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On the purpose of Event-B proof obligations
Stefan Hallerstede
University of Düsseldorf, Germany

Abstract. Event-B is a formal modelling method which is claimed to be suitable for diverse modelling domains, such
as reactive systems and sequential program development. This claim hinges on the fact that any particular model has an
appropriate semantics. In Event-B this semantics is provided implicitly by proof obligations associated with a model.
There is no fixed semantics though. In this article we argue that this approach is beneficial to modelling because we
can use similar proof obligations across a variety of modelling domains. By way of two examples we show how similar
proof obligations are linked to different semantics. A small set of proof obligations is thus suitable for a whole range
of modelling problems in diverse modelling domains.
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1. Introduction

Event-B [Abr08] is a formal modelling method for discrete systems based on refinement [AH07, AM98, Bac89]. We
believe that formal modelling should serve primarily for reasoning. We insist that reasoning is an essential part of
modelling because it is the key to understanding complex models. The formal text making up a formal model should
be stated in a form that facilitates reasoning. Reasoning about complex models should not happen accidentally but
needs systematic support within the modelling method. This thinking lies at the heart of the Event-B method.

When we create a complex model, usually, our understanding of it is incomplete at first; and a modelling method
should help to improve our understanding of the model. During initial phases in the modelling process refinement is
used to manage the many details of a complex model. It does not describe a development process where we follow
prescribed stages when building a model but a technique to introduce detail gradually at a rate that eases understanding.
Besides, this approach yields a higher degree of automation; smaller batches of information are easier to analyse. We do
not assume that we have one most abstract model, the specification, that could serve as point of reference for all further
refinements. Instead, the model is completed by refinement until we are satisfied that the model captures all important
properties. Eventually, we also reason about specific computational domains like sequential or concurrent programs
that have well-known semantics. We expect that a formal modelling method leads safely to a correct implementation.

Covering such a range of modelling problems poses a challenge on the method. In Event-B the challenge is met
by focusing solely on proof obligations that are associated with a model. The meaning of an Event-B model emerges
from what is proved about the model. This gives a prominent rôle to proof obligations, the subject of this article.
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1.1. Proof Obligations

Proof obligations are at the heart of the Event-B method. The main tool in Event-B for reasoning is formal proof. What
is to be proved is stated in terms of proof obligations of a model. Event-B associates with a model proof obligations
similarly to other formal methods, e.g., [Abr96, Bac89, WD96] but much attention is paid to the need to deal with
frequent changes during modelling. Proof obligations serve to verify properties of a model; they serve to demonstrate
that a model is sound with respect to some behavioural semantics; they serve to analyse a model; they serve to guide
the user while building a model. We consider the latter point to be of major importance: when the user fails to discharge
a proof obligation, usually, the corresponding proof attempt provides a hint how to improve the model. It gives the user
the opportunity to gain more insight into the model and improve it gradually as the understanding increases. When
creating complex models, we certainly make mistakes and we certainly have to make frequent changes to a model.
This concerns the entire model across all levels of refinement, from the very abstract to the very concrete.

We assume that there is a software tool [ABHV06] that automatically generates proof obligations. Otherwise mak-
ing changes to a model would be tedious and in models with thousands of proof obligations [BA05] nearly impossible.
The tool takes the formal text of the model and produces proof obligations composed of (usually) only gently rewritten
fragments of that text. The proof obligations of Event-B are specifically designed to permit matching them easily to
the formal model [Hal05]. We illustrate this by means of a small example:

Example. We present an excerpt of a model of a secure building. The details of the Event-B notation are not of
importance but only the way model and proof obligation match. The model has two variables in and auth, specifying
locations of persons in rooms and corresponding authorisations. The invariant of the model is:

inv1 : auth ∈ Person↔Room A person is authorised to be in certain rooms
inv2 : in ∈ Person 7→Room A person can be at most in one room
inv3 : in ⊆ auth A person can only be in rooms where he is authorised to be

An event enter models a user entering a room:

event enter
any
u, r

when
grd1 : u 6∈ dom(in)
grd2 : u 7→ r ∈ auth

then
act1 : in := in ∪ {u 7→ r}

end

For the model to be consistent we prove that event enter respects the invariants inv1, inv2, inv3. The corresponding
proof obligation for inv3 is:

auth ∈ Person↔Room invariant inv1
in ∈ Person 7→Room invariant inv2
in ⊆ auth invariant inv3
u /∈ dom(in) guard grd1
u 7→ r ∈ auth guard grd2`
in ∪ {u 7→ r} ⊆ auth modified (act1) invariant inv3

It is very easy to relate the proof obligation to the model above. Modelling in Event-B relies entirely on the interplay
between editing models and analysing their proof obligations. To the user of Event-B proof obligations appear as
giving meaning to a model.

In Event-B we focus on the proof obligations and do not present a behavioural semantics at all. This approach
permits us to use the same proof obligations for very different modelling domains, for instance: reactive, distributed
and concurrent systems [ACM03], a probabilistic variant [HH07]; sequential programs [Abr03]; or digital circuits
[Hal03]. All of this, without being constrained to a behavioural semantics tailored to a particular domain. Event-B is
a calculus for modelling that is independent of the various models of computation. In the following, we use the term
semantics in the sense of behavioural semantics.
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1.2. Semantics

The core of this article deals with the problem of how an Event-B model receives a meaning. When developing a
sequential program, for instance, we want to know whether the program is correct, performs a meaningful computation.
We need to prove the right facts about the program; and the right facts are determined by sequential program semantics,
e.g., [AO91]. But we do not want to tie Event-B to some particular semantics as explained in Section 1.1.

From the various semantics of the different modelling domains sound proof obligations have evolved for each
domain. All we do is to exploit the similarities between them. To ensure that the proof obligations of Event-B can be
used with common semantic models mentioned above, they have been derived from a simple relational semantic model
that is not restrictive [Abr08]. When applying Event-B to a specific modelling problem we can use instead of the simple
model whatever semantic model is suitable for the modelling problem at hand. This is supported without passing
through some predetermined semantics —not even the simple model— of Event-B that could add some complications
to the endeavour by having to relate to it.

