
HAL Id: hal-00555134
https://hal.science/hal-00555134v1

Submitted on 12 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Identifying scalar behavior in CUDA kernels
Caroline Collange

To cite this version:
Caroline Collange. Identifying scalar behavior in CUDA kernels. [Research Report] ENS Lyon. 2011.
�hal-00555134�

https://hal.science/hal-00555134v1
https://hal.archives-ouvertes.fr

Identifying scalar behavior in CUDA kernels

Caroline Collange*

ENS Lyon, Université de Lyon, Arénaire,
LIP (UMR 5668 CNRS - ENS Lyon - INRIA - UCBL)

January 12, 2011

Abstract

We propose a compiler analysis pass for programs expressed in the Single
Program, Multiple Data (SPMD) programming model. It identifies statically
several kinds of regular patterns that can occur between adjacent threads,
including common computations, memory accesses at consecutive locations
or at the same location and uniform control flow. This knowledge can be
exploited by SPMD compilers targeting SIMD architectures. We present
a compiler pass developed within the Ocelot framework that performs this
analysis on NVIDIA CUDA programs at the PTX intermediate language
level. Results are compared with optima obtained by simulation of several
sets of CUDA benchmarks.

1 Introduction

The recent development of General-Purpose computing on Graphics Processing
Units (GPGPU) has caused a rebirth of Single Program, Multiple Data (SPMD)
programming models. Graphics shader languages and GPGPU-oriented languages
such as CUDA and OpenCL are all built on a SPMD foundation. They require
programmers to express data-parallelism by running many threads (on the order
of tens of thousands) all running the same code. These languages are now widely
used to program GPUs.

In addition to GPUs, CPUs are an intended target platform for the OpenCL
standard [15]. Several CUDA and OpenCL implementations have been released
by compiler and hardware vendors [2, 20, 21].

Virtually all high-performance microprocessors and even some embedded mi-
croprocessors feature short-vector SIMD extensions. For instance, the Intel x86

*The basis of this work was performed while the author was with NVIDIA Developer Technology.

1

architecture has been subject to several generations of extensions: 64-bit SIMD
with MMX and with AMD 3DNow! [19], 128-bit with SSE [10], and 256-bit and
512-bit extensions have been proposed (with AVX [9] and Larrabee new instruc-
tions [22]). As illustrated by the evolution of x86, “short-vector” SIMD extensions
tend to evolve toward wider vector sizes. Thus, a compiler which emits scalar in-
structions only can only reach a small and shrinking fraction of peak performance.

The execution models and instruction sets that GPUs provide are designed and
optimized for pure data-parallel calculations [13]. Current GPUs are based on the
Single Instruction, Multiple Threads (SIMT) model. This model consists in pack-
ing several threads together and executing their instructions in a SIMD fashion,
while still retaining their individual ability to follow arbitrary control paths. GPUs
provide hardware-based mechanisms to handle instruction divergence at runtime.
Likewise, they can handle memory divergence, effectively supporting gather and
scatter operations in hardware. On the other hand, CPU instruction sets offer strong
scalar processing capabilities.

Because of these differences, a naive translation of an SPMD application to
SIMD instructions will yield suboptimal performance. To bridge this gap, a CUDA
compiler targeting CPUs needs to identify at compile-time situations that GPUs
detect at runtime. In particular, it has to address branch divergence and memory
divergence. It also needs to identify scalar instructions and scalar registers to take
advantage of the scalar units of CPUs.

We propose a compiler pass that we call scalarization. Its goal is to provide
the necessary knowledge upon which compiler backends for SIMD instruction sets
can rely.

We will first present a quick overview of the CUDA environment and related
literature in section 2. We then expose some of the challenges involved in the devel-
opment of an SPMD-to-SIMD compiler in section 3. We present the scalarization
analysis itself in section 4, then evaluate its accuracy in section 5.

