
HAL Id: hal-00554979
https://hal.science/hal-00554979

Submitted on 12 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Proving linearizability with temporal logic
Simon Bäumler, Gerhard Schellhorn, Bogdan Tofan, Wolfgang Reif

To cite this version:
Simon Bäumler, Gerhard Schellhorn, Bogdan Tofan, Wolfgang Reif. Proving linearizability with
temporal logic. Formal Aspects of Computing, 2009, 23 (1), pp.91-112. �10.1007/s00165-009-0130-y�.
�hal-00554979�

https://hal.science/hal-00554979
https://hal.archives-ouvertes.fr

Under consideration for publication in Formal Aspects of Computing

Proving Linearizability with Temporal
Logic
Simon Bäumler, Gerhard Schellhorn, Bogdan Tofan, Wolfgang Reif
Lehrstuhl für Softwaretechnik und Programmiersprachen

Universität Augsburg

D-86135, Augsburg, Germany

email:{baeumler,schellhorn,tofan,reif}@informatik.uni-augsburg.de

Abstract. Linearizability is a global correctness criterion for concurrent systems. One technique to prove
linearizability is applying a composition theorem which reduces the proof of a property of the overall system
to sufficient rely-guarantee conditions for single processes. In this paper, we describe how the temporal logic
framework implemented in the KIV interactive theorem prover can be used to model concurrent systems
and to prove such a composition theorem. Finally, we show how this generic theorem can be instantiated
to prove linearizability of two classic lock-free implementations: a Treiber-like stack and a slightly improved
version of Michael and Scott’s queue.

Keywords: Lock-Free, Linearizability, Verification, Temporal Logic, Compositional Reasoning, Rely-
Guarantee

1. Introduction

As multi-core processor architectures have become standard, the study of concurrent algorithms is a current
and important research topic. Among these, lock-free algorithms are a class of algorithms for concurrent
access to data structures, which typically do not use locks and mutual exclusive access, but instead rely on
atomic compare-and-swap-operations. Such operations are now implemented by all common processor types,
language support is provided e.g. by Java and C#.

Lock-free algorithms are less vulnerable to common problems such as deadlocks or priority inversion. On
the other hand these algorithms are more complex, since they do not use the universal principle of mutual
exclusion. This makes it harder to assure their correctness by intuitive arguments. Therefore, a number of
researchers have started to develop formal verification techniques that guarantee their correctness.

Correspondence and offprint requests to: Simon Bäumler, Gerhard Schellhorn, Bogdan Tofan, Wolfgang Reif
Lehrstuhl für Softwaretechnik und Programmiersprachen
Universität Augsburg
D-86135, Augsburg, Germany
email:{baeumler,schellhorn,tofan,reif}@informatik.uni-augsburg.de

Correctness of lock-free algorithms is typically based on verifying linearizability as defined by Herlihy &
Wing [HW90]. The underlying idea of linearizability is to view the concurrent operations on a data object
as though they occur in sequential order, similar to serializability for database transactions. Informally,
linearization states that every concurrent execution of a set of operations is equivalent to a sequential
execution of the same set. Verification of this property is usually done by showing that each operation has
a linearization point [HW90]. A linearization point is an atomic step between the call and return of an
operation, where the externally visible effect occurs.

Usually, reasoning over a concurrent system is hard and tedious work as all possible interleavings have to
be considered. A common method which avoids reasoning over the entire system is compositional reasoning.
It was first formulated in [Dij65] by Dijkstra. The basic idea is to split a system into several subcomponents
and to prove an overall system property using adequate properties of the subcomponents only.

A common compositional proof technique is the rely-guarantee paradigm, which was introduced by
Jones [Jon83] and by Misra & Chandy [MC81] (under the name assumption-commitment). The basic idea
of this paradigm is that each component can make specific assumptions about its environment, in order to
guarantee a specific behavior. Usually, rely-guarantee techniques provide a theorem that specifies in a num-
ber of proof obligations how assumptions and guarantees have to be connected in order to show a property
for the overall system. Ideally, these proof obligations only deal with single subcomponents and properties
of these subcomponents, but not the complete system itself. This results in several proofs of feasible size.
Several rely-guarantee methods are expressed in temporal logic. Examples of rely-guarantee reasoning can
be found e.g. in [dRdBH+01, CGP00, AL95, CC96].

The approach presented in this paper combines rely-guarantee reasoning and refinement to prove lineariz-
ability. It breaks down the linearizability condition into rely-guarantee proof obligations for single processes
using a composition theorem. This theorem states that for any interleaved run of an arbitrary number of
concrete processes, there is an equivalent run of abstract processes, in which abstract operations have a
single atomic step, marking the linearization point. Similar reasoning about linearizability can also be found
in [GC07, VHHS06].

This paper presents a formal approach which fully mechanizes all three steps1: the formal specification
and verification of a generic rely-guarantee theorem for refinement, the instantiation of this theorem with two
lock-free algorithms to prove linearizability, and the verification of the resulting proof obligations. All three
steps are carried out within the temporal logic framework [BBRS08, Bal05] of KIV [RSSB98], which supports
the intuitive deduction principle of symbolic execution [Bur74]. A simple to read programming language is
used both for specification and verification purposes. Application of the approach is shown with a simple
lock-free stack algorithm [Tre86] and a more sophisticated lock-free queue algorithm [MS96]. With regard
to the queue algorithm which has a non-trivial linearization point, the approach benefits from the ability to
refine concretes steps by several abstract steps: no further techniques are required for the refinement proof
of the dequeue operation.

In the following, we assume that the reader has at least some basic knowledge of the sequent calculus
and temporal logic. The paper is subdivided as follows: To get an idea about the subject matter, Section 2
introduces a simple lock-free stack algorithm and gives some intuition for its correctness. In Section 3 we
shortly describe the temporal logic framework of KIV and the basics of its rely-guarantee technique. Section 4
presents the generic refinement theorem which is applied in the next two sections on the stack (Section 5) and
a lock-free queue algorithm (Section 6). The paper concludes with sections about related work (Section 7)
and a short summary (Section 8).

2. Lock-Free Stack Algorithm

The basic principle of Treiber’s lock-free stack algorithm [Tre86] consists of three phases. In the first phase,
the required data is prepared, e.g. storage is allocated or local variables are initialized. In the second phase,
a local snapshot of the global data structure is taken. The third phase deals with changing the global data
in one atomic step, based upon the local snapshot. This phase typically uses a compare-and-swap (CAS)
command. If this atomic step fails because the snapshot has become obsolete in the meantime, the main
data structure remains unchanged and the algorithm repeats phase two.

1 Proofs are online at [KIV].

2

1
2
3
4
5
6
7
8
9
10
11
12
13

CPush(V ;Top,Hp,UNew ,USuccess) {
choose RefNew with RefNew �= Null ∧ ¬RefNew ∈ Hp in {

Hp := Hp ∪ {RefNew},UNew := RefNew ,USuccess := False;
Hp[UNew].val := V ;
let UTop = Null in {

while ¬USuccess do {
UTop := Top;
Hp[UNew].nxt := UTop;
CAS(UTop,UNew ;Top,USuccess)

}
}

}
}

Fig. 1. Declaration of the push process in KIV

The informal idea of the CAS command is that a local pointer L1 is compared to a global pointer G. If
both pointers are identical, G is set to another local variable L2 and the CAS command succeeds. If they
are different, G is left unchanged and the CAS command fails. The following KIV specification is used for
the CAS-operation:

CAS(L1, L2;G,Success) {
if G = L1 then {

G := L2,Success := True;
} else {

Success := False;
}

}
The parameters are separated by a semicolon in input parameters, which are read only and transient para-
meters which can be read and modified. The entire if-then-else block of CAS takes place atomically. The
then case describes a successful CAS, which sets G to the value of L2 and the success flag Success to true
(the comma denotes an atomic assignment). The else case leaves G unchanged and sets Success to false.

