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DYNAMICAL PROPERTIES OF THE NEGATIVE BETA
TRANSFORMATION

LINGMIN LIAO AND WOLFGANG STEINER

ABSTRACT. We analyse dynamical properties of the negative beta foamation,
which has been studied recently by lto and Sadahiro. Cgntarthe classical beta
transformation, the density of the absolutely continuowariant measure of the negative
beta transformation may be zero on certain intervals. Begstigating this property in
detail, we prove that th¢—3)-transformation is exact for alp > 1, confirming a
conjecture of Gora, and intrinsic, which completes a stofiffaller. We also show that
the limit behaviour of thé — 3)-expansion oft when /3 tends tol is related to the Thue-
Morse sequence.

A consequence of the exactness is that every Yrrap numbéhvwéhas > 1 such
that the(—3)-expansion ofl is eventually periodic, is a Perron number. This extends a
well-known property of Parry numbers. However, the set afyPaumbers is different
from the set of Yrrap numbers.

1. INTRODUCTION
For a real numbef > 1, the g-transformatioris defined by

Rényi [19] was the first to use it for representing real nurebie bases, generalising
expansions in integer bases. The (greethgxpansiorof z € [0,1) is

82] | |BTs(z)] | BTE(x)]
gt T

In this paper, we study the-3)-transformation(negative beta transformation)

xr =

T_5: (0,1 = (0,1], =z~ —Bz+ [Bz|+1.

Note thatl'_s(z) = — Bz — | — Bz | except for finitely many points, hen@é s is a natural
modification of theS-transformation, avoiding the discontinuity of — —fgz — | —fx]
at0. Forz € (0,1], setd_g(x) = d_g,1(x)d_g2(z) - -+ with

d_gi(z)=|Bx]+1, d_gn(z)= d,gﬂl(Tflgl(x)) forn>1,
then the(—3)-expansiorof z is

o~ —d-pi(r) dpai(r) dpa() 4 deps(@)  dpalz)
(=B)* B B2 B3 B

Examples of &-transformation and & 3)-transformation are depicted in Figlide 1.

€r =
k=1
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FIGURE 1. g-transformation (left) and— 3)-transformation (right)s = 1+2\/5.

The mapl_ 4 has been studied recently by Gdra [7] and Faller [5]. lto&adahiro[12]
considered &— 3)-transformation on the interv@g—jﬂ, 7+1), defined by

T — —fr — L%—ﬂxJ
We remark that their transformation is conjugate to’Bug through the conjugacy function
o(x) = ﬁ — x. So, all the results in_[12] can be translated into our casecty, in

particular their(— 3)-expansion of(x) € [ﬁ*—fl, 7i1) IS

o0

dfg_’k(x) —1
o(x) = e
@=2 = 5p

Both g-transformation and—j3)-transformation are examples of piecewise monotonic
transformations. Dynamical properties of general piesewnonotonic transformations
have been investigated in the literaturel[9,[10,[11] 13, P@wever, for the specific case
of the (—3)-transformation, the detailed dynamical properties adenown. As pointed
outin [12], for anys > 1, T_ 3 admits a unique absolutely continuous invariant measure
(hence ergodic), with the density

= X

n>1, T, (1)>x

Contrary to the classicat-transformation, Ito and Sadahiro [12] gave an example such
that the density._ 3 is zero on some intervals.

In the present paper, we fully study this phenomenon. Amwaten which the density
equals zero will be calledgap. From a result of Keller:[13], one can deduce that, for fixed
B > 1, the number of gaps is finite. In Theorém]2.1, we describeghefshe gaps and
show that, ag decreases, the number of gaps forms an increasing sequence

0<l<2<b5<10<---<[2"M)/3] <.

Figured2 anf]3 show examples witlyaps and gaps respectively. The endpoints of the
gaps are determined by the orbitlgfwhich is described by the sequente;(1).
We also show (Theorem 2.5) that

éiml d_g(1l) = 211222112112112221122 - - -,
—
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which is the fixed point of the following morphism:

e: 12, 2211,

Here,y is a morphism on finite words on the alphal&t2}, which is naturally extended
to the set of infinite word$1, 2} as in [15], andimg_,; d—s(1) = u means that longer
and longer prefixes of_3(1) agree with prefixes ofi when — 1. We remark that
this sequence has been studied e.d.lin|[L] 3, 4], and is knola the smallest aperiodic
sequence i1, 2} with the property that all its proper suffixes are smallemtiitaelf
with respect to the alternate order. Moreover, by addirigad the beginning, we obtain
the sequence of run lengths in the Thue-Morse sequence shibisn in [12] that every
sequencé_g(1), 8 > 1, has the property that all its proper suffixes are smaller itself
with respect to the alternate order.

A dynamical systen{X, T') is said to bdocally eventually ont@r topologically exact
if, for any non-empty open subsét C X, there exists a positive integer such that
f™(U) = X. The main theorem of this paper (Theorem 2.2) assertsIthatis locally
eventually onto or{0, 1] \ G(8), whereG () is the (finite) union of the gaps.

The notion of topological exactness is derived from the @ess in ergodic theory
introduced by Rohlin[20]. A measure-preserving transfation7” on a probability space
(X, B, 1) is exactif and only if, for any positive measure subsétwith 7"(A) € B
(n > 0), one hadim,, o, u(T™(A4)) = 1 (seel[18, p. 125]). As a corollary of our main
theorem, we confirm Gora’s conjecture [7] that @H5)-transformations are exact with
respect to the unique absolutely continuous invariant oreas

An invariant measure of a dynamical system is calledaximal entropy measuigit
maximises entropy. If there is a unique maximal entropy mesghe dynamical system
is calledintrinsic. As another application of our main theorem, we give a cotefaswer
about the uniqueness of maximal entropy measures discussied thesis of Faller [5].
We prove that al(—3)-transformations are intrinsic (Corolldry 2.4).

