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DYNAMICAL PROPERTIES OF THE NEGATIVE BETA TRANSFORMATION

We analyse dynamical properties of the negative beta transformation, which has been studied recently by Ito and Sadahiro. Contrary to the classical beta transformation, the density of the absolutely continuous invariant measure of the negative beta transformation may be zero on certain intervals. By investigating this property in detail, we prove that the (-β)-transformation is exact for all β > 1, confirming a conjecture of Góra, and intrinsic, which completes a study of Faller. We also show that the limit behaviour of the (-β)-expansion of 1 when β tends to 1 is related to the Thue-Morse sequence.

A consequence of the exactness is that every Yrrap number, which is a β > 1 such that the (-β)-expansion of 1 is eventually periodic, is a Perron number. This extends a well-known property of Parry numbers. However, the set of Parry numbers is different from the set of Yrrap numbers.

INTRODUCTION

For a real number β > 1, the β-transformation is defined by T β : [0, 1) → [0, 1) , x → βx -⌊βx⌋ .

Rényi [START_REF] Rényi | Representations for real numbers and their ergodic properties[END_REF] was the first to use it for representing real numbers in base β, generalising expansions in integer bases. The (greedy) β-expansion of x ∈ [0, 1) is

x = ⌊βx⌋ β + ⌊β T β (x)⌋ β 2 + ⌊β T 2 β (x)⌋ β 3 + • • • .
In this paper, we study the (-β)-transformation (negative beta transformation)

T -β : (0, 1] → (0, 1] , x → -βx + ⌊βx⌋ + 1 .

Note that T -β (x) = -βx -⌊-βx⌋ except for finitely many points, hence T -β is a natural modification of the β-transformation, avoiding the discontinuity of x → -βx -⌊-βx⌋ at 0. For x ∈ (0, 1], set

d -β (x) = d -β,1 (x) d -β,2 (x) • • • with d -β,1 (x) = ⌊βx⌋ + 1 , d -β,n (x) = d -β,1 (T n-1 -β (x)) for n ≥ 1 , then the (-β)-expansion of x is x = ∞ k=1 -d -β,k (x) (-β) k = d -β,1 (x) β - d -β,2 (x) β 2 + d -β,3 (x) β 3 - d -β,4 (x) β 4 + • • • .
Examples of a β-transformation and a (-β)-transformation are depicted in Figure 1. The map T -β has been studied recently by Góra [START_REF] Góra | Invariant densities for generalized β-maps[END_REF] and Faller [START_REF] Faller | Contribution to the ergodic theory of piecewise monotone continuous maps[END_REF]. Ito and Sadahiro [START_REF] Ito | Beta-expansions with negative bases[END_REF] considered a (-β)-transformation on the interval -β β+1 , 1 β+1 , defined by x → -βx -β β+1βx . We remark that their transformation is conjugate to our T -β through the conjugacy function φ(x) = 1 β+1x. So, all the results in [START_REF] Ito | Beta-expansions with negative bases[END_REF] can be translated into our case directly, in particular their (-β)-expansion of φ(x)

∈ -β β+1 , 1 β+1 is φ(x) = ∞ k=1 d -β,k (x) -1 (-β) k .
Both β-transformation and (-β)-transformation are examples of piecewise monotonic transformations. Dynamical properties of general piecewise monotonic transformations have been investigated in the literature [START_REF]On intrinsic ergodicity of piecewise monotonic transformations with positive entropy[END_REF][START_REF]On intrinsic ergodicity of piecewise monotonic transformations with positive entropy[END_REF][START_REF]The structure of piecewise monotonic transformations[END_REF][START_REF] Keller | Piecewise monotonic transformations and exactness[END_REF][START_REF] Wagner | The ergodic behaviour of piecewise monotonic transformations[END_REF]. However, for the specific case of the (-β)-transformation, the detailed dynamical properties are unknown. As pointed out in [START_REF] Ito | Beta-expansions with negative bases[END_REF], for any β > 1, T -β admits a unique absolutely continuous invariant measure (hence ergodic), with the density

h -β (x) = n≥1, T n -β (1)≥x 1 (-β) n .
Contrary to the classical β-transformation, Ito and Sadahiro [START_REF] Ito | Beta-expansions with negative bases[END_REF] gave an example such that the density h -β is zero on some intervals.

In the present paper, we fully study this phenomenon. An interval on which the density equals zero will be called a gap. From a result of Keller [START_REF] Keller | Piecewise monotonic transformations and exactness[END_REF], one can deduce that, for fixed β > 1, the number of gaps is finite. In Theorem 2.1, we describe the set of the gaps and show that, as β decreases, the number of gaps forms an increasing sequence

0 < 1 < 2 < 5 < 10 < • • • < ⌊2 n+1 /3⌋ < • • • .
Figures 2 and3 show examples with 2 gaps and 5 gaps respectively. The endpoints of the gaps are determined by the orbit of 1, which is described by the sequence d -β [START_REF] Allouche | A relative of the Thue-Morse sequence[END_REF].

We also show (Theorem 2.5) that

lim β→1 d -β (1) = 211222112112112221122 • • • ,
which is the fixed point of the following morphism:

ϕ : 1 → 2 , 2 → 211 .
Here, ϕ is a morphism on finite words on the alphabet {1, 2}, which is naturally extended to the set of infinite words {1, 2} N as in [START_REF] Lothaire | Combinatorics on words[END_REF], and lim β→1 d -β (1) = u means that longer and longer prefixes of d -β (1) agree with prefixes of u when β → 1. We remark that this sequence has been studied e.g. in [START_REF] Allouche | A relative of the Thue-Morse sequence[END_REF][START_REF] Dubickas | On the distance from a rational power to the nearest integer[END_REF][START_REF]On a sequence related to that of Thue-Morse and its applications[END_REF], and is known to be the smallest aperiodic sequence in {1, 2} N with the property that all its proper suffixes are smaller than itself with respect to the alternate order. Moreover, by adding a 1 at the beginning, we obtain the sequence of run lengths in the Thue-Morse sequence. It is shown in [START_REF] Ito | Beta-expansions with negative bases[END_REF] that every sequence d -β (1), β > 1, has the property that all its proper suffixes are smaller than itself with respect to the alternate order.

A dynamical system (X, T ) is said to be locally eventually onto or topologically exact if, for any non-empty open subset U ⊂ X, there exists a positive integer n such that f n (U ) = X. The main theorem of this paper (Theorem 2.2) asserts that T -β is locally eventually onto on (0, 1] \ G(β), where G(β) is the (finite) union of the gaps.

