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DYNAMICAL PROPERTIES OF THE NEGATIVE BETA

TRANSFORMATION

LINGMIN LIAO AND WOLFGANG STEINER

Abstract. We analyse basic dynamical properties of the negative beta transformation,
which has been studied recently by Ito and Sadahiro. Contrary to the classical beta
transformation, the density of the absolutely continuous invariant measure of the negative
beta transformation may be zero on certain intervals. By investigating this property
in detail, we prove that for any β > 1 the (−β)-transformation is exact, confirming a
conjecture of Góra, and intrinsic, which completes a study of Faller. We also show that
the limit behaviour of the (−β)-expansion of 1 when β tends to 1 is related to the Thue-
Morse sequence.

A consequence of the exactness is that every (−β)-number, which is a β > 1 such that
the (−β)-expansion of 1 is eventually periodic, is a Perron number. This generalises a well-
known property of Parry numbers (which were called β-numbers by Parry). Nevertheless,
the properties Parry number and (−β)-number are not equivalent.

1. Introduction

For a real number β > 1, the β-transformation is defined by

Tβ : [0, 1) → [0, 1) , x 7→ βx− ⌊βx⌋ .
Rényi [Rén57] was the first to use it for representing real numbers in base β, generalising
expansions in integer bases. The (greedy) β-expansion of x ∈ [0, 1) is

x =
⌊βx⌋
β

+
⌊β Tβ(x)⌋

β2
+

⌊β T 2
β (x)⌋
β3

+ · · · .

In the present paper, we study the (−β)-transformation (negative beta transformation)

T−β : (0, 1] → (0, 1] , x 7→ −βx+ ⌊βx⌋+ 1 .

Note that T−β(x) = −βx− ⌊−βx⌋ except for finitely many points, hence T−β is a natural
modification of the β-transformation, avoiding the discontinuity of x 7→ −βx−⌊−βx⌋ at 0.
For x ∈ (0, 1], set d−β(x) = d−β,1(x) d−β,2(x) · · · with

d−β,1(x) = ⌊βx⌋+ 1 , d−β,n(x) = d−β,1(T
n−1
−β (x)) for n ≥ 1 ,

then the (−β)-expansion of x is

x =

∞
∑

k=1

−d−β,k(x)

(−β)k
=

d−β,1(x)

β
− d−β,2(x)

β2
+

d−β,3(x)

β3
− d−β,4(x)

β4
+ · · · .

Examples of a β-transformation and a (−β)-transformation are depicted in Figure 1.
1
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Figure 1. β-transformation (left) and (−β)-transformation (right), β = 1+
√
5

2
.

The map T−β has been studied recently by Góra [Gór07] and Faller [Fal08]. Ito and

Sadahiro [IS09] considered a (−β)-transformation on the interval
[ −β
β+1

, 1
β+1

)

, defined by

x 7→ −βx−
⌊

− βx+ β
β+1

⌋

.

We remark that their transformation is conjugate to our T−β through the conjugacy func-
tion φ(x) = 1

β+1
− x. So, all the results in [IS09] can be translated into our case directly,

in particular their (−β)-expansion of φ(x) ∈
[ −β
β+1

, 1
β+1

)

is

φ(x) =
∞
∑

k=1

d−β,k(x)− 1

(−β)k
.

Both β-transformation and (−β)-transformation are examples of piecewise monotonic
transformations. The dynamical properties of general piecewise monotonic transformations
have been investigated in the literature [Kel78, Wag79, Hof79, Hof81a, Hof81b]. However,
for the specific case of the (−β)-transformation, the detailed dynamical properties are un-
known. As pointed out in [IS09], for any β > 1, T−β admits a unique absolutely continuous
invariant measure (hence ergodic), with the density

h−β(x) =
∑

n≥1, Tn
−β

(1)≥x

1

(−β)n
.

Contrary to the classical β-transformation, Ito and Sadahiro [IS09] gave an example such
that the density h−β is zero on some intervals.

In the present paper, we fully study this phenomenon. An interval on which the density
equals zero will be called a gap. From a result of Keller [Kel78], one can deduce that, for
fixed β > 1, the number of gaps is finite. In Theorem 2.1, we describe the set of the gaps
and show that, as β decreases, the number of gaps forms an increasing sequence

0 < 1 < 2 < 5 < 10 < · · · < ⌊2n+1/3⌋ < · · · .
Figures 2 and 3 show examples with 2 gaps and 5 gaps respectively. The endpoints of the
gaps are determined by the orbit of 1, which is described by the sequence d−β(1).
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We also show (Theorem 2.5) that

lim
β→1

d−β(1) = 211222112112112221122 · · · ,

which is the fixed point of the following morphism:

ϕ : 1 7→ 2 , 2 7→ 211 .

Here, ϕ is a morphism on finite words on the alphabet {1, 2}, which is naturally extended
to the set of infinite words {1, 2}N as in [Lot97], and limβ→1 d−β(1) = u means that longer
and longer prefixes of d−β(1) agree with prefixes of u when β → 1. We remark that
this sequence has been studied e.g. in [AAB+95, Dub06, Dub07], and is known to be the
smallest aperiodic sequence in {1, 2}N with the property that all its proper suffixes are
smaller than itself with respect to the alternate order. Moreover, by adding a 1 at the
beginning, we obtain the sequence of run lengths in the Thue-Morse sequence. It is shown
in [IS09] that every sequence d−β(1), β > 1, has the property that all its proper suffixes
are smaller than itself with respect to the alternate order.

A dynamical system (X, T ) is said to be locally eventually onto or topologically exact
if, for any non-empty open subset U ⊂ X , there exists a positive integer n such that
fn(U) = X . The main theorem of this paper (Theorem 2.2) asserts that T−β is locally
eventually onto on (0, 1] \G(β), where G(β) is the (finite) union of the gaps.

The notion of topological exactness is derived from the exactness in ergodic theory
introduced by Rohlin [Roh61]. A measure-preserving transformation T on a probability
space (X,B, µ) is exact if and only if, for any positive measure subset A with T n(A) ∈
B (n ≥ 0), one has limn→∞ µ(T n(A)) = 1 (see [PY98], p. 125). As a corollary of our main
theorem, we confirm Góra’s conjecture [Gór07] that all (−β)-transformations are exact
wihth respect to the unique absolutely continuous invariant measure.

An invariant measure of a dynamical system is called a maximal entropy measure if it
maximises entropy. If there is a unique maximal entropy measure, the dynamical system
is called intrinsic. As another application of our main theorem, we give a complete answer
about the uniqueness of maximal entropy measures discussed in the thesis of Faller [Fal08].
We prove that all (−β)-transformations are intrinsic (Corollary 2.4).