Finally, we use the main result to show that every number 1 with eventually
periodic T_g-orbit of 1 is a Perron number. Recall that a numlger> 1 with the
corresponding property fdfz is called aParry numberin reference to[[17], and note
thatT_s(z) =1 —Ts(x) forall z € (0, 1). Because of this orientation reversing property,
we call a numbep > 1 with eventually periodid™ g-orbit of 1 anYrrap number Parry
numbers are also known to be Perron numbers. However, not Begron number is a
Parry number or an Yrrap number. In Secfidn 6, we give exasgiiewing that the set of
Parry numbers and the set of Yrrap numbers do not includechen

The paper is organised as follows. In Secfibn 2, we state #ie results. In Sectidn 3,
we establish properties of the sequendeg(1), which allow describing the structure
of the gaps in Sectionl 4. In Sectibh 5, we show thag is locally eventually onto on
(0,1] \ G(B). The proofs of the main results are completed in Se€fion 6.

We remark that, independently of our work, some of our resudive been proved for
slightly more general transformations by Hofbalér [8].
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2. MAIN RESULTS
For eacm > 1, let~,, be the (unique) positive real number defined by
Yt =, + 1, with g, = [2"T1/3],
and setyy = oo. Then
2>y >y >3 > o> 1.
Note thaty; is the golden ratio and thag is the smallest Pisot number.
For eachn > 0 andl < 8 < vy, set

Go(B) = {Gmi(B) [ 0<m <n, 0< k< 2D
with open intervals
(TE;HM(U, T%HH_(_DM)/BM(U) if & is even
(T£2/3m+2_(_1)m)/3+k(1)7 TEEHH(I)) if & is odd

in particularGy(8) is the empty set.

Gm,k (ﬂ) =

Theorem 2.1. For anyy,11 < 8 < 7,, n > 0, the set of gaps of the transformati®h s
is G, (), which consists of,, = [2""!/3] disjoint non-empty intervals.

We define therefore
GB = |J I fymp1<B<ymn>0.
1€G,(B)

Theorem 2.2. Forany > 1, T_z is locally eventually onto of0, 1] \ G(5),
T3(G(8) € G(8) and  lim A(TZ£(G(B))) = 0.

Gora [7] proved that, foB > ~,, the transformatiofi’_ 3 is exact, and he conjectured
that this would hold for alf > 1. We confirm his conjecture.

Corollary 2.3. For any$ > 1, the transformatiorf_ s is exact with respect to its unique
absolutely continuous invariant measure.

Proof. The unicity of the absolutely continuous invariant meadotiews from [14], as
already noted in[12]. Now, the exactness is a direct coresgcpiof Theorein 21.2. O

Faller [5] proved that, fop > /2, T_ 5 admits a unique maximal entropy measure and
left the cases < /2. We give a complete answer.

Corollary 2.4. For any 5 > 1, the transformatiorf’_s has a unique maximal entropy
measure, hence is intrinsic.

Proof. By Theoreni 2.2, the transformati@h s is locally eventually onto of0, 1]\ G(3).
A result of Walters[[2B, Theorem 16, p. 140] completes thehro O

The key to understanding ttfe- 3)-transformation is to know the-3)-expansion of.
Here, the main tool will be the morphism: 1 — 2, 2 +— 211. The expansion of under
T_,,, can be described by this morphism, and the expansidnusfder?_s tends to the
fixed point of the morphism whefi tends tal (from above).
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Theorem 2.5. For everyn > 1, we have
d*’)’n(l) = ‘Pnil(QT) )
wherel = 111---. If 1 < 8 < ~,, thend_g(1) starts with¢"(2), hence

lim d_s(1) = lim ¢ (2T) = 211222112112112221122- - - .

Maséakova and Pelantova [16] showed that the Yrrap nusmpmlled Ito—Sadahiro
numbers by them) are algebraic integers with all conjugaéeing modulus less thah
thus all Yrrap numberg > 2 are Perron numbers. Again, we give a complete answer.

Theorem 2.6. Every Yrrap number is a Perron number.

At the end of this section, we recall some identities. No& th

n+1 —_1\n —1)"”
@y e = 2, LECDT
n+2 _ (_1\n — (=1
(2.2) le™(2)] = |t (1) = % = gnt1t % ’
n+2 L (__1\n —_1\n
2.3)  [e"(11)][=2-e"(1)| = % =g+t #

where|w| denotes the length of the wofd|. In particular,|¢™(1)] and|¢™(2)| are odd,
|o™(21)| = 2L, g, is odd if and only ifn is odd, and we can write

Gn(B) = {Gmr(B) [0 <m <n, 0<k <" (D)},

(TL‘%M(21)I+]€(1), Tl%m(2)|+k(1)) if kis even

(71" @R @), T BV ) it ks odd

3. POLYNOMIALS AND EXPANSIONS
To study the trajectories dfunder?_ s, we define the maps
faa: R=>R, z— —fBx+a, ac{l,2}.
The composition of map$s o, ;- - -, f8.a, IS denoted by

f,@,al"'ak = fﬂ,ak 0---0 fﬁﬂl .
Since

k
fB#ll"'ak(l) = (_B)k + Zak(_ﬁ)k_j )
j=1
we define the polynomial

k
Pal”'ak = (_X)k + Za’k(_X)kij € Z[X]
j=1

for every worda; - - - ax, € {1,2}%, k > 1. Thenfs 4,...a), (1) = P, ...a, (8), thus

T]—cﬁ(l) = fﬁyd—ﬁ,l(l)“'d—/a,k(l)(1) = Pd—B,l(l)"'d—B,k(l)(B) .
For the proof of Theorein 2.5, we use the following polynoridahtities.
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Lemma3.1. For1 < j < k, we have
Pal”'ak = (_X)kij (Plll'”llj - 1) + Pllj+1'”llk .