2 Background

2.1 The CUDA stack

The programming model followed by GPU environments is based on the SPMD
paradigm. The programmer writes one single program, or kernel. Many instances
of the kernel, or threads, are run in parallel. Threads can be told apart by their
thread identifier (ID).

In CUDA, threads are grouped together in several Concurrent Thread Arrays
(CTAs). Threads are allowed to communicate and synchronize with each other

2

inside each CTA. By contrast, the execution order of CTAs is undefined and inter-
actions between CTAs are discouraged [18].

Programs expressed in this programming model are mapped to the GPU archi-
tecture.

Logical threads are distributed on a hierarchy of wide SIMD, hardware multi-
threaded and multi-core execution resources. CTAs are scheduled to the execution
cores. Threads inside a CTA are grouped together into fixed-width warps, which
share an instruction pointer, such that all threads in a warp run in lockstep [13].
To maintain the illusion that each thread executes independently, intra-warp thread
divergence is handled transparently in hardware. This mechanism is called Single
Instruction, Multiple Threads (SIMT) in NVIDIA’s documentation.

Various academic projects have grown on top of the CUDA environment. Among
them, Ocelot is a compilation framework for CUDA programs [7]. It operates on
an intermediate representation based on the NVIDIA PTX intermediate language.
It includes a runtime implementing the CUDA Runtime API and supports several
back-ends, including interpretation of the intermediate representation, compilation
to LLVM [12] and GPU execution.

The internal representation available within Ocelot includes control-flow and
data-flow graphs and a Single Static Assignment (SSA) virtual register allocation.
The framework also provides a register allocation pass at the PTX level, and allows
the generation of traces and statistics from the built-in PTX interpreter.

2.2 Related work

Several solutions have been proposed to compile SPMD languages such as C for
CUDA to multi-core CPUs.

Before GPGPU became widespread, techniques to compile stream-based lan-
guages to the x86 architecture have been proposed by Gummaraju and Rosen-
blum [8]. They generate scalar instructions to execute most operations, and SSE
vector loads and stores instructions for memory accesses.

The MCUDA project by Stratton et al. introduced source-to-source trans-
formations called loop fission and microthreading, which group together several
lightweight GPU threads to form one heavyweight CPU thread [23, 24]. Ocelot’s
LLVM backend works at the PTX intermediate language level and uses user-space
context switching between lightweight threads [7].

These projects enable CUDA applications to take advantage of the concurrent
multiprocessing, hardware multithreading and out-of-order execution capabilities
of CPUs. However, we believe that there are still many opportunities left open
to take advantage of the SIMD extensions offered by CPUs. MCUDA generates
scalar C code, then have it vectorized back by the Intel C Compiler icc. Its authors

3

note that some source-level optimizations in the CUDA source code may prevent
vectorization by icc. Ocelot generates scalar LLVM code for each thread at the
time of writing.

An OpenCL compiler that perform vectorization by grouping threads together
was proposed by Intel [21]. However, it is still unclear how well this compiler can
cope with non-trivial control flow, and whether it can coalesce together consecutive
memory access from different threads.

In order to detect and remove redundant computations, a compiler pass called
variance analysis was developed by Stratton et al. to identify computations that are
invariant on some components of the thread ID [23].

Likewise, a hardware-based technique was proposed to detect scalar operations
in CUDA programs at runtime [5]. It defines a vector as uniform when all of its
components hold the same value. An affine vector has successive lanes holding
linearly increasing values, each separated to the next one by a constant stride. We
will reuse these definitions in this paper.

The same approach can be extended to identify uniform branches and unit-
strided memory accesses. In particular, affine vectors enable the static detection
of vector loads and stores. We consider in this paper a static scalarization anal-
ysis. It identify both uniform vectors and affine vectors in PTX code, and use
this knowledge to classify instructions, registers, branches and memory accesses at
compile-time.

3 Mapping SIMT to SIMD

We discuss in this section how each kind of SIMT instruction can be mapped to the
SIMD model.