In KIV the stack is represented by a linked list which is stored in a heap Hp. Each heap cell has a field
for the data value (accessible by the function .val) and a field for a reference (accessible via .nxt), which can
also be the Null reference, denoting the end of the stack. The top of the stack is represented by a variable
Top. The stack is empty if Top is Null.

The push algorithm is depicted in Figure 1. The line numbers are given for explanatory purposes only.
They are not used in KIV. Parameters of CPush are the value V , which should be inserted into the stack
and the variables Top and Hp for the stack representation. Variables UNew and USuccess are local variables
originally. Since it is necessary to observe their intermediate values in correctness assertions, they have been
converted to transient parameters. Figure 2 visualizes the configuration of the heap and important variables
at several points of the execution. Figure 2(a) depicts the situation when the push operation is called. The
algorithm starts by allocating a new cell on the heap and storing the pointer in variable UNew (line 2 and
3). This is done by atomically choosing a new unallocated reference (line 2), adding it to the heap and
setting the pointer UNew to the newly allocated cell (both line 3). The result is depicted in Figure 2(b).
Also, the variable USuccess is initialized in line 3. The data value is stored in this newly allocated cell (line
4, Figure 2(c)). In line 5, the local variable UTop is initialized with a null pointer. After that, the algorithm
loops as long as the insertion of the new cell in the stack data structure fails (line 6 to 10). Inside the loop, the
pointer of the current top cell is stored in the local variable UTop (line 7, Figure 2(d)) and the .nxt-pointer
of the previously allocated cell is set to UTop (line 8). Finally, the algorithm tries to add the new data value
to the stack via CAS (line 9). If the current Top is still the same as it was in line 7, the previously allocated
cell UNew contains the correct .nxt-pointer and Top can be set to UNew . If the top of stack was changed
by another push or pop process in the meantime, the CAS operation fails and the while loop is reiterated.
Figure 2(e) depicts the situation just before the CAS operation and Figure 2(f) visualizes the configuration
of the stack directly after a successful CAS operation.

The principle for the pop algorithm is the same as for the push algorithm. The specification of the pop

3

UNew

UTop

Top

(a) Line 1

UNew

UTop

Top

(b) Line 3

v

UTop

UNew

Top

(c) Line 4

vUNew

UTop

Top

(d) Line 7

v

?

UNew

UTop

Top

(e) Line 9 - Before CAS

vUNew

UTop

Top

(f) Line 9 - Successful CAS

Fig. 2. Visualization of the Stack During a Push Operation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

CPop(;Top,Hp,OTop,OSuccess ,O) {
let Lo = Empty,ONxt = Null in {

OSuccess := False;
while ¬OSuccess do {

OTop := Top;
if OTop = Null then {

Lo := Empty;
OSuccess := True;

} else {
ONxt := Hp[OTop].nxt;
Lo := Hp[OTop].val;
CAS(OTop,ONxt ;Top,OSuccess);

}
}
O := Lo

}
}

Fig. 3. Declaration of the pop algorithm in KIV

algorithm is shown in Figure 3. Here, parameter O is used as return value of CPop and the local variable
Lo to temporarily store the return value. The pointer ONxt is used to point to the second cell of the stack,
which becomes the new top cell if the pop operation succeeds.

Inside the loop, the first operation is to locally store the current top-pointer in OTop, to detect changes
of the stack afterwards (line 5). If the stack is currently empty, a special value Empty is returned and the
process terminates (line 6-8). Otherwise, the data value and the .nxt-pointer of OTop are retrieved (line 10
and 11). If OTop is still accurate in line 12, the CAS-operation correctly changes the top of stack pointer
to the second cell, else the loop body is executed again. When the loop is exited, the local value of Lo is
assigned to the return parameter O (line 15).

Since both algorithms use pointers to detect whether the global stack has changed by comparing refer-
ences, the so called ABA-problem should be mentioned. It can occur when a cell is deallocated (by freeing

4

OTop at the end of CPop) and re-allocated using the same reference (in CPush), while there is a pointer to
that cell (by OTop of another process i). In this case, i might perform a successful CAS although the stack
has changed, which could result in incorrect behavior. There are several techniques to avoid this problem.
One is to simply assume garbage collection, as we do in this paper (see the end of Section 4.3 for a formal
justification). An alternative is to use modification counters that allow detection of cell changes. These can
be introduced in a separate data refinement (see e.g. [GC09]).

3. Temporal Logic Framework

In this section we shortly present the temporal logic calculus integrated into the interactive theorem prover
KIV. The logic is a variant of interval temporal logic (ITL) [Mos86, CMZ02]. A detailed description can be
found in [BBRS08, Bal05].

3.1. Interval Temporal Logic

Compared to standard ITL, the formalism used here is extended by explicitly including the behavior of the
environment into each step. The basis for ITL are algebras (to interpret the signature) and finite or infinite
sequences I = [I(0), I ′(0), I(1), I ′(1), . . .] of valuations (mappings of variables to values in the algebra). |I| ∈
N ∪ {∞} denotes the length of I. Finite intervals of length n end with state I(n). Variables are partitioned
into static variables (written lower case), which never change their value (I(0)(v) = I ′(0)(v) = I(1)(v) = . . .)
and flexible variables V (starting with an uppercase letter). Valuations in I are called states. All expressions
are evaluated over an algebra and an interval I. The first state I(0) is used to give meaning to predicate logic
expressions in the usual way. Intervals alternate system transitions and environment transitions. The first
system transition leads to state I ′(0). The next transition to I(1) is an environment transition. To access the
values of flexible variables in I ′(0) and I(1), primed variables V ′ and double primed variables V ′′ are used.
By convention V = V ′ = V ′′ for the last state of the interval. A selection of temporal operators supported
by KIV is:

� ϕ ϕ holds always from now on in every state
� ϕ there exists a state where ϕ holds
• ϕ ϕ holds in the next state, if there is one
◦ ϕ ϕ holds in the next state (which must exist)
last the current state is the last

ϕ until ψ ψ holds in some state and ϕ holds in every state before
ϕ unless ψ ϕ holds as long as no state with ψ is reached

α ‖ β interleaving
Eϕ there exists a path, such that ϕ holds

X := t1, Y := t2 parallel assignment (leaves other variables unchanged)
α or β nondeterministic choice

choose X with ϕ in α bind local variable X to some value that satisfies ϕ and execute α
α;β sequential composition

if ψ then α1 else α2 case distinction
let X = t in α local variable declaration
while ψ do α loop

await ϕ blocking until ϕ becomes true
α∗ iterate α any (finite or infinite) number of times

p(x̄; ȳ) procedure call (no global variables are allowed in procedure dec-
larations; only variables in ȳ are modified)

Our ITL variant supports classic temporal logic operators as well as program operators. Although we
usually write α, β to indicate a program and ϕ,ψ to indicate a formula, there is no syntactic distinction
between them. Both evaluate to true or false over an interval I. In particular, a program evaluates to true (I |=
α) if I is a possible run of the program. This allows us to mix programs with temporal logic formulas, which
is useful for abstraction. Semantically, programs initiate system transitions only, with arbitrary environment

5

steps interleaved (this idea is used in the semantics described in [dRdBH+01] as well as in the semantics of
ASMs [Gur95],[BS03]).

