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ON A CHARACTERIZATION OF FINITE BLASCHKE
PRODUCTS

EMMANUEL FRICAIN, JAVAD MASHREGHI

ABSTRACT. We study the convergence of a sequence of finite Blaschke products
of a fix order toward a rotation. This would enable us to get a better picture of a
characterization theorem for finite Blaschke products.

1. INTRODUCTION

Let (zx)1<k<n be a finite sequence in the open unit disc . Then the rational

function
n
2k — %
B(Z) _vgl—ékz’
where v is a unimodular constant, is called a finite Blaschke product of order n for
D [§]. There are various results characterizing these functions. For example, one of
the oldest ones is due to Fatou.

Theorem A (Fatou [[]). Let f be analytic in the open unit disc D and suppose that
lim |f(2)] = 1.
|z]—1

Then f is a finite Blaschke product.

For an analytic function f : €23 — {25, the number of solutions of the equation
f(z) =w, (z € Q, w e Qy),

counting multiplicities, is called the valence of f at w and is denoted by vg(w). It
is well-known that a finite Blaschke product of order n has the constant valence n
for each w € . But, this property in fact characterizes finite Blaschke products of
order n.
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Theorem B (Fatou B, B, @], Radé [{]). Let f: D — D be an analytic function of
constant valence n > 1. Then f is a finite Blaschke products of order n.

Our main concern in this paper is the following result of Heins. We remind that
a conformal automorphism of D has the general form

a—z

T, = ,
77<Z) Y 1 — az

where @ € D and v € T. Instead of 7}, ; we simply write 7;,. The collection of all
such elements is denoted by Aut(DD). The special automorphism

py: D — D
z — vz

is called a rotation. Note that p, = Tp .

Let us remind two further notions. In the following, when we say that a sequence
of functions on D is convergent, we mean that it converges uniformly on compact
subsets of D. If f: D — C and (ag)g>1 C D, with limg_,o |ax| = 1, is such that
lim o f(ax) = L, then L is called an asymptotic value of f.

Theorem C (Heins [f]). Let f : D — D be an analytic function. Then the
following assertions are equivalent:

(i) [ is a finite Blaschke product of order > 1;
(11) if the sequence of automorphisms Ty, -, k > 1, tends to a constant of modulus
one, and if g = Ty, © foTa 15 convergent, then gy tends to a rotation;
(11i) we have

kYK

1— 2 /
T (ETIY
el 1= |f(2)]
(iv) f has no asymptotic values in D and the set {z € D : f'(z) = 0} is finite.

Our contribution is to further clarify the item (i) above in which it is assumed
that the limits of two sequences of analytic functions exist. No doubt the existence
of these limits depend on the parameters a;, € D and v, € T, k > 1.

It is easy to see that (T, -, )k>1 tends to a unimodular constant v, if and only if

(1.1) lim ag v, = 7o.
k—o0

In the first place, we show that if B is a finite Blaschke product of order > 1 and
(L.T) holds, then

B'(7) 5
|B'(70)|

(TB(%%),% oBo Takv'Yk )(Z) —
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as k — +o0o and the convergence is uniform on compact subsets of D. See The-
orem B.3. Therefore, the sequence Tp(q,,) © B © Ta, ., which was considered in
Theorem C, is convergent to a rotation if and only if 7, is convergent. We refer to
the example given at the end to see that this condition cannot be relaxed. In this
special situation, if ap — 79, as k — +o0, then

B'(7) 5

1B'(v0)]

uniformly on compact subsets of ). The above observations enable us to rewrite
Theorem C in the following form.