In this article we present two examples of Event-B semantics showing the viability of this approach. For this
purpose, we introduce enabledness proof obligations into the Event-B method. We go on to show how they are in-
corporated into relative deadlock-freeness proofs with respect to the failures model of CSP [Hoa85] and into sound-
ness proofs of sequential program development [Abr03]. The theoretical results as such are not new. For instance, in
[AM98] a temporal leadsto-operator and deadlock-freeness are introduced, where the leadsto-operator is modelled by
means of a while-loop. In this article we discuss the use of the same (few) proof obligations to reason about different
semantic models. We present the derivation of the proof obligations from the semantic models to demonstrate what is
involved. The theory used in this article is more based on [BvW98, RE98] than on [Abr96, Abr99b]; the latter articles
are geared towards sequential program development.

A complication arises (by our choice), because the first semantics uses a relational model [HJ98] and the second
set transformers [BvW98, Dij76]. This complication is hidden in Event-B by means of its proof obligations: to the user
of Event-B it all looks the same. Simple restrictions on proof obligations achieve soundness in either case. Because
Event-B models do not have a (behavioural) semantics a priori, we are free to choose one and with it a set of appropriate
proof obligations. If we were to fix some semantics for Event-B, we would have difficulties applying it to the various
domains mentioned above.

1.3. Outline

Section 2 presents Event-B in terms of its proof obligations. In Sections 3 and 4 we relate a reactive systems seman-
tics and a sequential program semantics to proof obligations presented in Section 2. Sections 3 and 4 are somewhat
technical. We have chosen to present the material in this way to demonstrate how enabledness proof obligations arise
in the two cases. As a consequence of this decision there is no space to present more examples. It is not our intention
to present a complete list of semantics for Event-B. That list is open-ended. In future, new applications of Event-B
may emerge that require new kinds of semantics. In the same sense, the two examples presented are not intended be
understood as fully representing the corresponding domains, reactive systems modelling and sequential program mod-
elling. The two seem reasonable based on our experience. They could be adapted to fit particular modelling needs and
development processes. Whenever we want to use Event-B with some specific semantics we can prove how Event-B
suits that semantics. Section 5 contains an example of a sequential program development to illustrate the use of Event-
B. Practical use gets somewhat out of sight in Sections 3 and 4 although this is the primary concern of the Event-B
method. In Section 6 we discuss limitations and possible problems with the approach to modelling taken by Event-B.
We assume familiarity with basic set-theoretic notation. Less common concepts have been collected in Appendix A.

2. Event-B

We present the core of Event-B in terms of its proof obligations concerned with refinement and consistency. For the
purposes of this article the proof obligations are only stated as set-theoretic expressions based on the simple relational
model [Abr08]. In order to make them easier to digest we introduce some rudimentary notation of Event-B and define
all employed sets and relations based on the notation.

Behavioural aspects of Event-B models are expressed by means of machines. A machineM may contain variables,
invariants, events, and variants. Variables v define the state of a machine. They are constrained by invariants I(v).
(Variables occurring free in a formula are indicated in parentheses following the formula.) Possible state changes
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are described by means of events Em, for m ∈ αM . (In the following sections it will prove useful to have events
associated with indices drawn from finite sets αM . We introduce them here to achieve a more coherent presentation.)
Each event Em is composed of a guard Gm(v) and an action v :| Sm(v, v′).1 The guard of an event states the
necessary condition under which the event may occur, and the action describes how the state variables evolve when
the event occurs. We denote an event Em by

when Gm(v) then v :| Sm(v, v′) end .

If the guard of an event Em is true, we denote it by

begin v :| Sm(v, v′) end .

A dedicated event with true as its guard and v :| A(v′) as its action is used for initialisation. (The predicate A(v′)
does not refer to unprimed variables.)

The action v :| Sm(v, v′) describes the relationship between the state just before the action has occurred (repre-
sented by unprimed variable names v) and the state just after the action has occurred (represented by primed variable
names v′). In practice, the action of an event is specified as a list of actions (for example, see Section 5) of the form

x := B(v) (1)
x :∈ B(v) (2)

x :| Q(v, x′) , (3)

where x are some variables, B(v) is an expressions, and Q(v, x′) a predicate. Form (1) assigns x to a value B(v),
form (2) assigns x to an element of a set B(v), and form (3) assigns to x a value satisfying a predicate. The first two
are defined in terms of the third,

x := B(v) =̂ x :| x′ = B(v)

x :∈ B(v) =̂ x :| x′ ∈ B(v) ,

and for the third we define its before-after predicate to be

Q(v, x′) .

Variables occurring on the left-hand side of different actions of an event must be disjoint. All actions of an event A(v)
occur simultaneously which is expressed by conjoining their before-after predicates, yielding a predicate X(v, x′).
Variables y that do not appear on the left-hand side of an assignment of an action are not changed by the action.
Formally, this is achieved by conjoining X(v, x′) with y′ = y, yielding the complete action v :| Sm(v, v′) of the
event.

We define sets and relations corresponding to all of the above:

Φ =̂ {v | > } 2

i =̂ {v | I(v)}
gm =̂ {v | Gm(v)}
sm =̂ {v 7→ v′ | Sm(v, v′)}
a =̂ {v′ | A(v′)} ,

where Φ denotes the entire state space.

2.1. Machine Consistency

For each event Em of a machine M , feasibility must be proved:

i ∩ gm ⊆ s−1
m [Φ] . (4)

1 In order to simplify the main part of this article, we do not present local variables of events here. For a detailed description of Event-B see
[AH07].
2 Φ is the Cartesian product of the types ∆1, ∆2, . . . , ∆κ of the variables v1, v2, . . . , vκ . Writing {v | > } we avoid introducing the component
types ∆1, ∆2, . . . , ∆κ .
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By proving feasibility, we ensure that Sm provides an after state wheneverGm holds. This means that the guard indeed
represents the enabling condition of the event.