Interleaving is axiomatized to be weakly fair (each continuously enabled transition eventually occurs).
Assignments must be placed within a program frame [.]V 1,...,V n to avoid expressions with infinitely many free
variables (this is similar to TLA [Lam94], but our logic does not have built-in stuttering).2 As an example
the semantics of the program

[X := 3]X,Y,Z

consists of all intervals [I(0), I ′(0), I(1)] with one program transition from I(0) to I ′(0) that changes X ′ to
3 and leaves Y and Z unchanged. All other variables may change arbitrarily (and are therefore not free in
the formula). The environment transition from I ′(0) to I(1) is not constrained by the program.

Exemplarily the semantics of the until operator, the sequential composition operator and the existential
path quantifier is given:

I |= ϕ until ψ iff there exists n ∈ N, n ≤ |I| with (I(n), I ′(n), . . .) |= ψ

and (I(m), I ′(m), . . .) |= ϕ for all 0 ≤ m < n

I |= α;β iff there exists n ∈ N, n ≤ |I|with (I(0), I ′(0), . . . , I(n)) |= α

and (I(n), I ′(n), . . .) |= β

or |I| = ∞ and I |= α

I |= E ϕ iff there exists J with J(0) = I(0) such that J |= ϕ

Other temporal logic operators, such as �, � or unless can be derived, e.g.

� ϕ :≡ True until ϕ
� ϕ :≡ ¬ � ¬ ϕ

ϕ unless ψ :≡ � ϕ ∨ ϕ until ψ

3.2. Symbolic Execution and Induction

A typical sequent in proofs about interleaved programs has the form P,E, I � ϕ. An interleaved program
P executes the system steps, E contains a temporal formula that describes the behavior of the program’s
environment and I is a predicate logic formula that describes the current state. ϕ is the property which has
to be shown.

To verify that ϕ holds, symbolic execution is used. For example, a sequent of the form mentioned above
might look like this:

[M := M + 1;α]M , � M ′ = M ′′,M = 2 � � M > 0

The program executed is M := M + 1;α (α can be an arbitrary program) and the environment is assumed
not to change M (formula � M ′ = M ′′). The current state M = 2 does not violate � M > 0. A symbolic
execution step is used to show that the next program transition does not violate that formula too. The
intuitive idea of a symbolic execution step is to execute the first program statement, i.e. applying the
changes on the current state and to discard the first statement. In the example above, a symbolic execution
step leads to a predicate logic goal for the initial state

M = 2 � M > 0

and a sequent that describes the remaining interval from the second state on

α, � M ′ = M ′′,M = 3 � � M > 0

Of course, the environment assumption has to be considered too, but it simply leaves M unchanged in this
example. More complex formulas in the succedent might change too during the step (e.g. if the formula in the
succedent is a program too, it has to be symbolically executed like the example program in the antecedent).

2 This replaces the global frame assumptions in [BBRS08, Bal05], which say that all other variables are unchanged

6

The principle of symbolic execution is also applied to temporal logic formulas. The basic principle of
splitting a formula into a predicate logic part that describes the first step and a part that describes the
remaining interval from the second state on remains the same. E.g. the � or the unless operator can be
executed by using the following equivalences

� ϕ ↔ ϕ ∧ • � ϕ

ϕ unless ψ ↔ ψ ∨ (ϕ ∧ • ϕ unless ψ)

The basic idea to prove safety properties is to advance in the interval until a valuation that was considered
earlier in the interval is reached. In this case a loop was executed, and the proof can be finished with an
inductive argument.

The technical implementation of this idea uses theorems that introduce a counter N and then apply
well-founded induction on N . For a proof of � ϕ this is simply done by rewriting � ϕ to ¬ � ¬ ϕ and by
exploiting the equivalence

� ϕ ↔ ∃N. (N = N ′′ + 1) until ϕ (1)

The equivalence states, that ϕ is eventually true, if and only if a variable N storing a natural number can
be decremented (note that N = N ′′ + 1 is equivalent to N > 0 ∧ N ′′ = N − 1) until ϕ becomes true. The
“if” direction of this equivalence is easy to show, for the “only if” direction, the initial value of N must
be chosen to be at least the number of (system + environment) steps needed to reach the state where ϕ
holds. Proving an unless formula (as needed later in rely-guarantee proofs) can be reduced to the case of an
eventually formula using the equivalence

ϕ unless ψ ↔ ∀ B. (� B) → (ϕ unless (ψ ∨ B))

(ϕ unless ψ is true, if it is true on every prefix of the trace, that is terminated by the first time when
boolean variable B becomes true). KIV uses a rule “VD incuction” that integrates applying the above rules
and well-founded induction in one proof step (the rule essentially enables to create V erification D iagrams
of safety formulas dynamically as sequent calculus proofs, therefore the name).

General safety formulas satisfy the principle, that they are true on an infinite interval I, already if
every finite prefix I |n := (I(0), I ′(0), . . . , I(n)) of I can be extended with some interval J that starts with
J(0) = I(n) such that ϕ is true on this concatenation (see e.g. [AS87]). In addition to always and unless
formulas, this class also contains all sequential programs without local variables and all predicate logic
formulas (including those that mention primed and double primed variables). Safety formulas are closed
against conjunction and disjunction (but not negation). To express the general principle of induction over
the length of a prefix seems unfortunately not expressible with the usual ITL operators. A special operator
prefix(ϕ,ψ) is needed. Again the idea is to use the first time, when a boolean variable (used as ψ) becomes
true as the length of the prefix. The definition of its semantics I |= prefix(ϕ,ψ) has three cases:

1. If I |= ¬ � ψ then I |= ϕ is required.
2. If I is finite, I |= � ψ and ψ becomes true in the last state only, then I |= ϕ is required too.
3. Otherwise, if n is minimal such that I |n |= ψ then for some interval J with J(0) = I(n)

(I(0), I ′(0), . . . , I(n), J ′(0), J(1), . . .) |= ϕ

must hold.

The first disjunct of this definition could be defined arbitrarily. It is chosen to give simple symbolic execution
rules. The second clause is necessary to cope with finite intervals, which may not be extended (an interval
I of length one models X = X ′. The only prefix of I is I itself, which could be extended to model X �= X ′
making the theorem below false). The third clause is the usual definition as used in [AS87].

Safety formulas ϕ satisfy

ϕ ↔ (∀ B. � B → prefix(ϕ,B))

which gives the desired induction principle (again using the equivalence (1) on � B). Symbolic execution of
prefix(ϕ,B) always gives two cases, depending on the current value of B. If B is false then executing a step
of prefix(ϕ,B) gives the same results as executing ϕ and applying the prefix operator after the step (since

7

ψ:

ϕ:

ϕ
�
ψ:

I ′(0) I(1) I ′(1) I(2) I ′(2) I(3) I ′(3) I(4) I ′(4)I(0)State:

1

2

3

4

5

Fig. 4. Interleaving of two formulas

the first step is just a step of the considered interval). If B is true, then prefix(ϕ,B) is equivalent to Eϕ
since we may now choose an arbitrary interval J starting with the current state. Eα is typically true for
ordinary sequential programs α, but note that the condition is necessary since it is possible to mix programs
and formulas: E α; false is false.