Proof. We can deduce the identity directly from the definition. O

Lemma 3.2. For everyn > 0, we have

1+(—1)"™ 1—

P Pyt X

" 1+(=1" 1-(=1"
2

(=1
2 Pga"(ll):X+1:X 2 + X

Proof. The second equation holds for even and adthus for alln € Z. Since
XPy+P=X(-X+2)+X*-X+1,

the first equation holds for = 0. For everyn > 0, we have

14+(=nntt 1—(=pntt 1-(=p" 4H(=D"

X 2 PSO"JFI(?) =+ X 2 Pg0"+1(11) =X 2 P«p"(211) —+ X 2 P‘Pn(22)'
Then, using thafy™(11)] is even,|¢™(2)] is odd and Lemma3.1, we obtain

1— (=)™ 1+ (=" 1-(=1"

X7 7 Pyt X7 7 Ponpgy =X 2 HW(H)'(PWQ)_l)

1= (=)™ 14 (=" 1+(=D"

X T Py = X7 TN (P = 1) + XTTE T Py
14(=D" 1-(=n"
=X 2 Pga”(?) + X7z Pwn(ll) .
Therefore, the lemma follows inductively. O

The following lemma is a consequence of Lenima 3.2.

Lemma 3.3. For everyn > 0, the wordsy™(2) and¢™(11) agree on the firsy,,+1 — 1
letters and differ on the,, -st letter.

o™ (2) and X#P@n(ll) have degreegy, 1 + 1
by (2.2) and[(2.8). Thus the coefficient&¥~+:*1=7 in their sum is equal to the difference
of thej-th letter inp™(2) andy™ (11), for 1 < j < min(|¢™(2), |¢™(11)]) = gn+1. Since
the sum of these polynomials is equalXo+ 1, by Lemmd3.P, the firs, 1 — 1 letters
in ©™(2) ande™(11) are equal, and thg, 1 -st letters differ. O

Proof. The polynomialszP

Lemma 3.4. For everyn > 0, we have

(3.1) 1= Py = X7 [T (x 0l —1),
m=0
(3.2) P«pn(Ql) —1= (X9n+1+1 — X 9ntl _ Xﬁ) H (X|me(1)| _ 1) 7

m=0

n—1
(33) PLPH(Ql) — P‘Pn(Q) = (Xg"+1+1 — X — 1) (X"Pm(l)l _ 1) ,
0

3
Il

(Xl 1)

=

(34) Pga”(?) — P@71+1(2) = (Xg"+1+1 - X - 1)

m=0
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Proof. Sincel — P, = X, (8) holds fom = 0. By Lemmag§ 3.2 arld 3.1, we obtain that
1— P@71+1(1) =1~ Psa"(Q)
= X"V (Pongny - 1)
_ X—(—l)"(_ X'“""(l)‘(Pwn(l) — 1) + Ponq1y — 1)
— x-(=p" (X\w”(l)\ _ 1) (1 — Pw(1))

for everyn > 0, hencel(3.11) holds inductively for aill > 0.
Applying first Lemmd 3.1, then equatidn (B.1) felandrn + 1, we obtain that

Pongar) = 1= =X WP o) = 1) + Pynr) — 1
n—1
- (X|w<1>|+ﬂ(XW<1>\ —1) _XW) [T (xe"01 =1y,
m=0

By (21) and[ZB), we havep" (1) + =G = g, + 1 and2 - [pn(1)] + =G =
gn+1 + 1, which gives[(3.R).

Combining [(3.1L) fom + 1 and [3:2), we obtaii(3.3).

Finally, (3.4) follows from[[3.11) fom + 1 andn + 2. O

With the help of Lemm&3]4, we will show the following propiisn, wheren,, > 1,
n > 1, is defined by
1— (=™

gn+1 +7777,

I
It can be easily verified that

— ,rl’.:llnfl"‘l

2=m >V >N >mp>y>p>-->1.

Proposition 3.5. Let3 > 1,n > 1. Thend_z(1) starts withe™(2) if and only if 3 < 2
in casen = 1, 5 < n, in casen is even5 < n,, in casen > 3 is odd.

For the proof of the proposition, we use the following lemmaSor the sake of
readability, we often omit the dependenceim T_g, d_g and f3 , in the sequel.

Lemma3.6. Letz € (0,1] and1 < 8 < 2. Then
e di(z) =2ifand only if fo(z) < 1,
e di(z) =1lifandonlyif f1(z) > 0,
o di(z)da(x) =11ifand only if0 < f11(z) < 1.

Proof. Fora € {1,2}, we haved; (z) = a if and only if f,(z) € (0, 1]. The inequalities
fa(z) > =+ 2 > 0andfi(z) < 1 prove the first two points. Noting thg (x) < 1is
equivalent tar > 0, the third point follows from the second point. O

Lemma3.7. Lets > 1. If d(1) starts witha, - - - ax, andd( fs,...q, (1)) Starts withb; - - - b;,
thend(1) starts witha; - - - ag b1 - - - b;.

