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Abstract—In this paper, we consider a network composed of
several interfering transmitter-receiver pairs where all the termi-
nals are equipped with multiple antennas. The problem of finding
the precoding matrices minimizing the outage probabilities is
analyzed using a game theoretical framework under the assump-
tion of slow fading links and non-cooperative transmissions. An
analytical solution of this game is very difficult to be found in
general. Even in the most simple case of single-user, the problem
remains an open issue. However, the existence of a pure-strategy
Nash equilibrium solution is proven in the extreme SNR regimes.
Furthermore, we exploit a simple reinforcement algorithm and
show that, based only on the knowledge of one ACK/NACK bit,
the users may converge to an Nash equilibrium solution of the
game under investigation.

I. INTRODUCTION

Game theory appears to be the unifying tool for studying
resource allocations problems in interference channels. The
wireless environment and the mutual interference between
the simultaneous transmissions gives rise to the competition
for common resources. This competition leads to strategic
interaction amongst the users which is modeled as a non-
cooperative game. The non-cooperative resource allocation
game in multiple-input multiple-output (MIMO) interference
channel (IC) has been extensively studied in the literature. The
players, the transmitter-receiver pairs, are assumed to choose
their best precoding matrices to maximize their Shannon
achievable rates. In [1], [2], [3], [4], the particular case of
parallel IC and, recently, in [5], the general MIMO IC was
studied. In [5], the authors give sufficient conditions that
ensure both the uniqueness of the NE and convergence of
asynchronous iterative water-filling algorithms. In the vast
majority of the papers treating the IC, the static channel model
is assumed, i.e. the channel gains are deterministic and static
over the whole transmission duration.

In this paper, we study a similar power allocation game
in the MIMO IC. The players are the transmitter-receiver
pairs. The main difference with the aforementioned works
consists in the statistics of the channels. Here, we assume
the channel gains to be slow fading, i.e. the realizations of
random variables, known only at the receivers and static over
the transmission duration. This difference implies important
changes in the structure of the game under study. First of all,
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the Shannon achievable rates are no longer suited to measure
the performance of the transmissions (they are strictly equal
to zero). Therefore we assume that the users chose their
best precoding matrices to minimize their individual outage
probabilities [6]. The problem is very difficult in general.
The main reason is that even in the single-user MIMO slow
fading case and assuming i.i.d. standard Gaussian entries of
the channel matrix gain the problem of finding the optimal
transmit precoding matrix is an open issue. The result was
conjectured by Telatar in [7] and was solved in some particular
cases: i) multiple-input single-output (MISO) channel in [8];
ii) two-input single-output (TI1SO) channel in [9]; iii)) MIMO
channel assuming the high and low SNR regimes in [8].
Telatar’s conjecture states that the optimal precoding matrix
consists in uniformly spread all the available power over a
subset of antennas. The number of active antennas depends
on the system parameters (i.e., target rate, noise variance,
available transmit power).

Second, motivated by this conjecture, we study the discrete
game where the set of possible covariance matrices is reduced
to the set of uniformly spreading the power over a subset
of antennas. Because of the difficulties encountered when
trying to find ordering relations between the users’ payoffs,
the existence of a pure-strategy Nash equilibrium stable solu-
tion [10] in the general case will be illustrated via numerical
simulations alone. However, we exploit the results in [8]
and prove mathematically the existence of at least one pure-
strategy NE in the high or low SNR regimes at the receivers.
The most important contribution of this paper is the study
of a simple reinforcement learning technique, similar to [11],
that allows the users to converges to the pure-strategy NE of
the discrete game. Based only on the knowledge of their own
action spaces and a single ACK/NACK bit at each iteration, the
users apply simple updating rules completely ignorant of the
structure of the game (i.e., other players, other players’ actions
and payoffs, their own payoff functions). Provided a pure-
strategy NE exists, the algorithm converges to this optimal
solution minimizing the individual outage probabilities of the
users.

This paper is structured as follows. In Sec. Il, we introduce
the model and basic assumptions. The non-cooperative power



allocation game where the users maximize their own success
probabilities is defined in Sec. Il and the existence of the Nash
equilibrium solution is proven in the extreme SNR regimes
(see Subsec. I11-A). In Sec. IV, we propose a simple reinforce-
ment learning algorithm to converge to the Nash equilibrium
in a distributed manner, having only the knowledge of one
ACK/NACK bit. The single-user case is analyzed thoroughly
in Subsec. IV-B. We illustrate the convergence results and the
trade-off between the convergence time and the convergence to
the optimum via numerical simulations in Sec. V. We conclude
with several remarks and open issues.

