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Abstract: In many situations, telecommunication engineers are facedwith the prob-
lem of extracting information from the network. This corresponds in many cases to
infer on functionals of spectrum of random matrices with only a limited knowledge
on the statistics of the matrix entries. Here, the inferenceon the spectrum of random
matrices is realized by moments method. In its full generality, the problem requires
some sophisticated tools related to free probability theory and the explicit spectrum
(complete information) can hardly be obtained (except for some trivial cases). Results
in the asymptotic case and in the finite case are presented andsimulations show how
the moments method approach can be applied in practice. Several still open problems
in this field are also presented.

1. Introduction

Recent studies of the last decade have shown that future communication systems should
be designed to adapt their parameters to the environment. This point of view, intro-
duced by Joseph Mitola [1] , represents the heart of random cognitive networks, that
can be thought of as self-organizing networks where terminals and base stations inter-
act through cognitive sensing capabilities. The current development of microeletronics
allows us to suppose that these wireless systems, for which the spectrum utilization will
play a key role, will be realized in the near future. In doing so, it is of great importance
to develop mathematical tools needed in this context. An interesting problem linked
to random cognitive networks consists in understanding what can an intelligent device
with n dimensions (time, frequency or space) extract in terms of useful information on
the network from a set of K noisy measurements. Moreover, once this information has
been extracted, how can the terminal exploit (by capacity estimation, power allocation,
etc.) that information? In wireless cognitive networks, devices are autonomous and
should take optimal decisions based on their sensing capabilities. The complexity of
these systems requires some sophisticated tools such as free probability theory to make
abstraction of the useless parameters. Free probability theory [2] was introduced by
Voiculescu in the 1980s in order to attack some problems related to operator algebras
and can be considered as a generalization of classical probability theory to noncom-
mutative algebras. The analogy between the concept of freeness and the independence
in classical probability leaves us to work with noncommutative operators like matrices
that can be considered elements in what is called a noncommutative probability space.
We consider of particular interest for our work, information measures such as capacity,
signal to noise ratio and estimation of the signal power. Information measures are usu-
ally related to the spectrum (eigenvalues) of the channel matrix and not on the specific
structure (eigenvectors). This entails many simplifications that make free probability
theory, throught the concept of free deconvolution, a very appealing framework for the
study of these networks. The general idea of deconvolution is related to the following
problem [3]:

Given A, B two n× n independent square complex Hermitian (or real symmetric)
random matrices:



1) Can one derive the eigenvalue distribution of A from those of A + B and B? If
feasible in the large n-limit, this operation is named additive free deconvolution,
2) Can one derive the eigenvalue distribution of A from those of AB and B? If feasible
in the large n-limit, this operation is named multiplicative free deconvolution.
The techniques generally used to compute the operation of deconvolution in the large
n-limit are the moments method [3] and the Stieltjes transform method [4]. Each
has its advantages and drawbacks. The moments method only works for measures
with moments and characterizes the convolution only by giving its moments but it is
easy implemantable and, in many applications, one needs only a subset of the moments
depending on the number of parameters to be estimated. Instead, the Stieltjes transform
method works for any measure and which allows, when computations are possible, to
recover the densities. Unfortunately, this method works only in very few cases, since
the operations which are necessary are almost always impossible to realize practically.
In this paper, we focus on the free deconvolution framework based on the moments
method which uses the empirical moments of the eigenvalue distribution of random
matrices to obtain information about the eigenvalues. The moments method has shown
to be a fruitful technique in both the asymptotic and the finite setting to compute
deconvolution. In the next section, the eigen-inference method will be analyzed in both
the asymptotic and the finite setting. In the Section 3., we present an application
showing how the moments method approach can be used. Several still open problems
related to the moments method and some approaches to solve them are proposed in the
Section 4.. In the following, upper (lower) boldface symbols will be used for matrices
(column vectors), whereas lower symbols will represent scalar values. (.)H will represent
the hermitian transpose operator. We let Tr be the trace for square matrices, defined
by Tr(A) =

∑n

i=1 aii, where aii are the diagonal elements of the n × n matrix A. We
also let tr be the normalized trace, defined by tr(A) = 1

n
Tr(A).