Vector arithmetic Basic arithmetic SIMT instructions can be readily translated
by realizing that a warp on the GPU is the equivalent of a lightweight thread on the
CPU, while a GPU thread is just the concept of work processed inside one SIMD
lane. Each SIMT arithmetic instruction can then be turned into one or several
SIMD instructions. This method was proposed for the compilation of graphics
shaders to the Larrabee architecture [22], and is used in shader compilers such as
the LLVMPipe project1.

Branches Current GPUs offer hardware support to manage divergent threads by
dynamically selecting between predication or branching with minimal overhead.

1http://zrusin.blogspot.com/2010/03/software-renderer.html

4

Short-vector SIMD instruction sets miss this feature, so divergence control has to
be implemented in software.

We expect software-based SIMT emulation will suffer from an overhead sig-
nificantly higher than its hardware counterpart in the general case. However, if
we can ensure at compile-time that all threads in a warp take the same code path,
we can translate such uniform SIMT branch instruction to a scalar branch instruc-
tion. The branch becomes an inexpensive operation thanks to the advanced branch
prediction mechanisms offered by current CPUs.

An analysis of various CUDA kernels performed by Kerr, Diamos and Yala-
manchili shows that typical ratios of divergent branches over all branches range
from 9.5% to 32% [11]. Hence, significant optimization opportunities could be
exploited by detecting uniform branches statically.

3.1 Memory accesses

In an SPMD program, each thread can load and store data at arbitrary locations
in memory. There is no guarantee that the address requested by each thread in a
warp will be consecutive. In the general case, SIMT load and store instructions
are respectively mapped to SIMD gather and scatter instructions. However, unit-
strided access patterns are common in vector computations [3].

Gather and scatter instructions are typically not supported at all on CPUs, so
they have to be broken down into several scalar loads or stores. This comes at
a price in performance. For instance, a 10-time slowdown was observed for a
naive implementation of a CUDA gather on consecutive addresses compared to
sequential reads [6].

GPUs solve this issue by dynamically detecting whether the independent small
memory transactions can be coalesced into fewer larger transactions. This allows
performance to gracefully degrade as memory locality decreases [18].

Thus, it is necessary to detect as many unit-strided loads and stores at compile
time as possible to compensate for the lack of such hardware support on CPUs.

3.2 Scalar processing

CPUs offer execution resources that are not found on GPUs. In particular, they can
execute scalar code efficiently thanks to advanced out-of-order execution mecha-
nisms. While data-parallel computations are best run on SIMD units, scalar Arith-
metic and Logical Units (ALUs) are available for bookkeeping work, including
address calculations, loop control and other scalar computations. Offloading these
scalar calculations to scalar units can free valuable vector computing resources.
Thus, we want to identify scalar computations at compile-time.

5

Similarly, CPUs typically have as many scalar registers as vector registers.
Scalar registers also consume less storage and bandwidth resources when they are
spilled to memory. Register pressure was shown to be significant issue with data-
parallel workloads running a large number of concurrent threads to hide memory
latency [25]. On the CPU, live registers have to be saved during context switches,
which consumes cache resources.

Experimental simulations suggest that up to 30 % of all instructions operate on
uniform or affine vectors [5]. Such uniform and affine instructions can be translated
to scalar instructions on CPUs, making them essentially free.

4 A scalarization stage

We implemented a scalarization stage within the Ocelot framework. By performing
the analysis during JIT compilation, we benefit from knowledge only known at run-
time, such as CTA dimensions. PTX is high-level enough to preserve information
about control flow, which allows us to perform optimizations across Basic Blocks
(BB).

4.1 Dataflow analysis

We associate a tag to T each virtual register of the SSA representation, where:

T ∈ {⊥, C(v, a), U(a), A(s, a), G(a)}.

The tag C is associated with constants, U with uniform vectors, A with affine vec-
tors, G with generic non-affine vectors, and⊥ with vectors whose state is currently
unknown.