The notion of topological exactness is derived from the exactness in ergodic theory introduced by Rohlin [START_REF] Rohlin | Exact endomorphisms of a Lebesgue space[END_REF]. A measure-preserving transformation T on a probability space (X, B, µ) is exact if and only if, for any positive measure subset A with T n (A) ∈ B (n ≥ 0), one has lim n→∞ µ(T n (A)) = 1 (see [18, p. 125]). As a corollary of our main theorem, we confirm Góra's conjecture [START_REF] Góra | Invariant densities for generalized β-maps[END_REF] that all (-β)-transformations are exact with respect to the unique absolutely continuous invariant measure.

An invariant measure of a dynamical system is called a maximal entropy measure if it maximises entropy. If there is a unique maximal entropy measure, the dynamical system is called intrinsic. As another application of our main theorem, we give a complete answer about the uniqueness of maximal entropy measures discussed in the thesis of Faller [START_REF] Faller | Contribution to the ergodic theory of piecewise monotone continuous maps[END_REF]. We prove that all (-β)-transformations are intrinsic (Corollary 2.4).

Finally, we use the main result to show that every number β > 1 with eventually periodic T -β -orbit of 1 is a Perron number. Recall that a number β > 1 with the corresponding property for T β is called a Parry number in reference to [START_REF] Parry | On the β-expansions of real numbers[END_REF], and note that T -β (x) = 1 -T β (x) for all x ∈ (0, 1). Because of this orientation reversing property, we call a number β > 1 with eventually periodic T -β -orbit of 1 an Yrrap number. Parry numbers are also known to be Perron numbers. However, not every Perron number is a Parry number or an Yrrap number. In Section 6, we give examples showing that the set of Parry numbers and the set of Yrrap numbers do not include each other.

The paper is organised as follows. In Section 2, we state the main results. In Section 3, we establish properties of the sequences d -β [START_REF] Allouche | A relative of the Thue-Morse sequence[END_REF], which allow describing the structure of the gaps in Section 4. In Section 5, we show that T -β is locally eventually onto on (0, 1] \ G(β). The proofs of the main results are completed in Section 6.

We remark that, independently of our work, some of our results have been proved for slightly more general transformations by Hofbauer [START_REF] Hofbauer | Beta-transformations with negative slope[END_REF].

MAIN RESULTS

For each n ≥ 1, let γ n be the (unique) positive real number defined by

γ gn+1 n = γ n + 1 , with g n = ⌊2 n+1 /3⌋ ,
and set γ 0 = ∞. Then 2 > γ 1 > γ 2 > γ 3 > • • • > 1 .
Note that γ 1 is the golden ratio and that γ 2 is the smallest Pisot number.

For each n ≥ 0 and 1 < β < γ n , set

G n (β) = G m,k (β) | 0 ≤ m < n, 0 ≤ k < 2 m+1 +(-1) m 3 ,
with open intervals

G m,k (β) =    T 2 m+1 +k -β (1), T (2 m+2 -(-1) m )/3+k -β (1) if k is even, T (2 m+2 -(-1) m )/3+k -β (1), T 2 m+1 +k -β (1) if k is odd,
in particular G 0 (β) is the empty set.

Theorem 2.1. For any γ n+1 ≤ β < γ n , n ≥ 0, the set of gaps of the transformation

T -β is G n (β), which consists of g n = ⌊2 n+1 /3⌋ disjoint non-empty intervals.
We define therefore Góra [START_REF] Góra | Invariant densities for generalized β-maps[END_REF] proved that, for β > γ 2 , the transformation T -β is exact, and he conjectured that this would hold for all β > 1. We confirm his conjecture.

G(β) = I∈Gn(β) I if γ n+1 ≤ β < γ n , n ≥ 0 .
Corollary 2.3. For any β > 1, the transformation T -β is exact with respect to its unique absolutely continuous invariant measure.

Proof. The unicity of the absolutely continuous invariant measure follows from [START_REF] Li | Ergodic transformations from an interval into itself[END_REF], as already noted in [START_REF] Ito | Beta-expansions with negative bases[END_REF]. Now, the exactness is a direct consequence of Theorem 2.2.

Faller [START_REF] Faller | Contribution to the ergodic theory of piecewise monotone continuous maps[END_REF] The key to understanding the (-β)-transformation is to know the (-β)-expansion of 1. Here, the main tool will be the morphism ϕ : 1 → 2, 2 → 211. The expansion of 1 under T -γn can be described by this morphism, and the expansion of 1 under T -β tends to the fixed point of the morphism when β tends to 1 (from above). Theorem 2.5. For every n ≥ 1, we have

d -γn (1) = ϕ n-1 2 1 , where 1 = 111 • • • . If 1 < β ≤ γ n , then d -β (1) starts with ϕ n (2), hence lim β→1 d -β (1) = lim n→∞ ϕ n 2 1 = 211222112112112221122 • • • .
Masáková and Pelantová [START_REF] Masáková | Ito-Sadahiro numbers vs[END_REF] showed that the Yrrap numbers (called Ito-Sadahiro numbers by them) are algebraic integers with all conjugates having modulus less than 2, thus all Yrrap numbers β ≥ 2 are Perron numbers. Again, we give a complete answer.

Theorem 2.6. Every Yrrap number is a Perron number.

At the end of this section, we recall some identities. Note that 

|ϕ n (1)| = 2 n+1 + (-1) n 3 = g n + 1 + (-1) n 2 , (2.1) |ϕ n (2)| = |ϕ n+1 (1)| = 2 n+2 -(-1) n 3 = g n+1 + 1 -(-1) n 2 , (2.2) |ϕ n (11)| = 2 • |ϕ n (1)| = 2 n+2 + 2 • (-1) n 3 = g n+1 + 1 + (-1) n 2 , (2.
G n (β) = G m,k (β) | 0 ≤ m < n, 0 ≤ k < |ϕ m (1)| , G m,k (β) =    T |ϕ m (21)|+k -β (1), T |ϕ m (2)|+k -β (1) if k is even, T |ϕ m (2)|+k -β (1), T |ϕ m (21)|+k -β (1) if k is odd.