Il. SYSTEM MODEL

We consider an interference channel (IC) composed of K
transmitter-receiver pairs. The transmitters are assumed to send
their private messages to the intended receivers. Transmitter
ke K= {1,...,K} is equipped with n; ; antennas whereas
the receiver k has n,; antennas. The slow fading channel
model is investigated where only the receivers are assumed
to have perfect channel state information. The equivalent
baseband signals write as:

Y, = Y HuX,+Z,
=1

where, for the sake of simplicity, the time index was ignored.
The vector X, represents the n, ,-dimensional column vector
of symbols transmitted by user k, Hy, € CnrrXmte jg
the channel matrix (stationary and ergodic process) between
transmitter ¢ and the receiver k and Z,, is the n,. ;-dimensional
complex white Gaussian noise distributed as N(0, 0715, ),
for all k,¢ € K. The channel matrices H,; are assumed to
contain i.i.d. standard complex Gaussian random entries.

In this context, the mutual information is a random variable,
varying from block to block, and thus it is not possible
(in general) to guarantee that it is always above a certain
threshold. In this case, the achievable transmit rate in the
sense of Shannon is zero. A suited performance metric is
the probability of an outage for a fixed transmission rate [6].
This metric allows one to quantify the probability that the rate
target is not reached by using a good channel coding scheme
and is defined as:

Pous, ik (Qk, Q—k, Ri)

where V_i denotes the super-vector
Ve s Vieer, Viey1, ..., V) for any quantity V' and
1 denotes the instantaneous mutual information. The matrix
Qi = E[X,X¥] denotes the input precoding matrix of user
k in the convex and compact set of positive definite matrices:

A ={QeCr+>mk . Q =0, Tr(Q) < Pr}. ()

Assuming that the interference is treated as noise at the
receiver level, the instantaneous mutual information of user
k writes as:

e(Qr, Qe Hie, H ) = 0(Qu, Qg Hir, H_ 1) —

Me(Q—r, H k),
2

= Pr [ (Qr, Qg Hir, H_p 1) < Ry,

K
logy |In,. ,, + kaszQzHﬂ

=1

0(Qk, Qi Hiw, H ) =

e (Q—k, H ki) = log, |In,, —&—kaHMQ[Hﬂ

04k
©)

where pj, = .

At this pomt an important observation has to be made.
Having assumed that channels are i.i.d. complex Gaussian, the
search for the optimal precoding matrices in Ay is reduced
to its subset of diagonal matrices. The proof is based on
Lemma 5 in [7] stating that the distribution of the channel
matrix does not change when multiplied to the right and/or
left by unitary matrices. Therefore, the search for the optimal
precoding matrices is reduced to solving the power allocation
problem over the available eigen-modes.

I11. NON-COOPERATIVE POWER ALLOCATION GAME

In this section, we describe the non-cooperative
power allocation game defined by the triplet
G = (K.{Di}pex{ur}rex). The game components

are: i) the players (in the set K): the transmitter-receiver pairs
assumed to be autonomous non-cooperative; ii) the players
strategies consisting of their power allocation policies
d, € Dy; iii) the players payoff functions: the success
probabilities u(d,d_,) = 1 — Pour(Dy),D_g, Ri)?
Notice that the optimal precoding matrix and the optimal
success probability of each user will depend implicitly on
both target rates R; and R.. In this paper, we assume that
the action set of user k is a simple discrete version of Ajy:

'Dk_{ﬂe iee(i)—f}

é - 1=1 .
4

D, represents the set of power allocation vectors that consists

in allocating uniform power over only a subset of ¢ eigen-

modes. The choice of these sets is motivated by several

reasons:

Ce{1,...,m}e, € 10,1},

o As argued in the previous section, the search for the
optimal precoding matrices in A4y, is reduced to its subset
of diagonal matrices.

« It can be proven that, saturating the available power, i.e.
Tr(Qg) = Py, is the dominant strategy for any user k.

« For the single-user case, Telatar [7] conjectured that the
optimal covariance matrix is to uniformly allocate the
power on a subset of antennas.