(TB(%) oBo Tak )(Z) —

Theorem D. Let f : D — D be an analytic function. Then the following assertions
are equivalent:
(i) f is a finite Blaschke product of order > 1;
(i) if v ax —> Y0 € T, then Ty 5 © f © Tay, . tends to a rotation;
(iii) if ax — o € T, then Ty, o f o Ty, tends to a rotation;
(iv) the equality
AP 1)

e !

holds;
(v) f has no asymptotic values in D and the set {z € D : f'(z) = 0} is finite;
(vi) f has a constant valence on D.
Moreover, if the above conditions hold, then the rotation promised in (ii) and (iii)

is py, where v = f'(70)/1.f'(70)|-

We will just study the implication (i) == (#7) in Theorem B.2. That (ii) = (iii)
is trivial. The implication (iii) = (iv) is an easy consequence of the formula

(1 — Jax|*) f'(ax)
1—|f(ar)P?
and that, by assumption, the latter tends to a unimodular constant. The more
delicate steps (iv) = (v) = (vi) and (vi) = (i) are already taken respectively
by Heins and Fatou-Radé.
In the course of proof, we also show that, for a finite Blaschke product B, the
zeros of B’ which are inside D are in the hyperbolic convex hull of the zeros of B.

= (Tf(ak) © f © Tak ),(0)7

2. HYPERBOLIC CONVEX HULL
The relation B(z) B(1/z) = 1 shows that
B'(z) =0<«<= B'(1/z) = 0.
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Hence, to study the singular points of B, it is enough to consider the zeros of B’
which are inside the unit disc D. Note that B has no singular points on T, according
to (B.J) for instance. Moreover if B has n zero in D, then it is easy to see that B’
has n — 1 zeros in D (counting with multiplicities).

There are various results about the relations between the zeros of a polynomial
P and the zeros of its derivatives. The eldest goes back to Gauss-Lucas [[]] which
says that the zeros of P’ are in the convex hull of the zeros of P. Recently, Cassier—
Chalendar [[[] established a similar result for Blaschke products: the zeros of B’ in
D are in the convex hull of the zeros of B and {0}. We show that the zeros of B’ are
in the hyperbolic convex hull of the zeros of B. We do not need to enlarge the zero
sets of B by adding {0}. Moreover, the hyperbolic convex hull of a set is a subset of
the Euclidean convex hull of the set and {0}. In particular, we improve the result
obtained in [fI].

Let 21,29 € D. Then the hyperbolic line between z; and 25 is given by

0,1 — D
_ R1—z2
¢ ) 21 1-Z122
| 1—7 A2y
1 1—Z122

This representation immediately implies that the three distinct points 21, 29, 23 € D
are on the same hyperbolic line if and only if

Z1 — 29 Z1 — 23
2.1 T — ——= ] eR.
( ) <1—212’2>/<1—§123)

Furthermore, we see that the hyperbolic lines in D can be parameterized by

a—z

=1, te|—1,1],
1—az [ ]
with v € T and a € D.

Adopting the classical definition from the Euclidean geometry, we say that a set
A C D is hyperbolically convex if
Z1—Z2

1-Zz1292

— 1= _c A
= 21—%

1 <1 1-Z122 t

Z J—
zl,zQEA:>VtE[O,1], -

The hyperbolic convex hull of a set A is the smallest hyperbolic convex set which
contains A. This is clearly the intersection of all hyperbolic convex sets that contain
A. Of course, if we need the closed hyperbolic convex hull, we must consider the
intersection of all closed hyperbolic convex sets that contain A.

In the proof of the following theorem, we need at least two elementary properties
of the automorphism

Tu(2) = , (a,z € D).
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Firstly, T, o T, = id. Secondly, if a € (—1,1), then T, maps D_ =D N {z: 3z < 0}
into D, =D N{z:3z > 0}. In the same token, we define D, =D N {z: Iz > 0}.

Theorem 2.1. Let B be a finite Blaschke product. Then the zeros of B’ which are
inside D are in the hyperbolic convex hull of the zeros of B.