Proof. If dy(1)---d(1) = a1 ---ay, thenT*(1) = fa,..a, (1), and the lemma follows
fromdi1(1) -+ diy (1) = di(T*(1)) - - - d; (T*(1)). O
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Lemma 3.8. Letz € (0,1], n > 1, such thatd(z) starts with the firstg,, — 1 letters
of p"(1). Thend(z) starts withe"(1) if and only if f,n1)(z) < 1in casen is odd,
0 < fony(x) < 1incasen is even.

Proof. Assume thatl(z) starts with the firsg,, —1 letters ofp™ (1), n > 1. If nis odd, then
gn = |¢™(1)], andp™ (1) ends with2, thus fo T1¢" MI=1(1) = f,.(1)(1). By Lemm& 3.5,
we haved|,n(1y(1) = di(T1¥"WI=1(1)) = 2ifand only if £, T1*"MI=1(1) < 1. If nis

even, thery,, = [¢"(1)| — 1, andy™(1) ends with1 1, thus fy; T1°"MI1=2(1) = fu(1)(1).

By Lemmd3.6d|,n(1)—1(1) djon(1)(1) = 11is equivalenttd® < fi; T1¥"MI1=2(1) < 1.

]

Lemma3.9. Let3 > 1,n > 1. If d(1) starts withe™(2), thenT9»~! is continuous on
[T1¢"(DI(1), 1], and1/ is in the interior of 9=~ ([T'1¢"(DI(1), 1]).

Proof. Let 3 > 1 andn > 1 such thatd(1) starts withy™(2) = " 1(211), then
d(T!#"(MI(1)) starts withe™~1(11). By Lemma3.B, the words”~'(2) and¢™1(11)
share the firsy,, — 1 letters and differ on the,,-th letter. This proves thaf9~—! is
continuous on[T'!*"(WI(1), 1], and thatl/3 is in the interior or the right endpoint of
To=1([T1*"MI(1), 1]). If T9~1(1) = 1/B with odd n, thenTl#" (1) = 1. If
Tle"Wlton—1(1) = T9+1-1(1) = 1/8 with evenn, thenT!*"|(1) = 1. Both
situations are impossible singg~(1y(1) < 1 forall 5 > 1,n > 0, by (3.1). Therefore,
1/Bis in the interior of7'9»—1 ([T1#"(WI(1), 1]). O

Lemma3.10. Foranyl < 8 < n,,n > 1, we havef,n—1(1)(1) < fun2)(1) < 1.

Proof. By (3.1), we havef,~(1)(1) < 1forall 3 >1,n > 0.
Foralll < 8 <n,,n > 1, we havef n-1(21)(1) < 1 by (3.2). Sincef,»-1(1) is order
reversing, we get that,» o) (1) = fon-1(211)(1) = fon-1(1)(1). O

Proof of Propositiofi.3l5Let 5 > 1. First note thatl; (1) = 2 ifand only if 5 < 2. Then,
by Lemmé&[3.64(1) starts withp(2) if and only if 0 < f,(2)(1) < 1. By (3.1), we have
1— foo(1) = B(B—1)? >0,andl — f,2)(1) < lifandonlyif 3 — 1 < g=%/2, i.e,
B < ~3. This proves the case= 1 of the proposition.

Suppose now that(1) starts withe"*t1(2) = ¢"(211) for somen > 1. Then
we must havef,»21)(1) < 1, which is equivalent to3 < 7,41 by (3.2). Suppose
moreover that the proposition is already shown for Sincen,.; < min(n,,3),
this implies thatd(1) starts withp™(2). Furthermoregp,+1 < ~, and [3.4) yield that
Jor2)(1) > fony(1). By Lemmd3.9, the firsg, — 1 letters ofd(z) are equal to those of
d(1)forallz € [f,n(1)(1), 1]. Therefore, Lemmia3.8 implies thatl ) starts withy™ (21)
if and only if f,n(21)(1) < 1incasen is 0dd,0 < f,n(21)(1) < 1in casen is even. For
evenn, we must therefore havé < 7,,1. Note thatf,.1)(1) > 0 is guaranteed by
for@1)(1) > fon()(1) = TI¥"WI(1), which follows from f,.(5)(1) < 1 and the order
reversing property of »(1y. By Lemmd3.1D, we havg,»1)(1) < fon211)(1) < 1, thus
for21)(1) € [fon(1)(1), 1], which implies thatl( f,»(21)(1)) starts withe" (1). Putting
everything together, we obtain that1) starts withp™(211) = ©"*1(2) if and only if
B < nn41 With evenn, or 8 < 1,41 with oddn. O
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We conclude the section with the proof of Theoifer 2.5.
Proof of Theoreri 2]5By Propositioi 3.bd_ (1) starts withe™(2) for anyl < 5 < ~,,
n—1
n > 1. By 3.3), we fllavef%wal(ﬂ)(l) e f7n=¢n717(12)(1)’ thUST‘_g;n (21)|(1) =
T (2”(1), i.e.,T‘_“’% @1(1) is a fixed point ofT|_“’% M1 Hence, by Lemma3.7,

—Tn
d_, (1) = " 1(21). Sincelim, - 7, = 1, we obtain thati_z(1) starts withy"(2)

for larger and largen when — 1, thuslimg_,1 d_g(1) = lim,,—,00 ©"(21). O

4. STRUCTURE OF THE GAPS

We will show that the support of the invariant measure is

F(B) = (0,1]\ G(B).
Forg >1,n>0,let
Ful {Fnk |O<k<gn}
with

T\«P Wk 1), TF5(1)] i kis even k < gy,

[
Fok(B) = { [T T\«p <1>\+k(1)} if kisodd k < gy,
o,

e T‘“" @)=t (1)] if niseven,
n:Gn (o, T‘_“’B @)1= '(1)] if nis odd.