2. Eigen-Inference Moment Methods

The moments method [3] is based on the relations between the moments of the different
matrices involved. For a given n×n random matrixA, the p-th moment of A is defined,
if it exists, as:

m
n,p
A

= E [tr(Ap)] =

∫

λpdρn(λ) (1)

where dρn(λ) = E
(

1
n

∑n

i=1 δ(λ− λi)
)

is the associated empirical mean measure, and λi

are the eigenvalues of A.

2.1 Asymptotic Case

The use of the moments approach for the derivation of the eigenvalue distribution of
random matrices dates back to the work of Wigner. Applied to single random matrix,
the moments approach is shown to be a useful method for computing the eigenvalue
distribution of classical known matrices, as semicircle law and Marchenko-Pastur law.
When more than one matrix is considered, the concept of asymptotic freeness [2] leaves
us to compute the eigenvalue distribution of sum and product of random matrices.

Definition 1. Let A and B be n× n hermitian random matrices and the functional ϕ(A) :=
limn→∞

1
n
[Tr (A)], we said that A and B are aymptotically free if whenever there exist poly-
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nomials pi and qi such that ϕ [pi(A)] = 0 for all i and ϕ [qj(B)] = 0 for all j then

ϕ [p1(A)q1(B)p2(A)q2(B) . . . ] = 0.

Given A,B n×n hermitian and asymptotically free random matrices such that their
eigenvalues distributions converge to some probability measure µA and µB, respectivly,
then the eigenvalue distributions of A+B and AB converge to a probability measure
which depends on µA and µB, called additive and multiplicative free convolution, and
denoted by µA � µB and µA � µB respectively.
The idea of additive and multiplicative free convolution stems from the fact that:

m
p
A+B

:= lim
n→∞

1

n
E [Tr ((A+B)p)] = f(m

(1)
A
, . . . , m

(p)
A
, m

(1)
B
, . . . , m

(p)
B
)

m
p
AB

:= lim
n→∞

1

n
[Tr ((AB)p)] = f(m

(1)
A
, . . . , m

(p)
A
, m

(1)
B
, . . . , m

(p)
B
)

which means that we can express the moments of A + B and the moments of AB

as a function of the moments of A and the moments of B. In other words, the joint
distribution of A+B and the joint distribution of AB depend only on the marginal
distributions of A and B. Hence, when, for n → ∞, the moment mn,p

A
converges almost

surely to an analytical expression m
p
A

that depends only on some specific parameters
of A (such as the distribution of its entries)1, one is able by recursion to express all the
moments of A with respect only to the moments of A+B and B, or AB and B. Since
the distribution of A + B (AB) depends only on the probability measure associated
with the moments of A and B, one can define on the set of probability measures the
operation of additive (multiplicative) free convolution.
Additive Free Deconvolution: The additive free deconvolution of a measure ρ by a
measure ν is (when it exists) the only measure µ such that ρ = µ � ν. In this case, µ
is denoted by µ = ρ� ν.
Multiplicative Free Deconvolution The multiplicative free deconvolution of a measure
ρ by a measure ν is (when it exists) the only measure µ such that ρ = µ � ν. In this
case, µ is denoted by µ = ρ � ν.
We give the definition of non-crossing partitions.

Definition 2. A partition π of {1, . . . , n} is non-crossing if whenever we have four numbers
1 ≤ i < k < j < l ≤ n such that i and j are in the same block, k and l are in the same
block, we also have that i, j, k, l belong to the same block. we denote by NC(n) the set of
non-crossing partition of {1, . . . , n}.