We keep the following data along with the tags:

• v ∈ Z is the value of the constant,

• a ∈ {⊥, 0, 1, . . . , amax} is the alignment of the register, defined as the min-
imum number of trailing zeroes of the binary representation of each compo-
nent, or ⊥ for the null vector,

• s ∈ Z ∪ {>} is the stride of the affine vector, or > when unknown.

We define a partial order on this structure, such that:

⊥ ≤ C(v) C(v) ≤ U(amax)
U(a) ≤ U(a− 1) U(0) ≤ A(s, a)

A(s, a) ≤ A(s, a− 1) A(s, a) ≤ A(>, a)
A(>, a) ≤ G(a)

6

Table 1: Examples of tag propagation rules across integer operations, where s +
> = >, a×⊥ = a, min(a,⊥) = a. . .

x : A(s, a) y : A(s′, a′)

z = x+ y ⇒ z : A(s+ s′,min(a, a′))

x : A(s, a) y : U(a′)

z = x× y ⇒ z : A(>, a · a′)

x : A(s, a) y : A(s, a′)

z = x− y ⇒ z : U(min(a, a′))

x :: A(s, a) y : C(v, a′)

z = x× y ⇒ z : A(s · v, a · a′)

We propagate these metadata through the control flow graph using a forward
dataflow analysis [1]. Tags can be shown to form a lattice of finite height, allowing
the dataflow analysis to converge.

As a side effect, the analysis performs independent constant propagation on
both the base and stride of affine vectors. As the stride of a memory address is typ-
ically a constant, most computations on affine vectors become scalar computations,
saving the need to compute the stride at runtime.

4.2 Intra-block propagation

Inside each basic block (BB) of the control flow graph, we propagate the metadata
across each instruction. For basic integer instructions such as addition, multipli-
cations and bit shifts, output tags are computed as a function of input tags using
intuitive rules. A few examples of rules are listed on Table 1.

Likewise, floating-point operations just propagate the uniform and constant
properties, but do not carry the other metadata such as aligment.

4.3 The influence of control flow

When a divergent branch is encountered during execution, some threads of the
warp are temporarily disabled. In the SIMD model, this translates to partial writes
to vector registers. Only the vector components corresponding to enabled threads
will be written, while the other components will retain their former value.

This creates conceptual input dependencies from both the mask and the previ-
ous result, as illustrated in the conceptual SIMT execution pipeline figure 1.

When all vector input operands and the contents of the destination register are
uniform, but the warp is in a divergent state, the vector result written to the regis-
ter file will not generally be uniform. At compile-time, this demands an accurate
analysis of control-flow divergence. The accuracy of the uniform branch detec-
tion is itself conditioned by the accuracy of the uniform register detection. Thus,

7

Figure 1: Functional view of an SIMT execution pipeline. As opposed to a scalar
pipeline, the output value may depend on both the previous value and the current
thread activity mask. Thick crossed lines are vectors, and thin lines are scalars.

Listing 1: Example of false dependency on mask.
1 g l o b a l void k e r n e l (i n t * g) {
2 i n t i = 0 , j ;
3 do
4 {
5 j = i ;
6 }
7 whi le (i ++ < t h r e a d I d x . x) ;
8 g [t h r e a d I d x . x] = j ;
9 }

the issues of detecting scalar computations and uniform control flow are tightly
intermixed.

Some of these constraints are actually false dependencies, and observing them
can lead to an overly pessimistic estimate. As an example, let us consider the
synthetic CUDA code snippet in listing 1.

In this code, threadIdx.x represents the thread identifier. We assume that no
optimization such as copy-propagation is performed. During the first loop iteration,
the loop counter i is uniform across all threads, and get incremented in lockstep
by every thread. However, the loop exit condition is not uniform across threads.
Some threads will keep executing the loop and incrementing the counter, while
other threads will be disabled until all threads exit the loop. Inactive threads do not
commit data to the register file. The vector register storing i for a warp will not be
considered uniform.