(We will consider these sets only in the case when the lefthmris smaller than the right
number.) FigureSI2 arid 3 show examples of the decompositi@h ] into these sets.
As in Sectior B, we often omit the dependencesdn the following.

Lemma4.l. Letn >2andl < g <, ifnisevenl < g < n, if nisodd;orletn = 1,
1 < B < ~3. Then we have
() Fnx=TFF,o) forall0 <k < g,,
(i) 1/Bisin the interior ofF,, 4, 1,
(lll) T9n (Fn,O) = Fn.,gn U Fn_’(), T(ann) = Fn+170 \ {1}, if nis odd,
(iv) T9"(Frn0) = Fn,g, U Fny1,0, T(Fng,) = Fno\ {1}, if niseven.

Proof. Let 3 andn have the properties of the statement of the lemma. Then Bitap$3.5
and Lemma 319 give the poiriis i. And ii.
If nis odd, thenF, 4, 1 = [T9~+~1(1), T9~1(1)], thus

T(Fog, 1) = (0, T+ (1)] U [T9(1), 1] = (0, T#" @11 (1)] U [T I(1), 1]
=Fyq4, UFh0.
Sinced(1) starts withy™(2) ande™(2) ends withl, we have
T(Fog,) =T((0, TP )]) = [T ®N(1),1) = Fopao\ {1},
i.e. [ holds. Ifn is even, therF,, ;, _y = [T9~*(1), T9+~(1)] and
T(Fyg,—1) = (0,79 (1)] U [T9+(1), 1] = (0, 71" WI=L ()] u [T1¢"P(1),1]
=Fng, UFnt10.
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to

ts

ta

t1

to

0
0 to t1 ty ts to

1 1

Fo 0 G0 1 Gapo Fop
F1,1 FI,O

FIGURE 2. The (—p)-transformation for5 = 5/4, with set of gaps
G1, U G2 and support of the invariant measufgs U F» 1 U Fy .
Here,t,, = T% 5(1).

Now, ¢ (1) ends withl, which givesT'(F,, ,, ) = Fy0 \ {1}, i.e.,[iM. holds. O

Proposition 4.2. Letl < 8 < ~v,, n > 0. Then the elements &, andg,, are intervals
of positive length which form a partition ¢8, 1]. If n > 1, then

(i) Foo1x = Fn7|¢n71(1)|+k UGn_1xUF, pforall 0 <k < |(pn_l(1)|,
(i) Gumi =TF(Gpyo)forall0 <m <n,0<k<|pm(1)],
(III) T|@7n(1)‘(Gm70) = Gm70 U Fm70 \ Fm+170 D Gm70 forall 0 <m<n.
Proof. We haveF, = {Fy o} = {(0, 1]} andG, = 0, thus the elements df, andg, form

the trivial partition of(0, 1]. Let nowl < 8 < v,, n > 1, and assume thef,, 1 U G,
forms a partition of0, 1]. Lemme[3.4 and the order reversing propertyof-1 ;) give

for-11)(1) < fon-121y(1) < fon—1(2)(1) < fion(2)(1) < 1.
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FIGURE 3. The (—g)-transformation forg = 9/8 with gapsG,, k,
support of the invariant measufg o U - -- U F3 5, andt, = Tfﬁ(l).
Ratios betweelir; o, G2, and the rest of the picture are not respected.
In reality, G o is almostl10 times the size o'z o, andGs g is almosts
times the size ot g.

Forn = 1, we havefy (1) > 0. ThereforeF, ;o splits into F;, | ,n—1(1y;, Gn-1,0 and
F,, 0, which are intervals of positive length. This shds i. ineeas= 1. By Propositio 35
and Lemmd_31979-1~1 is continuous or¥,,_; o, thus everyF,, 1,0 < k < gn_1,
also splits intoF, |,n—1(1)|4%» Gn-1,x ANd F,, . If n is even, then this provés i. since
gn—1 = |¢""*(1)|. Inthis case, we havE,_ 4, , = F, 4., thusF, UG, is a refinement
of the partition,_; U G,_1. If n is odd, then we use thatl*" "Ml is continuous on
Gp_1.0 U F,_1 0 since bothd(T1*" " 2DI(1)) andd(1) start withe™~1(1). In this case,
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Fn,179n71 = Fn7|¢7171(1)|_1 Sp”tS intanygn ) Gn_l)wnfl(l)‘_l andFlefl(l”_l, thud].
holds for oddr too, andF,, U G,, is again a refinement of the partitiof,_1 U G,,—1.

For all 0 < m < n, the continuity of 7¢I on G,,, gives[d. Moreover,
Tl W Gp0) = (T VI, TI" (1)) and Fry1,0 C Fyn,o imply [ O

Corollary 4.3. Letl < 8 < y,,n > 0. Then

T-s(Urer, 1) = Urer, 1 and T25(Ureg, s 1) S Useg, 5! -
If Y1 < B < v, thenF(8) = Ujez, (5 L (@nAG(B) = Ujeg, (5) ! by definition).
Proposition 4.4. Let3 > 1 and p be an invariant measure df_g which is absolutely
continuous with respect to the Lebesgue measure. Zt@(3)) = 0.
Proof. If 8 > ~1, thenu(G(8)) = 1(0) = 0. We will show, by induction om, that
(4.1) w(Gri)=0 foralln>0,0<k<|p"(1)], 1 <8 <ynt1-

sinceG = U, U™ Gk fOr ymsa < B < yny1, this proves the proposition.
Forl < 8 <1, we haveGoo = (T2(1), T(1)) = (f1 T(1), T(1)) and