Finally, we use the main result to show that every (−β)-number, that is a number
β > 1 with the property that the T−β-orbit of 1 is eventually periodic, is a Perron number.
Numbers β > 1 with the corresponding property for Tβ are called β-numbers [Par60]
or Parry numbers, and are known to be Perron numbers as well. In Section 6, we give
examples showing that the set of β-numbers and the set of (−β)-numbers do not include
each other.

The paper is organised as follows. In Section 2, we state the main results. In Section 3,
we establish properties of the sequences d−β(1), which allow describing the structure of the
gaps in Section 4. In Section 5, we show that T−β is locally eventually onto on (0, 1]\G(β).
The proofs of the main results are completed in Section 6.
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2. Main results

For each n ≥ 1, let γn be the (unique) positive real number defined by

γgn+1
n = γn + 1 , with gn = ⌊2n+1/3⌋ ,

and set γ0 = ∞. Then

2 > γ1 > γ2 > γ3 > · · · > 1 .

Note that γ1 is the golden ratio and that γ2 is the smallest Pisot number.
For each n ≥ 0 and 1 < β < γn, set

Gn(β) =
{

Gm,k(β) | 0 ≤ m < n, 0 ≤ k < 2m+1+(−1)m

3

}

,

with open intervals

Gm,k(β) =

{
(

T 2m+1+k
−β (1), T

(2m+2−(−1)m)/3+k
−β (1)

)

if k is even,
(

T
(2m+2−(−1)m)/3+k
−β (1), T 2m+1+k

−β (1)
)

if k is odd,

in particular G0(β) is the empty set.

Theorem 2.1. For any γn+1 ≤ β < γn, n ≥ 0, the set of gaps of the transformation T−β

is Gn(β), which consists of gn = ⌊2n+1/3⌋ disjoint non-empty intervals.

We define therefore

G(β) =
⋃

I∈Gn(β)

I if γn+1 ≤ β < γn, n ≥ 0 .

Theorem 2.2. For any β > 1, T−β is locally eventually onto on (0, 1] \G(β),

T−1
−β (G(β)) ⊂ G(β) and lim

k→∞
λ
(

T−k
−β (G(β))

)

= 0 .

Góra [Gór07] proved that, for β > γ2, the transformation T−β is exact, and he conjectured
that this would hold for all β > 1. We confirm his conjecture.

Corollary 2.3. For any β > 1, the transformation T−β is exact with respect to its unique
absolutely continuous invariant measure.

Proof. The unicity of the absolutely continuous invariant measure follows from [LY78], as
already noted in [IS09]. Now, the exactness is a direct consequence of Theorem 2.2. �

Faller [Fal08] proved that, for β > 3
√
2, T−β admits a unique maximal entropy measure

and left the case β ≤ 3
√
2. We give a complete answer.

Corollary 2.4. For any β > 1, the transformation T−β has a unique maximal entropy
measure, hence is intrinsic.

Proof. By Theorem 2.2, the transformation T−β is locally eventually onto on (0, 1] \G(β).
A result of Walters [Wal78, Theorem 16, p. 140] completes the proof. �
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The key to understanding the (−β)-transformation is to know the (−β)-expansion of 1.
Here, the main tool will be the morphism ϕ : 1 7→ 2, 2 7→ 211. The expansion of 1 under
T−γn can be described by this morphism, and the expansion of 1 under T−β tends to the
fixed point of the morphism when β tends to 1 (from above).

Theorem 2.5. For every n ≥ 1, we have

d−γn(1) = ϕn−1
(

2 1
)

,

where 1 = 111 · · · . If 1 < β ≤ γn, then d−β(1) starts with ϕn(2), hence

lim
β→1

d−β(1) = lim
n→∞

ϕn
(

2 1
)

= 211222112112112221122 · · · .

Masáková and Pelantová [MP] showed that the (−β)-numbers are algebraic integers with
all conjugates having modulus less than 2, thus all (−β)-numbers with β ≥ 2 are Perron
numbers. Again, we give a complete answer.

Theorem 2.6. Every (−β)-number is a Perron number.

At the end of this section, we recall some identities. Note that

|ϕn(1)| = 2n+1 + (−1)n

3
= gn +

1 + (−1)n

2
, (2.1)

|ϕn(2)| = |ϕn+1(1)| = 2n+2 − (−1)n

3
= gn+1 +

1− (−1)n

2
, (2.2)

|ϕn(11)| = 2 · |ϕn(1)| = 2n+2 + 2 · (−1)n

3
= gn+1 +

1 + (−1)n

2
, (2.3)

where |w| denotes the length of the word |w|. In particular, |ϕn(1)| and |ϕn(2)| are odd,
|ϕn(21)| = 2n+1, gn is odd if and only if n is odd, and we can write

Gn(β) =
{

Gm,k(β) | 0 ≤ m < n, 0 ≤ k < |ϕm(1)|
}

,

Gm,k(β) =

{
(

T
|ϕm(21)|+k
−β (1), T

|ϕm(2)|+k
−β (1)

)

if k is even,
(

T
|ϕm(2)|+k
−β (1), T

|ϕm(21)|+k
−β (1)

)

if k is odd.

3. Polynomials and expansions

To study the trajectories of 1 under T−β, we define the maps

fβ,a : R → R , x 7→ −βx+ a , a ∈ {1, 2} .
The composition of maps fβ,a1 , . . . , fβ,ak , is denoted by

fβ,a1···ak = fβ,ak ◦ · · · ◦ fβ,a1 .
Since

fβ,a1···ak(1) = (−β)k +
k

∑

j=1

ak(−β)k−j ,
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we define the polynomial

Pa1···ak = (−X)k +

k
∑

j=1

ak(−X)k−j ∈ Z[X ]

for every word a1 · · · ak ∈ {1, 2}k, k ≥ 1. Then fβ,a1···ak(1) = Pa1···ak(β), in particular

T k
−β(1) = fβ,d−β,1(1)···d−β,k(1)(1) = Pd−β,1(1)···d−β,k(1)(β) .

For the proof of Theorem 2.5, we use the following polynomial identities.

Lemma 3.1. For 1 ≤ j < k, we have

Pa1···ak = (−X)k−j
(

Pa1···aj − 1
)

+ Paj+1···ak .

Proof. We can deduce the identity directly from the definition. �

Lemma 3.2. For every n ≥ 0, we have

X
1+(−1)n

2 Pϕn(2) +X
1−(−1)n

2 Pϕn(11) = X + 1 = X
1+(−1)n

2 +X
1−(−1)n

2 .