The computation of free deconvolution in the asymptotic setting, by the moments
method approach, is based on the moment-cumulant formula, which gives a relation
between the moments m

p
A

≡ mp
µA

and the free cumulants κ
p
A

≡ κp
µA

of a matrix A,
where µA is the associated measure. It turns out that the cumulants are quantities
much easier to compute, also thanks to the concept of non-crossing partitions . The
moment-cumulant formula says that

m
p
A
=

∑

π = {V1, . . . , Vk} ∈ NC(p)

k
∏

i=1

κ
|Vi|
A

, (2)

1Note that in the following, when speaking of moments of matrices, we refer to the moments of the associated
measure.
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where |Vi| is the cardinality of the block Vi. From (2) it follows that the first p cumulants
can be computed from the first p moments, and vice versa. The following characteriza-
tion enables to compute easily the additive free convolution using free cumulants.

Theorem 3. [2] Given A and B asymptotically free random matrices, µA � µB is the only
law such that for all p ≥ 1

κ
p
µA�µB

= κp
µA

+ κp
µB

(3)

Hence, the deconvolution µ(A+B) � µB of µA+B by µB is characterized by the fact
that for all p ≥ 1

κ
p
µA+B�µB

= κp
µA+B

− κp
µB
. (4)

The implementation of additive free deconvolution is based on the following steps: for
the two matrices (A+B) and B, we first compute the free cumulants, then, considering
the relation between the cumulants and the moments, we can obtain information about
the distribution of the eigenvalues of A.
The moments method, in the multiplicative case, is based on the relation between the
moments m

p
A
≡ mp

µA
and the coefficients s

p
A
≡ spµA

of the S-transform of the measure
associated to A. They can be deduced one from each other from the following relations
for all p ≥ 1

m1
A
s1
A
= 1, s

p
A
=

p+1
∑

k=1

sk
A
+

∑

p1, . . . , pk ≥ 1

p1 + · · · + pk = p + 1

m
p1
A
. . .m

pk
A
.

Hence, we can compute multiplicative free convolution by the following characterization.

Theorem 4. [2] Given A and B asymptotically free random matrices, µA � µB is the only
law such that:

SµA�µB
= SµA

SµB

The multiplicative free deconvolution µ(AB) � µB of µAB by µB is characterized by
the fact that for all p ≥ 1

s
p
µAB�µB

s1µB
= spµAB

−

p−1
∑

k=1

skµAB�µB
sp+1−k
µB

. (5)

In recent works, deconvolution, based on the moments method, has been analyzed
when n → ∞ for some particular matrices A and B, such as when A is a random
Vandermonde matrix and B is a deterministic diagonal matrix [6], or when A and B

are two independent random Vandermonde matrices [7]. The authors in [6] developed
analytical methods for finding moments of random Vandermonde matrices with entries
on the unit circle and provide explicit expressions for the moments of the Gram matrix
associated to the models considered. The explicit expressions found for the moments
are useful for performing deconvolution. In these cases the moments technique has
been shown to be very appealing and powerful in order to derive the exact asymptotic
moments of ”non free matrices”.
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2.2 Finite Case

In the finite setting (i.e., when the sizes of the matrix are finite), the moments method
intends to express in the additive case and in the multiplicative case

m
n,p
A+B

=
1

n
E [Tr ((A+B)p)] = f(m

(1)
A
, . . . , m

(p)
A
, m

(1)
B
, . . . , m

(p)
B
)

m
n,p
AB

=
1

n
E [Tr ((AB)p)] = f(m

(1)
A
, . . . , m

(p)
A
, m

(1)
B
, . . . , m

(p)
B
)