Let us index the elements of D, ie., Dxg =
{d\V, ..., d"™)} with m, = Card(Dy) (i.e., the cardinal
of Dy). We denote by A(Dy) the set of mixed-actions (i.e.,
discrete probability measures over D;) of user k. Thus,
P, € A(Dy) denotes a mixed-strategy for user k and pg;,

represents the probability of choosing the allocation vector
d(7k

Iwe will use the notation D, £ diag(d,) throughout the rest of the
paper.



A natural solution concept in non-cooperative games is the
Nash equilibrium (i.e. a strategy profile from which no user
can gain by unilateral deviation, see [12] [13] for a detailed
discussion). We know from [10] that at least one mixed-
strategy Nash equilibrium exists in any discrete finite game.
However, the existence of a pure-strategy Nash equilibrium
is not always guaranteed and it depends on the values of the
payoffs and the ordering relations between them. Establishing
these relations in general is a very difficult problem since
closed-form expressions of the outage probability are not
yet available. Notice that, for the particular case where the
transmitters are equipped with single antennas (i.e., n; ; = 1),
the problem is trivial since the action sets reduce to singletons.
This means that every user is allowed to transmit on the only
antenna available. In what the MISO case is concerned, i.e.
ny = 1, the solution is far from being trivial and is left as
an useful extension of this paper. The idea is to exploit the
exact solution given for the single-user case in [8].

A. Extreme SNR regimes

In what follows, we will investigate the extreme SNR
particular cases, i.e., pp — 0 or pr — +oo and prove that
in these cases there is at least one NE.

Theorem 1: If, for all & € K, we have either p, — 0 or
pr — +o0o, then the game G has at least a pure-strategy Nash
equilibrium.

In the low SNR regime, pr — 0, we prove in Appendix A
that, regardless of the strategy of the other user, beam-forming
(BF) is the optimal strategy for user k, i.e., QEF € {Fkgl}
is a dominating strategy for user k. On the other hand, in
the high SNR regime, a dominant strategy for user & is the
uniform power allocation policy (UPA) over all the antennas
dyPA = L For exemple, if K = 2, we have four

- kgnt I’
different sntuatlons i) p1 — 0 and po — 0, then (c_l]fF,c_lQBF)
is NE; ii) p1 — +oo and py — 0, then (dVF4 d5%) is NE;
iii) p1 — 0 and py — oo, then (d5F, dVPA) i NE; iv)
p1 — 400 and py — 400, then (@Y, dJF*) is a NE.

IV. LEARNING ALGORITHMS IN GAMES

In this section, we discuss a class of iterative algorithms
that converge to a certain desirable state (e.g., the equilibrium
points of the power allocation game described previously
or a certain global optimum). The users are not assumed
to be rational devices but simple automata that know only
their own action sets. They start at a completely naive state
choosing randomly their action (e.g., following the uniform
distribution over their own action sets for example). After the
play, each user obtains a certain feedback from the nature
(e.g., the realization of a random variable, the value of its
own instantaneous payoff).

We assume that the only feedback that user k € IC receives
is an ACK/NACK signal. It receives the realization of the fol-
lowing random variable Sy = 0 if ug (D, D_g, Hig, Hox) <
Ry, otherwise Sp = 1. If an outage has occurred at time
t the receiver feedbacks sf] = 0 to the transmitter, oth-

erwise it sends sf] = 1. Notice that the random variable

Sy is a Bernoulli distributed with parameter ¢, = 1 —
Pout,k(Dg, D_, Ry) such that its expected value is equal to
1 —Pout,k(Dy, D_k, Ri). Thus if the instantaneous payoff is
sg] then the expected payoff of user k is exactly the success
probability 1 — Pout,k(Dka D_g, Rk).

Based only on this value, SE:], each user applies a simple
updating rule over its own probability distribution or mixed
strategy. It turns out that in the long run, the updating rules
converge to some desirable system states (i.e., the NE of the
game G). Note that the rationality assumption is no longer
needed. The transmitters don’t even need to know the structure
of the game or even that they play a game. The price to pay
will be reflected in slower convergence time.

A. A reinforcement learning algorithm

Here, we consider a stochastic learning algorithm similarly
to [11]. At step n > 0 of the iterative process, User k
randomly chooses a certain action d[ nl ¢ Dy, based on the
probability distribution pk ~U from the previous iteration. As
a consequence, it obtains the realization of a random variable,
which is, in our case, s/ = s, (di™, d"]). Based on this
value, Player k updates its own probability distribution as
follows:

n n— 1 n— 1

+ ’7[71]85@”]]1 (QEJL]:Q,?’“)) ) (5)
where 0 < v < 1 is the quantization or learning step and
pL ") represents the probability that user k chooses action d(“)
at |terat|on n. We denote by pl™ the super-vector containing
the mixed strategies of all users.