Proof. First suppose that all zeros of B are in D,. Then, taking the logarithmic
derivative of B, we obtain

B'(z) _ zn: 1 — [z/?
B(z) = (1-z2)(z— )
B’(z)) - ( 1— |z )
R = R .
(56 2\ Tae
In the light of last expression, put
P(z) =

where a € D is fixed. We need to obtain the image of D_ under ®. To do so, we
study the image of the boundary of dD_ under ®. On the lower semicircle

T ={e’: -7 <60<0}

which implies

1— la|?
(1—az)(z—a)

we have
1—|a? _1—la®
(1 —ae)(ei? —a) |e? — al?
Therefore, T_ is mapped to an arc in C,. Moreover, on the interval ¢ € (—1,1), we
have

@(eie) —

B(1) = 1_—|a\2 :1—|a\2x t—_d :1—\a|2
(I—at)(t—a) |t—al> 1—at |t—al?
Thus (—1,1) is also mapped to an arc in Cy = {z € C: Iz > 0}. In short, 9D_
is mapped to a closed arc in C,. Therefore, we deduce that ® maps D_ into C,.
Note that 0 is not contained in ®(ID_). This fact implies that B’ does not have any
zeros in D_.
By continuity, we can say that if all zeros of B are in D, , then so does all the
zeros of B’ which are in the disc.
A general automorphism of D has the form T, ., = ~7,, for some v € T and
a €D. Let f = Bo T,,. Then f is also a finite Blaschke product with zeros
To(Y21), Ta(V22), -, Ta(72,). Moreover, if we denote the zeros of B’ in D by
wy, W, . .., Wy_1, the zeros of fin D would be T, (ywy), To(Fwa), ..., To(F wn_1).

Ti(a).
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Considering the boundary curves of the hyperbolic convex hull of z,..., z,, if we
choose a and ~ such that

T.(y21), Tu(¥ 22), - - ., Tu(7 2,) € Dy,
then the preceding observation shows that
Ta(ﬁ w1)7 Ta(ﬁ w2)7 s 7Ta</7 wn71> S EJr'

Therefore, we see that if the zeros of B are on one side of the hyperbolic line

a—z

—t tel-1,1
l—az =11

then the zeros of B’ are also on the same side. The intersection of all such lines

gives the hyperbolic convex hull of the zeros of B. O

Remark: The argument above also works for infinite Blaschke products.
Theorem R.7] is sharp in the sense which is crystalized by the following examples.

Let a,b € D and put
a—z\" [/ b—z\"
B(z) = — )
(2) <1—dz) (1—bz)

Clearly B’ has m + n — 1 zeros in D which are a, m — 1 times, and b, n — 1 times,
and the last one c is given by the equation

) () () ()

Rewrite this equation as

(=) (=) - (=) ()

which, by (B.1)), reveals that a, b, ¢ are on the same hyperbolic line. Moreover, as m
and n are any arbitrary positive integers, the point ¢ traverses a dense subset of the
hyperbolic line segment between a and b.

With more delicate calculations, we can consider examples of the form

o= (1=5) () (=)

where a,b,c € D and m,n,p > 1, and observe that the zeros of B’, for different
values of m,n,p, form a dense subset of the hyperbolic convex hull of a, b, c.
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3. UNIFORM CONVERGENCE ON COMPACT SETS

The following result is not stated in its general form. We are content with this
version which is enough to obtain our main result that comes afterward.

Lemma 3.1. Let

z Zk — X%
B(z) = —_—
(=717 o
k=1
and fix any M such that
max{ |z1|, |z2|, ..., |zal} < M < 1.

Then there is a constant § = 0(M, B) > 0 such that, for any two distinct points z,w
in the annulus {z : M < |z| < 1/M}, we have

|z —w| < § = B(z) # B(w).
Proof. Suppose this is not true. Then, for each k£ > 1, there are a, and b, such that
M < |ak|, |bk| < l/M, ag 7é bk, |ak —bk| < l/k’,

but B(ax) = B(bg). Since the closed annulus is compact, (ag)r>1 has a convergent
subsequence. Without loss of generality, we may assume that ay — a for some a
with M < |a|] < 1/M. This implies by — a. Therefore, we would have

B'(a) = lim Blax) = B(by)
k—oo ag — bk

=0.