This means that we can express the moments of A + B (or AB) as a function of the
moments of A and the moments of B. Since the validity of the asymptotic assump-
tion is rarely met in practice, towards a more realistic scenario, we study the moments
method in the finite setting which provides tools to infer on some parameters of the
channel matrix within a finite window of observation. Focusing on the study of random
matrices in the finite case, the authors of [5] were able to derive the explicit series ex-
pansion of the eigenvalue distribution of various models, namely the case of non-central
Wishart distributions as well as one sided correlated zero mean Wishart distributions.
In particular, they proposed a general finite dimensional statistical inference framework
based on the moments method in the finite case, which takes a set of moments as input
and produces sets of moments as output with the dimensions of the matrices considered
finite. They focus on the finite Gaussian case and, even though freeness usually does
not hold for finite matrices, the moments method can still be used to propose algorith-
mic methods to compute these moments. The formulas of the moments presented in
their contributions have been generated by iterations through partitions and permuta-
tions and use concepts from combinatorics. Similar results related to complex Wishart
matrices are shown in [8], where exact formulas for moments and inverse moments of
any order are obtained through the use of symmetric group.
The first and simplest result concerns the moments of a product of a deterministic
matrix and a Wishart matrix. Let n,N be positive integers, X be n × N standard,
complex, Gaussian2 matrix and D a (deterministic) n × n matrix. Denoting the mo-
ments Dp = tr (Dp) and Mp = E

[

tr
((

D 1
N
XXH

)p)]

for any positive integer p, Theorem
1 in [5] allows us to express the moments Mp in terms of the moments Dp. In particular,
the first fourth moments can be written as

M1 = D1

M2 = D2 + cD2
1

M3 =

(

1 +
1

N2

)

D3 + 3cD2D1 + c2D3
1

where c = n
N
. By a simple recursion, we can express Dp from Mp. For the first three

moments these recursions become

D1 = M1

D2 = M2 − cM2
1

D3 =
(

M3 − 3c(M2 − cM2
1 )M1 + c2M3

1

)

(

1 +
1

N2

)−1

.

2A standard complex Gaussian matrixX has i.i.d. complex Gaussian entries with zero mean and unit
variance (in particular, the real and imaginary parts of theentries are independent, each with zero mean and
variance1/2).
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Considering the sum of a D deterministic n ×N matrix and X a n ×N standard,
complex, Gaussian matrix, in accordance with the Theorem 2 in [5], for any positive
integer p the moments Mp = E

[

tr
((

1
N
(D+X)(D+X)H

)p)]

can be expressed in terms

of the moments Dp = tr
((

1
N
DDH

)p)

as the following formulas:

M1 = D1 + 1

M2 = D2 + (2 + 2c)D1 + (1 + c)

M3 = D3 + (3 + 3c)D2 + 3cD2
1 +

(

3 + 9c+ 3c2 +
3

N2

)

D1 +

(

1 + 3c+ c2 +
1

N2

)

where we have written only the first two moments. In this case also, by a simple re-
cursion, one can express Dp from Mp. It is clear how the operation of deconvolution
can be viewed as operating on the moments: explicit expression for the moments of
the Gram matrices associated to our models (sum or product of a deterministic ma-
trix and a complex standard Gaussian matrix) are found, and are expressed in terms
of the moments of the matrices involved. Hence, deconvolution means to express the
moments, in this case of the deterministic matrices, in function of the moments of the
Gram matrices.
Similar results are found when the Gaussian matrices are assumed to be square and
selfadjoint . The implementation of the results is also able to generate the moments of
many types of combinations of independent Gaussian and Wishart random matrices.

3. Application
3.1 Power estimation

We consider a multi-user MIMO system where the received signal can be expressed by

yi = WP
1
2 si + σni (6)

where W, P, si, and ni are respectively the N ×K channel gain matrix, the K ×K

diagonal power matrix due to the different distances from which the users emit, the
K×1 matrix of signals and the N×1 matrix representing the noise with variance σ. In
particular, W, si,ni are independent standard, complex, Gaussian matrices and vectors.
We are interested in estimating the power, with which the users send information, from
M observations (during which the channel gain matrix stays constant) of the vector yi.
Considering the 2× 2-matrix

P
1
2 =

(

1.5 0
0 0.8

)