T~ Goo) = fi "(Gop) = (f{' T(1), T(1)) € Goo-

Sincep(T~1(Go,0)) = u(Goy), we obtainu((f1 T(1), f; T(1)]) = 0. Iteratively, we
get, forallk > 0,

p((FPHTQ), 7P TW]) =00 w([f7272TQ), f720T(1))) =0.
This givesu ((T%(1), 747)) =0 andu((ﬁ, T(1))) = 0, sincef; ! is contracting with
fixed pointﬁ. Then, the absolute continuity pfimpliesu.(Go,0) = 0, hencel(411) holds
forn = 0.
Now considerl < 8 < ~v,+1, n > 1, and assume thdi(4.1) holds for— 1. By
Propositio 4.19]i Eli., we have
(4.2)

T(Gm,kfl) = .
GmoU Fm+17‘¢m(1)‘ U Gm+1,0 if k= |(pm(1)|, 0<m<n.
SinceT ' (U;eq. 1) € Ujeg, I by Corollary{4.3, we obtain that
T7HGnyo) C G jon(1)|—1 U Gn1,jpn-1(1yj—1 andT " WG, | Cngy21) = Gy

Thus, up to a set gi-measure zerd@ ~1¥"MI(G,, o) = f;nl(l)(Gmo) C G0, With

oty (Gno) = oy (foney TP (1), T @) (1))
— (f;nl(l)T“""(Q)'(l), Tlsa"(Z)l(l)) )
As in the casen = 0, using theT-invariance ofu, we obtain that

—2k n —2k— n
p((f2 T @), fo0y T @l)]) =0,

u([£2252 97PN, 28, T @) =0,

forall k > 0. Thusp((T1°"2YI(1), y)) = 0 andu((y, T1¥"PI(1))) = 0, wherey
denotes the fixed point of,» (1), i.€.,;(Gn,0) = 0. Sincep(Gpi) = (T F(Gr i) =
(G o) for 1 < k < |¢™(1)|, (4.1) holds fom. O

Gk if 1<k<|p™(1)],0<m<n,
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Proposition 4.5. Let3 > 1, thenlimy_, o /\(Tjg(G(ﬁ))) =0.

Proof. If 8 > 71, thenG(8) = () and the statement holds. Fbx 3 < v,41, n > 0, the
preimagel’—*(G,, o) can be written as a disjoint union

TG0 = U fala(Gro)
ai-ar€Lg
with a set of wordd.,, C {1,2}*. Then we have (T *(G,.0)) = #(Li) B~ u(Gno)-
By (4.2) and Corollary_4]3L, consists of the lengtl: suffixes of all concatenations
1o(p(1))% -+ (@™(1))i, dg, i1, ...,i, > 0. Therefore, the number of elementsiip is
bounded by(*), which grows polynomially irk. This yieldslimy,_, . 1(7~*(Gy,0)) = 0.
AsTI(Gp ;) = Gnofor1 < j < [p"(1)], we also havéimy_,. (T *(Gn ;) = 0,
thuslimg oo u(T7*(I)) = 0forall I € G, 1. O

5. LOCALLY EVENTUALLY ONTO

Lemmab5.1. Letl < 8 < 71, I be an interval of positive length iR (), andn > 1 such
thatn,1 < B < n, withoddn > 1, orn,+1 < 8 < n, with evenn. > 2. Then there
exists ann > 0 such thatl"; (1) 2 F,0(8) \ {1}

Proof. We use ideas of Gora’s proof of Proposition 8[ih [7]. We digtiish four cases.

Casel: oddn > 1,7m,41 < B < 7n. Inthis case, we hayg?9» = pIn+1 > g9» 4 31 >
B+ B~ > 2. Therefore, the largest connected components of imagésgobw until
they cover two consecutive discontinuitiesiot?- in the interior of (3). Since the only
discontinuity ofT"is 1/8 € F, 4,1, the images eventually also cover two consecutive
discontinuities of/'?9» in the interior of £, ; _y = [T1¥"@I=2(1), TI¢"WI=1(1)]. We
have

79 ([1/8, T " MI=1(1)])
701 (18,71 (1)),
= 790 ([T19"@1=2(1),1/)) ,
) =ToH([Tle"CYITN(1),1/B)) .

Using Lemmd3]9, we obtain thdt?9~ is continuous on these four intervals. Note that
T\cp (2)\—2(1) < fﬂ;n(l)(l) Sincefllgp"(l) jjlﬁ‘J (2)|_2(1) = fgp"(Ql)(l) > 1. The
discontinuities of 729~ in the interior of F,, , _; are thereforel /s, fiaﬁl(l)(l) and
fiipn 1y (1) With

T ([1/8, oy (D]) = Fuo - and T4 ([1/8, T W71 (1)) = Foo\ {1},

we obtain thal™ (1) D F, o \ {1} for somem > 0.