Invariants are supposed to hold whenever variable values change. Obviously, this does not hold a priori for any
combination of events and invariants and, thus, needs to be proved. The corresponding proof obligation is called
invariant preservation:

(gm C sm)[i] ⊆ i . (5)

Similar proof obligations are associated with the initialisation event of a machine: feasibility of initialisation is a 6= ∅
and invariant establishment is a ⊆ i.

2.2. Machine Refinement

Machine refinement provides a means to introduce more details about the dynamic properties of a model [AH07]. For
more on the well-known theory of refinement, we refer to the Action System formalism [Bac89] that has inspired the
development of Event-B.

A machineN can refine at most one other machineM . We callM the abstract machine andN a concrete machine.
The state of the abstract machine is related to the state of the concrete machine by a gluing invariant J(v, w), where
v are the variables of the abstract machine and w the variables of the concrete machine.3

Let Em, for m ∈ αM , be the abstract events; and let Fn, for n ∈ αN , with αN a finite set and αM ⊆ αN , be the
concrete events of the form:

when Hn(w) then w :| Tn(w,w′) end ;

and let w :| B(w′) be the action of the initialisation.
The corresponding set-theoretic definitions are:

Ψ =̂ {w | > }
k =̂ {v 7→ w | I(v) ∧ J(v, w)}
j =̂ {v 7→ w | J(v, w)}

hn =̂ {w | Hn(w)}
tn =̂ {w 7→ w′ | Tn(w,w′)}
b =̂ {w′ | B(w′)} .

Each event Em of the abstract machine is refined by a concrete event Fm. Somewhat simplified, we can say that
Fm refines Em if the guard of Fm is stronger than the guard of Em, and the gluing invariant J(v, w) establishes a
simulation of Fm by Em:

k ; (hm C tm) ⊆ (gm C sm) ; j . (6)

The corresponding proof obligation for the initialisation is b ⊆ j[a]. Using (5) we can infer from (6)

k ; (hm C tm) ⊆ (gm C sm) ; k . (7)

In the course of refinement, new events can be introduced into a model. New events must be proved to refine the
implicit abstract event skip that does nothing; that is, its guard is true and its action is v :| v′ = v. In the notation
used in this article new events are just those with indices drawn from the set αN \ αM .

Convergence

Moreover, it may be proved that new events do not collectively diverge by means of a well-founded relation r. We
refer to the corresponding proof obligation as progress:

k ; (hn C tn) ⊆ k ; r . (8)

A common choice for r is {w 7→ w′ | V (w) ≥ 0 ∧ V (w′) < V (w)} where V (w) is an integer expression, called
variant, of N . We call events that satisfy (8) convergent.

3 This explains why N can refine at most one abstract machine. In Event-B the concrete machine N contains the predicate J(v, w) that links N
to the abstract machine M . In many formalisms the linking predicate is separated from the machines it links [RE98].
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Enabledness

Using (4) we infer from (6),

k B hm ⊆ gm C k , (9)

the guard of the abstract event may be strengthened during refinement. As a consequence, it is sufficient if the guard
of the concrete event is false, that is, hm = ∅ . This means we could refine any abstract event by a concrete event with
false as its guard. Such an event can never occur. If we strengthen the guard less extremely, we still have a concrete
event that may occur less often than its abstract counterpart. If this is not intended we need also to weaken the guard
as discussed in the next paragraph.

Let m ∈ αM and L ⊆ αN . We may prove that whenever the abstract machine may continue by means of event
Em with guard Gm then the concrete machine may continue by means of some F` for some ` ∈ L:

k[gm] ⊆ (
⋃
` · ` ∈ L | h`) . (10)

By convention we assume that the guard hm of the concrete event that refines Em is contained in the union on the
right hand side, that is, m ∈ L . If L = {m}, then combining (9) and (10) yields the equivalence of abstract guards to
concrete guards under the (gluing) invariant:

gm C k = k B hm .

IfL contains a new event, the relationship gets more complicated; enabledness and convergence interact. This becomes
apparent in our presentation of sequential programs later. In our presentation of reactive systems below this is less
visible due to some simplifications that we have made to keep it brief.

3. Reactive Systems Modelling

We base our presentation of reactive systems modelling on the semantics of the process algebra CSP [Hoa85, Ros88].
CSP was developed specifically for modelling of such systems [HJ98]. Its semantics is expressed in terms of finite and
infinite traces, failures, and divergences describing the behaviour of a system. We focus on failures: failures refinement
guarantees that we cannot introduce new deadlocks in a refined model. In Event-B this is achieved by enabledness
(10). In this section we show how failures and enabledness are connected. The principle of this connection is not
new [But96, Mor90]. For this reason, we only present the essential formal ingredients and proofs. We assume that the
machines are free of divergences, proved by means of (8), and that all events are image-finite, that is, finite(sm[gm]).
As a consequence, the behaviour of machines can be described purely in terms of failures, the component most relevant
to our analysis of enabledness proof obligations.

3.1. Failure Semantics

We define failures directly in the set-theoretic notation of Section 2; similarly to [Fis97]. Let M be a machine with
initialisation a and events with guards gm and actions sm.

For machine M and a sequence of event indices t we define the path of t by

pathM (〈〉) =̂ aC idΦ

pathM (t_〈m〉) =̂ pathM (t) ; (gm C sm) .

A path describes the state transition corresponding to the occurrence of t. If the path of t is not empty, then t belongs
to the behaviour ofM ; we say such a t is a trace ofM . Failures are defined in terms of paths and of refusals introduced
next. Being in a state satisfying some refusal R, none of the events indexed by R can occur,

refusalM (R) =̂ (
⋂
m ·m ∈ R | Φ\gm) .