POLYNOMIALS AND EXPANSIONS

To study the trajectories of 1 under T -β , we define the maps

f β,a : R → R , x → -βx + a , a ∈ {1, 2} .
The composition of maps f β,a1 , . . . , f β,a k , is denoted by

f β,a1•••a k = f β,a k • • • • • f β,a1 . Since f β,a1•••a k (1) = (-β) k + k j=1 a k (-β) k-j ,
we define the polynomial

P a1•••a k = (-X) k + k j=1 a k (-X) k-j ∈ Z[X] for every word a 1 • • • a k ∈ {1, 2} k , k ≥ 1. Then f β,a1•••a k (1) = P a1•••a k (β), thus T k -β (1) = f β,d -β,1 (1)•••d -β,k (1) (1) = P d -β,1 (1)•••d -β,k (1) 
(β) . For the proof of Theorem 2.5, we use the following polynomial identities. Lemma 3.1. For 1 ≤ j < k, we have

P a1•••a k = (-X) k-j P a1•••aj -1 + P aj+1•••a k .
Proof. We can deduce the identity directly from the definition. Lemma 3.2. For every n ≥ 0, we have

X 1+(-1) n 2 P ϕ n (2) + X 1-(-1) n 2 P ϕ n (11) = X + 1 = X 1+(-1) n 2 + X 1-(-1) n 2 .
Proof. The second equation holds for even and odd n, thus for all n ∈ Z. Since

XP 2 + P 11 = X(-X + 2) + X 2 -X + 1 ,
the first equation holds for n = 0. For every n ≥ 0, we have

X 1+(-1) n+1 2 P ϕ n+1 (2) + X 1-(-1) n+1 2 P ϕ n+1 (11) = X 1-(-1) n 2 P ϕ n (211) + X 1+(-1) n 2 P ϕ n (22) .
Then, using that |ϕ n (11)| is even, |ϕ n (2)| is odd and Lemma 3.1, we obtain

X 1-(-1) n 2 P ϕ n (211) + X 1+(-1) n 2 P ϕ n (22) = X 1-(-1) n 2 +|ϕ n (11)| P ϕ n (2) -1 + X 1-(-1) n 2 P ϕ n (11) -X 1+(-1) n 2 +|ϕ n (2)| P ϕ n (2) -1 + X 1+(-1) n 2 P ϕ n (2) = X 1+(-1) n 2 P ϕ n (2) + X 1-(-1) n 2 P ϕ n (11) .
Therefore, the lemma follows inductively.

The following lemma is a consequence of Lemma 3.2.

Lemma 3.3. For every n ≥ 0, the words ϕ n (2) and ϕ n (11) agree on the first g n+1 -1 letters and differ on the g n+1 -st letter.

Proof. The polynomials X 1+(-1) n 2 P ϕ n (2) and X

1-(-1) n 2 P ϕ n (11) have degree g n+1 + 1 by (2.2) and (2.3). Thus the coefficient of X gn+1+1-j in their sum is equal to the difference of the j-th letter in ϕ n (2) and ϕ n (11), for 1 ≤ j ≤ min(|ϕ n (2)|, |ϕ n (11)|) = g n+1 . Since the sum of these polynomials is equal to X + 1, by Lemma 3.2, the first g n+1 -1 letters in ϕ n (2) and ϕ n (11) are equal, and the g n+1 -st letters differ. Lemma 3.4. For every n ≥ 0, we have

1 -P ϕ n (1) = X 1+(-1) n 2 n-1 m=0 X |ϕ m (1)| -1 , (3.1) P ϕ n (21) -1 = X gn+1+1 -X gn+1 -X 1+(-1) n 2 n-1 m=0 X |ϕ m (1)| -1 , (3.2) P ϕ n (21) -P ϕ n (2) = X gn+1+1 -X -1 n-1 m=0 X |ϕ m (1)| -1 , (3.3) P ϕ n (2) -P ϕ n+1 (2) = X gn+1+1 -X -1 n m=0 X |ϕ m (1)| -1 . (3.4)
Proof. Since 1 -P 1 = X, (3.1) holds for n = 0. By Lemmas 3.2 and 3.1, we obtain that

1 -P ϕ n+1 (1) = 1 -P ϕ n (2) = X -(-1) n P ϕ n (11) -1 = X -(-1) n -X |ϕ n (1)| P ϕ n (1) -1 + P ϕ n (1) -1 = X -(-1) n X |ϕ n (1)| -1 1 -P ϕ n (1)
for every n ≥ 0, hence (3.1) holds inductively for all n ≥ 0.

Applying first Lemma 3.1, then equation (3.1) for n and n + 1, we obtain that

P ϕ n (21) -1 = -X |ϕ n (1)| P ϕ n (2) -1 + P ϕ n (1) -1 = X |ϕ n (1)|+ 1-(-1) n 2 X |ϕ n (1)| -1 -X 1+(-1) n 2 n-1 m=0 X |ϕ m (1)| -1 .
By (2.1) and (2.3), we have With the help of Lemma 3.4, we will show the following proposition, where η n > 1, n ≥ 1, is defined by

|ϕ n (1)| + 1-(-1) n 2 = g n + 1 and 2 • |ϕ n (1)| + 1-(-1) n 2 = g n+1 + 1,
η gn+1 n = η gn-1+1 n + η 1-(-1) n 2 n .
It can be easily verified that

2 = η 1 > γ 2 2 > γ 1 > η 2 > γ 2 > η 3 > • • • > 1 . Proposition 3.5. Let β > 1, n ≥ 1. Then d -β (1) starts with ϕ n (2) if and only if β < γ 2 2 in case n = 1, β ≤ η n in case n is even, β < η n in case n ≥ 3 is odd.
For the proof of the proposition, we use the following lemmas. For the sake of readability, we often omit the dependence on β in T -β , d -β and f β,a in the sequel. Lemma 3.6. Let x ∈ (0, 1] and 1 < β < 2. Then

• d 1 (x) = 2 if and only if f 2 (x) ≤ 1, • d 1 (x) = 1 if and only if f 1 (x) > 0, • d 1 (x) d 2 (x) = 11 if and only if 0 < f 11 (x) < 1. Proof. For a ∈ {1, 2}, we have d 1 (x) = a if and only if f a (x) ∈ (0, 1]. The inequalities f 2 (x) > -β + 2 > 0 and f 1 (x) < 1 prove
the first two points. Noting that f 1 (x) < 1 is equivalent to x > 0, the third point follows from the second point.