T2 ([1/8, fw(l (1)]
72" ([f1gn ) (1) 1/8)
W)
(1)

~— ~— ~—
I

TQg"((fg;ln(l)( ), Tle™()]- 1

T2 ([T D121, f1L (1)

Case2: oddn > 1, Ypy1 < B < nuy1. Sinceps»t1tl > 34+ 1 > 2, we look
at7?~*'onF,, 1. Note thatTan([l/ﬁ,fialn(l)(l)}) = F,4,-1, thus there is a



14 LINGMIN LIAO AND WOLFGANG STEINER

discontinuity of7"2¢~+1 in the interior of[1/3, fwn(l)( )]. Contrary to Case 1729~ +1
has no discontinuity itf;, 4, —1 on the left ofl /3. More precisely,

T([T1?"12(1),1/8))
T([l/B,T‘“"n(l)‘*l(l)D ,
— T ([T D1-2(1),1/8),

T2 T ([1/B, fan(a) (1

TQg"H([fz_w (2) f2<p )

T29n+1((f2;1n(1 ( ) Tle™ (W)= 1

)
Ol)
Bl)
)

ngnJrl([TW 2)]- 2 7 l/ﬁ Tg"([T“"n(m)l_l(l),T“"n(l)‘_l(l))) )

Here, f,n(21)(1) < 1 implies thatT!¢"YI=1(1) = ' f, . (21)( ) > 1/B. Hence, the
diirc]ontinuities of7'29+1 in the interior of F,, , 1 arel/B, fw 21 andf;n(l)(l),
wi

T2 2 ([1/8, fopnzy (D)) = Farro \ {1} T2 ([£550 ) (1) fopny(D]) = Fro.
This givesT™(I) D F,,11,0 \ {1} for somem > 0.

Case 3: evenn > 2, 1,41 < B < .. Inthis case, we havg?9n = pon+1-1 >
o=t B> B4+ 71 > 2, F, oy = [TI"WI=2(1), Tl¢")I=1(1)], and

T ([T 0131)1/9)).
Tgn—l((T\w"(l)\—2(1), 1/[3)) ,
Ton([1/8, T V2 (1)])
Tgnfl([1/ﬁ7T\w”(2)\*1(1)]) i

T2 ([1/8, f350 (1))
729 (Fram () (1) 1/8)
1]
D]

ng”([fg;ln(l)( ), Tle™ (2= 1

)
)
)]) =
T2 ([T 0121, gL (1))

Here, fwn(l)T\w"(?)\—l(l) = for(21)(1) > 1 implies fialn(l)(l) < Tl @1-1(1),

The discontinuities off'?9~ in the interior of F,, , _; are at most /23, fialn(1)(1) and
Jiigny (1), with

T2 ([1/8. Sy (D)) = Fao \ {1}
T (fiiny(1:1/8)) = Fuo \ {1, T WI1)}

similarly to Case 1. We obtain th&™(I) D F,o \ {1,7!¥"MI(1)} for somem > 0.
SinceT9" 1 (Fo 0 \ {1,T¥"WI(1)}) 2 F, 0\ {1}, we also havd™(I) 2 F,, \ {1}
for somem > 0.

Case 4. evenn > 2, Y1 < B < Nny1. Sincepd»+1tl > 3 4+ 1 > 2, we look at
T29+2 on F, gn—1. We havegﬂq"-’_l([l/ﬁ f2¢n(1)( ))) = Fng,-1 \ {len(l)l_Q(l)}
with f3. 4y (1) > T 3I1(1), thus f; % (1) is outside OfF, g, 1, butT29n+2 still
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has a discontinuity iff1/3, T1¢"(1=1(1)). More precisely,
T2 +2([1/8, fzg, v (D)) =T([1/8,T¥" 1)),
ngnﬁ((flw e 1/8)) = T9 1 ((T1¢"M1=2(1),1/8)),
T20 02 ((f37h, (D, T @11 (1)]) = ([T @)1-2(1),1/8))

T2 ([T W2 Q), £y (D]) = T[T O12(1), T EV2)]),
with T|f""(.21.)‘*2(1) = f.l_llfg,nggl)(}) < 1/ since fw(zl)(ll) < 1 Ther?fore, the
d|§cont|nU|t|es of7'?92+2 in the interior ofF,, ,, 1 arel/s, f;w@)(l) andf;lw(l)(l),
with
T2g"+3([1/6= fgipln(g)(l)]) = Fn+1,0 5
T3 (fibn ) (1), 1/8)) = Fuo \ {1, T Ml(D)}.
This givesT™(I) D F,,110 \ {1} for somem > 0. O

Lemmab.2. Letl < 8 < v, andn > 1 such thaty, 1 < 8 < n, with oddn > 1, or
Mnt1 < B < n, with everm > 2. Then we have

Tg%(zgnJr(fl)”)(Fn’O(B) \{1H) 2 FB)\{TF5(1) |0 <k < gn(29n + (-1)™)} .

Proof. Let1 < 8 < ; andn as in the statement of the lemma. By Corollary 4.3, we have
F(B) = Uer, s L1t B <, andF(B) = Ujcr, 5 ! if B = 7. Inthe latter case,
fer(1)y < fon-1(1y iImplies thatF;, 1o = F, |,n-1(1)] U Fy, 0, and we obtain, similarly to
the proof of Proposition 412, the; . » | 5 = U;ez, () - Therefore, we always have

F(B) =Urer, @ I-
Let firstn > 1 be odd. For simplicity, we omit points ifT*(1) | k¥ > 0} in the
following statements. We havi@/»+1(F, o) = F,,11,0U F,, 1 and

T9" "M (Fop10) = [TI"CVI71(1), Tle" I 1))
Sinces > 1,41, we havel'l¢" DI=1(1) < 1/, thusT9" (F,,11,0) 2 Fn.0, and
729" (F0) 2 FroUF,1.