Failures are traces combined with refusals; the pair (t 7→ R) is a failure of M if t is a trace of M and after having
engaged in t machine M may be in a state where all events indexed by R are refused,

(t 7→ R) ∈ failureM =̂ pathM (t) B refusalM (R) 6= ∅

Failure semantics as defined here does not deal with fairness.
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3.2. Failure Refinement

Let C = αN\αM be the indices of all new events, and for a trace t and a set of event names L let t↑L be t with all
event names in L removed. We say machine N failure-refines machine M ,

(t 7→ R ∪ C) ∈ failureN ⇒ (t↑C 7→ R) ∈ failureM ,

if the failures of N are contained in the failures of M modulo the new events C. Note, that this definition of failure
refinement is not standard. We have combined the plain refinement notion of [Hoa85] with hiding of new events in
order to shorten the presentation. The given refinement notion is still monotonic because hiding is monotonic. We do
not suggest that this is the notion of failures refinement one should be using in practice but believe that it is sufficient
to make our point about using Event-B for failure refinement of machines. A variant of it has been used to model
introduction of local channels in stated based reactive models [But96].

Failure-refinement is proved by relating traces and failures of the two machines [But96]. Assume, by means of (7),
we have

pathN (t) ⊆ pathM (t↑C) ; k . (11)

We observe

(t 7→ R ∪ C) ∈ failureN { def. of failure }
≡ pathN (t) B refusalN (R ∪ C) 6= ∅ { by (11) }
⇒ pathM (t↑C) ; k B refusalN (R ∪ C) 6= ∅ { set theory }
⇒ pathM (t↑C) B k−1[refusalN (R ∪ C)] 6= ∅ { see (12) below }
⇒ pathM (t↑C) B refusalM (R) 6= ∅ { def. of failure }
≡ (t↑C 7→ R) ∈ failureM

that N failure-refines M , provided

k−1[refusalN (R ∪ C)] ⊆ refusalM (R) (12)

holds. We observe:

k−1[refusalN (R ∪ C)] ⊆ refusalM (R) { def. refusal }
≡ k−1[(

⋂
n · n ∈ (R ∪ C) | Ψ\hn)] ⊆ (

⋂
m ·m ∈ R | Φ\gm) { set theory }

≡ k[(
⋃
m ·m ∈ R | gm)] ⊆ (

⋃
n · n ∈ (R ∪ C) | hn) { set theory }

≡ (
⋃
m ·m ∈ R | k[gm]) ⊆ (

⋃
n · n ∈ (R ∪ C) | hn) { set theory }

≡ ∀m ·m ∈ R⇒ (k[gm] ⊆ (
⋃
n · n ∈ (R ∪ C) | hn)) { set theory }

⇐ ∀m ·m ∈ R⇒ (k[gm] ⊆ (
⋃
n · n ∈ ({m} ∪ C) | hn)) .

Refusals are downward closed: if R is a refusal and m ∈ R then {m} is a refusal too. Hence, the strengthening
(
⋃
b ∈ (R ∪ C) · . . .) to (

⋃
b ∈ (C ∪ {a}) · . . .) in the last step is not as severe as it may seem. The formula

k[gm] ⊆ (
⋃
` · ` ∈ ({m} ∪ C) | h`)

in the last step of the calculation is just proof obligation (10) with L = {m} ∪ C.
When we model reactive systems in Event-B, we do not need to be aware of the failures model. The proof obli-

gations form a barrier that shields from the details and complications of the semantic model. Given the description
of Event-B in the introduction it is tempting to interpret Event-B always in the way presented in this section. After
all, Event-B is a descendant of Action Systems and has been conceived to model systems. However, the semantics
of Event-B is not fixed. We can think about any Event-B machine in terms of any appropriate semantics. In the next
section we discuss Event-B for sequential program development — with different semantics but with similar proof
obligations to those of this section.

4. Sequential Program Modelling

Event-B has been used for sequential program development [Abr03]. We present a soundness argument resulting
from the “defect” of Event-B not to provide preconditions for events: events are guarded and block execution when
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the guard is false. In sequential program refinement preconditions are more common because they lead certainly to
implementable programs. This does not hold for guards. If we were to interpret event guards as preconditions the
problem would disappear. (In fact, this interpretation is customary in Z [Sek93, WD96].) We need an additional proof
obligation to rectify this.

Given the problem described above: Why does Event-B not support preconditions and guards? By contrast, this is
supported by the B Method [Abr96] but leads to more intricate (and sometimes obscure) proof obligations. In Event-B
simplicity of the proof obligations is considered of major importance. It brings two strongly related benefits: proof
obligations are easy to understand, and more efficient and comprehensive tool support is possible.

In this section we present how enabledness proof obligations arise when proving loop introduction correct in
Event-B. We first present some set transformer theory. In the remainder of this section we prove loop introduction
correct with respect to (forward) refinement of set transformers. The enabledness proof obligation will only appear at
the very end of the proof.

4.1. Set Transformers

The notions introduced in this section are intended to capture semantical properties of sequential programs. This should
not be confounded with the actual Event-B notation that uses first-order predicate logic and set theory presented in
Section 2. The model of set transformers we use follows closely the type-theoretical model of [BvW98]4. However,
instead of type theory we use set theory which is easier to relate to Event-B; see also [RE98]. State spaces are Cartesian
products denoted by the letters Φ and Ψ as introduced in Section 2.

Set transformers5 are functions from sets to sets. Let g and ϕ be subsets of V and s a relation. In this article we
make use of the following set transformers6:⌊

g
⌋
(ϕ) =̂ g ∩ ϕ (assertion)⌈

g
⌉
(ϕ) =̂ (Φ \ g) ∪ ϕ (assumption)⌈

s
⌉
(ϕ) =̂ {v | s[{v}] ⊆ ϕ} . (demonic update)

For set transformers P we define precondition pre(P ) and guard grd(P ) by

pre(P ) =̂ P (Φ)
grd(P ) =̂ Φ \ P (∅) .

Note, that (4) implies i ∩ grd(
⌈
gm

⌉
;
⌈
sm

⌉
) = i ∩ gm and i ∩ pre(

⌊
gm

⌋
;
⌈
sm

⌉
) = i ∩ gm.7 The informal description

of the meaning of a guard in the beginning of Section 2 leaves us a choice for its interpretation. It can be read as an
assertion or an assumption. The standard reading of Event-B is as an assumption, that is, event Em corresponds to the
set transformer⌈

gm

⌉
;
⌈
sm

⌉
. (13)

Based on set transformers, sequential programs are usually specified in terms of specification statements [BvW98,
Mor94], namely,⌊

gm

⌋
;
⌈
sm

⌉
, (14)

where grd(
⌊
gm

⌋
;
⌈
sm

⌉
) = Φ would be required as a healthiness condition [Dij76]. The two simple laws⌊

g
⌋

;
⌈
g
⌉

=
⌊
g
⌋

(15)⌈
g
⌉

;
⌊
g
⌋

=
⌈
g
⌉

(16)

permit us to switch between the two representations (13) and (14) in suitable contexts.