Formally assuming τ is a predicate logic formula describing the first system and environment step (it
may refer to primed and double primed variables) the axioms

¬ B → (prefix(τ ∧ last, ψ) ↔ τ ∧ last)
¬ B → (prefix(τ ∧ ◦ ϕ) ↔ τ ∧ ◦ prefix(ϕ,B))

prefix(ϕ ∨ ψ,B) ↔ prefix(ϕ,B) ∨ prefix(ψ,B)
B → (prefix(ϕ,B) ↔ Eϕ)

are used to symbolically execute formulas with the prefix operator.

3.3. Executing Interleaved Programs

Two interleaved programs are executed by executing the first transition from one or the other. After this, the
proof continues with interleaving the remaining formulas. For example, if there are two interleaved programs
in the antecedent

[M := 1;α1 ‖ N := 2;α2]M,N , Γ � ∆

this formula can be transformed into the following two cases:

[M := 1; (α1 ‖ N := 2;α2)]M,N,, Γ � ∆

[N := 2; (M := 1;α1 ‖ α2)]M,N,, Γ � ∆
which can be symbolically executed by the mechanism described above.

As our framework does not distinguish between programs and formulas, it is necessary to define inter-
leaving of two temporal formulas ϕ and ψ. This definition is based on interleaving two intervals I1 and I2
with I1 |= ϕ and I2 |= ψ. A formal definition (that includes blocking steps) is given in [Bal05], here we show
in Figure 4, how the steps of the interleaved system are composed from steps of the components. Line 1 and
line 5 represent the two traces I1 and I2 of the components ϕ and ψ, where a full arrow depicts a step of
the component and a dashed arrow stands for a step of the component’s environment (the dotted arrows
at the end of all intervals symbolizes that the intervalls may continue after the last depicted state). Line 3
depicts a trace of the interleaving ϕ

�
ψ. Here a full arrow depicts a step of the interleaved system, i.e. a

step of either ϕ or ψ, and a dashed arrow depicts a step of the system’s environment. The relation of local
steps/states to the global steps/states is depicted with dotted lines. From the point of view of a component,
an environment step (dashed arrow in lines 2 and 4) is a sequence of steps of either another component
within the same interleaved system (full arrow in line 3) or a step which is also an environment step of the
entire system (dashed arrow in line 3).

If one of the intervals I1 or I2 is finite, once the last state of that interval has been reached the continuation
of the interleaved intervall I is equal to the remaining interval I1 or I2. The end of the terminating interval

8

(i.e. the last state) has to match one of the states of the remaining interval I (not necessarily the first one).
If both intervals I1 and I2 are finite, I is also finite.

The interleaving operator is associative and commutative. Therefore it is possible to interleave several
programs or formulas by using nested interleaving operators.

3.4. Compositionality of Interleaving

One of the key features of our logic, which is due to the interleaving of system and environment steps, is that
the interleaving operator is compositional. It allows us to replace interleaved components with abstractions.
To apply compositionality, rule comp is used:

α � ϕ β � ψ ϕ
�
ψ,Γ � χ

α
�
β,Γ � χ

comp

To prove that an interleaved program α
�
β satisfies a property χ in some context Γ (conclusion), it is

sufficient to show that programs α and β individually satisfy properties ϕ and ψ respectively (first and
second premise; usually ϕ and ψ are e.g. rely-guarantee properties – see next section). Then each program
can be replaced by its property in the premise. This rule is essential to prove the rely guarantee theorem
presented in the next section. A similar rule holds for sequential composition α;β in place of α

�
β. For full

details about symbolic execution, interleaving and induction in KIV see [Bal05].

4. Rely-Guarantee Reasoning

In [BNBR08] we presented a generic composition theorem for proving safety formulas similar to standard
composition theorems such as [dRdBH+01, CC96]. To show linearizability we need a suitable variant of this
theorem that can prove refinement between atomic abstract operations and interleaved concrete operations.
We first describe the idea of rely-guarantee proofs and their encoding in our temporal logic. After that we
present the theorem used here.

4.1. Rely-Guarantee Properties

The rely-guarantee proof method usually uses a two state rely predicate Ri : cstate× cstate over arbitrary
states of type cstate for every process (component) i : nat of a concurrent system. Ri defines restrictions
on environment steps that are necessary for i to work correctly. In return, the impact of each process on the
environment is described using a binary predicate Gi : cstate × cstate which preserves the rely conditions
of all other processes. This informal argument involves circular reasoning. To break the circularity, a special
”while-plus” operator

+� (as defined in [AL95]) is used and it is proved that each process i satisfies Ri
+� Gi.

This means informally that if Ri holds up to step k, then Gi must hold up to step k+ 1. With this operator
it is possible to express that a component violates its guarantee Gi only after its rely condition Ri has been
violated.

The explicit separation between program and environment transitions in our logic allows us to specify
guarantees as predicates Gi(CS ,CS ′) with unprimed and primed variables CS : cstate that describe steps of
process i. Rely predicates Ri(CS ′,CS ′′) restrict steps of i’s environment and use primed and doubly primed
variables. The formal definition of

+� is then based on the unless operator:

Ri
+� Gi := Gi(CS ,CS ′)unless (Gi(CS ,CS ′) ∧ ¬Ri(CS ′,CS ′′))

4.2. Proof Obligations for Components

Processes execute a generic operation COP(i, In;CS ,Out). Its input parameters include the process identifier
and an input array In : nat → input. Once COP(i, . . .) is invoked, i works on a local copy of the current
value In(i). The transient parameters consist of a state variable CS and an additional output parameter

9

�
�
�
�

�
�
�
�����������������������

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�������������������������

��
��
��
��

�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��

��
��
��
��������������������������

��
��
��
��

��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

Abs

cstepi Ri

Abs Abs

skip

Abs

cstepi Ri

Abs Abs

skip

Abs

cstepi Ri

Abs Abs

alinstepi

Fig. 5. Diagram relating COP(i, . . .) steps and AOP(i, . . .) steps

Out : nat → output, which enables the operation to return an output value Out(i) . This generic operation
is instantiated in the verification of the stack case study (see section 5) with an operation that randomly
executes a single CPush or CPop operation.

Our formal definition of the rely-guarantee theorem for a process i is slightly more complex than stated
in the former subsection, since it additionally uses an invariant single state predicate Inv : cstate.

COP(i, In;CS ,Out),� Ri(CS ′,CS ′′), Inv(CS) � � (Gi(CS ,CS ′) ∧ Inv(CS) ∧ Inv(CS ′)) (2)

The sequent states that executing the operation COP(i, . . .) from an initial state that satisfies Inv in an
environment that never violates Ri, will produce runs that guarantee Gi in every step and will also preserve
Inv . Suitable instantiations for Inv and Ri will be presented in section 5.

To prove (2), the main proof obligation to be shown is that the guarantee is never violated before the
rely condition:

COP(i, In;CS ,Out), Inv(CS) � Ri(CS ′,CS ′′)
+� Gi(CS ,CS ′) (3)

As stated above, the guarantee of each process i must imply the rely conditions of all other processes.

∀ i, j �= i. Gi(cs1, cs2) → Rj(cs1, cs2) (4)

This proof obligation is purely first order logic. It is described using static variables cs1, cs2 : cstate and
ensures that no step of i will violate the rely condition of another process j. Since an entire environment
step of process i may consist of several steps of other processes, the rely predicate has to be transitive to
make sure that a full environment step also satisfies Ri.

∀ i. Ri(cs1, cs2) ∧ Ri(cs2, cs3) → Ri(cs1, cs3) (5)

These two premises are enough to deduce that no component violates the rely condition of another com-
ponent. It finally remains to enforce that the invariant is preserved in all steps. In (2), the environment of
process i always satisfies Ri by assumption. It is sufficient to require that the invariant predicate is stable
over each local rely condition.