Inductively, we gef (9=~ 1o+ (F, ) D U"”‘l F. k. ThenT(F, 4.-1) = Fu g4, U
F, o yields that

Tgn(2gn_1)(Fn70) — 7(gn=1)(2gn+1)+1 (Fpo) = U Fpi=F(B)

Here, we have only omitted points {i7*(1) | 0 < k < g,,(2gn — 1) }.
Let nown > 2 be even. Omitting{T"(1) | k£ > 0}, we haveT9(F, o) =
Fn,gn U Fn+170 and

79N (Fupro) = [T I2(1), TTEVIZ2 )]
Sinces > 1,41, we havel'l¥"DI=2(1) > 1/, thusT9"*+(F,.1,) 2 Fn.0, and
T2gn+2(Fn,O) 2 Fn,O U Fn,l .
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As above, we geﬂ"(gn—l)(zgn-l-Q)(FmO) D UZ;Bl Fn,k- SinceTgn+2(Fn7gn71) D
Fr g, UF,oandT9 2(F, ;) D F, ;41 for 0 < k < g,,, we obtain that

9n
Tgn(29n+l)(Fn 0) = T(gn—l)(297l+2)+gn+2(Fn 0) = U F.n=F(B),
k=0
up to some points ifT*(1) | 0 < k < gn (29, + 1)} O

6. PROOFS OF THE MAIN RESULTS
Now we are ready to prove Theoremsl2.1 andl 2.2.

Proof of Theoremi 2]2For1 < 8 < ~, Lemmal5.]l and 512 show that s is locally
eventually onto o' (5) \ {T*4(1) | 0 < k < gn(2gn + (—1)")} for somen > 1. For
B8 > ~1, this was shown in[[7, Proposition 8]. The iteratEdg-images of any interval
of positive length clearly contain/g3, thus they also contaiff’jﬁ(l) foranyk > 0.
Therefore Tz is locally eventually onto o' (5) = (0,1] \ G(8). The other statements
of the theorem are in Corollafy 4.3 and Proposifion 4.5. O

Proof of Theoreni_2]1By Proposition[4.4, all the intervals ig, () are gaps. By
Theoren{ 2R, they are the only gaps. Calculating directtyrtbmbers of the intervals
of G, (B) by the definition, we complete the proof. O

Theoreni 2.6 was proved in Sectldn 3, thus it only remainsdeei heorerh 2]6. Recall
thata numbep > 1is an Yrrap numberit¥_s = {T"4(1) | n > 0} is a finite set.

Proof of Theorerh 2]6Let V'’ 5 be the set of numbers i 5 which are not right endpoints
of gaps, and/, = (max{y € V_g U {0} | y < z},x) for eachz € V', Then
{Jo | z € VI 5} is a partition of #(3) up to finitely many points, and’ s(J;) is a
union of intervals/,, y € V” 5, for eachw € V” ;. Define a matrix
BAJe N T 5(Jy))

A(Ty) ’
i.e.,m,_, is the number of times that, is contained irf’_z(J,;). Since

Z May A(Jy) = BA(Jz)

’
yeVig

M_g= (mm,y)m,yEViﬁ with My y =

forallz € V5, (AM(Jz2))zev, is @ positive eigenvector of/_s to the eigenvalues.
SinceT_ 3 is locally eventually onto ot(3), the matrixM/_g is primitive, thusg is the
Perron—Frobenius eigenvaluedf_ 3, which is a Perron number. O

We finally show that the set of Parry numbers and the set ofpym@mbers do not
include each other. For the definition of a Parry number, tdevenient to extend the
domain ofT to [0, 1] by settingT3(1) = 8 — | #]. Theng > 1is a Parry number if and
only if (T4(1))n>0 is eventually periodic. We know that all Pisot numbers arth fRarry
numbers[[2, 21] and Yrrap numbers [6]. Therefore, the symimdifference between the
set of Parry numbers and the set of Yrrap humbers can onlatoRerron numbers that
are not Pisot numbers.
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=

Proposition 6.1. Let$ > 1 with 3* = g+ 1,i.e.,3 ~ 1.2207. ThenT'%(1) = T°
and (7% (1))n>o is aperiodic.

(1),

Proof. Itis easy to check thaf'% (1) = T7 4(1).

On the other hand, let: be an algebraic conjugate ¢f satisfying|a| > 1, i.e,
a ~ —0.2481 + 1.0344, and leto : Q(8) — Q(«) be the field homomorphism defined
by o(8) = a. SinceTs(z) € {Bz,Bx — 1}, we have|lo(Ts(z))| > |al|o(x)] — 1
forall z € [0,1) N Q(B), thus|o(Ts(x))| > |o(z)| if |o(z)] > 1/(Ja] — 1). We have
T (1) = p*° — g2 — 526 — ' — 34, and one can check that(T3°(1))| > 1/(|a] - 1).
This implies tha{|o (75 (1))[)n>35 is a strictly increasing sequence, heli€g (1)),>o is
aperiodic. O

Proposition 6.2. Let3 > 1 with 37 = 3% + 1, i.e., 8 =~ 1.2254. ThenTj(1) = 0, and
(T™5(1))n>0 is aperiodic.

Proof. We haveT};(1) = 57 — 3 —1 =0,

Let « be an algebraic conjugate @fsatisfying|a| > 1, i.e.,a & 0.7802 + 0.70534,
and lete : Q(8) — Q(a) be the field homomorphism defined by3) = «. We
haveT_g(x) € {—Bz + 1,—pBz + 2}, thus|oc(T_s(x))] > |a|lo(z)| — 2 for all
z € (0,11 NQ(B). Itis more convenient to consideXz) with ¢ as in the Introduction,
sinced(T_p(x)) € {~Bo(x), —fo(x) — 1} and|o($(T—p(x)))| = |a] |o((x))| - 1 for
all z € (0,1] N Q(B). Now one can check that (¢(7°%(1)))| > 1/(|a| — 1), which
implies that(|o(¢(175(1)))|)n>53 is a strictly increasing sequence, her€& ;(1)),>o0
is aperiodic. O
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