4 Our presentation is based on first-order set theory instead of higher-order logic. For this reason, we use set transformers instead of predicate
transformers.
5 We use the definitions of [BvW98] over that of [Abr96] because they seem to be easier to handle during proof; to avoid a notational clash we use¨
·
˝

instead of { · } and
˚
·
ˇ

instead of [ · ] .
6 Angelic update

¨
s
˝
(ϕ) b= {v | s[{v}] ∩ ϕ 6= ∅} is missing from the list. We do not need it in this article.

7 Sequential composition “;” of set transformers is defined by (P ; Q)(ϕ) = P (Q(ϕ)).
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4.2. Refinement of Set Transformers

Denoting by v the ordering of set transformers

P v Q =̂ (∀ϕ · ϕ ⊆ Φ ⇒ P (ϕ) ⊆ Q(ϕ)) ,

an extensive refinement theory can be developed for set transformers [BvW98, RE98]. For a relation k let
⌈
k
⌉∼

be the
left adjoint of the set transformer

⌈
k
⌉
. It has the following simple characterisation [RE98]:⌈

k
⌉∼(ϕ) = k[ϕ] . (17)

A set transformer P is said to be forward refined by a set transformer Q, denoted by P vk Q, if⌈
k
⌉∼ ;P v Q ;

⌈
k
⌉∼

.

Taking P andQ to be either of the form (13) or (14), forward refinement can be rephrased in relational terms [BvW98,
RE98]:⌈

g
⌉

;
⌈
s
⌉
vk

⌈
h
⌉

;
⌈
t
⌉
⇔ k ; (hC t) ⊆ (g C s) ; k (18)⌊

g
⌋

;
⌈
s
⌉
vk

⌊
h
⌋

;
⌈
t
⌉
⇔ g C k ⊆ k B h ∧ g C (k ; t) ⊆ s ; k (19)

At its core refinement in Event-B corresponds to forward refinement of universally conjunctive set transformers
of the form (13). This is the interpretation used in Section 3. But Event-B does not have to be interpreted in this way.
This is discussed in more detail in the remainder of this section:

We want to verify that introducing a loop as described in [Abr03] in Event-B is sound. Note that because of

g C k ⊆ k B h ∧ k ; (hC t) ⊆ (g C s) ; k ⇒ g C (k ; t) ⊆ s ; k

it is sufficient to prove just g C k ⊆ k B h on top of (18) so as to obtain (19). This indicates where to begin with
a theory of sequential program refinement in Event-B. Matters get complicated by the presence of while loops and
associated new events. We consider only this case because the case where loops are not involved is quite trivial as we
have just seen.

4.3. Introduction of a While Loop

Using the small theory of set transformers of Sections 4.1 and 4.2 we show that the Event-B technique of introducing
while loops is sound (with respect to set transformer semantics). First we give a brief account of the correspondence
of Event-B model and while loop, and of the semantics of a while loop in terms of set transformers. Next we state
the main property (22) to be shown to establish soundness of while-loop introduction in Event-B. The proof of this
property stretches until Section 4.3.2 where the enabledness proof obligations reappear.

Let m ∈ αM and n ∈ αN\αM . Let Em be an abstract event, and Fm and Fn concrete events,

Em =̂ when Gm(v) then v :| Sm(v, v′) end (abstract event)

Fm =̂ when Hm(w) then w :| Tm(w,w′) end (concrete event refining Em)

Fn =̂ when Hn(w) then w :| Tn(w,w′) end . (new concrete event)

Our aim is to prove that the abstract event Em is refined by a loop composed of the new event Fn followed by an
assignment, the action of the concrete event Fm:

when Am then
while Cn do
Tn

end ;
Tm

end ,

(20)
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where Hn = Am ∧ Cn and Hm = Am ∧Dm. Let

am =̂ {w | Am(w)}
cn =̂ {w | Cn(w)}
dm =̂ {w | Dm(w)} .

Thus, hn = am ∩ cn and hm = am ∩ dm. We model the loop by the least fix point (µX ·B(X)), where the body
B(X) of the loop is given in terms of the new event Fn:

B(X) =̂ (
⌈
cn
⌉

;
⌈
tn
⌉

;X) u
⌈
Ψ\cn

⌉
.8

The semantics of the term (20) is thus given by the set transformer:⌊
am

⌋
; (µX ·B(X)) ;

⌈
tm
⌉

. (21)

4.3.1. Soundness of While-Loop Introduction

Our aim is to show that the refinement condition (22) follows from the proof obligations of Event-B (that we have
supposedly discharged). We assume refinement, convergence, and enabledness have been proved. The proof to follow
shows, in particular, where enabledness comes into play.⌊

gm

⌋
;
⌈
sm

⌉
vk

⌊
am

⌋
; (µX ·B(X)) ;

⌈
tm
⌉

, (22)

Proof of (22)

We assume event Fm refines event Em,⌈
gm

⌉
;
⌈
sm

⌉
vk

⌈
hm

⌉
;
⌈
tm
⌉

, (23)

and the loop (µX ·B(X)) forward refines skip, that is,⌈
idΦ

⌉
vk (µX ·B(X)) , (24)

Note, that the update
⌈
idΦ

⌉
does not diverge, hence, the refinement (24) requires the new concrete event Fn to be

convergent. Now,

(22)

≡ { (17) and def. of
⌊
-
⌋

and vk }⌊
gm

⌋
;
⌈
sm

⌉
vk

⌊
k[gm]

⌋
;
⌊
am

⌋
; (µX ·B(X)) ;

⌈
tm
⌉

≡ { (†) }⌊
gm

⌋
;
⌈
sm

⌉
vk

⌊
k[gm]