Lemma 3.7. Let β > 1. If d(1) starts with a 1 • • • a k and d(f a1•••a k (1)) starts with b 1 • • • b j , then d(1) starts with a 1 • • • a k b 1 • • • b j . Proof. If d 1 (1) • • • d k (1) = a 1 • • • a k , then T k (1) = f a1•••a k (1)
, and the lemma follows from d k+1 (1)

• • • d k+j (1) = d 1 (T k (1)) • • • d j (T k (1)).
Lemma 3.8. Let x ∈ (0, 1], n ≥ 1, such that d(x) starts with the first g n -1 letters of ϕ n (1). Then d(x) starts with ϕ n (1) if and only if

f ϕ n (1) (x) ≤ 1 in case n is odd, 0 < f ϕ n (1) (x) < 1 in case n is even.
Proof. Assume that d(x) starts with the first g n -1 letters of ϕ n (1), n ≥ 1. If n is odd, then g n = |ϕ n (1)|, and ϕ n (1) ends with 2, thus f 2 T |ϕ n (1)|-1 (1) = f ϕ n (1) [START_REF] Allouche | A relative of the Thue-Morse sequence[END_REF]. By Lemma 3.6, we have

d |ϕ n (1)| (1) = d 1 (T |ϕ n (1)|-1 (1)) = 2 if and only if f 2 T |ϕ n (1)|-1 (1) ≤ 1. If n is even, then g n = |ϕ n (1)| -1, and ϕ n (1) ends with 11, thus f 11 T |ϕ n (1)|-2 (1) = f ϕ n (1) (1). By Lemma 3.6, d |ϕ n (1)|-1 (1) d |ϕ n (1)| (1) = 11 is equivalent to 0 < f 11 T |ϕ n (1)|-2 (1) < 1. Lemma 3.9. Let β > 1, n ≥ 1. If d(1) starts with ϕ n (2), then T gn-1 is continuous on T |ϕ n (1)| (1), 1 , and 1/β is in the interior of T gn-1 T |ϕ n (1)| (1), 1 .
Proof. Let β > 1 and n ≥ 1 such that d(1) starts with ϕ n (2) = ϕ n-1 (211), then d(T |ϕ n (1)| (1)) starts with ϕ n-1 [START_REF]The structure of piecewise monotonic transformations[END_REF]. By Lemma 3.3, the words ϕ n-1 (2) and ϕ n-1 (11) share the first g n -1 letters and differ on the g n -th letter. This proves that T gn-1 is continuous on T |ϕ n (1)| (1), 1 , and that 1/β is in the interior or the right endpoint of

T gn-1 T |ϕ n (1)| (1), 1 . If T gn-1 (1) = 1/β with odd n, then T |ϕ n (1)| (1) = 1. If T |ϕ n (1)|+gn-1 (1) = T gn+1-1 (1) = 1/β with even n, then T |ϕ n (2)| (1) = 1. Both situations are impossible since f ϕ n (1) (1) < 1 for all β > 1, n ≥ 0, by (3.1). Therefore, 1/β is in the interior of T gn-1 T |ϕ n (1)| (1), 1 . Lemma 3.10. For any 1 < β ≤ η n , n ≥ 1, we have f ϕ n-1 (1) (1) ≤ f ϕ n (2) (1) < 1.
Proof. By (3.1), we have f ϕ n (1) (1) < 1 for all β > 1, n ≥ 0.

For all 1 < β ≤ η n , n ≥ 1, we have f ϕ n-1 (21) (1) ≤ 1 by (3.2). Since f ϕ n-1 (1) is order reversing, we get that

f ϕ n (2) (1) = f ϕ n-1 (211) (1) ≥ f ϕ n-1 (1) (1).
Proof of Proposition 3.5. Let β > 1. First note that d 1 (1) = 2 if and only if β < 2. Then, by Lemma 3.6, d(1) starts with ϕ(2) if and only if 0 < f ϕ(2) (1) < 1. By (3.1), we have

1 -f ϕ(2) (1) = β(β -1) 2 > 0, and 1 -f ϕ(2) (1) < 1 if and only if β -1 < β -1/2 , i.e., β < γ 2
2 . This proves the case n = 1 of the proposition. Suppose now that d(1) starts with ϕ n+1 (2) = ϕ n (211) for some n ≥ 1. Then we must have f ϕ n (21) (1) ≤ 1, which is equivalent to β ≤ η n+1 by (3.2). Suppose moreover that the proposition is already shown for n. Since η n+1 < min(η n , γ 2 2 ), this implies that d(1) starts with ϕ n (2). Furthermore, η n+1 < γ n and (3.4) yield that [START_REF] Allouche | A relative of the Thue-Morse sequence[END_REF]. By Lemma 3.9, the first g n -1 letters of d(x) are equal to those of d( 1) for all x ∈ f ϕ n (1) (1), 1 . Therefore, Lemma 3.8 implies that d(1) starts with ϕ n (21) if and only if f ϕ n (21) (1) ≤ 1 in case n is odd, 0 < f ϕ n (21) (1) < 1 in case n is even. For even n, we must therefore have β < η n+1 . Note that f ϕ n (21) (1) > 0 is guaranteed by

f ϕ n (2) (1) > f ϕ n (1)
f ϕ n (21) (1) > f ϕ n (1) (1) = T |ϕ n (1)| (1)
, which follows from f ϕ n (2) (1) < 1 and the order reversing property of f ϕ n (1) . By Lemma 3.10, we have

f ϕ n (1) (1) ≤ f ϕ n (211) (1) < 1, thus f ϕ n (21) (1) ∈ f ϕ n (1) (1), 1 , which implies that d(f ϕ n (21) (1)
) starts with ϕ n (1). Putting everything together, we obtain that d(1) starts with ϕ n (211) = ϕ n+1 (2) if and only if β < η n+1 with even n, or β ≤ η n+1 with odd n.

We conclude the section with the proof of Theorem 2.5.

Proof of Theorem 2.5. By Proposition 3.5, d -β (1) starts with ϕ n (2) for any 1 < β ≤ γ n , n ≥ 1. By (3.3), we have f γn,ϕ n-1 (21

) (1) = f γn,ϕ n-1 (2) (1), thus T |ϕ n-1 (21)| -γn (1) = T |ϕ n-1 (2)| -γn (1), i.e., T |ϕ n-1 (2)| -γn (1) is a fixed point of T |ϕ n-1 (1)| -γn
. Hence, by Lemma 3.7, d -γn (1) = ϕ n-1 (2 1). Since lim n→∞ γ n = 1, we obtain that d -β (1) starts with ϕ n (2) for larger and larger n when β → 1, thus lim β→1 d -β (1) = lim n→∞ ϕ n (2 1).

STRUCTURE OF THE GAPS

We will show that the support of the invariant measure is

F (β) = (0, 1] \ G(β) . For β > 1, n ≥ 0, let F n (β) = F n,k (β) | 0 ≤ k ≤ g n with F n,k (β) =    T |ϕ n (1)|+k -β (1), T k -β (1) if k is even, k < g n , T k -β (1), T |ϕ n (1)|+k -β (1) if k is odd, k < g n , F n,gn (β) =    0, T |ϕ n (1)|-1 -β (1) if n is even, 0, T |ϕ n (2)|-1 -β (1) if n is odd.
(We will consider these sets only in the case when the left number is smaller than the right number.) Figures 2 and3 show examples of the decomposition of (0, 1] into these sets.