This is a contradiction. as a matter of fact, by Theorem P.1], the zeros of B’ in D
are in the hyperbolic convex hull of the zeros of B, and those outside I are the
reflection of the zeros inside with respect to T. In other words, B’ has no zeros on
the annulus. 0J

There is another way to arrive at a weaker version of Lemma B.1], which will also
suffice for us. On T, the nice formula

n

1 — |z
(3.1) |B'(e"”)] =
Z|

610 _ Zk|2

holds. Hence, at least, B’(e?) # 0 for all ¢ € T. Thus, by continuity, there is an
annulus on which B’ has no zeros, and as we explained above, for such a region ¢
exists.

For the sake of completeness, we remind that if a; € D, and v, 79 € T, are such
that

axYe — 70, as k —» +OO,
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then the simple estimation

_ ) _
Yo — Vk o - : < o aWk|, as k — 400,
1—az 1—|z|
reveals that
(3'2) Tak,% (Z) — Y

uniformly on compact subsets of .

Theorem 3.2. Let B be any finite Blaschke product of order > 1. Let ar, € D and
Yk, Yo € T, be such that

lim agye = 0.
k—o0
Then
TB(aym) 3, © BoTy
where v = B'(v0)/|B'(70)|. In other words,

Yk ? Prys

Bl |
B0)

as k — 400 and the convergence is uniform on compact subsets of D.

(TB(%%),% oBo Takﬁk )(Z) —

Proof. Suppose that B has order n. Then, for each fixed k, the function
(3.3) T = TBagve), 56 © B © Ty e
is also a finite Blaschke product of order n. Its zeros, say
ks Zh2, - Pk
are the solutions of the equation
B(Tak,vk(z) ) = Blaxyr)-

Certainly z = 0 is a solution. We need to show that the other zeros accumulate to
some points on T.
Denote the solutions of B(w) = B(axvi) by

We 1, Wk2, -y Wk,
and put wi1 = agy,. As K — oo, we have

Wi | — 1, (1<j<n),
and, by Lemma B.1],
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By the transformation z = T, 1 (w), the first solution is mapped to the origin. But

Ak, Yk
the other solutions, thanks to the positive distance between them, are mapped to

points close to T. More precisely, we have

(3.4) hm |2k, = hm T, L, (we )| =1, (2<j<n).

Write
Fkj TR
=Nz
= Mk H 1z 2

where 7, € T. This formula shows

£(0) = [ ] 2
=2
and (B.J) reveals that
1 — Japyl?

= B’ .
1 — |B(ary)|? (@)

Hence, we obtain the representation
fulz) = 1-— |ak%‘2 ak% H H |Zk,j| Zkj— R .
1 — [Blaxyi)]? > | iw\ iy ki L= 22
By (B.2) and (B.4),

H H|le‘| Zk,ji—z 1,
AL /w| s kg L= 2

2

as k — oo. It is also known that

lim ———— = |B’ .
zL"{O 1-—- |Z|2 | (,YO)|

We are done. O
Corollary 3.3. Let B be a finite Blaschke product. Let ap, € D and v9 € T be such

that

lim a; = 0.
k—o0

Then
TB(ak) oBo Tak — Py (k? — +OO),

where v = B'(70)/|B'(70)]-
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A simple example shows that in Theorem B.3, Ts(4,+,), 5, cannot be replaced by
TB(ayy,)- In other words, the rotation by 7 is needed to obtain the convergence. To
see this fact, let a; be any positive sequence on [0, 1) tending to 1. Let v, = (—1)¥,
and put B(z) = 2. Then

(TB(G%V%) °oBo Ta2k7’Y2k )(Z) — z
while
(TB(a2k+172k+1) oBo T02k+17’Y2k+1 )(Z) — —Z.
Hence, T(4,~,) © B © Ty, ~, is not convergent. Of course, either by Theorem or

by direct verification,

(TB(amk)ﬂk oBo Takv'“/k )<z> — %,
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