⌋
; (µX ·B(X)) ;

⌈
tm
⌉

≡ { (‡) }⌊
gm

⌋
;
⌈
sm

⌉
vk

⌊
k[gm]

⌋
; (µX ·B(X)) ;

⌈
hm

⌉
;
⌈
tm
⌉

≡ { (15) }⌊
gm

⌋
;
⌈
gm

⌉
;
⌈
sm

⌉
vk

⌊
k[gm]

⌋
; (µX ·B(X)) ;

⌈
hm

⌉
;
⌈
tm
⌉

⇐ {
⌊
gm

⌋
vk

⌊
k[gm]

⌋
}

(23) ∧ (24)

The inference marked by (†) holds if the guard Gm of the abstract event Em is preserved in Am; we require a weaker
form of enabledness (10):

k[gm] ⊆ am . (25)

8 The operator u denotes demonic choice of set transformers: (P uQ)(ϕ) = P (ϕ) ∩Q(ϕ) .
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We keep this in mind and continue the proof. Only the inference marked by (‡) is missing. We close the gap by proving
the following claim⌊

k[gm]
⌋

; (µX ·B(X)) ;
⌈
hm

⌉
=

⌊
k[gm]

⌋
; (µX ·B(X)) , (26)

permitting us to eliminate the guard hm of the concrete event from the left hand side.
In order to eliminate

⌈
hm

⌉
, propagating some information through the loop seems a good idea. Hence, we have a

closer look at the set transformer
⌊
k[gm]

⌋
; (µX ·B(X)). Showing that (A) k[gm] is a loop invariant and (B) the loop

establishes Ψ\cn we get:⌊
k[gm]

⌋
; (µX ·B(X)) =

⌊
k[gm]

⌋
; (µX ·B(X)) ;

⌊
(Ψ\cn) ∩ k[gm]

⌋
. (27)

Proof of (27)

Assuming the new event is convergent —as we do by (24)— we can exchange the least against the greatest fix point
[BvW98, HJ98]:⌊

k[gm]
⌋

; (µX ·B(X)) =
⌊
k[gm]

⌋
; (νX ·B(X))

So we can carry out fix point calculations using the greatest fix point.
(A) We show that the image of the abstract guard under the simulation k[gm] is a loop invariant:

k[gm] ⊆ (νX ·B(X))(k[gm])

We know that the image of abstract guard gm is an invariant of the concrete action sn because the concrete event
refines skip:

k[gm] ⊆
⌈
tn
⌉
(k[gm]) . (28)

We state without proof (compare [BvW98, Lemma 21.9], for instance):

(νX ·B(X))(ϕ) = (νx · (cn ∩
⌈
tn
⌉
(x)) ∪ ((Ψ\cn) ∩ φ)) . (29)

We prove that k[gm] is an invariant of the loop (νX ·B(X)). We calculate:

(νX ·B(X))(k[gm]) { (29) }
= (νx · (cn ∩

⌈
tn
⌉
(x)) ∪ ((Ψ\cn) ∩ k[gm])) { see def. of b(x) below }

= (νx · b(x)) { see below }
⊇ k[gm] .

We define b(x) by b(x) =̂ (cn ∩
⌈
tn
⌉
(x)) ∪ ((Ψ\cn) ∩ k[gm]) and prove the remaining claim

k[gm] ⊆ (νx · b(x)) ;

we insert k[gm] into b(x):

b(k[gm]) { def. of b(x) }
= (cn ∩

⌈
tn
⌉
(k[gm])) ∪ ((Ψ\cn) ∩ k[gm]) { (28) }

⊇ (cn ∩ k[gm]) ∪ ((Ψ\cn) ∩ k[gm]) { set theory }
= k[gm] .

Using the fix point property (e.g. [BvW98]),

φ ⊆ b(φ) ⇒ φ ⊆ (νx · b(x)) ,

we conclude k[gm] ⊆ (νx · b(x)) as desired.
(B) We show that the loop establishes Ψ\cn

(νX ·B(X))((Ψ\cn) ∩ φ) = (νX ·B(X))(φ)
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In other words, (νX ·B(X)) establishes the negated guard of the concrete event; see [BvW98]:

(νX ·B(X))((Ψ\cn) ∩ φ) { (29) }
= (νx · (cn ∩

⌈
tn
⌉
(x)) ∪ ((Ψ\cn) ∩ (Ψ\cn) ∩ φ)) { set theory }

= (νx · (cn ∩
⌈
tn
⌉
(x)) ∪ ((Ψ\cn) ∩ φ)) { (29) }

= (νX ·B(X))(φ) .

4.3.2. Use of Enabledness

Finally, enabledness enters the picture. We can discharge (26), using (27) and enabledness.

Proof of (26)

We prove,⌊
k[gm]

⌋
; (µX ·B(X)) ;

⌈
hm

⌉
{ (27) }

=
⌊
k[gm]

⌋
; (µX ·B(X)) ;

⌊
(Ψ\hn) ∩ k[gm]

⌋
;
⌈
hm

⌉
{ (∗) }

=
⌊
k[gm]

⌋
; (µX ·B(X)) ;

⌊
(Ψ\hn) ∩ k[gm]

⌋
{ (27) }

=
⌊
k[gm]

⌋
; (µX ·B(X)) ,

To fill in the gap (∗) we have to show⌊
(Ψ\cn) ∩ k[gm]

⌋
;
⌈
hm

⌉
=

⌊
(Ψ\cn) ∩ k[gm]

⌋
We already require k[gm] ⊆ am, see (25). Hence, because hm = am ∩ dm, it suffices to show⌊

(Ψ\cn) ∩ k[gm]
⌋

;
⌈
dm

⌉
=

⌊
(Ψ\cn) ∩ k[gm]

⌋
,

which holds if k[gm] ⊆ dm ∪ cn. Finally,

k[gm] ⊆ am ∧ k[gm] ⊆ dm ∪ cn { set theory }
≡ k[gm] ⊆ (am ∩ dm) ∪ (am ∩ cn) { hm = am ∩ dm and hn = am ∩ cn }
≡ k[gm] ⊆ hm ∪ hn

which corresponds to the enabledness proof obligation (10) with L = {m,n}. Using this proof obligation, we have
proved something about preconditions. If we were committed to the failures semantics of Event-B, we would have
had difficulties seeing this. Intuitively, deadlock-freeness appears quite distant from preconditions. The enabledness
proof obligations permits us to weaken preconditions as usual in sequential program refinement [Mor94]; we have
k[gm] ⊆ hm ∪ hn but only k−1[hm] ⊆ gm .