As in Section 3, we often omit the dependence on β in the following.

Lemma 4.1. Let n ≥ 2 and 1 < β ≤ η n if n is even, 1 < β < η n if n is odd; or let n = 1, 1 < β < γ 2 2 . Then we have (i) F n,k = T k (F n,0 ) for all 0 ≤ k < g n , (ii) 1/β is in the interior of F n,gn-1 , (iii) T gn (F n,0 ) = F n,gn ∪ F n,0 , T (F n,gn ) = F n+1,0 \ {1}, if n is odd, (iv) T gn (F n,0 ) = F n,gn ∪ F n+1,0 , T (F n,gn ) = F n,0 \ {1}, if n is even.
Proof. Let β and n have the properties of the statement of the lemma. Then Proposition 3.5 and Lemma 3.9 give the points i. and ii.

If n is odd, then F n,gn-1 = T gn+1-1 (1), T gn-1 (1) , thus

T (F n,gn-1 ) = 0, T gn+1 (1) ∪ T gn (1), 1 = 0, T |ϕ n (2)|-1 (1) ∪ T |ϕ n (1)| (1), 1 = F n,gn ∪ F n,0 .
Since d(1) starts with ϕ n (2) and ϕ n (2) ends with 1, we have

T (F n,gn ) = T 0, T |ϕ n (2)|-1 (1) = T |ϕ n (2)| (1), 1 = F n+1,0 \ {1} ,
i.e., iii. holds. If n is even, then F n,gn-1 = T gn-1 (1), T gn+1-1 (1) and 

T (F n,gn-1 ) = 0, T gn (1) ∪ T gn+1 (1), 1 = 0, T |ϕ n (1)|-1 (1) ∪ T |ϕ n (2)| (1), 1 = F n,gn ∪ F n+1,0 .
(i) F n-1,k = F n,|ϕ n-1 (1)|+k ∪ G n-1,k ∪ F n,k for all 0 ≤ k < |ϕ n-1 (1)|, (ii) G m,k = T k (G m,0 ) for all 0 ≤ m < n, 0 ≤ k < |ϕ m (1)|, (iii) T |ϕ m (1)| (G m,0 ) = G m,0 ∪ F m,0 \ F m+1,0 ⊃ G m,0 for all 0 ≤ m < n.
Proof. We have F 0 = {F 0,0 } = {(0, 1]} and G 0 = ∅, thus the elements of F 0 and G 0 form the trivial partition of (0, 1]. Let now 1 < β < γ n , n ≥ 1, and assume that F n-1 ∪ G n-1 forms a partition of (0, 1]. Lemma 3.4 and the order reversing property of f ϕ n-1 (1) give [START_REF] Allouche | A relative of the Thue-Morse sequence[END_REF]. Ratios between G 1,0 , G 2,0 and the rest of the picture are not respected. In reality, G 1,0 is almost 10 times the size of G 2,0 , and G 2,0 is almost 5 times the size of F 2,0 .

f ϕ n-1 (1) (1) < f ϕ n-1 (21) (1) < f ϕ n-1 (2) (1) < f ϕ n (2) (1) < 1 .
t k = T k -β ( 
For n = 1, we have f 21 (1) > 0. Therefore, F n-1,0 splits into F n,|ϕ n-1 (1)| , G n-1,0 and F n,0 , which are intervals of positive length. This shows i. in case n = 1. By Proposition 3.5 and Lemma 3.9, T gn-1-1 is continuous on F n-1,0 , thus every (21)| (1)) and d(1) start with ϕ n-1 (1). In this case,

F n-1,k , 0 ≤ k < g n-1 , also splits into F n,|ϕ n-1 (1)|+k , G n-1,k and F n,k . If n is even, then this proves i. since g n-1 = |ϕ n-1 (1)|. In this case, we have F n-1,gn-1 = F n,gn , thus F n ∪ G n is a refinement of the partition F n-1 ∪ G n-1 . If n is odd, then we use that T |ϕ n-1 (1)| is continuous on G n-1,0 ∪ F n-1,0 since both d(T |ϕ n-1
F n-1,gn-1 = F n,|ϕ n-1 (1)|-1 splits into F n,gn , G n-1,|ϕ n-1 (1)|-1 and F n,|ϕ n-1 (1)|-1 , thus i.
holds for odd n too, and

F n ∪ G n is again a refinement of the partition F n-1 ∪ G n-1 .
For all 0 ≤ m < n, the continuity of T |ϕ m (1)| on G m,0 gives ii. Moreover, 

T |ϕ m (1)| (G m,0 ) = T |ϕ m (21)| (1), T |ϕ m+1 (2)| (1) and F m+1,0 ⊂ F m,0 imply iii.
Proof. If β ≥ γ 1 , then µ(G(β)) = µ(∅) = 0. We will show, by induction on n, that (4.1) µ(G n,k ) = 0 for all n ≥ 0 , 0 ≤ k < |ϕ n (1)| , 1 < β < γ n+1 . Since G = n-1 m=0 |ϕ m (1)|-1 k=0 G m,k for γ n+2 ≤ β < γ n+1 , this proves the proposition. For 1 < β < γ 1 , we have G 0,0 = T 2 (1), T (1) = f 1 T (1), T (1) and T -1 (G 0,0 ) = f -1 1 (G 0,0 ) = f -1 1 T (1), T (1) ⊂ G 0,0 . Since µ(T -1 (G 0,0 )) = µ(G 0,0 ), we obtain µ f 1 T (1), f -1 1 T (1) = 0. Iteratively, we get, for all k ≥ 0, µ f -2k+1 1 T (1), f -2k-1 1 T (1) = 0 , µ f -2k-2 1 T (1), f -2k 1 T (1) = 0 . This gives µ T 2 (1), 1 β+1 = 0 and µ 1 β+1 , T (1) = 0, since f -1
1 is contracting with fixed point 1 β+1 . Then, the absolute continuity of µ implies µ(G 0,0 ) = 0, hence (4.1) holds for n = 0. Now consider 1 < β < γ n+1 , n ≥ 1, and assume that (4.1) holds for n -1. By Proposition 4.2 i.-iii., we have (4.2)

