaviours G such that any state σ ∈ G(U) for finite U admits

a successful extension.

Now call an extension of σ ∈ G(U) strict when U → U ′

is not surjective. For any global behaviour G ∈ GX , a state

σ ∈ G(U) is G-maximal when it has no strict extension.

Definition 17. Let the must criterion ⊥⊥m
consist of all

global behaviours G such that for all closed-world U , and

G-maximal σ ∈ G(U), U is successful.

We now show that fair and must equivalence coincide. The

key result for this is:

Theorem 2. For any strategy S on X , any state σ ∈
Gl(S)(X →֒ U) with finite U admits a Gl(S)-maximal

extension.

The proof is in Section B. Thanks to the theorem, we have:

Lemma 6. For all S ∈ SX , Gl(S) ∈ ⊥⊥m
X iff Gl(S) ∈ ⊥⊥f

X .

Proof: Let G = Gl(S).
(⇒) By the theorem, any state σ ∈ G(U) has a G-maximal

extension σ′ ∈ G(U ′), which is successful by hypothesis,

hence σ has a successful extension.

(⇐) Any G-maximal σ ∈ G(U) admits by hypothesis

a successful extension which may only be on U by G-

maximality, and hence U is successful.

Now comes the expected result:

Theorem 3. For all S, S′ ∈ SX , S ∼⊥⊥m S′ iff S ∼⊥⊥f S′.

Proof: (⇒) Consider two strategies S and S′ on X , and

a strategy T on Y (as in the pushout P ). We have:

Gl(S ‖ T ) ∈ ⊥⊥f iff Gl(S ‖ T ) ∈ ⊥⊥m

iff Gl(S′ ‖ T ) ∈ ⊥⊥m

iff Gl(S′ ‖ T ) ∈ ⊥⊥f .

(⇐) Symmetric.

V. CONCLUSION

Our next task is clearly to link with CCS. Namely, we

should provide a translation of CCS terms into strategies, and

explore which equivalence on CCS is induced by interactive

equivalence, for a given ⊥⊥.

Longer-term perspectives include the treatment of more

complicated calculi like π or λ. In particular, contraction will

challenge our approach seriously. An even longer-term hope

is to be able to abstract over our approach. Is it possible to

systematise the process starting from a calculus as studied

in programming language theory, and generating its stack of

behaviours? If this is ever understood, the next question is:

when does a translation between two such calculi preserve

a given behavioural equivalence? Finding general criteria for

this might have useful implications in programming languages,

especially compilation.

REFERENCES

[1] R. Milner, A Calculus of Communicating Systems, ser. LNCS. Springer,
1980, vol. 92.

[2] A. Joyal, M. Nielsen, and G. Winskel, “Bisimulation and open maps,”
in LICS. IEEE Computer Society, 1993, pp. 418–427.

[3] S. Kasangian and A. Labella, “Observational trees as models for
concurrency,” Mathematical Structures in Computer Science, vol. 9,
no. 6, pp. 687–718, 1999.

[4] R. D. Nicola and M. Hennessy, “Testing equivalences for processes,”
Theor. Comput. Sci., vol. 34, pp. 83–133, 1984.

[5] E. Beffara, “Logique, réalisabilité et concurrence,” Ph.D. dissertation,
Université Paris 7, Dec. 2005.

[6] J.-L. Krivine, “Dependent choice, ‘quote’ and the clock,” Theor. Comput.

Sci., vol. 308, no. 1-3, pp. 259–276, 2003.

[7] M. Hyland, Semantics and Logics of Computation. Cambridge Univer-
sity Press, 1997, ch. Game Semantics.

[8] J.-Y. Girard, “Locus solum: From the rules of logic to the logic of
rules,” Mathematical Structures in Computer Science, vol. 11, no. 3, pp.
301–506, 2001.

[9] R. J. van Glabbeek, “The linear time-branching time spectrum (ex-
tended abstract),” in CONCUR, ser. Lecture Notes in Computer Science,
J. C. M. Baeten and J. W. Klop, Eds., vol. 458. Springer, 1990, pp.
278–297.

[10] S. MacLane and I. Moerdijk, Sheaves in Geometry and Logic: A

First Introduction to Topos Theory, ser. Universitext. Springer, 1992.
[Online]. Available: http://www.worldcat.org/isbn/0387977104

[11] R. Harmer and G. McCusker, “A fully abstract game semantics for finite
nondeterminism,” in LICS, 1999, pp. 422–430.

[12] A. Vistoli, “Notes on Grothendieck topologies, fibered categories and
descent theory,” ArXiv Mathematics e-prints, 2007.

[13] B. Jacobs, Categorical Logic and Type Theory, ser. Studies in Logic and
the Foundations of Mathematics. Amsterdam: North Holland, 1999, no.
141.

10



APPENDIX A

DYNAMIC DECOMPOSITION

To start with, we have:

Lemma 7. Any view n →֒ V either is an isomorphism or is

the colimit of a diagram

n nV

EV V ′

V,

(10)

where nV →֒ EV ←֓ n is an elementary view, and nV →֒ V ′

is a view or 0 →֒ 0. The corresponding diagram is furthermore

unique up to canonical natural transformation.