(7)

and applying additive deconvolution first, and then multiplicative deconvolution twice
(each application takes care of one Gaussian matrix), we can estimate the eigenvalues of
P when we have an increasing number L of observations of the matrixY = [y1, . . . ,yM ],
representing the signals received (we average across several block fading channels).
Hence, we estimate the moments of the matrix P based only on the moments of the
matrix YYH. Knowing the moments of P, we can estimate the eigenvalues using
Newton-Girard formulas. When L increases, we get a prediction of the eigenvalues
which is closer to the true eigenvalues of P. Figure 1(a) illustrates the estimation of
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eigenvalues up to L = 1000 observations and Figure 1(b) shows that the difference
between the estimated eigenvalues of the power and the actual ones tends to zero when
the number L of observations increses. The actual powers are 2.25 and 0.64, the variance
σ of the noise is assumed equal to 0.1.
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(a) Estimation of the powers for the model
(6), where the numberL of observations is in-
creased.
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(b) Difference between the estimated eigen-
values of the power and the actual ones for the
model (6).

4. Open Problems

From the previous section it is clear that the framework of deconvolution and, in par-
ticular, the moments play a key role in the study of cognitive wireless communication
within a finite window of observation. In order to obtain more precise estimations, it
is important to continue to develop increasingly sophisticated tools. In this Section
we present still open problems related to the moments method approach. In Section
2.1, we have seen that under the assumption of asymptotic freeness the asymptotic
moments of a product (or sum) of two random matrices can be expressed only with the
asymptotic moments of each matrix. In the finite setting (Section2.2), explicit expres-
sions of the moments can be found when the matrices considered are Gaussian, but we
would like to be able to do the same when we consider matrices with a more involved
structure than the Gaussian ones, such as Vandermonde and Toeplitz matrices. We are
also interested in analyzing under which general setting and hypothesis can the joint
eigenvalue distribution be expressed by its marginals, which means to find what are the
minimum conditions to have separation of the moments. Another interesting problem
consists in considering general function g of the matrices A and B and in finding as
follows 1

n
E [Tr (g (A,B)p)] = h(m

(1)
A
, . . . , m

(p)
A
, m

(1)
B
, . . . , m

(p)
B
) how to express the mo-

ments of g (A,B) in terms of the moments of A and the moments of B. This enables
us to consider more involved models than basic sum or product, and consequently more
sophisticated wireless systems.
The formulas of the moments, in the finite setting, presented in [5] have been generated
by traversing sets of partitions, however there may exist expressions for the same for-
mulas which do not involve combinatorial concepts. The case presented in the work of
G. Tucci [9], for instance, gives a closed form expression when the product of a positive
definite matrix and a Wishart matrix is considered, i.e. E

[

Tr
((

XHAX
)p)]

where A

is a n × n positive definite matrix and X is a n × n complex standard Gaussian ma-
trix. In [9] a more general result is given for every continous and measurable function
f : R+ → R such that

∫∞

0
e−αt|f(t)|2dt < ∞; explicit expression for the average like
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E
[

Tr
(

f
(

XHAX
))]

are found.
We are interested in finding explicit expression for the averages of functionals of random
matrices as E

[

Tr
(

f
(

(D+X)(D+X)H
))]

, where D is a n×n determistic matrix, X is
n×n complex standard Gaussian matrix, and the function f is continous bounded. As
in [9], we want to attack the problem using tools from Representation Theory, such as
the Schur polynomials, which are symmetric polynomials in the eigenvalues of the ma-
trix argument. The difficulty linked to this approach is due to the fact that there is not
yet an explicit expression for such polynomials computed in the sum of two matrices.
Finding an explicit expression for this formula allows us to provide a new estimation of
the ergodic capacity for the MIMO system with Ricean channel.

5. Conclusion

In this paper we have given a state of the art on the eigenvalue inference through the
moments method approach. We have analyzed the use of moments method approach
to compute the operation of deconvolution in the asymptotic setting and in the finite
setting. Simulations are presented in order to show how the moments method can be
applied in practice. Still open problems linked to the moments method in the finite
setting are presented, and some approaches to solve them are proposed.
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