T (G m,k-1 ) = G m,k if 1 ≤ k < |ϕ m (1)|, 0 ≤ m ≤ n, G m,0 ∪ F m+1,|ϕ m (1)| ∪ G m+1,0 if k = |ϕ m (1)|, 0 ≤ m < n. Since T -1 I∈Gn I ⊂ I∈Gn I by Corollary 4.3, we obtain that T -1 (G n,0 ) ⊂ G n,|ϕ n (1)|-1 ∪ G n-1,|ϕ n-1 (1)|-1 and T 1-|ϕ n (1)| (G n,|ϕ n (1)|-1 ) = G n,0 . Thus, up to a set of µ-measure zero, T -|ϕ n (1)| (G n,0 ) = f -1 ϕ n (1) (G n,0 ) ⊂ G n,0 , with f -1 ϕ n (1) (G n,0 ) = f -1 ϕ n (1) f ϕ n (1) T |ϕ n (2)| (1), T |ϕ n (2)| (1) = f -1 ϕ n (1) T |ϕ n (2)| (1), T |ϕ n (2)| (1)
. As in the case n = 0, using the T -invariance of µ, we obtain that

µ f -2k+1 ϕ n (1) T |ϕ n (2)| (1), f -2k-1 ϕ n (1) T |ϕ n (2)| (1) = 0 , µ f -2k-2 ϕ n (1) T |ϕ n (2)| (1), f -2k ϕ n (1) T |ϕ n (2)| (1) = 0 , for all k ≥ 0. Thus µ T |ϕ n (21)| (1), y = 0 and µ y, T |ϕ n (2)| (1) = 0, where y denotes the fixed point of f ϕ n (1) , i.e., µ(G n,0 ) = 0. Since µ(G n,k ) = µ(T -k (G n,k )) = µ(G n,0 ) for 1 ≤ k < |ϕ n (1)|, (4.1) holds for n. Proposition 4.5. Let β > 1, then lim k→∞ λ T -k -β (G(β)) = 0.
Proof. If β ≥ γ 1 , then G(β) = ∅ and the statement holds. For 1 < β < γ n+1 , n ≥ 0, the preimage T -k (G n,0 ) can be written as a disjoint union

T -k (G n,0 ) = a1•••a k ∈L k f -1 a1•••a k (G n,0 )
with a set of words 

L k ⊆ {1, 2} k . Then we have µ(T -k (G n,0 )) = #(L k ) β -k µ(G n,0
µ(T -k (G n,0 )) = 0. As T -j (G n,j ) = G n,0 for 1 ≤ j < |ϕ n (1)|, we also have lim k→∞ µ(T -k (G n,j )) = 0, thus lim k→∞ µ(T -k (I)) = 0 for all I ∈ G n+1 .

LOCALLY EVENTUALLY ONTO

Lemma 5.1. Let 1 < β < γ 1 , I be an interval of positive length in F (β), and n ≥ 1 such that η n+1 < β < η n with odd n ≥ 1, or η n+1 ≤ β ≤ η n with even n ≥ 2. Then there exists an m ≥ 0 such that T m -β (I) ⊇ F n,0 (β) \ {1}.

Proof. We use ideas of Góra's proof of Proposition 8 in [START_REF] Góra | Invariant densities for generalized β-maps[END_REF]. We distinguish four cases.

Case 1: odd n ≥ 1, η n+1 < β < γ n . In this case, we have

β 2gn = β gn+1 > β gn + β -1 ≥ β + β -1 > 2.
Therefore, the largest connected components of images of I grow until they cover two consecutive discontinuities of T 2gn in the interior of F (β). Since the only discontinuity of T is 1/β ∈ F n,gn-1 , the images eventually also cover two consecutive discontinuities of T 2gn in the interior of F n,gn-1 = T |ϕ n (2)|-2 (1), T |ϕ n (1)|-1 (1) . We have

T 2gn 1/β, f -1 2ϕ n (1) (1) = T gn 1/β, T |ϕ n (1)|-1 (1) , T 2gn f -1 11ϕ n (1) (1), 1/β = T gn-1 1/β, T |ϕ n (1)|-1 (1) , T 2gn f -1 2ϕ n (1) (1), T |ϕ n (1)|-1 (1) = T gn T |ϕ n (2)|-2 (1), 1/β , T 2gn T |ϕ n (2)|-2 (1), f -1 11ϕ n (1) (1) = T gn-1 T |ϕ n (21)|-1 (1), 1/β .
Using Lemma 3.9, we obtain that T 2gn is continuous on these four intervals. Note that

T |ϕ n (2)|-2 (1) < f -1 11ϕ n (1) (1) since f 11ϕ n (1) T |ϕ n (2)|-2 (1) = f ϕ n (21) (1) > 1. The discontinuities of T 2gn in the interior of F n,gn-1 are therefore 1/β, f -1 2ϕ n (1) (1) and f -1 11ϕ n (1) (1). With T gn+1 1/β, f -1 2ϕ n (1) (1) = F n,0 and T gn+1 1/β, T |ϕ n (1)|-1 (1) = F n,0 \ {1} ,
we obtain that T m (I) ⊇ F n,0 \ {1} for some m ≥ 0.

Case 2: odd n ≥ 1, γ n+1 ≤ β ≤ η n+1 . Since β gn+1+1 ≥ β + 1 > 2, we look at T 2gn+1 on F n,gn-1 . Note that T 2gn 1/β, f -1 2ϕ n (1) (1) = F n,gn-1 , thus there is a discontinuity of T 2gn+1 in the interior of 1/β, f -1 2ϕ n (1) [START_REF] Allouche | A relative of the Thue-Morse sequence[END_REF] . Contrary to Case 1, T 2gn+1 has no discontinuity in F n,gn-1 on the left of 1/β. More precisely,

T 2gn+1 1/β, f -1 2ϕ n (2) (1) = T T |ϕ n (2)|-2 (1), 1/β , T 2gn+1 f -1 2ϕ n (2) (1), f -1 2ϕ n (1) (1) = T 1/β, T |ϕ n (1)|-1 (1) , T 2gn+1 f -1 2ϕ n (1) (1), T |ϕ n (1)|-1 (1) = T gn+1 T |ϕ n (2)|-2 (1), 1/β , T 2gn+1 T |ϕ n (2)|-2 (1), 1/β = T gn T |ϕ n (21)|-1 (1), T |ϕ n (1)|-1 (1) .
Here,

f ϕ n (21) (1) ≤ 1 implies that T |ϕ n (21)|-1 (1) = f -1 2 f ϕ n (21) (1) ≥ 1/β. Hence, the discontinuities of T 2gn+1 in the interior of F n,gn-1 are 1/β, f -1 2ϕ n (2) (1) and f -1 2ϕ n (1) (1), with T 2gn+2 1/β, f -1 2ϕ n (2) (1) = F n+1,0 \ {1} , T 2gn+1 f -1 2ϕ n (2) (1), f -1 2ϕ n (1) (1) = F n,0 .
This gives T m (I) ⊇ F n+1,0 \ {1} for some m ≥ 0.