As a notational convenience, we confuse n →֒ V with

the corresponding morphism 0 → n in the bicategory Ev of

Definition 6, and say that V factors as

0
V ′

−→ nV

hV

−֒−→ XV
MV−−→ n,

with V ′ a view, hV an restriction, and hence MV ◦ hV an

elementary view.

Lemma 8. E is faithful.

Proof: Consider two natural transformations α, β : S →
S′ in Sn, such that on a given view h : n →֒ V , there is an

s ∈ S(V ) such that αV (s) 6= βV (s). If V is isomorphic to n,

then w.l.o.g. we may assume it to be just n, and then E(α) and

E(β) differ by the first mapping S(n →֒ n)→ S′(n →֒ n), at

s.

Otherwise, by Lemma 7, V canonically factors as

0
V ′

−→ nV

hV

−֒−→ XV
MV−−→ n.

Letting s0 = S(!)(s) ∈ S(n →֒ n), and s′0 = αn→֒n(s0),
we then have

S(MV )(S|s0
)(hV , V ′) = S|s0

(V )

by (6), and s ∈ S|s0
(V ) by definition of s0, so

E(α)(s0)(MV )(hV , V ′) :

S(MV )(S|s0
)(hV , V ′)→ S(MV )(S′

|s′

0

)(hV , V ′)

sends s to αV (s), thus differing from E(β)(s0)(MV )(hV , V ′),
which sends s to βV (s).

Lemma 9. E is full.

Proof: Consider any morphism E(S) → E(S′) of fami-

lies. It amounts to a mapping h : S(idn) → S′(idn), and for

each s ∈ S(idn) and M ∈Mn, to a morphism

k(s)(M) : S(M)(S|s)→ S(M)(S′
|h(s))

of strategies.

We define a natural transformation α : S → S′ such that

E(α) = (h, k). It is enough to define it on finite views. On

views V which are isomorphisms let αV be defined as the

composite:

S(V ) ∼= S(idn)
h
−→ S′(idn) ∼= S′(V ).

Now, for any non-isomorphism, finite view V : n′ → n,

viewing S(V )
S!
−→ S(idn) as a set indexed over S(idn), we

have

S(V ) ∼=
∐

s∈S(idn)

S|s(V ).

But by Lemma 7, such a V factors canonically as

X
V ′

−→ nV

hV

−֒−→ XV
MV−−→ n,

and by (6) we have S(MV )(S|s)(hV , V ′) ∼= S|s(V ). We way

thus define α at V to be the composite

S(V ) S′(V )

∐

s∈S(idn)

S|s(V )
∐

s′∈S′(idn)

S′
|s′(V )

∐

s

S(MV )(S|s)(hV , V ′)
∐

s

S(MV )(S′
|h(s))(hV , V ′)

∼=

∼= g

∼=

f

αV

where f is
∐

s k(s)(MV )(hV , V ′), and g is

∐

s

S(MV )(S′
|h(s))(hV , V ′)

∐

s′∈S′(idn)

S(MV )(S′
|s′)(hV , V ′)

∐

s′∈S′(idn)

S′
|s′(V ).

[(h(s), x)]s

∼=

That α is natural in V and sent by E to (h, k) is an easy

verification, using naturality of the k(s)(M)’s.

Lemma 10. E is essentially surjective.

Proof: Consider any family S : S0 → (
∏

M∈Mn
SXM

)0.

Recall that for any M , an object of SXM
is determined up to

canonical isomorphism by its value on pairs of a morphism

n′ → XM and a finite view V on n′. Define the sheaf I(S)
on En to send any finite view V on n to:

• S0 if V is an isomorphism;

•
∐

s∈S0
S(s)(MV )(hV , V ′) if, recalling Lemma 7, V fac-

tors as

0
V ′

−→ nV

hV

−֒−→ XMV

MV−−→ n.

On morphisms h : V →֒ W of views, which have to be

inclusions, if V is an isomorphism and W is not, we define

11



the action I(S)(h) to be the projection
∐

s∈S0

S(s)(MW )(hW , W ′)
π
−→ S0.

If otherwise W is also an isomorphism, then the action of h is

the identity. Finally, if V is not an isomorphism, then neither

is W , and V and W factor through the same M and h, and

the inclusion factors as

V ′ W ′

nV nW

XM XM

M M

n n.

hV hW

h′

We then define the action I(S)(h) to be

∐

s∈S0

S(s)(M)(hW , W ′)

∐

s∈S0

S(s)(M)(hV , V ′).

∐
s∈S0

S(s)(M)(h′)

Now, we show that S ∼= E(I(S)). First, we have

(E(I(S)))(idn) = S0, and, for s ∈ S0,

• (I(S))|s(V ) = {s} if V is an isomorphism, and

• (I(S))|s(V ) = S(s)(MV )(hV , V ′) if V factors as

0
V ′

−→ nV

hV

−֒−→ XV
MV−−→ n.