Using the results from the stochastic approximation theory
(see [14], Chapter 8 in [15], Chapter 2 in [16]), the sequence
pl™ can be approximated in the asymptotic regime (n — +o0)
with the solution of the deterministic ordinary differential
equation (ODE):

mp

dpg;
Tjk = Drje Y Prig [Pz (p_,) —

ip=1

B0l (6)

where

Zuk (d(Jk (i- k)) thf

04k

However, these convergence results are proven in a proba-
bilistic manner: i) for constant step-size v/ = v — 0 the
convergence is proven in distribution (see Chapter 8 in [15]);
ii) for diminishing step-size " verifying certain conditions
(see Chapter 2 [16]), the convergence is proven almost surely.

This means that, in order to study the stochastic process pg "]
in the asymptotic regime, we can focus on the study of the
deterministic ODE that captures its average behavior. Notice
that the ODE (6) is similarly to the replicator dynamics. The
mixed and pure-strategy NE are rest points of this dynamics.
However, all the pure-strategy profiles, even those which are
not NE are also rest points.

hk]k



Notice that this ODE is just an approximation that allows
us to explain the asymptotic behaviour of the discrete process
given in (5). One main difference is that only pure strategies
can be stationary points of the discrete process, while this is
not generally true in the continuous-time dynamics given in

(6).
B. The single-user particular case

An interesting particular case that can be solved analyt-
ically and thus allowing us to gain insight on the general
problem is the single-user case. The game is reduced to an
optimization problem where, let’s say, user 1 has to choose
his best precoding matrix to maximize his success probability
u1(dy) = 1— Pout(D1, R1). One nice property of the discrete
finite (d, € D) optimization problem is that there always
exists a solution:

b o

E:Zaigi’ VjieSy,:a; >0, Zaizl
€Sy €Sy
()

the convex set of mixed-strategy solutions where e, €
{0,1}™ corresponds to the canonical vector taking value one
on the i— th position.

The updating rule is identical to (5). The only difference
consists in the random payoff which depends only on d, 3[1”] =
$1 (d[ln] which is equal to zero if an outage has occurred, i.e.,

log, ]In,‘y1 + lelDlHﬁ] < Ry or equal to one otherwise.
The deterministic mean ODE in (6) becomes:

d(i)
e{?}aﬁnl U1(_1 )

Sp—{je{l,...,ml}‘anrg‘

the set of pure-strategy solutions and

Su = {E € A(Dy)

dpl,‘ j — i
TJ =Dp1j lul(d?)) - Z;piul(c_ii H, C))
for all j € {1,...,m1}. In this particular case, the exact

solution of the ODE can be found (see [17]) depending on
the initial condition p, (0) € A(D1) and is given by:

P () &)

mi X
> 1(0)etm (@)
i=1

forall j € {1,...,m.} and ¢ > 0. Observe that, if p (0) is a
degenerate probability distribution corresponding to a pure-
strategy, then p (t) = p (0) for all £ > 0 (i.e. all pure-

p1,;(t) ) (10)

strategies are stationary points of the dynamics in (9)). Now,
if p, (0) lies in the relative interior of A(D; ), we can find the
convergence point of the trajectories of the ODE by taking the
limit when ¢ — +o0 in (10) and obtain:

p;(0)

= if jes,,
fim_pn )= 4 2O (11)
t—4oo” €Sy

0, otherwise

|

The solution is similar if the initial distribution lies on the
border of the simplex A(Dy) by taking into account the fact
that the border is an invariant set of the ODE.

Notice that if the set S, is a singleton, then the trajectories
of the ODE convergent to this point. Otherwise, the trajectories
of the continuous-time ODE convergent to one of the solutions
in S, depending on the initial point p (0). However, we
will see in the numerical simulations that the discrete process
converges to one of the pure-strategy solutions in S,. Notice
that, the function

my
V(Bl) = Umax — Zpl,iul(dgl))a (12)
i=1

where tmayx = max; u1(¢§7>) is a Lyapunov function for all
the distributions in S,,, and thus they are stable points of the
dynamics (9).