Proof. The second equation holds for even and odd n, thus for all n ∈ Z. Since XP2+P11 =
X(−X + 2) +X2 −X + 1, the first equation holds for n = 0. For every n ≥ 0, we have

X
1+(−1)n+1

2 Pϕn+1(2) +X
1−(−1)n+1

2 Pϕn+1(11) = X
1−(−1)n

2 Pϕn(211) +X
1+(−1)n

2 Pϕn(22).

Then, using that |ϕn(11)| is even, |ϕn(2)| is odd and Lemma 3.1, we obtain

X
1−(−1)n

2 Pϕn(211) +X
1+(−1)n

2 Pϕn(22) = X
1−(−1)n

2
+|ϕn(11)|(Pϕn(2) − 1

)

+X
1−(−1)n

2 Pϕn(11)

−X
1+(−1)n

2
+|ϕn(2)|(Pϕn(2) − 1

)

+X
1+(−1)n

2 Pϕn(2)

= X
1+(−1)n

2 Pϕn(2) +X
1−(−1)n

2 Pϕn(11) .

Therefore, the lemma follows inductively. �

The following lemma is a consequence of Lemma 3.2.

Lemma 3.3. For every n ≥ 0, the words ϕn(2) and ϕn(11) agree on the first gn+1 − 1
letters and differ on the gn+1-st letter.

Proof. The polynomials X
1+(−1)n

2 Pϕn(2) and X
1−(−1)n

2 Pϕn(11) have degree gn+1 + 1 by (2.2)
and (2.3). Therefore, the coefficient of Xgn+1+1−j in their sum is given by the difference of
the j-th letter in ϕn(2) and ϕn(11), for 1 ≤ j ≤ min(|ϕn(2)|, |ϕn(11)|) = gn+1. Since the
sum of these polynomials is equal to X + 1, by Lemma 3.2, the first gn+1 − 1 letters in
ϕn(2) and ϕn(11) are equal, and the gn+1-st letters differ. �
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Lemma 3.4. For every n ≥ 0, we have

1− Pϕn(1) = X
1+(−1)n

2

n−1
∏

m=0

(

X |ϕm(1)| − 1
)

, (3.1)

Pϕn(21) − 1 =
(

Xgn+1+1 −Xgn+1 −X
1+(−1)n

2

)

n−1
∏

m=0

(

X |ϕm(1)| − 1
)

, (3.2)

Pϕn(21) − Pϕn(2) =
(

Xgn+1+1 −X − 1
)

n−1
∏

m=0

(

X |ϕm(1)| − 1
)

, (3.3)

Pϕn(2) − Pϕn+1(2) =
(

Xgn+1+1 −X − 1
)

n
∏

m=0

(

X |ϕm(1)| − 1
)

. (3.4)

Proof. Since 1− P1 = X , (3.1) holds for n = 0. By Lemmas 3.2 and 3.1, we obtain

1− Pϕn+1(1) = 1− Pϕn(2)

= X−(−1)n
(

Pϕn(11) − 1
)

= X−(−1)n
(

−X |ϕn(1)|(Pϕn(1) − 1
)

+ Pϕn(1) − 1
)

= X−(−1)n
(

X |ϕn(1)| − 1
)(

1− Pϕn(1)

)

for every n ≥ 0, hence (3.1) holds inductively for all n ≥ 0.
Applying first Lemma 3.1, then equation (3.1) for n and n+ 1, we obtain

Pϕn(21) − 1 = −X |ϕn(1)|(Pϕn(2) − 1
)

+ Pϕn(1) − 1

=
(

X |ϕn(1)|+ 1−(−1)n

2

(

X |ϕn(1)| − 1
)

−X
1+(−1)n

2

)

n−1
∏

m=0

(

X |ϕm(1)| − 1
)

.

By (2.1) and (2.3), we have |ϕn(1)|+ 1−(−1)n

2
= gn + 1 and 2 · |ϕn(1)|+ 1−(−1)n

2
= gn+1 + 1,

which gives (3.2).
Combining (3.1) for n+ 1 and (3.2), we obtain (3.3).
Finally, (3.4) follows from (3.1) for n + 1 and n+ 2. �

With the help of Lemma 3.4, we will show the following proposition, where ηn > 1,
n ≥ 1, is defined by

ηgn+1
n = ηgn−1+1

n + η
1−(−1)n

2
n .

It can be easily verified that

2 = η1 > γ2
2 > γ1 > η2 > γ2 > η3 > · · · > 1 .

Proposition 3.5. Let β > 1 and n ≥ 1. Then d−β(1) starts with ϕn(2) if and only if
β < γ2

2 in case n = 1, β ≤ ηn in case n is even, β < ηn in case n ≥ 3 is odd.

For the proof of the proposition, we use the following lemmas. For the sake of readability,
we often omit the dependence on β in T−β, d−β and fβ,a in the following.
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Lemma 3.6. Let x ∈ (0, 1] and 1 < β < 2. Then

• d1(x) = 2 if and only if f2(x) ≤ 1,
• d1(x) = 1 if and only if f1(x) > 0,
• d1(x) d2(x) = 11 if and only if 0 < f11(x) < 1.

Proof. We have d1(x) = a if and only if fa(x) ∈ (0, 1]. The inequalities f2(x) > −β+2 > 0
and f1(x) < 1 prove the first two points. Noting that f1(x) < 1 is equivalent to x > 0, the
third point follows from the second point. �

Lemma 3.7. Let β > 1. If d(1) starts with a1 · · · ak and d(fa1···ak(1)) starts with b1 · · · bj,
then d(1) starts with a1 · · · ak b1 · · · bj.
Proof. If d1(1) · · ·dk(1) = a1 · · · ak, then T k(1) = fa1···ak(1), and the lemma follows from
dk+1(1) · · ·dk+j(1) = d1(T

k(1)) · · ·dj(T k(1)). �

Lemma 3.8. Let x ∈ (0, 1], n ≥ 1, such that d(x) starts with the first gn−1 letters of ϕn(1).
Then d(x) starts with ϕn(1) if and only if fϕn(1)(x) ≤ 1 in case n is odd, 0 < fϕn(1)(x) < 1
in case n is even.

Proof. Let x ∈ (0, 1], n ≥ 1, such that d(x) starts with the first gn − 1 letters of ϕn(1).
If n is odd, then gn = |ϕn(1)|, and ϕn(1) ends with 2, thus f2 T

|ϕn(1)|−1(1) = fϕn(1)(1).

By Lemma 3.6, we have d|ϕn(1)|(1) = d1(T
|ϕn(1)|−1(1)) = 2 if and only if f2 T

|ϕn(1)|−1(1) ≤ 1.

If n is even, then gn = |ϕn(1)|−1, and ϕn(1) ends with 11, thus f11 T
|ϕn(1)|−2(1) = fϕn(1)(1).