Thus, for any morphism h : n′ →֒ XV (which has to be mono),

and view n′ →֒ V ′, we have

(E(I(S)))(s)(MV )(h, V ′)
∼= S(MV )((I(S))|s)(h, V ′) (by definition)

∼= (I(S))|s(MV ◦ h ◦ V ′) (by (6))

∼= S(s)(MV )(h, V ′) (by the last remark).

APPENDIX B

MAXIMAL EXTENSIONS

This section is a proof of Theorem 2. We proceed by

implementing a simple scheduler. Concretely, we construct a

diagram u : ω → σ/
∫

S, and then take the colimit U ′ of the

composite ω
u
−→
∫

S
p
−→ (E)X , which is indeed an observation.

The family (p(ui))i∈ω covers U ′ and the family (ui)i∈ω is

compatible, so, S being a sheaf, it has a unique amalgamation

σ′ ∈ S(U ′), which we show is S-maximal.

First, since U is finite, we may view it as a cospan Y0 →֒
U ←֓ X , where Y0 is the smallest position containing all the

elements of
∐

n U(n) not in the image of s, i.e., which are

ready to play.

In order to define u, we actually define a bit more than the

announced sequence: we define a diagram as in Fig. 3, where

the Yi →֒Mi ←֓ Yi+1 are moves, together with

• a sequence of states σi ∈ S(X →֒ Ui) such that (σi)|U =
σ, and

• a sequence of functions fi :
∐

n Yi(n) → N called the

queue, constant on the intersection

Pi

∐

n

Yi+1(n)

∐

n

Yi(n)
∐

n

Mi(n).

(11)

The last condition will ensure that players waiting to play at

step i which end up not playing (by a choice of the scheduler)

keep their rank in the queue.

We consider the diagram as advancing from one

Vi Yi+1

Ui,

(12)

to another (where the Vi’s are moves except if i = −1).

We fix the case i = −1 to be

U Y0

U,

with f0 the constant 0 function.

Assuming the sequence to be defined up to step (12), con-

sider the set M0
i of all closed-world moves Z →֒M ←֓ Yi+1

from Yi+1. Let then M1
i be the set of pairs (M,σ′) with

M ∈ M0
i and σ′ ∈ S(M +Yi+1

Ui) such that (σ′)|Ui
= σi,

where M +Yi+1
Ui is the pushout

Mi Yi+1 M

Ui M +Yi+1
Ui.

If M1
i is empty then σi is S-maximal and we are done.

Otherwise, among these pairs (M, σ′), choose one for which

at least one of the active players in M is minimal for fi, and

call it (Mi+1, σi+1). Formally, let active(M) be the image of

M(s); let f ′
i be the restriction of fi to

⋃
(M,σ′)∈M1

i
active(M).

The function f ′
i admits a minimum, say m. Then choose

(Mi+1, σi+1) in the pullback

M2
i M1

i

{H | H ∩ ((f ′
i)

−1{m}) 6= ∅} P(
∐

n Yi+1(n)).

active

Putting Ui+1 = (M +Yi+1
Ui) and Yi+2 = Z, we obtain a

diagram

12



U Y0 M0 Y1 M1 . . . Yi Mi Yi+1 Mi+1 . . .

U U0 U1 . . . Ui Ui+1 . . .

Fig. 3. Sequence of observations

Mi Yi+1 Mi+1 Yi+2

Ui Ui+1,

and it only remains to define fi+1. On the intersection Pi (11),

we let fi+1 = fi as forced by the requirements on the

sequence. Now, fi has a finite domain, so it has a maximum

m′. On x /∈ Pi, we let fi+1(x) = m′ + 1.

This completes the description of our sequence. Let U ′ be

the (directed) colimit of the Ui’s, and let i : U →֒ U ′ be the

colimiting morphism. Because X →֒ U is a finite observation,

U ′ is an observation, which is covered by the Ui’s. Hence, the

σi’s form a compatible family and thus have an amalgamation

in S(X →֒ U ′), which we call σ′. It obviously satisfies σ′ ·i =
σ. We now prove by contradiction that σ′ is S-maximal, in the

case where U ′ is infinite (we have seen that it is otherwise).

Let Y ′ be the smallest position containing all the elements of

∐
n U ′(n) not in the image of s, i.e., which are ready to

play.

Assume a non-surjective j : U ′ → U ′′ with some σ′′ ∈
S(U ′′) such that σ′′ · j = σ′. Let x be a minimal move in

U ′′ \U ′, which has its active players in Y ′. Because U ′ is the

colimit of the Ui’s, there is an i such that Yi already contains

the set A of active players of x. Let nA = min(fi(A)). Let,

for any k ≥ i, µ(k) be the cardinal of the pullback

M3
k M1

k

{H | H ∩ ((f ′
k)−1{0, . . . , nA}) 6= ∅} P(

∐
n Yi+1(n)),

active

which is finite. Because the elements of A could play, but

never do in U ′, by construction of the sequence, for all k ≥
i, min(fk(active(Mk))) ≤ nA, so that µ(k) > µ(k + 1),
contradicting the fact that the sequence is infinite.

13