∀ i. Inv(cs1) ∧ Ri(cs1, cs2) → Inv(cs2) (6)

With (4) it then follows that for all i the invariant is also stable over Gi. Altogether we get: if all processes
satisfy conditions (3) to (6), then each process also satisfies (2).

4.3. Rely-Guarantee Theorem for Refinement

Usually, rely-guarantee techniques are used to show that an interleaved system preserves a global guarantee.
In this work, rely-guarantee is used to show a refinement property, i.e. that any run of an interleaved system
of concrete operations has an equivalent run of a system with abstract operations. As programs are formulas
in our framework, trace inclusion for a concrete component COP and an abstract component AOP can be
simply expressed by a formula COP(CS) � AOP(AS), where AS is an abstract state variable AS : astate.
This formula does not consider data refinement, nor the possible influence of the environment. A refinement
formula that includes both is

COP(i, In;CS ,Out),� Ri(CS ′,CS ′′), Inv(CS) � ∃ AS . (� (Abs(AS ,CS) ∧ Abs(AS ′,CS ′))
∧ AOP(i, In;AS ,Out))

(7)

The left hand side of the sequence defines concrete runs (semantically intervals) of COP(i, . . .), which start
in a state satisfying Inv , in an environment that always respects Ri. For every such run the right hand side

10

proves the existence of a suitable abstract run, working on the same input and returning the same output as
COP(i, . . .). Such an abstract run is suitable if it has the same length as the concrete run and refinement
relation Abs : astate× cstate holds before and after each step (unprimed and primed variables).

In order to prove linearizability, the generic operation AOP(i, . . .) will be instantiated as depicted in
Figure 5. AOP(i, . . .) must take place in one atomic step (alinstepi) whereas other steps must leave the
abstract data structure unchanged, i.e. are basically skip steps. The lower interval depicts a concrete run of
COP(i, . . .), where cstepi denotes a step of COP(i, . . .). Finding an abstract run as previously described
for every concrete run, intuitively corresponds to the idea of linearizability [HW90]. The effect of the concrete
operation on the abstract data structure happens atomically at the linearization point, which is somewhere
between invocation and return.

It remains to formally define the full scenario of any number of processes calling any number of concrete
operations. A process calls COP(i, . . .) arbitrarily often. It may finish at any time or never. Inbetween these
calls the process will do some other irrelevant computations, i.e. steps that are visible from outside as skip
steps. Formally, this sequence of COP(i, . . .)-operations is specified by the procedure CSeq

CSeq(i; In,CS ,Out) {
(skip ∨ COP(i, In;CS ,Out))∗

}
where α∗ iterates α finitly or infinitly often. As a side-effect, skip steps must satisfy the local guarantee,
i.e. the local guarantee must be reflexive:

∀ i. Gi(cs, cs) (8)

To specify an arbitrary number of parallel processes, a recursively defined spawn procedure is used.

CSpawn(n; In,CS ,Out) {
if n = 0 then

CSeq(0; In,CS ,Out)
else

CSeq(n; In,CS ,Out)
�

CSpawn(n− 1; In,CS ,Out)
}

The spawn procedure generates n+ 1 processes. For every number n, the spawning process CSpawn(n; . . .)
can be expanded to CSeq(n; . . .) ‖ . . . ‖ CSeq(0; . . .). Processes are discerned by a process identifier
ranging from 0 to n. The abstract level has a similar spawning procedure ASpawn(n; In,AS ,Out) that calls
ASeq(i; In,AS ,Out) for i ≤ n.

Since our generic setting assumes that even the interleaving of all processes still has a global environment
which can do steps, we also need a global binary predicate R : cstate × cstate. It is used to restrict the
possible behaviour of the system’s environment in a way that preserves each local rely Ri.

∀ i. R(cs1, cs2) → Ri(cs1, cs2) (9)

With these definitions it is possible to prove the following composition theorem.

Theorem 1. If for all 0 ≤ i, j ≤ n, i �= j formulas (3) to (9) hold, then:

CSpawn(n; In,CS ,Out),� R(CS ′,CS ′′), Inv(CS) � ∃ AS . (� (Abs(AS ,CS) ∧ Abs(AS ′,CS ′))
∧ ASpawn(n; In,AS ,Out))

(10)

The theorem states that for every interleaved run of an arbitrary number of processes, which all execute
COP(i, . . .) as often as they like, a corresponding abstract run of operations AOP(i, . . .) exists. Moreover,
concrete and abstract operations execute on the same input and yield the same output.

Unlike standard rely-guarantee theorems (e.g. [dRdBH+01, CC96]), this theorem does not reason about
one interleaved system but about two interleaved systems connected by refinement. The theorem was formally
proved in KIV and is available online [KIV]. The proof is similar to the one outlined in [BNBR08].

Finally, note that CSpawn still runs in an environment with a global rely condition R that is the
conjunction of the local rely conditions Ri. All local rely conditions defined for the stack and the queue
example (Sections 5 and 6) will require only that local pointers are not modified and that the cells of the
current stack or queue representation are unchanged. Therefore, it is possible to collect all other cells by a
garbage collection algorithm that runs in the environment of CSpawn.

11

APush(v ;Stack) {
skip∗;
Stack := push(v,Stack);
skip∗

}

APop(;Stack,O) {
let Lo = Empty in {

skip∗;
if Stack �= Empty then {

Lo := top(Stack),
Stack := pop(Stack);

}
skip∗;
O := Lo

}
}

Fig. 6. Formal definition of the abstract stack operations

5. Correctness of the Stack Algorithms

In this section we describe how the generic theory has been instantiated in the stack case study to show
linearizability. The first subsection presents the instantiation of the generic operations COP(i, . . .) resp.
AOP(i, . . .) and of the refinement relation Abs. The other subsections present the invariant properties and
rely-guarantee conditions used in the verification.

5.1. Concrete and Abstract Stack Operations

The generic state variable CS becomes a tuple consisting of a shared state Top, Hp and local states
UNew(i),USuccess(i),OTop(i),OSuccess(i) for every process i . The concrete definition of COP(i, . . .) then
is

COP(i, In;Top,Hp,UNew ,USuccess ,OTop,OSuccess ,Out) {
CPush(In(i);Top,Hp,UNew(i),USuccess(i))
∨

CPop(;Top,Hp,OTop(i),OSuccess(i),Out(i))
}

It randomly calls a CPush or CPop operation. New input is chosen for the push process as the input In
is randomly reassigned in every environment step. AOP(i, . . .) is defined similarly. It works on an algebraic
Stack which corresponds to the abstract state AS and calls APush or APop as defined in Figure 6. These
operations modify the stack in one atomic assignment (push and pop are atomic operations defined on the
algebraic Stack). Additional skip steps ensure that the abstract run corresponding to the concrete run of
COP(i, . . .) will have the same length. Note that the output of APop is kept in a local variable Lo to ensure
that the visible output value O is changed in the same (last) step as in the concrete operation CPop. This
guarantees that the outputs are set simultaneously in corresponding abstract and concrete runs.

To instantiate (10) in Theorem 1, we need a rely condition R(CS′, CS′′) for the global environment and
an abstraction relation Abs. The global rely condition is simply the conjunction of all local rely conditions,
since no other process from outside of the system should interfere with any of the local processes. The
abstraction relation is recursively defined as

Abs(Empty, top, hp) ↔ top = Null (11)
Abs(push(v, st), top, hp) ↔ top �= Null ∧ top ∈ hp ∧ hp[top].val = v

∧ Abs(st , hp[top].nxt, hp)
(12)

st is the abstract stack and v is a data value. The empty stack is represented by the Null pointer (for-
mula (11)). For the recursive case in formula (12), top has to be allocated in hp, the data value of the cell
referenced by top has to be the data value on top of the stack and the rest of the stack has to be represented
by the next pointer of the cell referenced by top.