By Lemma 3.6, d|ϕn(1)|−1(1) d|ϕn(1)|(1) = 11 is equivalent to 0 < f11 T
|ϕn(1)|−2(1) < 1. �

Lemma 3.9. Let β > 1 and n ≥ 1. If d(1) starts with ϕn(2), then T gn−1 is continuous on
[

T |ϕn(1)|(1), 1
]

, and 1/β is in the interior of T gn−1
([

T |ϕn(1)|(1), 1
])

.

Proof. Let β > 1 and n ≥ 1 such that d(1) starts with ϕn(2) = ϕn−1(211), then d(T |ϕn(1)|(1))
starts with ϕn−1(11). By Lemma 3.3, the words ϕn−1(2) and ϕn−1(11) share the first gn−1
letters and differ on the gn-th letter. This proves that T gn−1 is continuous on

[

T |ϕn(1)|(1), 1
]

,

and that 1/β is in the interior or the right endpoint of T gn−1
([

T |ϕn(1)|(1), 1
])

. If T gn−1(1) =

1/β with odd n, then T |ϕn(1)|(1) = 1. If T |ϕn(1)|+gn−1(1) = T gn+1−1(1) = 1/β with even n,
then T |ϕn(2)|(1) = 1. Both situations are impossible since fϕn(1)(1) < 1 for all β > 1, n ≥ 0,

by (3.1). Therefore, 1/β is in the interior of T gn−1
([

T |ϕn(1)|(1), 1
])

. �

Lemma 3.10. For any 1 < β ≤ ηn, n ≥ 1, we have fϕn−1(1)(1) ≤ fϕn(2)(1) < 1.

Proof. By (3.1), we have fϕn(1)(1) < 1 for all β > 1, n ≥ 0.
For all 1 < β ≤ ηn, n ≥ 1, we have fϕn−1(21)(1) ≤ 1 by (3.2). Since fϕn−1(1) is order

reversing, we get that fϕn(2)(1) = fϕn−1(211)(1) ≥ fϕn−1(1)(1). �

Proof of Proposition 3.5. Let β > 1. Lemma 3.6 states that, if d1(1) = 2, then d(1) starts
with ϕ(2) if and only if 0 < fϕ(2)(1) < 1. By (3.1), we have 1 − fϕ(2)(1) = β(β − 1)2 > 0,

and 1 − fϕ(2)(1) < 1 if and only if β − 1 < β−1/2, i.e., β < γ2
2 . Since d1(1) = 2 for all

β < γ2
2 < 2, the case n = 1 of the proposition is proved.
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Suppose now that d(1) starts with ϕn+1(2) = ϕn(211) for some n ≥ 1. Then we must
have fϕn(21)(1) ≤ 1, which is equivalent to β ≤ ηn+1 by (3.2). Suppose moreover that
the proposition is already shown for n. Since ηn+1 < min(ηn, γ

2
2), this implies that d(1)

starts with ϕn(2). Furthermore, ηn+1 < γn and (3.4) yield that fϕn(2)(1) > fϕn(1)(1). By

Lemma 3.9, the first gn−1 letters of d(x) are equal to those of d(1) for all x ∈
[

fϕn(1)(1), 1
]

.
Therefore, Lemma 3.8 implies that d(1) starts with ϕn(21) if and only if fϕn(21)(1) ≤ 1 in
case n is odd, 0 < fϕn(21)(1) < 1 in case n is even. For even n, we must therefore have

β < ηn+1. Note that fϕn(21)(1) > 0 is guaranteed by fϕn(21)(1) > fϕn(1)(1) = T |ϕn(1)|(1),
which follows from fϕn(2)(1) < 1 and the order reversing property of fϕn(1). By Lemma 3.10,

we have fϕn(1)(1) ≤ fϕn(211)(1) < 1, thus fϕn(21)(1) ∈
[

fϕn(1)(1), 1
]

, which implies that
d(fϕn(21)(1)) starts with ϕn(1). Putting everything together, we obtain that d(1) starts
with ϕn(211) = ϕn+1(2) if and only if β < ηn+1 with even n, or β ≤ ηn+1 with odd n. �

Now, we can prove Theorem 2.5.

Proof of Theorem 2.5. By Proposition 3.5, d−β(1) starts with ϕn(2) for any 1 < β ≤ γn,

n ≥ 1. By (3.3), we have fγn,ϕn−1(21)(1) = fγn,ϕn−1(2)(1), thus T
|ϕn−1(21)|
−γn (1) = T

|ϕn−1(2)|
−γn (1),

i.e., T
|ϕn−1(2)|
−γn (1) is a fixed point of T

|ϕn−1(1)|
−γn . Hence, by Lemma 3.7, d−γn(1) = ϕn−1(2 1).

Since limn→∞ γn = 1, we obtain that d−β(1) starts with ϕn(2) for larger and larger n
when β → 1, thus limβ→1 d−β(1) = limn→∞ ϕn(2 1). �

4. Structure of the gaps

We will show that the support of the invariant measure is

F (β) = (0, 1] \G(β) .

For β > 1, n ≥ 0, let
Fn(β) =

{

Fn,k(β) | 0 ≤ k ≤ gn
}

with

Fn,k(β) =

{
[

T
|ϕn(1)|+k
−β (1), T k

−β(1)
]

if k is even, k < gn,
[

T k
−β(1), T

|ϕn(1)|+k
−β (1)

]

if k is odd, k < gn,

Fn,gn(β) =

{
(

0, T
|ϕn(1)|−1
−β (1)

]

if n is even,
(

0, T
|ϕn(2)|−1
−β (1)

]

if n is odd.

(We will consider these sets only in the case when the left number is smaller than the right
number.) Figures 2 and 3 show examples of the decomposition of (0, 1] into these sets.

As in Section 3, we often omit the dependence on β in the following.

Lemma 4.1. Let n ≥ 2 and 1 < β ≤ ηn if n is even, 1 < β < ηn if n is odd; or let n = 1,
1 < β < γ2

2. Then

(i) Fn,k = T k(Fn,0) for all 0 ≤ k < gn,
(ii) 1/β is in the interior of Fn,gn−1,
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t1

t1

t2

t2

t3

t3

t4

t4
0
0 t0

t0

F2,2 G1,0 F2,1 G2,0 F2,0

F1,1 F1,0

Figure 2. The (−β)-transformation for β = 5/4, with set of gaps G1,0∪G2,0

and support of the invariant measure F2,2 ∪ F2,1 ∪ F2,0. Here, tk = T k
−β(1).

(iii) T gn(Fn,0) = Fn,gn ∪ Fn,0, T (Fn,gn) = Fn+1,0 \ {1}, if n is odd,
(iv) T gn(Fn,0) = Fn,gn ∪ Fn+1,0, T (Fn,gn) = Fn,0 \ {1}, if n is even.