In conclusion, using the simple adaptive rule in (5) a
transmitter is able to learn the optimal precoding matrix which
minimizes the outage probability. This is an important result
since optimizing the outage probability in the single-user
scenario is still an open issue [18]. Furthermore, numerical
methods based on Monte-Carlo simulations and exhaustive
search are very expensive in terms of computational cost. We
will see in Sec. V, that using learning algorithms that require
only one bit of feedback, the optimal precoding matrix can be
computed in a more efficient way.

V. NUMERICAL SIMULATIONS

Single-user particular case. Consider the scenario where
nt:nT:2,R1:1bpcu,F1:1W,0%:1W. In
this case, the user can choose between beam-forming and the
uniform power allocation. The success probability is given
by uy(dPF) = 0.7359, uy (dVF*) = 0.8841. These values
were calculated using 10° Monte-Carlo iterations. Because
the channel matrix is i.i.d. Gaussian, the position of active
antennas does not matter only the number of active modes
has an influence on the success probability. The choice of the
initial distribution is the uniform one.

Fixed learning step-size. In Fig. 1, we trace the expected

mi1

payoff Zp[{j}ul(g@). Notice that, for v["] = ~ = 0.01

=1
(constar{t step-size), the user converges to the optimal solution
in 2554 iterations. However, the performance of the algorithm
depends on the choice of the learning parameter. The larger -,
the smaller the convergence time. The problem when choosing
large steps is that the algorithm may converge to a corner
of the simplex which is not a maximizer of the success
probability. In Tab. I, we summarize the results obtained after
1000 experiments in terms of average number of iterations and
convergence to the maximum point. We observe that there is
a trade-off between the convergence time and the convergence
to the optimal point which can be controlled by tuning the
learning step. Variable learning step-size. For the same
scenario, consider the case where the step-size is variable:

7[n]szornzlsuchthat0<algl,aQZO,
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Fig. 1. Average payoff vs. number of iterations.

TABLE |
TRADE-OFF BETWEEN THE CONVERGENCE TIME AND THE CONVERGENCE
TO THE OPTIMAL POINT (CONSTANT STEP-SIZE)

o Time [nb. iterations] | Convergence to optimum [%]
0.001 3755 100

0.1 261 71

0.5 27 45

0.9 9 39

0.5 < a3 < 1 which ensure the asymptotic convergence
in probability (see condition (A2) in Chapter 2 [16]) of the
discrete learning process to the solution of the mean ODE. It
turns out that a careful choice of these parameters is needed
to ensure good performances of the algorithm. For example,
consider the case where !/ = 0, y[") = L forn > 1 (a; =1,
as = 0, ag = 1). Assume that the |n|t|al distribution is
uniform one and that the chosen strategy is w.l.0.g. d[l] d(”
with j € {1,...,3}. If an outage does not occur at the flrst
iteration, i.e., sm =1, then we see that pg-] 1and pl" =0
for all 7 # j and the algorithm stops. Therefore, if an outage
hasn’t occurred at the first iteration, the first strategy chosen
(which is any strategy in D; with equal probability) will be
the rest point of the algorithm. We see that there is only a
30% probability that the algorithm stops at the optimal point
which is very different w.r.t. the theoretical analysis (telling
us that almost surely, the algorithm converges to the optimal
point). Now, let us consider a; = 1, ag = 0.55 and focus
on the impact of parameter 5. In Tab. Il, we summarize the
results obtained after 1000 experiments (the convergence time
is longer for the variable step-size) in terms of average number
of iterations and convergence to the maximum point. Here as
well there is a trade-off between the convergence time and the
convergence to the optimal point. Even though theoretically
the variable step-size algorithm performs better in terms of
convergence to the optimal point, simulations show that the
performance of the algorithm depends on a very careful choice
of the learning step. Furthermore, there is a trade-off between
the convergence time and the convergence to the optimum.
Two-user case. Now we assume the K = 2 scenario where