To prove the verification conditions of Theorem 1 we furthermore need local rely conditions Ri for each
process i and an invariant Inv . Once this is done, the proof itself can be done by simply stepping through

12

the program. Except for the while loops which often need a manual generalization of the precondition at the
beginning to get an invariant, these proofs require only little interaction.

5.2. Invariant

Although some parts of the invariant and rely conditions are schematic, finding suitable conditions is the
main creative task in verifying a lock-free algorithm. The invariant Inv consists of three parts. The first part
is schematic. It states that the data structure represented by the heap and the top variable has to be valid,
i.e. it really represents a stack and is neither cyclic nor has invalid references.

valid(top, hp) ↔ ∃ st . Abs(st , top, hp)

The other two parts of the invariant assert properties of the local variables used in CPush and CPop.
A standard assumption is that local variables contain either a Null pointer, or must point to an allocated
heap address. This prevents illegal dereferencing. For the pop operation the only relevant variable is OTop,
and this is all that is needed:

Invpop(otop, hp) ↔ ∀ i. otop(i) = Null ∨ otop(i) ∈ hp

For the push operation the same proposition is needed for UNew . Additionally, the cell allocated by a
push process at the start of the operation must not be part of the stack before a successful CAS of the push
operation integrates it into the stack. Without this proposition, modifying the cell could accidentally change
the stack. A simple way to characterize “before a successful CAS” is to check that USuccess is false. We get
the following invariant for push:

Invpush(unew , usuccess, top, hp) ↔ ∀ i. (unew(i) = Null ∨ unew(i) ∈ hp)
∧ (¬ usuccess(i) → ¬ reachable(top, unew(i), hp))

Predicate reachable(top, r, hp) is true iff r is a reference of the stack representation which is reachable from
top. Reachability is defined using lists of references p = [r1, . . . rn] which are paths in the heap chained by
.nxt:

reachable(top, r, hp) ↔ ∃ p. path(top + p+ r, hp)

where predicate path is recursively defined as:

¬ path([], hp)

path([r + [], hp) ↔ r ∈ hp ∧ r �= Null

path(r1 + r2 + p, hp) ↔ r1 ∈ hp ∧ r1 �= Null ∧ hp[r1].nxt = r2 ∧ path(r2 + p, hp)
The ’+’–operator is overloaded to concatenate lists as well as elements. Finally, a proposition is needed that
the references of functions UNew and OTop are disjoint. This ensures that the changes a push operation
makes on its newly allocated cell, do not interfere with other push operations or pop operations retrieving
the data values out of OTop cells. Note that the fact that UNew cells are not reachable, while OTop cells
are, when the assignment OTop := Top is executed in CPop, is not sufficient to ensure disjointness, since
an OTop cell is not guaranteed to stay within the stack after the assignment has happened. Formally the
predicate disj is used.

disj (unew , usuccess, otop) ↔ ∀ i, j. i �= j → (unew(i) = Null ∨ unew(i) �= unew(j))
∧ (¬ usuccess(i) ∧ otop(j) �= Null → unew(i) �= otop(j))

Altogether the complete invariant is

Inv(cs) ↔ valid(top, hp) ∧ Invpush(unew , usuccess, top, hp) ∧ disj (unew , usuccess, otop)

5.3. Rely and Guarantee Properties

The local rely condition Ri consists of three parts. The first part is schematic: it states that the invariant
Inv is preserved, as required by condition (6). The second and third part are again assertions for push and

13

pop.

Ri(cs1, cs2) ↔ (Inv(cs1) → Inv(cs2))
∧ Ri,push(unew1, usuccess1, hp1, unew2, usuccess2, hp2)

∧ Ri,pop(otop1, osuccess1, hp1, otop2, osuccess2, hp2)

Both rely conditions for push and pop consist of a trivial part that asserts that the local variables are not
changed by the environment. In addition, the content of the allocated cell should not be changed as long as
the push operation is trying to include it into the stack. This leads to the following rely for push operations:

Ri,push(unew1, usuccess1, hp1, unew2, usuccess2, hp2) ↔
usuccess1(i) = usuccess2(i) ∧ unew1(i) = unew2(i)

∧ (unew1(i) �= Null ∧ ¬ usuccess1(i) → hp1[unew1(i)] = hp2[unew2(i)])

State variables with index one denote a state before an environment step and index two denotes the state
afterwards. The rely for pop operations is similar. The content of the cell OTop is not changed as long as
the pop operation is active. This condition is necessary to prevent unwanted changes of the stack, as they
could occur with the ABA problem.

Ri,pop(otop1, osuccess1, hp1, otop2, osuccess2, hp2) ↔
osuccess1(i) = osuccess2(i) ∧ otop1(i) = otop2(i)

∧ (otop1(i) �= Null ∧ ¬ osuccess1(i) → hp1[otop1(i)] = hp2[otop2(i)])

It finally remains to define the guarantee of each process. As the guarantee only has to be strong enough
to imply the rely properties for all other processes (condition (4)), the guarantee can be defined as their
conjunction.

∀ i. Gi(cs1, cs2) ↔ ∀ j. j �= i → Rj(cs1, cs2)

The proofs for all proof obligations are available online at [KIV]. The predicate logic proofs for conditions
(4) to (6), (8) and (9) are simple. The only complex proofs are the local rely-guarantee condition (3) and the
refinement condition (7). These proofs split into one that symbolically executes push and one that executes
pop. The proofs for (3) use induction over the unless formula as described in Section 3.2. Finding an induction
principle to prove (7) is more difficult, since the formula contains existential quantifiers: one is the explicit
∃ AS. The other is implicit in the let for the variable Lo in the APop algorithm. Since in general safety
formulas are not closed against existential quantification (a counter example can be found e.g. in [JT96])
induction is not admissible. In general, image-finiteness of the existential quantifier seems to be required for
∃ AS. ϕ to be a safety formula when ϕ is. For the case study the solution is easier, since Abs is a partial
function that admits only one choice anyway (and therefore is trivially image-finite). Therefore we define the
skolem function absf of the Abs predicate by

Abs(Stack,Top,Hp) → Abs(absf (Top,Hp),Top,Hp)

and instantiate the quantifier immediately with absf (Top,Hp). Note that absf is always defined since the
invariant contains valid(top, hp). The existential variable Lo from the let of the APop algorithm can be
instantiated to if OSuccess then Lo else Empty using the variable of the same name from the let of the
CPop algorithm. After that, the resulting formula is a conjunction of a sequential program and an always
formula, which is a safety formula. Prefix induction as explained in Section 3.2 is used to prove it. The
appropriate linearization point in the refinement proof is chosen interactively. As an interesting aside, there
is no need to generalize the precondition of the while loops to an (Hoare style) invariant that holds whenever
the algorithm is at the start of the loop. This seems to be a particularity of lock-free algorithms, where
restarting the loop discards the results of previous iterations.

6. Lock-free Queue Algorithm

This section describes the application of the introduced verification technique on a more complicated lock-free
algorithm. It is a slightly optimized implementation of a concurrent, lock-free queue presented by Doherty

14

?

Head

vn

Tail

v1

a) Non-lagging Tail

Head Tail

?

b) Non-lagging Tail Empty

?