Proof. Let β and n have the properties of the statement of the lemma. Then Proposition 3.5
and Lemma 3.9 give (i) and (ii). If n is odd, then Fn,gn−1 =

[

T gn+1−1(1), T gn−1(1)
]

, thus

T (Fn,gn−1) =
(

0, T gn+1(1)
]

∪
[

T gn(1), 1
]

=
(

0, T |ϕn(2)|−1(1)
]

∪
[

T |ϕn(1)|(1), 1
]

= Fn,gn∪Fn,0 .

Since d(1) starts with ϕn(2) and ϕn(2) ends with 1, we have

T (Fn,gn) = T
((

0, T |ϕn(2)|−1(1)
])

=
[

T |ϕn(2)|(1), 1
)

= Fn+1,0 \ {1} ,
i.e., (iii) holds. If n is even, then Fn,gn−1 =

[

T gn−1(1), T gn+1−1(1)
]

and

T (Fn,gn−1) =
(

0, T gn(1)
]

∪
[

T gn+1(1), 1
]

=
(

0, T |ϕn(1)|−1(1)
]

∪
[

T |ϕn(2)|(1), 1
]

= Fn,gn∪Fn+1,0 .

Now, ϕn(1) ends with 1, which gives T (Fn,gn) = Fn,0 \ {1}, i.e., (iv) holds. �
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t1

t1

t2

t2

t3

t3

t4

t4

t5

t5

t6

t6

t7

t7

t8

t8

t9

t9

t10

t10
0
0 t0

t0

F3,5G3,2 F3,2 F3,1 G3,1 F3,4 F3,3 G3,0 F3,0

F2,2 F2,1 F2,0

G1,0 G2,0

Figure 3. The (−β)-transformation for β = 9/8 with gaps Gm,k, support
of the invariant measure F3,0 ∪ · · · ∪ F3,5, and tk = T k

−β(1). Ratios between
G1,0, G2,0 and the rest of the picture are not respected. In reality, G1,0 is
almost 10 times the size of G2,0, and G2,0 is almost 5 times the size of F2,0.

Proposition 4.2. Let 1 < β < γn, n ≥ 0. Then the elements of Fn and Gn are intervals
of positive length which form a partition of (0, 1]. If n ≥ 1, then

(i) Fn−1,k = Fn,|ϕn−1(1)|+k ∪Gn−1,k ∪ Fn,k for all 0 ≤ k < |ϕn−1(1)|,
(ii) Gm,k = T k(Gm,0) for all 0 ≤ m < n, 0 ≤ k < |ϕm(1)|,
(iii) T |ϕm(1)|(Gm,0) = Gm,0 ∪ Fm,0 \ Fm+1,0 ⊃ Gm,0 for all 0 ≤ m < n.
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Proof. We have F0 = {F0,0} = {(0, 1]} and G0 = ∅, thus the elements of F0 and G0 form
the trivial partition of (0, 1]. Let now 1 < β < γn, n ≥ 1, and assume that Fn−1 ∪ Gn−1

forms a partition of (0, 1]. Lemma 3.4 and the order reversing property of fϕn−1(1) give

fϕn−1(1)(1) < fϕn−1(21)(1) < fϕn−1(2)(1) < fϕn(2)(1) < 1 .

For n = 1, we have f21(1) > 0. Therefore, Fn−1,0 splits into Fn,|ϕn−1(1)|, Gn−1,0 and Fn,0,
which are intervals of positive length. This shows (i) in case n = 1. By Proposition 3.5 and
Lemma 3.9, T gn−1−1 is continuous on Fn−1,0, thus every Fn−1,k, 0 ≤ k < gn−1, also splits
into Fn,|ϕn−1(1)|+k, Gn−1,k and Fn,k. If n is even, then this proves (i) since gn−1 = |ϕn−1(1)|.
In this case, we have Fn−1,gn−1 = Fn,gn, thus Fn ∪ Gn is a refinement of the partition

Fn−1 ∪ Gn−1. If n is odd, then we use that T |ϕn−1(1)| is continuous on Gn−1,0 ∪ Fn−1,0 since

both d(T |ϕn−1(21)|(1)) and d(1) start with ϕn−1(1). In this case, Fn−1,gn−1 = Fn,|ϕn−1(1)|−1

splits into Fn,gn, Gn−1,|ϕn−1(1)|−1 and Fn,|ϕn−1(1)|−1, thus (i) holds for odd n too, and Fn∪Gn

is again a refinement of the partition Fn−1 ∪ Gn−1.
For all 0 ≤ m < n, the continuity of T |ϕm(1)| onGm,0 gives (ii). Moreover, T |ϕm(1)|(Gm,0) =

(

T |ϕm(21)|(1), T |ϕm+1(2)|(1)
)

and Fm+1,0 ⊂ Fm,0 imply (iii). �

Corollary 4.3. Let 1 < β < γn, n ≥ 0. Then

T−β

(
⋃

I∈Fn(β)
I
)

=
⋃

I∈Fn(β)
I and T−1

−β

(
⋃

I∈Gn(β)
I
)

⊆ ⋃

I∈Gn(β)
I .

If γn+1 ≤ β < γn, then F (β) =
⋃

I∈Fn(β)
I (and G(β) =

⋃

I∈Gn(β)
I by definition).

Proposition 4.4. Let β > 1 and µ be an invariant measure of T−β which is absolutely
continuous with respect to the Lebesgue measure. Then µ(G(β)) = 0.

Proof. If β ≥ γ1, then µ(G(β)) = µ(∅) = 0. We will show, by induction on n, that

µ(Gn,k) = 0 for all n ≥ 0 , 0 ≤ k < |ϕn(1)| , 1 < β < γn+1 . (4.1)

Since G(β) =
⋃n−1

m=0

⋃|ϕm(1)|−1
k=0 Gm,k for γn+2 ≤ β < γn+1, this proves the proposition.

For 1 < β < γ1, we have G0,0 =
(

T 2(1), T (1)
)

=
(

f1 T (1), T (1)
)

and

T−1(G0,0) = f−1
1 (G0,0) =

(

f−1
1 T (1), T (1)

)

⊂ G0,0 .