A closer examination reveals that the variable i is dead upon the end of the

8

loop. Also, a thread that was disabled during the execution of the loop will not be
enabled again before the loop finishes for all the threads of the warp. The actual
contents of the inactive lanes of register i do not matter, as they will not be read
back by any subsequent instruction. In this case, i can be safely replaced by a scalar
register.

Conversely, the variable j is alive after the end of the loop, and must still be
considered as a generic vector.

When the enclosing BB can be executed in a divergent state, we also need to
check whether the destination register is used (or merged) inside another block
from a strictly enclosing nesting level of control flow structure. Such blocks are
post-dominators of the considered BB. We can then walk the post-dominator tree
that Ocelot provides, and look for uses of the considered register in sources of φ
instructions. If and only if the register is used in a post-dominator, then we need to
consider a control dependency exists.

Using barriers as hints of uniformity Even with the dead register optimization
on minimal SSA form described above, the analysis is still often overly pessimistic
because some uniform branches are not identified. One way to improve it is to take
advantage of hints provided by higher-level structure.

CUDA supports an explicit CTA-wide synchronization barrier instruction
(syncthreads), with the restriction that it cannot be used in a divergent state
[18]. Breaking this rule results in an undefined behavior. Therefore, it is safe to
assume that any BB containing a barrier will always be executed in an uniform
(synchronized) state.

4.4 Assumptions

Several assumptions condition the accuracy of scalarization.

Thread ID The thread identifier exposed by CUDA is a three-dimensional vec-
tor. This 3D thread ID is mapped to a linear physical thread ID. With Dx, Dy, Dz

being the dimensions of the thread identifier space in a CTA, and (x, y, z) the
vector thread ID, the linear ID is computed as (x+ yDx + zDxDy) [17]. The pro-
posed scalarization analysis requires Dx to be multiple of the warp size. However,
CUDA allows other values of Dx. Though odd block dimensions are strongly dis-
couraged [16], using Dx = 16 is a common practice. Block dimensions are known
only at the time of kernel launch, rather than at compile-time.

Fortunately, the Ocelot environment provides a runtime and Just-In-Time (JIT)
capabilities. This allows us to either disable scalarization when we encounter an

9

incompatible dimension, or to select the warp size as a function of the CTA di-
mensions. The latter choice is possible because SIMD extensions on CPUs have
shorter widths than GPU warps, so adjusting the warp size equates to selecting the
number of times each instruction will be replicated.

Pointer parameters A typical CUDA programming practice is to allocate de-
vice memory from host code through the CUDA runtime, then pass the allocated
address as a parameter to the kernel. The CUDA runtime will always align mem-
ory on 256-byte boundaries [17]. However, the programmer can choose to perform
pointer arithmetic in host code and break the alignment before passing the pointer
to the kernel. Conservative assumptions will prevent any kind of static analysis on
pointer alignment.

This problem can be also solved by performing checks for parameter alignment
in the Ocelot runtime during kernel launch. If the assumptions made at compile-
time do not hold, the kernel can be recompiled by the JIT.

Overflows Integer variables in C can silently overflow and wrap around. To-
gether with type casts, this can break the affine property of a vector. This problem
was recognized in the dynamic case and speculation and instruction replay has been
proposed as a workaround [5]. This solution requires specific hardware support.

For the proof-of-concept analysis we present in this paper, we assume that this
corner case does not happen. Ensuring this in the general case will require perform-
ing an additional interval analysis on the content of variables, and/or extending the
PTX model with memory allocation information.

5 Accuracy

5.1 Test setup

We consider the benchmarks listed in table 2. SGEMM is a dense matrix multiply
kernel developed by Volkov for the G80 architecture [26]. It is run on 256 ×
256 matrices. 3DFD is a 3D finite differences stencil kernel [14]. The CTA size
considered is 64 × 8, on 256 × 256 × 100 volume. These two benchmarks are
representative of small, highly-tuned kernels.