Preservation of enabledness properties is achieved by simple rules governing their refinement [AM98]; the guard
of each abstract event must imply the guard of the concrete event or the guard of some new event. This is just what
we have shown to be necessary in this section. Loop introduction is proved by refinement. We can pull the assumption⌈
am

⌉
into the loop B(X) to obtain (

⌈
am

⌉
;
⌈
cn
⌉

;
⌈
tn
⌉

;X) u
⌈
Ψ\cn

⌉
, or

(
⌈
cn
⌉

;
⌈
hn

⌉
;
⌈
tn
⌉

;X) u
⌈
Ψ\cn

⌉
.

Thus, we can refine the concrete event Fn further, maybe introducing more loops. The structure of the loop guards
involved is suggested by the way we have decomposed the guards of the concrete events Fm and Fn that are split into
the precondition Am of the loop, the loop guard Cn, and the termination condition Dm of the loop. A systematic way
of deriving them is presented in [Abr03]. In Section 5 we give a brief example of a sequential program development
using the same proof obligations that would apply to a reactive system development. We only need to respect the
syntactic constraint concerning the guards of Fm and Fn.

When developing sequential programs in Event-B we do not need to apply the possibly complex underlying theory
directly but only know about the proof obligations of the kind given in the introduction. We do not need to be aware
of the theory while modelling a program. We do not need to be aware of the theory while modelling other kinds of
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system either but simply rely on the proof obligations presented to us. A large amount of those proof obligations is
shared among the the different kinds of system. This makes it easy for the same person to create models in the different
domains without having to learn a new approach each time.

5. Example

We illustrate the sequential program development in Event-B by formally developing a program that computes the
factorial function. It is sufficient to get an impression of the Event-B method and it is a simple program containing a
nested loop. It may be the first program for which termination has been proved by means of a lexicographical variant
[MJ84, Tur49]. The purpose of this example is not to demonstrate the capacity of the Event-B method but just to fill
the discussion of the method in other sections of this article with some life.

Program fp below computes the factorial function for a natural number n in variable f . As in [Tur49] the imple-
mentation does not use multiplication:

program fp

v, r, s, u := 1, 0, 0, 1 ;
while r < n do

while s < r do

u, s := u+ v, s+ 1
end ;
v, r, s := u, r + 1, 0

end ;
f := v

Our aim is to build a model of program fp. We begin by postulating the factorial function

axm1 : fac ∈ N→ N
axm2 : fac(0) = 1
axm3 : ∀m · m > 0 ⇒ fac(m) = fac(m− 1) ∗m

and the parameter n

axm4 : n ∈ N .

In the program development that follows we will only present proof obligations with most hypotheses that are not
relevant removed. We have used the Rodin tool [ABHV06] to create the model and try to convey this by presenting
the model as if written on a sheet with mixed elements of model and proof. We have chosen this format to suggest
how models are created in Event-B in incremental steps by reasoning about different fragments of the model. We have
straightened the development to achieve a more concise presentation, removing all the trial and error of the original
development. Usually, the model is not written down in one step and analysed in the next step, but created piecemeal
accompanied gradually by its analysis. The reasoning itself follows directly the shapes of the formulas appearing in
the model [vG90]. This influences, intentionally, the form of a model and keeps the modelling effort at bay.

5.1. Specification of the Program

The initial model of the program only has one variable f

inv1 : f ∈ N ,

and uses function fac postulated above to get the factorial of n

event factorial
begin
act1i : f := fac(n)

end .
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Variable f is initialised to some natural number

initialisation
begin
act1 : f :∈ N

end .

We have to prove that event factorial preserves invariant inv1,

fac ∈ N→ N axiom axm1
n ∈ N axiom axm4
f ∈ N invariant inv1`
fac(n) ∈ N modified (act1i) invariant inv1

that the initialisation establishes the invariant, f ′ ∈ N ` f ′ ∈ N , and that the action of the initialisation is feasible,
that is N 6= ∅ . The initial factorial program modelled is

program fpi

f := fac(n) .

5.2. Outer Loop

We introduce the outer loop of the factorial program calculating the product of the first n natural numbers greater than
0. We introduce a new variable r iterating over the first n natural numbers and a new variable v storing the factorial of
r,

inv2 : r ∈ 0 .. n
inv3 : v = fac(r) .

The proof obligation for the initialisation to establish inv3 imposes a constraint on the possible choices for v and r.
This constraint easily satisfied setting v to 1 and r to 0, see axm2. (This choice also satisfies invariant inv2.)

initialisation
begin
act1 : f :∈ N
act2 : v := 1
act3 : r := 0

end .

The factorial function is refined by an event that records the final state of the computation when r equals n:

event factorial
when
grd1 : r = n

then
act1r : f := v

end .

We have to show that this refines the initial factorial event, that the abstract event factorial can simulate the refined
one:

v = fac(r) invariant inv3
r = n guard grd1`
v = fac(n) modified (act1r) action act1i .
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The loop body is modelled by the new event mult. Its shape is suggested by the shape of axiom axm3:

event mult
when
grd1 : r < n

then
act1 : v := v ∗ (r + 1)
act2 : r := r + 1

end .

Preservation of invariant inv2 is easy to show; the proof obligation for the preservation of invariant inv3 is shown
below:

∀m · m > 0 ⇒ fac(m) = fac(m− 1) ∗m axiom axm3
r ∈ 0 .. n invariant inv2
v = fac(r) invariant inv3
r < n guard grd1`
v ∗ (r + 1) = fac(r + 1) modified (act1, act2) invariant inv3 .