Since µ(T−1(G0,0)) = µ(G0,0), we obtain µ
((

f1 T (1), f
−1
1 T (1)

])

= 0. Iteratively, we get

µ
((

f−2k+1
1 T (1), f−2k−1

1 T (1)
])

= 0 , µ
([

f−2k−2
1 T (1), f−2k

1 T (1)
))

= 0

for all k ≥ 0. This gives µ
((

T 2(1), 1
β+1

))

= 0 and µ
((

1
β+1

, T (1)
))

= 0, since f−1
1 is

contracting with fixed point 1
β+1

. Then, the absolute continuity of µ implies µ(G0,0) = 0,

hence (4.1) holds for n = 0.
Now consider 1 < β < γn+1, n ≥ 1, and assume that (4.1) holds for n− 1. By Proposi-

tion 4.2 (i)–(iii), we have

T (Gm,k−1) =

{

Gm,k if 1 ≤ k < |ϕm(1)|, 0 ≤ m ≤ n,

Gm,0 ∪ Fm+1,|ϕm(1)| ∪Gm+1,0 if k = |ϕm(1)|, 0 ≤ m < n.
(4.2)



DYNAMICAL PROPERTIES OF THE NEGATIVE BETA TRANSFORMATION 13

Since T−1
(
⋃

I∈Gn
I
)

⊂ ⋃

I∈Gn
I by Corollary 4.3, we obtain

T−1(Gn,0) ⊂ Gn,|ϕn(1)|−1 ∪Gn−1,|ϕn−1(1)|−1 and T 1−|ϕn(1)|(Gn,|ϕn(1)|−1) = Gn,0 .

Thus, up to a set of µ-measure zero, T−|ϕn(1)|(Gn,0) = f−1
ϕn(1)(Gn,0) ⊂ Gn,0. We have

f−1
ϕn(1)(Gn,0) = f−1

ϕn(1)

((

fϕn(1) T
|ϕn(2)|(1), T |ϕn(2)|(1)

))

=
(

f−1
ϕn(1)T

|ϕn(2)|(1), T |ϕn(2)|(1)
)

.

As in the case n = 0, using the T -invariance of µ, we obtain that

µ
((

f−2k+1
ϕn(1) T |ϕn(2)|(1), f−2k−1

ϕn(1) T |ϕn(2)|(1)
])

= 0 = µ
([

f−2k−2
ϕn(1) T |ϕn(2)|(1), f−2k

ϕn(1) T
|ϕn(2)|(1)

))

for all k ≥ 0. Thus µ
((

T |ϕn(21)|(1), y
))

= 0 and µ
((

y, T |ϕn(2)|(1)
))

= 0, where y denotes

the fixed point of fϕn(1), i.e., µ(Gn,0) = 0. Since µ(Gn,k) = µ(T−k(Gn,k)) = µ(Gn,0) for
1 ≤ k < |ϕn(1)|, (4.1) holds for n. �

Proposition 4.5. Let β > 1, then limk→∞ λ
(

T−k
−β (G(β))

)

= 0.

Proof. If β ≥ γ1, then G(β) = ∅ and the statement holds. For 1 < β < γn+1, n ≥ 0, the
preimage T−k(Gn,0) can be written as a disjoint union

T−k(Gn,0) =
⋃

a1···ak∈Lk

f−1
a1···ak(Gn,0)

with Lk ⊆ {1, 2}k. Then we have µ(T−k(Gn,0)) = #(Lk) β
−kµ(Gn,0). By (4.2) and Corol-

lary 4.3, Lk consists of the length k suffixes of all concatenations 1i0(ϕ(1))i1 · · · (ϕn(1))in,
i0, i1, . . . , in ≥ 0. Therefore, the number of elements in Lk is bounded by

(

k
n

)

, which grows

only polynomially (in k). This yields that limk→∞ µ(T−k(Gn,0)) = 0. By T−j(Gn,j) = Gn,0,
1 ≤ j < |ϕn(1)|, the same holds for Gn,j, thus limk→∞ µ(T−k(I)) = 0 for all I ∈ Gn+1. �

5. Locally eventually onto

Lemma 5.1. Let 1 < β < γ1, I be an interval of positive length in F (β), and n ≥ 1 such
that ηn+1 < β < ηn with odd n ≥ 1, or ηn+1 ≤ β ≤ ηn with even n ≥ 2. Then there exists
an m ≥ 0 such that Tm

−β(I) ⊇ Fn,0(β) \ {1}.

Proof. We use ideas of Góra’s proof of Proposition 8 in [Gór07]. We distinguish four cases.

Case 1: odd n ≥ 1, ηn+1 < β < γn. In this case, we have β2gn = βgn+1 > βgn + β−1 ≥
β + β−1 > 2. Therefore, the largest connected components of images of I grow until
they cover two consecutive discontinuities of T 2gn in the interior of F (β). Since the only
discontinuity of T is 1/β ∈ Fn,gn−1, the images eventually also cover two consecutive
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discontinuities of T 2gn in the interior of Fn,gn−1 =
[

T |ϕn(2)|−2(1), T |ϕn(1)|−1(1)
]

. We have

T 2gn
([

1/β, f−1
2ϕn(1)(1)

])

= T gn
([

1/β, T |ϕn(1)|−1(1)
])

,

T 2gn
([

f−1
11ϕn(1)(1), 1/β

))

= T gn−1
([

1/β, T |ϕn(1)|−1(1)
))

,

T 2gn
((

f−1
2ϕn(1)(1), T

|ϕn(1)|−1(1)
])

= T gn
([

T |ϕn(2)|−2(1), 1/β
))

,

T 2gn
([

T |ϕn(2)|−2(1), f−1
11ϕn(1)(1)

))

= T gn−1
([

T |ϕn(21)|−1(1), 1/β
))

.

Using Lemma 3.9, we obtain that T 2gn is continuous on these four intervals. Note that
T |ϕn(2)|−2(1) < f−1

11ϕn(1)(1) since f11ϕn(1) T
|ϕn(2)|−2(1) = fϕn(21)(1) > 1. The discontinuities

of T 2gn in the interior of Fn,gn−1 are therefore 1/β, f−1
2ϕn(1)(1) and f−1

11ϕn(1)(1). With

T gn+1
([

1/β, f−1
2ϕn(1)(1)

])

= Fn,0 and T gn+1
([

1/β, T |ϕn(1)|−1(1)
))

= Fn,0 \ {1} ,
we obtain that Tm(I) ⊇ Fn,0 \ {1} for some m ≥ 0.

Case 2: odd n ≥ 1, γn+1 ≤ β ≤ ηn+1. Since βgn+1+1 ≥ β + 1 > 2, we look at T 2gn+1

on Fn,gn−1. Note that T 2gn
([

1/β, f−1
2ϕn(1)(1)

])

= Fn,gn−1, thus there is a discontinuity of

T 2gn+1 in the interior of
[

1/β, f−1
2ϕn(1)(1)

]

. Contrary to Case 1, T 2gn+1 has no discontinuity

in Fn,gn−1 on the left of 1/β. More precisely,

T 2gn+1
([

1/β, f−1
2ϕn(2)(1)

))

= T
([

T |ϕn(2)|−2(1), 1/β
))

,

T 2gn+1
([

f−1
2ϕn(2)(1), f

−1
2ϕn(1)(1)

])

= T
([

1/β, T |ϕn(1)|−1(1)
])

,

T 2gn+1
((

f−1
2ϕn(1)(1), T

|ϕn(1)|−1(1)
])

= T gn+1
([

T |ϕn(2)|−2(1), 1/β
))

,

T 2gn+1
([

T |ϕn(2)|−2(1), 1/β
))

= T gn
([

T |ϕn(21)|−1(1), T |ϕn(1)|−1(1)
))

.