Case 3: even n ≥ 2, η n+1 ≤ β < γ n . In this case, we have

β 2gn = β gn+1-1 > β gn-1 + β -1 ≥ β + β -1 > 2, F n,gn-1 = T |ϕ n (1)|-2 (1), T |ϕ n (2)|-1 (1) 
, and

T 2gn 1/β, f -1 2ϕ n (1) (1) = T gn T |ϕ n (1)|-2 (1), 1/β , T 2gn f -1 11ϕ n (1) (1), 1/β = T gn-1 T |ϕ n (1)|-2 (1), 1/β , T 2gn f -1 2ϕ n (1) (1), T |ϕ n (2)|-1 (1) = T gn 1/β, T |ϕ n (21)|-2 (1) , T 2gn T |ϕ n (1)|-2 (1), f -1 11ϕ n (1) (1) = T gn-1 1/β, T |ϕ n (2)|-1 (1) .
Here, Since β > η n+1 , we have T |ϕ n (21)|-1 (1) < 1/β, thus T gn (F n+1,0 ) ⊇ F n,0 , and

f 2ϕ n (1) T |ϕ n (2)|-1 (1) = f ϕ n (21) (1) ≥ 1 implies f -1 2ϕ n (1) (1) ≤ T |ϕ n (2)|-1 (1). The discontinuities of T 2gn in the interior of F n,gn-1 are at most 1/β, f -1 2ϕ n (1) (1) and f -1 11ϕ n (1) (1), with T gn+2 1/β, f -1 2ϕ n (1) (1) = F n,0 \ {1} , T gn+3 f -1 11ϕ n (1) (1), 1/β = F n,0 \ {1, T |ϕ n (1)| (1)} , similarly to Case 1. We obtain that T m (I) ⊇ F n,0 \ {1, T |ϕ n (1)| (1)} for some m ≥ 0. Since T gn+1 F n,0 \ {1, T |ϕ n (1)| (1)} ⊇ F n,0 \ {1}, we also have T m (I) ⊇ F n,0 \ {1} for some m ≥ 0. Case 4: even n ≥ 2, γ n+1 ≤ β < η n+1 . Since β gn+1+1 ≥ β + 1 > 2, we look at T 2gn+2 on F n,gn-1 . We have T 2gn+1 1/β, f -1 2ϕ n (1) (1) = F n,gn-1 \ {T |ϕ n (1)|-2 (1)} with f -1 2ϕ n (1) (1) > T |ϕ n (2)|-1 (1), thus f -1 2ϕ n (1) (1) is outside of F n,gn-1 , but T 2gn+2 still has a discontinuity in 1/β, T |ϕ n (2)|-1 (1) . More precisely, T 2gn+2 1/β, f -1 2ϕ n (2) (1) = T 1/β, T |ϕ n (2)|-1 (1) , T 2gn+2 f -1 11ϕ n (1) (1), 1/β = T gn+1 T |ϕ n (1)|-2 (1), 1/β , T 2gn+2 f -1 2ϕ n (2) (1), T |ϕ n (2)|-1 (1) = T T |ϕ n (2)|-2 (1), 1/β , T 2gn+2 T |ϕ n (1)|-2 (1), f -1 11ϕ n (1) (1) = T T |ϕ n (1)|-2 (1), T |ϕ n (21)|-2 (1) , with T |ϕ n (21)|-2 (1) = f -1 11 f ϕ n (21) (1) < 1/β since f ϕ n (21) (1) < 1. Therefore, the discontinuities of T 2gn+2 in the interior of F n,gn-1 are 1/β, f -1 2ϕ n (2) (1) and f -1 11ϕ n (1) (1), with T 2gn+3 1/β, f -1 2ϕ n (2) (1) = F n+1,0 , T gn+3 f -1 11ϕ n (1) (1), 1/β = F n,0 \ {1, T |ϕ n (1)| (1)} . This gives T m (I) ⊇ F n+1,0 \ {1} for some m ≥ 0. Lemma 5.2. Let 1 < β < γ 1 and n ≥ 1 such that η n+1 < β < η n with odd n ≥ 1, or η n+1 ≤ β ≤ η n with even n ≥ 2. Then we have T gn(2gn+(-1) n ) -β F n,0 (β) \ {1} ⊇ F (β) \ T k -β (1) | 0 ≤ k ≤ g n (2g n + (-1) n ) .
T 2gn+1 (F n,0 ) ⊇ F n,0 ∪ F n,1 .
Inductively, we get T (gn-1)(2gn+1) (F n,0 ) ⊇ gn-1 k=0 F n,k . Then, T (F n,gn-1 ) = F n,gn ∪ F n,0 yields that T gn(2gn-1) (F n,0 ) = T (gn-1)(2gn+1)+1 (F n,0 ) = 
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 1 FIGURE 1. β-transformation (left) and (-β)-transformation (right), β = 1+ √ 5 2 .
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 22 For any β > 1, T -β is locally eventually onto on (0, 1] \ G(β), T -1 -β (G(β)) ⊂ G(β) and lim k→∞ λ T -k -β (G(β)) = 0 .

  3) where |w| denotes the length of the word |w|. In particular, |ϕ n (1)| and |ϕ n (2)| are odd, |ϕ n (21)| = 2 n+1 , g n is odd if and only if n is odd, and we can write
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 242 FIGURE 2. The (-β)-transformation for β = 5/4, with set of gaps G 1,0 ∪ G 2,0 and support of the invariant measure F 2,2 ∪ F 2,1 ∪ F 2,0 . Here, t k = T k -β (1). Now, ϕ n (1) ends with 1, which gives T (F n,gn ) = F n,0 \ {1}, i.e., iv. holds. Proposition 4.2. Let 1 < β < γ n , n ≥ 0. Then the elements of F n and G n are intervals of positive length which form a partition of (0, 1]. If n ≥ 1, then

FIGURE 3 .

 3 FIGURE 3. The (-β)-transformation for β = 9/8 with gaps G m,k , support of the invariant measure F 3,0 ∪ • • • ∪ F 3,5 , andt k = T k -β([START_REF] Allouche | A relative of the Thue-Morse sequence[END_REF]. Ratios between G 1,0 , G 2,0 and the rest of the picture are not respected. In reality, G 1,0 is almost 10 times the size of G 2,0 , and G 2,0 is almost 5 times the size of F 2,0 .
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 4344 Let 1 < β < γ n , n ≥ 0. Then T -β I∈Fn(β) I = I∈Fn(β) I and T -1 -β I∈Gn(β) I ⊆ I∈Gn(β) I . If γ n+1 ≤ β < γ n , then F (β) = I∈Fn(β) I (and G(β) = I∈Gn(β) I by definition). Let β > 1 and µ be an invariant measure of T -β which is absolutely continuous with respect to the Lebesgue measure. Then µ(G(β)) = 0.