The proof is easy, too,

fac(r + 1) { axm3 with m := r + 1, and inv2 }
= fac(r) ∗ (r + 1) { inv3 }
= v ∗ (r + 1) .

Inspection of event mult suggests n− r as variant. Guard grd1 implies that the variant is at least zero, n− r ≥ 0,
and event mult decreases the variant, n− (r + 1) < n− r. The enabledness proof obligation is

r ∈ 0 .. n invariant inv2
`

(r = n) ∨ (r < n) disjunction of the guards of factorial and mult .

For now, we have arrived at the following program fpr

program fp

v, r := 1, 0 ;
while r < n do

v, r := v ∗ (r + 1), r + 1
end ;
f := v .

Next, we refine the body of the while loop v, r := v ∗ (r + 1), r + 1 into another while loop.

5.3. Inner Loop

We implement the multiplication v ∗ (r+ 1) by adding r+ 1 times v. The intermediate result of s+ 1 additions is kept
in a new variable u

inv4 : u = (s+ 1) ∗ v .

Invariant inv4 is satisfied setting s to 0 and u to 1,

initialisation
begin
act1 : f :∈ N
act2 : v := 1
act3 : r := 0
act4 : s := 0
act5 : u := 1

end .
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The body of the inner loop is modelled by event add,

event add
when
grd1 : r < n
grd2 : s < r

then
act1 : u := u+ v
act2 : s := s+ 1

end .

The first guard grd1 is suggested by our development method as described in the beginning of Section 4.3. Using
basic arithmetic we can show that event add preserves invariant inv4,

u = (s+ 1) ∗ v invariant inv3
r < n guard grd1
s < r guard grd2`
u+ v = ((s+ 1) + 1) ∗ v modified (act1, act2) invariant inv4 .

Similar to the preceding refinement step, we choose r − s as variant, which is at least zero by grd2, and is decreased
by event add. Event mult should only occur once v has been added r + 1 times. To preserve invariant inv4, we have
to reset s to 0, refining mult to

event mult
when
grd1 : r < n
grd2 : s = r

then
act1 : v := v ∗ (r + 1)
act2 : r := r + 1
act3 : s := 0

end .

It remains to show enabledness of mult:
r < n guards of abstract event mult
`

(r < n ∧ s = r) ∨ (r < n ∧ s < r) disjunction of the guards of concrete mult and add .

Our invariant is to weak to prove this. The additional invariant

inv5 : s ∈ 0 .. r

solves the problem. This finishes our model of program fp computing the factorial of natural number n. Using the
method described in [Abr03] and in Section 4.3 we can present the model in a more familiar form of a sequential
program.

In the development presented in this example we have focused our attention on proof obligations. This is typical
of Event-B developments. We have left “what the program does” to our intuitive understanding of it. All effort was
spent on reasoning about the model composed of invariants and events, proving properties about it, and doing some
arithmetical calculations related to the factorial function. The formal reasoning had been the same had we designed a
reactive system instead of a sequential program.

6. Liberties and Limitations

In standard situations a system model is based on a specific, usually, well-known semantics. When using Event-B,
we only consider the kind of model created to be interesting, within the scope of this article, a sequential program
or a reactive system. However, in these situations we do not worry too much by which means soundness was proved
with respect to the proof obligations. We simply rely on the proof obligations as they are generated by some tool
[ABHV06]. In standard situations we ought to be able to focus on modelling, and writing a model should become
mere routine. The tool could statically determine whether some semantics is satisfied based on the discharged proof
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obligations. Alternatively, syntax and proof obligations could be constrained to suit some semantics. However, it is
also possible that a model does not fit one of those situations. For instance, in the model described in [Abr99a] some
events that are newly introduced must be convergent and some need not be. In that case one has to be aware of the
semantics of the model justifying the presence of proof obligations and the absence of proof obligations. This is the
price of the liberty one can have when modelling in Event-B. We can create models unconstrained by some semantics.
This may be particularly useful for experimentation. But we have to be careful about what a model means and justify
why we consider a particular model reasonable. For such models the semantics can be considered to be part of the
properties of the system modelled — it is no longer given a priori as is the case in standard situations.

7. Conclusion

Event-B addresses various modelling domains among which are the reactive systems and sequential programs pre-
sented in this article. Event-B has a notation based on first-order predicate logic and set theory. Event-B has a set of
proof obligations that are associated with models.

What Event-B lacks is a behavioural semantics. And that is so intentionally. In fact, it would be difficult to support
all those modelling domains using one semantics that would suit all. What we have seen, by way of two examples,
is that the proof obligations of Event-B can be used in a way to fit with some intended semantics, be it relational or
predicate transformer-based, be it for reactive systems or sequential programs. In some sense, in Event-B semantics is
replaced by proof obligations. Possible semantics are characterised but not fixed.

The major advantage of this approach is that proof obligations can be used across the different domains. From
our experience we know that they have a lot in common and it seems a good idea to exploit this. For the different
domains, though, proof obligations can be proved sound with respect to appropriate semantics. Thus we would still
like a model that is supposed to represent a sequential program, say, to have proof obligations that are sound with
respect to a semantics for sequential programs. And this can be achieved in Event-B by linking the proof obligations
to an appropriate semantic theory.
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A. Set-theoretical Notation

Some less common set-theoretical notation:

Converse “r−1”

x 7→ y ∈ r−1 =̂ y 7→ x ∈ r

Image “r[s]”

y ∈ r[s] =̂ ∃x · x ∈ s ∧ x 7→ y ∈ r

Domain restriction “sC r”

x 7→ y ∈ (sC r) =̂ x ∈ s ∧ x 7→ y ∈ r

Range restriction “sB r”

x 7→ y ∈ (r B s) =̂ x 7→ y ∈ r ∧ y ∈ s

Composition “r1 ; r2”

x 7→ y ∈ (r1 ; r2) =̂ ∃z · x 7→ z ∈ r1 ∧ z 7→ y ∈ r2

Interval “a .. b”

x ∈ a .. b =̂ a ≤ x ∧ x ≤ b
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