Here, fϕn(21)(1) ≤ 1 implies that T |ϕn(21)|−1(1) = f−1
2 fϕn(21)(1) ≥ 1/β. Hence, the disconti-

nuities of T 2gn+1 in the interior of Fn,gn−1 are 1/β, f−1
2ϕn(2)(1) and f−1

2ϕn(1)(1), with

T 2gn+2
([

1/β, f−1
2ϕn(2)(1)

))

= Fn+1,0 \ {1} and T 2gn+1
([

f−1
2ϕn(2)(1), f

−1
2ϕn(1)(1)

])

= Fn,0 .

This gives Tm(I) ⊇ Fn+1,0 \ {1} for some m ≥ 0.

Case 3: even n ≥ 2, ηn+1 ≤ β < γn. In this case, we have β2gn = βgn+1−1 > βgn−1+β−1 ≥
β + β−1 > 2, Fn,gn−1 =

[

T |ϕn(1)|−2(1), T |ϕn(2)|−1(1)
]

, and

T 2gn
([

1/β, f−1
2ϕn(1)(1)

))

= T gn
([

T |ϕn(1)|−2(1), 1/β
))

,

T 2gn
((

f−1
11ϕn(1)(1), 1/β

))

= T gn−1
((

T |ϕn(1)|−2(1), 1/β
))

,

T 2gn
([

f−1
2ϕn(1)(1), T

|ϕn(2)|−1(1)
])

= T gn
([

1/β, T |ϕn(21)|−2(1)
])

,

T 2gn
([

T |ϕn(1)|−2(1), f−1
11ϕn(1)(1)

])

= T gn−1
([

1/β, T |ϕn(2)|−1(1)
])

.
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Here, f2ϕn(1) T
|ϕn(2)|−1(1) = fϕn(21)(1) ≥ 1 implies f−1

2ϕn(1)(1) ≤ T |ϕn(2)|−1(1). The disconti-

nuities of T 2gn in the interior of Fn,gn−1 are at most 1/β, f−1
2ϕn(1)(1) and f−1

11ϕn(1)(1), with

T gn+2
([

1/β, f−1
2ϕn(1)(1)

))

= Fn,0 \ {1} , T gn+3
((

f−1
11ϕn(1)(1), 1/β

))

= Fn,0 \ {1, T |ϕn(1)|(1)} ,

similarly to Case 1. We obtain that Tm(I) ⊇ Fn,0 \ {1, T |ϕn(1)|(1)} for some m ≥ 0. Since
T gn+1

(

Fn,0 \ {1, T |ϕn(1)|(1)}
)

⊇ Fn,0 \ {1}, we also have Tm(I) ⊇ Fn,0 \ {1} for some m ≥ 0.

Case 4: even n ≥ 2, γn+1 ≤ β < ηn+1. Since βgn+1+1 ≥ β + 1 > 2, we look at T 2gn+2

on Fn,gn−1. We have T 2gn+1
([

1/β, f−1
2ϕn(1)(1)

))

= Fn,gn−1 \ {T |ϕn(1)|−2(1)} with f−1
2ϕn(1)(1) >

T |ϕn(2)|−1(1), thus f−1
2ϕn(1)(1) is outside of Fn,gn−1, but T 2gn+2 still has a discontinuity in

(

1/β, T |ϕn(2)|−1(1)
)

. More precisely,

T 2gn+2
([

1/β, f−1
2ϕn(2)(1)

])

= T
([

1/β, T |ϕn(2)|−1(1)
])

,

T 2gn+2
((

f−1
11ϕn(1)(1), 1/β

))

= T gn+1
((

T |ϕn(1)|−2(1), 1/β
))

,

T 2gn+2
((

f−1
2ϕn(2)(1), T

|ϕn(2)|−1(1)
])

= T
([

T |ϕn(2)|−2(1), 1/β
))

,

T 2gn+2
([

T |ϕn(1)|−2(1), f−1
11ϕn(1)(1)

])

= T
([

T |ϕn(1)|−2(1), T |ϕn(21)|−2(1)
])

,

with T |ϕn(21)|−2(1) = f−1
11 fϕn(21)(1) < 1/β since fϕn(21)(1) < 1. Therefore, the discontinu-

ities of T 2gn+2 in the interior of Fn,gn−1 are 1/β, f−1
2ϕn(2)(1) and f−1

11ϕn(1)(1), with

T 2gn+3
([

1/β, f−1
2ϕn(2)(1)

])

= Fn+1,0 , T gn+3
((

f−1
11ϕn(1)(1), 1/β

))

= Fn,0 \ {1, T |ϕn(1)|(1)} .

This gives Tm(I) ⊇ Fn+1,0 \ {1} for some m ≥ 0. �

Lemma 5.2. Let 1 < β < γ1 and n ≥ 1 such that ηn+1 < β < ηn with odd n ≥ 1, or
ηn+1 ≤ β ≤ ηn with even n ≥ 2. Then we have

T
gn(2gn+(−1)n)
−β

(

Fn,0(β) \ {1}
)

⊇ F (β) \
{

T k
−β(1) | 0 ≤ k ≤ gn(2gn + (−1)n)

}

.

Proof. Let 1 < β < γ1 and n as in the statement of the lemma. By Corollary 4.3, we
have F (β) =

⋃

I∈Fn(β)
I if β < γn, and F (β) =

⋃

I∈Fn−1(β)
I if β ≥ γn. In the latter

case, fϕn(1) ≤ fϕn−1(1) implies that Fn−1,0 = Fn,|ϕn−1(1)| ∪ Fn,0, and we obtain, similarly to
the proof of Proposition 4.2, that

⋃

I∈Fn−1(β)
I =

⋃

I∈Fn(β)
I. Therefore, we always have

F (β) =
⋃

I∈Fn(β)
I.

Let first n ≥ 1 be odd. For simplicity, we omit points in {T k(1) | k ≥ 0} in the following
statements. We have T gn+1(Fn,0) = Fn+1,0 ∪ Fn,1 and

T gn−1(Fn+1,0) =
[

T |ϕn(21)|−1(1), T |ϕn(1)|−1(1)
]

.

Since β > ηn+1, we have T |ϕn(21)|−1(1) < 1/β, thus T gn(Fn+1,0) ⊇ Fn,0, and

T 2gn+1(Fn,0) ⊇ Fn,0 ∪ Fn,1 .
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Inductively, we get T (gn−1)(2gn+1)(Fn,0) ⊇
⋃gn−1

k=0 Fn,k. Then, T (Fn,gn−1) = Fn,gn∪Fn,0 yields

T gn(2gn−1)(Fn,0) = T (gn−1)(2gn+1)+1(Fn,0) =

gn
⋃

k=0

Fn,k = F (β) .