Proof. Let 1

 1 < β < γ 1 and n as in the statement of the lemma. By Corollary 4.3, we haveF (β) = I∈Fn(β) I if β < γ n , and F (β) = I∈Fn-1(β) I if β ≥ γ n . In the latter case, f ϕ n (1) ≤ f ϕ n-1 (1) implies that F n-1,0 = F n,|ϕ n-1 (1)| ∪ F n,0 , and we obtain, similarly to the proof of Proposition 4.2, that I∈Fn-1(β) I = I∈Fn(β) I. Therefore, we always have F (β) = I∈Fn(β) I.Let first n ≥ 1 be odd. For simplicity, we omit points in {T k (1) | k ≥ 0} in the following statements. We have T gn+1 (F n,0 ) = F n+1,0 ∪ F n,1 and T gn-1 (F n+1,0 ) = T |ϕ n (21)|-1 (1), T |ϕ n (1)|-1 (1) .
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 6162 n,k = F (β) .Here, we have only omitted points in T k (1) | 0 ≤ k ≤ g n (2g n -1) .Let now n ≥ 2 be even. Omitting T k (1) | k ≥ 0 , we have T gn (F n,0 ) = F n,gn ∪ F n+1,0 andT gn-1 (F n+1,0 ) = T |ϕ n (1)|-2 (1), T |ϕ n (21)|-2 (1) . Since β ≥ η n+1 , we have T |ϕ n (21)|-2 (1) ≥ 1/β, thus T gn+1 (F n+1,0 ) ⊇ F n,0 , andT 2gn+2 (F n,0 ) ⊇ F n,0 ∪ F n,1 . Let β > 1 with β 4 = β + 1, i.e., β ≈ 1.2207. Then T 10 -β (1) = T 5 -β (1),and (T nβ (1)) n≥0 is aperiodic.Proof. It is easy to check that T 10 -β (1) = T 5 -β (1). On the other hand, let α be an algebraic conjugate of β satisfying |α| > 1, i.e., α ≈ -0.2481 ± 1.034i, and let σ :Q(β) → Q(α) be the field homomorphism defined by σ(β) = α. Since T β (x) ∈ {βx, βx -1}, we have |σ(T β (x))| ≥ |α| |σ(x)| -1 for all x ∈ [0, 1] ∩ Q(β), thus |σ(T β (x))| > |σ(x)| if |σ(x)| > 1/(|α| -1). We have T 35 β (1) = β 35β 34β 26β 13β 4 ,and one can check that |σ(T 35 β (1))| > 1/(|α| -1). This implies that (|σ(T n β (1))|) n≥35 is a strictly increasing sequence, hence (T n β (1)) n≥0 is aperiodic. Let β > 1 with β 7 = β 6 + 1, i.e., β ≈ 1.2254. Then T 7 β (1) = 0, and (T n -β (1)) n≥0 is aperiodic.Proof. We have T 7 β (1) = β 7β 6 -1 = 0. Let α be an algebraic conjugate of β satisfying |α| > 1, i.e., α ≈ 0.7802 ± 0.7053i, and let σ :Q(β) → Q(α) be the field homomorphism defined by σ(β) = α. We have T -β (x) ∈ {-βx + 1, -βx + 2}, thus |σ(T -β (x))| ≥ |α| |σ(x)| -2 for all x ∈ (0, 1] ∩ Q(β). It is more convenient to consider φ(x) with φ as in the Introduction, since φ(T -β (x)) ∈ {-βφ(x), -βφ(x) -1} and |σ(φ(T -β (x)))| ≥ |α| |σ(φ(x))| -1 for all x ∈ (0, 1] ∩ Q(β).Now one can check that |σ(φ(T 53 -β (1)))| > 1/(|α| -1), which implies that (|σ(φ(T n -β (1)))|) n≥53 is a strictly increasing sequence, hence (T n -β (1)) n≥0 is aperiodic.

  which gives (3.2).

Combining (3.1) for n + 1 and (3.2), we obtain (3.3). Finally, (3.4) follows from (3.1) for n + 1 and n + 2.

  ). By (4.2) and Corollary 4.3, L k consists of the length k suffixes of all concatenations 1 i0 (ϕ(1))

  i1 

  • • • (ϕ n (1)) in , i 0 , i 1 , . . . , i n ≥ 0.Therefore, the number of elements in L k is bounded by k n , which grows polynomially in k. This yields lim k→∞
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As above, we get T (gn-1)(2gn+2) (F n,0 ) ⊇ gn-1 k=0 F n,k . Since T gn+2 (F n,gn-1 ) ⊇ F n,gn ∪ F n,0 and T gn+2 (F n,k ) ⊇ F n,k+1 for 0 ≤ k < g n , we obtain that T gn(2gn+1) (F n,0 ) = T (gn-1)(2gn+2)+gn+2 (F n,0 ) = gn k=0

PROOFS OF THE MAIN RESULTS

Now we are ready to prove Theorems 2.1 and 2.2.

Proof of Theorem 2.2. For 1 < β < γ 1 , Lemma 5.1 and 5.2 show that T -β is locally eventually onto on Theorem 2.5 was proved in Section 3, thus it only remains to prove Theorem 2.6. Recall that a number

-β be the set of numbers in V -β which are not right endpoints of gaps, and

} is a partition of F (β) up to finitely many points, and T -β (J x ) is a union of intervals J y , y ∈ V ′ -β , for each x ∈ V ′ -β . Define a matrix

i.e., m x,y is the number of times that J y is contained in

Since T -β is locally eventually onto on F (β), the matrix M -β is primitive, thus β is the Perron-Frobenius eigenvalue of M -β , which is a Perron number.

We finally show that the set of Parry numbers and the set of Yrrap numbers do not include each other. For the definition of a Parry number, it is convenient to extend the domain of T β to [0, 1] by setting T β (1) = β -⌊β⌋. Then β > 1 is a Parry number if and only if (T n β (1)) n≥0 is eventually periodic. We know that all Pisot numbers are both Parry numbers [START_REF] Bertrand | Développements en base de Pisot et répartition modulo 1[END_REF][START_REF] Schmidt | On periodic expansions of Pisot numbers and Salem numbers[END_REF] and Yrrap numbers [START_REF] Frougny | On negative bases[END_REF]. Therefore, the symmetric difference between the set of Parry numbers and the set of Yrrap numbers can only contain Perron numbers that are not Pisot numbers.