Head

vnvnvn−1

Tail

c) Lagging Tail

?? ?v

TailHead

d) Lagging Tail Empty

Fig. 7. Queue Representation

et. al. in [DGLM04], based on the original algorithm of Michael and Scott [MS96]. Subsection 6.1 presents
the queue algorithm focusing mainly on the dequeue operation, as the determination of the linearization
point for this operation poses an additional problem which the stack example does not have. In Subsection
6.2 the instantiation of the generic operations is explained and two of the rely conditions are described.
Subsection 6.3 outlines the proof for the critical case of the dequeue operation. Again full details of all proofs
are available on the Web [KIV].

6.1. Queue Specification

On the concrete level the queue is represented by means of a singly linked list of nodes, a global pointer Head
indicating the front of the queue and a global pointer Tail which marks the end of the queue as illustrated
in Figure 7 a) and b). It is convenient to use a dummy node to avoid a special case for an empty queue.
The value of this node is irrelevant and is represented by a question mark. At all times, Head points to the
dummy node, which is the entry point of the representation list.

Two operations are implemented: the enqueue operation CEnq adds a node at the end of the queue
whereas CDeq removes the first node from the queue, returning its value if the queue is not empty. Otherwise,
Head’s next reference is Null and special return value empty indicates that dequeue has been executed on
an empty queue.

When CEnq tries to attach a new node Newe at the end of the queue, two global changes must be made.
The last node’s next field must be set to the new node and the tail pointer itself must be shifted to point to
Newe. Unfortunately CAS allows only one atomic write access. CAS is therefore utilized twice to cope with
this problem. The first successful CAS-transition sets Tail’s next field to point to Newe (the linearization
point), leaving Tail lagging one node behind the last node of the queue, as shown in Figure 7 c). The second
employment of CAS shifts the lagging tail pointer to its successive node Newe. These two CAS-transitions
do not both take effect atomically. Some other process j which executes CEnq might encounter a state
inbetween, when Tail does not mark the end of the queue. Whenever j encounters a lagging tail pointer,
it knows that another process i has already successfully attached a new node but has not yet shifted Tail.
Process j helps i by applying CAS to try to shift Tail to the next node of the linked list. Hence, Tail will
never lag more than one node behind. All other aspects of CEnq are similar to the push operation in the
stack example. In particular, no additional difficulties arise when trying to determine the linearization point.

The dequeue operation (see Figure 8 a)) in contrast has a non-trivial linearization point and is therefore
presented in more detail. A process i executing CDeq takes a snapshot Hdd of the global head pointer in
line C5. Then Hdd’s next reference is stored in Nxtd. If the following check in line C7 fails, i must reiterate
the loop-body, as the snapshot Hdd has become obsolete. Otherwise, if Nxtd is Null then the queue was
empty when i executed line C6. CDeq completes and returns empty. If in contrast Nxtd is not null, process
i locally stores Nxtd’s value and tries to shift Head, making Nxtd the new dummy node, line C13. If this
CAS-transition fails, i executes the loop-body again. Otherwise Head is shifted and i then checks for a special
configuration which emerges from shifting Head when the queue contains exactly one value v and the tail

15

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C17
C18
C19
C20
C21
C22
C23
C24
C25

CDeq(;Hp,Head ,Tail ,Hdd ,Nxtd ,SuccD ,O) {
let Lo = Empty, Tld = Null in {

SuccD := False;
while ¬ SuccD do {

Hdd := Head;
Nxtd := Hp[Hdd].nxt;
if Hdd = Head then {

if Nxtd = Null then {
Lo := Empty;
SuccD := True;

} else {
Lo := Hp[Nxtd].val;
CAS(Hdd ,Nxtd ;Head ,SuccD);
if SuccD then {

Tld := Tail ;
if Tld = Hdd then {

CAS(Tld ,Nxtd ;Tail);
}

}
}

}
}
O := Lo;

}
}

a) Concrete Dequeue

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11

ADeq(;Queue,O) {
let Lo = Empty in {

skip∗;
if Queue �= Empty then {

Lo := head(Queue),
Queue := deq(Queue);

}
skip∗;
O := Lo

}
}

b) Abstract Dequeue

Fig. 8. Formal Specification of Dequeue

pointer is lagging behind. This configuration is depicted in Figure 7 d). Head gets shifted ahead of Tail.
In this situation only, i can help out the enqueueing-process which has enqueued v, to shift the lagging
tail pointer. The remaining lines of code, C14 - C17, deal with this situation. Note that CDeq reads the
global tail pointer at most once. The original implementation of Michael and Scott reads the shared tail
pointer whenever the loop-body is executed. The current implementation reduces shared memory access, if
the dequeue loop-body has to be executed several times.

Finding the possible linearization point when process i runs CDeq is more complicated. Two cases are
discerned depending on what is read in line C6. If Nxtd is set to a non-null reference and Head remains
unchanged after i took the snapshot, the linearization point simply coincides with the successful CAS-
transition in line C13. This transition removes the oldest value from the queue whereas all other transitions
leave the queue untouched. The critical case in which Nxtd is set to Null is depicted in Figure 9 (see also
Figure 8 b) for the abstract dequeue operation). Only in this situation can CDeq assure that it was executed
on an empty queue. However, if Nxtd is Null at C6 this does not guarantee that CDeq will complete and
return empty. This is because if the snapshot Hdd becomes obsolete between execution of line C6 and C7,
i has to retry. In this case, execution of line C6 has not been a linearization point, i.e. concrete trace (1)
corresponds to abstract trace (4). If the snapshot is still accurate when i executes line C7, CDeq completes
returning empty. Hence, concrete trace (2) corresponds to abstract trace (3) and executing line C6 has been
a linearization point corresponding to abstractly running dequeue on an empty queue.

The queue algorithm belongs to a different class of lock-free algorithms than the stack algorithm. Whether
a transition (C6) is a linearization point depends on future behaviour which cannot be determined at the point
of execution. It is this place, where verification approaches that refine single steps of a concrete algorithm
individually, run into problems and require additional techniques since an abstract V-shaped diagram is
refined to a Y-shaped diagram (moving nondeterminism backward). The automata based approach presented
by Doherty et. al. in [DGLM04] introduces an intermediate automaton and applies backward simulation in
order to complete the formal verification. Vafeiadis [Vaf07] proposes to use a prophecy variable in his PhD to

16

CDeq

ADeq

(1)

(2)

(3)

(4)

ABS

C4: while ...C7: Hdd != Head

C7: Hdd = Head

C6: Nxtd := null;

A3: skip;

A8: skip; A8: skip*; ...

C8: if ...

A3: skip*; ...

A3: skip;

A4 − A7: lin;

Fig. 9. Dequeue Empty Trace Relations

handle the problem (which is basically equivalent). The solution of our approach is easier, since we directly
verify trace inclusion.

6.2. Instantiation of Generic Operations and Rely-Guarantee Conditions

As in the stack example, generic operation COP is instantiated by the nondeterministic disjunction of the
concrete queue operations CEnq and CDeq. The generic state variable CS becomes a tuple consisting of a
shared state for the heap and the head and tail pointers and local states according to CEnq and CDeq for
every process i.

From an abstract point of view, a queue is a finite sequence of elements offering an atomic operation
that adds an element at the end of the sequence and an atomic operation that removes the first element
from the sequence. These atomic operations are analogously extended as already presented in Subsection
5.1, Figure 6 for the stack. The extended abstract dequeue operation is explicitely given in Figure 8 b). The
abstract state variable AS becomes a dynamic variable Queue of type list and generic operation AOP is
the nondeterministic choice between the two extended abstract operations. In order to prove the refinement
relation between COP and AOP, generic predicate ABS is defined in conformance with Figure 7.