We also used Rodinia [4], UIUC Parboil2 and examples from the CUDA SDK 3.
These three sets are part of the test suite of Ocelot. We only considered the bench-
marks that we were able to run successfully under Ocelot’s emulation mode.

2http://impact.crhc.illinois.edu/parboil.php
3http://developer.nvidia.com/object/gpucomputing.html

10

Table 2: Benchmark sets considered
Set Applications

SGEMM SGEMM

3DFD 3DFD

Rodinia hotspot srad

SDK AlignedTypes BicubicTexture
Bitonic BlackScholes
BoxFilter Clock
CppIntegration DwtHaar1D
FastWalshTransform Histogram256
Histogram64 ImageDenoising
Mandelbrot MatrixMul
MersenneTwister MonteCarlo
MonteCarloMultiGPU PostProcessGL
RecursiveGaussian Reduction
ScalarProd Scan
ScanLargeArray SimpleAtomicIntrinsics
SimpleTemplates SimpleTexture
SimpleTexture3D SimpleVoteIntrinsics
SimpleZeroCopy SobelFilter
SobolQRNG Template
ThreadFenceReduction Transpose
TransposeNew lt-SimpleGL

Parboil rpes tpacf
sad pns

11

0%

20%

40%

60%

80%

100%

SGEMM
3DFD

Rodinia
SDK Parboil

SGEMM
3DFD

Rodinia
SDK Parboil

Instructions

Uniform
Affine

Generic

dynamicstatic

Figure 2: Classification of static and dynamic instructions as predicted by the static
analysis.

We perform a scalarization analysis of every application kernel, and run the
applications through the Ocelot emulator. Each register is classified according to
its observed state (uniform, affine or generic) across the whole program execution.
Equivalently, this can be through of running the scalarization analysis on traces of
execution. The result provides an upper bound on how many scalar patterns can be
identified at compile-time, assuming no modifications are made to the control-flow
graph. We selected a warp size of 16 to model a wide SIMD instruction set.

The results quantify the accuracy of scalarization. As the analysis and simula-
tion are both performed at the PTX level before most compiler optimizations take
place, the results should not be considered as indicative of actual performance.

5.2 Instructions

Figure 2 presents a breakdown of the outputs of static instructions and dynamic
instructions, as estimated by the scalarization analysis. This can be used to evaluate
the ratio of scalar instructions to vector instructions.

The static instruction statistics show more scalar operations than their dynamic
counterparts. Indeed, scalar calculations are often part of initialization code that is
placed outside the inner loop by the programmer or the compiler. This is especially
significant in highly-tuned code like SGEMM and 3DFD, where less than 8% of
dynamic instructions write uniform data. The duplication of pointers and other
scalar data was recognized by the authors of SGEMM. It lead them to favor smaller
CTA dimensions and perform more work per thread to amortize the overhead [26].

The other benchmarks exhibit much less variation between the static and dy-
namic results, indicating that a significant number of scalar instructions are part of
the inner loop.

12

0%

20%

40%

60%

80%

100%

SGEMM
3DFD

Rodinia
SDK Parboil

SGEMM
3DFD

Rodinia
SDK Parboil

Static input operands

Uniform
Affine

Generic

ActualIdentified

Figure 3: Classification of the input operands of static instructions.

5.3 Operands

We present the breakdown of input operands in figure 3. Despite having few ad-
dress calculations inside its inner loop, SGEMM has a high number of uniform
input operands. Indeed, elements from the B matrix block are broadcast from
the same location in shared memory to all threads in the inner loop of the algo-
rithm [26]. This effect remain when we consider dynamic instruction counts.

5.4 Load/stores

We classify loads and stores among the following categories:

• Uniform, when every thread in a warp requests the same address.

• Aligned unit-strided, when threads in a warp access contiguous data which
starts at an address multiple of the vector width. This matches the coalescing
requirements of the G80 architecture [18].

• (Unaligned) unit-strided, when data is contiguous but not generally aligned,

• Non-unit strided, when addresses from neighbor threads are separated by a
constant stride, but data is not contiguous.