Here, we have only omitted points in
{

T k(1) | 0 ≤ k ≤ gn(2gn − 1)
}

.

Let now n ≥ 2 be even. Omitting
{

T k(1) | k ≥ 0
}

, we have T gn(Fn,0) = Fn,gn∪Fn+1,0 and

T gn−1(Fn+1,0) =
[

T |ϕn(1)|−2(1), T |ϕn(21)|−2(1)
]

.

Since β ≥ ηn+1, we have T |ϕn(21)|−2(1) ≥ 1/β, thus T gn+1(Fn+1,0) ⊇ Fn,0, and

T 2gn+2(Fn,0) ⊇ Fn,0 ∪ Fn,1 .

As above, we get T (gn−1)(2gn+2)(Fn,0) ⊇
⋃gn−1

k=0 Fn,k. Since T
gn+2(Fn,gn−1) ⊇ Fn,gn ∪Fn,0 and

T gn+2(Fn,k) ⊇ Fn,k+1 for 0 ≤ k < gn, we obtain

T gn(2gn+1)(Fn,0) = T (gn−1)(2gn+2)+gn+2(Fn,0) =

gn
⋃

k=0

Fn,k = F (β) ,

up to some points in
{

T k(1) | 0 ≤ k ≤ gn(2gn + 1)
}

. �

6. Proofs of the main results

Now we are ready to prove Theorems 2.1 and 2.2.

Proof of Theorem 2.2. For 1 < β < γ1, Lemma 5.1 and 5.2 show that T−β is locally
eventually onto on F (β) \ {T k

−β(1) | 0 ≤ k ≤ gn(2gn+ (−1)n)} for some n ≥ 1. For β ≥ γ1,
this was shown in [Gór07, Proposition 8]. The iterated T−β-images of any interval of
positive length clearly contain 1/β, thus they also contain T k

−β(1) for any k ≥ 0. Therefore,
T−β is locally eventually onto on F (β) = (0, 1] \G(β).

The second part of the theorem is in Corollary 4.3 and Proposition 4.5. �

Proof of Theorem 2.1. By Proposition 4.4, all the intervals in Gn(β) are gaps. By Theo-
rem 2.2, they are the only gaps. Calculating directly the numbers of the intervals of Gn(β)
by the definition, we complete the proof. �

Theorem 2.5 was proved in Section 3, thus it only remains to prove Theorem 2.6. Recall
that a number β > 1 is a (−β)-number if V−β = {T n

−β(1) | n ≥ 0} is a finite set.

Proof of Theorem 2.6. Let V ′
−β be the set of numbers in V−β which are not right endpoints

of gaps, and Jx = (max{y ∈ V−β ∪ {0} | y < x}, x) for each x ∈ V ′
−β. Then {Jx | x ∈ V ′

−β}
is a partition of F (β) up to finitely many points, and T−β(Jx) is a union of intervals Jy,
y ∈ V ′

−β, for each x ∈ V ′
−β. Define a matrix

M−β = (mx,y)x,y∈V ′

−β
with mx,y =

β λ(Jx ∩ T−1
−β (Jy))

λ(Jy)
,
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i.e., mx,y is the number of times that Jy is contained in T−β(Jx). Since
∑

y∈V ′

−β

mx,y λ(Jy) = β λ(Jx)

for all x ∈ V ′
−β, (λ(Jx))x∈V ′

−β
is a positive eigenvector of M−β to the eigenvalue β. The

property that T−β is locally eventually onto on F (β) implies that M−β is primitive, thus β
is the Perron-Frobenius eigenvalue of M−β, which is a Perron number. �

We finally show that the set of β-numbers and the set of (−β)-numbers do not include
each other. For the definition of a β-number, it is convenient to extend the domain of Tβ

to [0, 1] by setting Tβ(1) = β − ⌊β⌋. Then β is a β-number if and only if (T n
β (1))n≥0 is

eventually periodic. We know that all Pisot numbers are both β-numbers [Ber77, Sch80]
and (−β)-numbers [FL09]. Therefore, the symmetric difference between the β-numbers
and the (−β)-numbers can only contain Perron numbers which are not Pisot numbers.

Proposition 6.1. Let β > 1 with β4 = β + 1, i.e., β ≈ 1.2207. Then T 10
−β(1) = T 5

−β(1),
and (T n

β (1))n≥0 is aperiodic.

Proof. It is easy to check that T 10
−β(1) = T 5

−β(1).
On the other hand, let α be an algebraic conjugate of β satisfying |α| > 1, i.e., α ≈

−0.2481± 1.034i, and let σ : Q(β) → Q(α) be the field homomorphism defined by σ(β) =
α. Since Tβ(x) ∈ {βx, βx− 1}, we have |σ(Tβ(x))| ≥ |α| |σ(x)| − 1 for all x ∈ [0, 1]∩Q(β),
thus |σ(Tβ(x))| > |σ(x)| if |σ(x)| > 1/(|α|−1). We have T 35

β (1) = β35−β34−β26−β13−β4,

and one can check that |σ(T 35
β (1))| > 1/(|α| − 1). This implies that (|σ(T n

β (1))|)n≥35 is a
strictly increasing sequence, hence (T n

β (1))n≥0 is aperiodic. �

Proposition 6.2. Let β > 1 with β7 = β6 + 1, i.e., β ≈ 1.2254. Then T 7
β (1) = 0, and

(T n
−β(1))n≥0 is aperiodic.

Proof. We have T 7
β (1) = β7 − β6 − 1 = 0.

Let α be an algebraic conjugate of β satisfying |α| > 1, i.e., α ≈ 0.7802 ± 0.7053i,
and let σ : Q(β) → Q(α) be the field homomorphism defined by σ(β) = α. We have
T−β(x) ∈ {−βx + 1,−βx + 2}, thus |σ(T−β(x))| ≥ |α| |σ(x)| − 2 for all x ∈ (0, 1] ∩ Q(β).
It is more convenient to consider φ(x) with φ as in the Introduction, since φ(T−β(x)) ∈
{−βφ(x),−βφ(x)−1} and |σ(φ(T−β(x)))| ≥ |α| |σ(φ(x))|−1 for all x ∈ (0, 1]∩Q(β). Now
one can check that |σ(φ(T 53

−β(1)))| > 1/(|α| − 1), which implies that (|σ(φ(T n
−β(1)))|)n≥53

is a strictly increasing sequence, hence (T n
−β(1))n≥0 is aperiodic. �
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