TABLE Il
TRADE-OFF BETWEEN THE CONVERGENCE TIME AND THE CONVERGENCE
TO THE OPTIMAL POINT (VARIABLE STEP-SIZE)

az Time [nb. iterations] | Convergence to optimum [%]
1 34 43

10 435 71

100 1354 91

1000 2533 100

nT:nt:2,O'%:U§—1W?1—FQ—lOWthe
transmission rates R; = 2chu R>; = 3bpcu. The actions
that the users can take are d, U= Pr(0,1), d( ) = = Px(1,0),

df’) = £r(1,1). Since the channels are i.i.d. Gaussian,
the beam- formlng strategies are identical in terms of payoff
and the users can be considered as having two strategies:
beam-forming (BF) (either d; () or d(2)) and uniform power

allocation (UPA) (d(?’)) The payoff matrix for user 1 is given
by the success probability:

U. _ (0631 0402 U, 0540 0.731 \ where
1=1 0801 0535 0.214 0.305

Uyk(1, 1) corresponds to the case where both users apply BF,
Uk(1,2) user 1 applies BF while the other one UPA, U(2,1)
user 1 applies UPA while the other BF, U(2,2) both users
apply UPA. We observe that the unique NE is given by the
UPA for both users. Furthermore, we observe that the system
optimal state w.r.t. the average of the success probabilities is
the state where both players use BF and that the NE is the
worse state w.r.t. this measure. We apply the reinforcement
algorithm proposed in the previous section. In Fig. 2, we plot
the expected payoff depending on the probability distribution
over the action sets at every iteration for User 1 in Fig. 2(a)
and for User 2 in Fig. 2(b) assuming P; = P, = 5 W. We
observe that the users converge to the Nash equilibrium after
approximatively 6000 iterations.

V1. CONCLUSION

The non-cooperative power allocation game in the slow-
fading MIMO interference channels where the users wish to
minimize their outage probabilities was studied. Analytical
solutions to the general problem is very hard to be obtained. It
turns out that a simple reinforcement algorithm may allow the
transmitters to learn their best precoding matrix with respect to
their individual outage probabilities. This algorithm has several
appealing features. It is adaptive, of low complexity and
requires only the knowledge of one bit of feedback from the
environment and no rationality assumption. However, all these
benefits come at the cost of long convergence time. Moreover,
the algorithms are stochastic in nature and only asymptotic
convergence in probability can be ensured. In practice, this
translates the fact that a very careful choice of the learning
step has to be made to ensure a good performance of the
algorithms. We have seen that there is a trade-off between the
probability (frequency) of convergence and the convergence
time. Interesting extensions of this work could be: to prove
the existence of the NE for the MISO case (exploiting the
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Fig. 2. Expected payoff vs. iteration number for K = 2 users.

solution for the single-user case); to use reinforcement learning
allowing the users to converge to other system optimal points
than the Nash equilibrium.

APPENDIX A
EXTREME SNR REGIMES

We will exploit the results available for the single-user
MIMO channel in [8]: a) in the low SNR regime, the outage
probability is a Schur-concave function w.r.t. the power allo-
cation vector and BF is the optimal power allocation policy;
b) in the high SNR regime, the outage probability is a Schur-
convex function w.r.t. the power allocation vector and UPA is
the optimal power allocation policy.

Let us prove that, when py, — 0 then ug(d,,,d_,) is Schur-
convex W.r.t. d;.

The proof follows from the following steps:

o We assume that

Ntk

d, €Co2 queR™ > w(i) =Py ¢ forall £ € K.
1

e Assuming that py =L 0 then we prove that
Pr[0(Dy,D_,Hyp, H_ ) < R] is Schur-concave
K

wrt. (dg,d_ ;) € HCZ' Indeed, by denoting D =
=1

diag(d,,d_;) and H = [Hy,H_x x|, then the results

for the single-user MIMO channel in [8] apply directly.

« It is easy to prove that, for arbitrary d_,, € HCZ’ the
1k
function Pr[f(Dy, D, Hyp, H ) < R] is Schur-
concave W.r.t. d,.

« Since the previous result holds for any rate R > 0, by
choosing R = Ry + nx(D_x, H_;.), We obtain that
PI‘[@(Dk, D,k, Hkk, ka,k) — Mk (D,k, ka,k) < Rk]
is Schur-concave w.r.t. d,.

« This implies that ux(d,d_;,) is Schur-convex w.rt. d, €

Cy for any d_, € C_j and that beam-forming is an
optimal strategy.

« Since d;F € Dy, then it follows that, for any d_,, it is
an optimal strategy for user k.

In the high SNR regime, when pr — +oo, we have that
ug(dy,d_) is Schur-concave w.r.t. d, for all d_,. The proof
follows similarly and will be omitted.
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