• Gather or scatter, the general case that does not belong to any other category.

Figures 4 and 5 respectively depict the classification of loads and stores to global
memory.

We witness some writes (scatters) at uniform addresses. While they look like
race conditions at first sight, these instructions are actually predicated such that
only the first thread of the warp is active. They represent explicit scalar store
instructions, as could happen for instance at the last step of a reduction.

13

0%

20%

40%

60%

80%

100%

SGEMM
3DFD

Rodinia
SDK Parboil

SGEMM
3DFD

Rodinia
SDK Parboil

Static loads from global memory

Uniform
Aligned

Unit-strided
(Non-unit) strided

Gather

ActualIdentified

Figure 4: Global loads.

0%

20%

40%

60%

80%

100%

SGEMM
3DFD

Rodinia
SDK Parboil

SGEMM
3DFD

Rodinia
SDK Parboil

Static stores to global memory

Uniform
Aligned

Unit-strided
(Non-unit) strided

Gather

ActualIdentified

Figure 5: Global stores.

14

0%

20%

40%

60%

80%

100%

SGEMM
3DFD

Rodinia
SDK Parboil

SGEMM
3DFD

Rodinia
SDK Parboil

Static branches

Uniform
Divergent

ActualPredicted

Figure 6: Classification of branches.

0%

20%

40%

60%

80%

100%

SGEMM
3DFD

Rodinia
SDK Parboil

Registers

Scalar
Vector

Figure 7: Types of PTX registers after register allocation.

5.5 Uniform branches

Ratios of uniform branches over all conditional branches are shown on figure 6.
Many CUDA applications make comparisons between two affine vectors of

identical stride. In such cases, the result of the comparison is an uniform vector.
When we added support for this specific rule, the ratio of affine instructions iden-
tified reached 41 %, versus 16 % initially. This experiment shows that the affine
vector detection has applications beyond identifying unit-strided memory transac-
tions.

5.6 Registers

To evaluate the register pressure reduction to be gained from scalarization, we used
the register allocator built in Ocelot to find the lowest number of registers such that
there is no spilling to memory, first by including all registers, and then by ignoring
scalar registers (fig. 7). The number of scalar registers required if allocations of

15

scalar and vector registers were performed separately may be higher than results
show, due to the inability to coalesce scalar and vector registers together. The
estimation presented here is still meaningful when considering that scalar registers
are not a limiting resource, as with short-vector SIMD extensions.

6 Conclusion

We presented a compiler analysis which is able to identify redundant or regular op-
erations in SPMD programs, such as replicated scalar instructions, scalar variables,
uniform branches, scalar loads and stores, and vector loads and stores.

This analysis can assist code generation for short-vector SIMD architectures
such as x86 with SSE or AVX by providing the supporting information. Together
with code transformation such as loop fission and insertion of context switches, it
opens the way for efficient CUDA-to-x86 compilers.

Remaining challenges include finding ways to take advantage of dynamic in-
formation using just-in-time compilation, and improving the accuracy of uniform
branch detection by a finer analysis of the control-flow structure.

References

[1] Alfred V. Aho, Monica S. Lam, , Ravi Sethi, and Jeffrey D. Ullman. Compil-
ers: Principles, Techniques, and Tools. Addison-Wesley, 2006.

[2] AMD. ATI stream technology. http://www.amd.com/stream.

[3] Krste Asanović. Vector microprocessors. PhD thesis, University of Califor-
nia, Berkeley, 1998.

[4] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer,
Sang-Ha Lee, and Kevin Skadron. Rodinia: A benchmark suite for hetero-
geneous computing. IEEE Workload Characterization Symposium, 0:44–54,
2009.

[5] Caroline Collange, David Defour, and Yao Zhang. Dynamic detection of uni-
form and affine vectors in GPGPU computations. In Europar 3rd Workshop
on Highly Parallel Processing on a Chip, 2009.

[6] Gregory Diamos. The design and implementation ocelot’s dynamic binary
translator from PTX to multi-core x86. Technical report, Georgia Institute of
Technology, 2009.

16

[7] Gregory Diamos, Andrew Kerr, Sudhakar Yalamanchili, and Nathan Clark.
Ocelot: A dynamic compiler for bulk-synchronous applications in heteroge-
neous systems. In Nineteenth International Conference on Parallel Architec-
tures and Compilation Techniques, 2010.

[8] Jayanth Gummaraju and Mendel Rosenblum. Stream programming on
general-purpose processors. IEEE/ACM International Symposium on Mi-
croarchitecture, pages 343–354, 2005.

[9] Intel. Intel Advanced Vector Extensions Programming Reference, 2009.

[10] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manuals Vol-
ume 1: Basic Architecture, 2010.

[11] Andrew Kerr, Gregory Diamos, and Sudhakar Yalamanchili. A characteriza-
tion and analysis of GPGPU kernels. Technical Report GIT-CERCS-09-06,
Georgia Institute of Technology, 2009.

[12] Chris Lattner and Vikram Adve. LLVM: A compilation framework for life-
long program analysis & transformation. In CGO ’04: Proceedings of the in-
ternational symposium on Code generation and optimization, page 75, 2004.

[13] John Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym.
NVIDIA Tesla: A unified graphics and computing architecture. IEEE Micro,
28(2):39–55, 2008.

[14] Paulius Micikevicius. 3d finite difference computation on GPUs using
CUDA. In GPGPU-2: Proceedings of 2nd Workshop on General Purpose
Processing on Graphics Processing Units, pages 79–84, 2009.

[15] Aaftab Munshi. The OpenCL specification. Khronos OpenCL Working
Group, 2009.

[16] NVIDIA. NVIDIA CUDA Best Practices Guide, 2010.

[17] NVIDIA. NVIDIA CUDA Compute Unified Device Architecture Program-
ming Guide, Version 3.0, 2010.

[18] NVIDIA. NVIDIA CUDA Programming Guide, Version 3.2, 2010.

[19] Stuart Oberman, Greg Favor, and Fred Weber. AMD 3DNow! technology:
architecture and implementations. IEEE Micro, 19(2):37–48, 1999.

[20] PGI. PGI CUDA-x86: CUDA Programming for Multi-core CPUs, November
2010.

17

[21] Ofer Rosenberg. Optimizing opencl on cpus. OpenCL BOF in SIGGRAPH
2010, 2010.

[22] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael Abrash,
Pradeep Dubey, Stephen Junkins, Adam Lake, Jeremy Sugerman, Robert
Cavin, Roger Espasa, Ed Grochowski, Toni Juan, and Pat Hanrahan.
Larrabee: a many-core x86 architecture for visual computing. ACM Trans.
Graph., 27(3):1–15, 2008.

[23] John A. Stratton, Vinod Grover, Jaydeep Marathe, Bastiaan Aarts, Mike Mur-
phy, Ziang Hu, and Wen-mei W. Hwu. Efficient compilation of fine-grained
SPMD-threaded programs for multicore CPUs. In CGO ’10: Proceedings of
the 8th annual IEEE/ACM international symposium on Code generation and
optimization, pages 111–119, 2010.

[24] John A. Stratton, Sam S. Stone, and Wen-Mei W. Hwu. MCUDA: An ef-
ficient implementation of cuda kernels for multi-core CPUs. In Languages
and Compilers for Parallel Computing: 21th International Workshop, pages
16–30, 2008.

[25] Vasily Volkov. Programming inverse memory hierarchy: case of stencils on
GPUs. GPU Workshop for Scientific Computing, International Conference
on Parallel Computational Fluid Dynamics (ParCFD), May 2010.

[26] Vasily Volkov and James W. Demmel. Benchmarking GPUs to tune dense
linear algebra. In SC ’08: Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, pages 1–11, Piscataway, NJ, USA, 2008. IEEE Press.

18