The required local rely-guarantee conditions Ri : cstate × cstate for the refinement proof are similar to
the stack case study. Each process requires other processes to maintain a valid representation according to
ABS and to respect locality assumptions. As an example of the differences, predicate Ri,deq, the analogon
of subproperty Ri,pop from the stack, looks as follows.

Ri,deq(cs1, cs2)
↔ succdf1(i) = succdf2(i) ∧ hddf1(i) = hddf2(i) ∧ nxtdf1(i) = nxtdf2(i)

∧ (hddf1(i) �= null ∧ hp1[hddf1(i)].nxt �= null
→ hp1[hddf1(i)].nxt = hp2[hddf2(i)].nxt

∧ hp1[hp1[hddf1(i)].nxt].val = hp2[hp2[hddf2(i)].nxt].val)

(13)

The environment of i is not allowed to change local variables succdf 1(i), hddf 1(i) and nxtdf 1(i). If snapshot
hddf 1(i)’s next reference is not null, other processes leave this reference unchanged as well as the value of
hddf 1(i)’s direct successor cell. This ensures that the successful CAS in line C13 shifts the head pointer
correctly and it ensures also that abstract and concrete output values do not differ.

A property that is part of the invariant condition Inv : cstate and which has no counterpart in the stack
case study is the following.

hddf(i) �= Null
→ (hp[hddf(i)].nxt = Null ∨ hp[hddf(i)].nxt ∈ hp)

∧ (hp[hddf(i)].nxt = Null → hddf(i) = hdq)
(14)

It states that i’s local snapshot hddf (i) has a next pointer which is either null or pointing to a location in

17

. . .
C8, RI, s2 � . . .

. . . � A8 ∧ A
(7)

. . . , s1,Hddf (i) = Head � . . .
(5)

C4, RI, s3 � . . .
(9)

. . . � A3 ∧ A
(8)

. . . , s1,Hddf (i) �= Head � . . .
(6)

C7, RI, s1 � A3 ∧ A, A8 ∧ A
(4)

C6, RI, s0,Hp[Hddf (i)].nxt = Null � skip;A3 ∧ A, A4 ∧ A
(3)

C6, RI, s0,Hp[Hddf (i)].nxt = Null � A3 ∧ A
(2) · · · �= Null � . . .

C6, RI, s0 � A3 ∧ A
(1)

RI :≡ � (Ri(CS′, CS′′) ∧ Inv(CS) ∧ Inv(CS ′))
A :≡ � abs(Queue,CS) ∧ abs(Queue′,CS ′))
s0 :≡ ¬ Succdf (i) ∧ Hddf (i) �= Null ∧ abs(queue0,CS)
s1 :≡ ¬ Succdf (i) ∧ Hddf (i) �= Null ∧ Nxtdf (i) = Null ∧ abs(queue1,CS)
s2 :≡ ¬ Succdf (i) ∧ Hddf (i) �= Null ∧ Nxtdf (i) = Null ∧ abs(queue2,CS)
s3 :≡ ¬ Succdf (i) ∧ Hddf (i) �= Null ∧ Nxtdf (i) = Null ∧ abs(queue3,CS)

Fig. 10. Proof Outline Dequeue Empty

the application heap. If this pointer is null, the snapshot is still accurate, i.e. it coincides with the global
head pointer hdq.

6.3. Proof Outline

We outline the proof for the critical transition of CDeq executed by an arbitrary process i in Figure 10.
There Ck denotes the remaining program of CDeq starting from line Ck, e.g. C6 denotes the sequence of
instructions C6 to C10, followed by the while loop. Analogously Ak stands for the remaining code of ADeq
from line Ak. Further abbreviations are introduced in the figure.

The conclusion of the proof tree shows the proof goal after symbolically executing lines C1 - C5 of CDeq,
the program to execute is C6. Process i has reached a state which satisfies predicate logic formula s0.
Assuming the rely guarantee and invariance conditions RI, it has to be shown that the sequence of values
absf (Head ,Tail ,Hp) is an execution of A3 and preserves the abstraction A.3

The first step (1) of the proof does a case split on whether Hddf (i)’s next pointer is Null, to get
the critical case in the first premise. The current queue (queue0) is then indeed empty, since according to
invariant property (14) from the previous subsection, the snapshot Hddf (i) is still the head of the queue.

The next step (2) expands the star operator using the equivalence

[skip∗; γ] ≡ [skip; skip∗; γ] ∨ [γ]

for an arbitrary program γ (either another skip is executed or γ starts immediately). This gives the two
succedent formulas of the premise (a comma between formulas in the antecedent/succedent of a sequent
stands for the conjunction/disjunction of these formulas).

The next step (3) symbolically executes the instruction at C6 which sets Nxtdf (i) to Null and the
skip transition of the first formula in the succedent is executed. The second formula in the succedent also
executes a skip step, as the test of the if-statement at A4 is false. The remaining program in this case is
just skip∗;O := Lo (written A8 in the goal). This gives a proof obligation according to the premise of (3)
and a side goal which demands to prove that the last step has indeed preserved A. The proof of this side
goal is trivial, as s0 fulfills abs and none of the three formulas has changed the concrete resp. abstract state.
Therefore, both abstract transitions can be pursued in constructing an abstract trace. This is not the case
with linearization points that change the data representation, where only one choice of executing an abstract
skip or executing the abstract operation will give a suitable abstract state. For these, one of the two resulting

3 In the following we abstract from the substitution of the abstract state and output variables as described in Subsection 5.3

18

formulas will simplify to false and disappear. Delaying the decision, whether the linearization point has been
executed, seems to be possible only when the abstract data structure is not modified. The case is common
for operations that observe the data structure (e.g. the test for an element being in a list in the algorithm
studied in [VHHS06]). Our proof approach can handle this case without any extra work, since it does not
require to fix a unique value of a program counter for the new abstract state.

The proof continues with the new state s1. This is the state after execution of C6 and after the environment
has executed its rely step. In this state the case split whether the last step has been a linearization point
can be made (step (4) of the proof). If the global head pointer Head has not changed since taking the
snapshot Hddf (i), executing the transition in line C6 has been a linearization point. Formula A3 ∧ A can
be weakened from the succedent in step (5) by applying the weakening rule of the sequent calculus which
permits to strengthen a sequent by dropping formulas from its succedent (or antecedent). Both sequents of
this inference step are given in more detail.

N = N ′′ + 1untilB, Indhyp(N),C7, RI, s1,Hddf (i) = Head � prefix(A8 ∧ A,B)
N = N ′′ + 1untilB, Indhyp(N),C7, RI, s1,Hddf (i) = Head � prefix(A3 ∧ A,B), prefix(A8 ∧ A,B)

According to Subsection 3.2 a counter N and a boolean variable B are used for induction. The induction
hypothesis Indhyp(N) is the universal closure (except N) of the following formula.

∀ N0 < N. N0 = N ′′
0 + 1untilB ∧ C4 ∧ RI ∧ ¬ Succdf(i) → prefix(A3 ∧ A,B) (15)

During symbolic execution the induction hypothesis is defined just before the loop-body is entered (C4)
and since N is decremented in each step, Indhyp(N) can be applied if after at least one execution step,
a configuration is reached which satisfies the preconditions of the implication in (15). This is the case if
executing the loop-body leads back to line C4 (see below). Since in the current state formulas Hddf (i) = Head
and Nxtdf (i) = Null hold, the following symbolic execution steps (7), . . . lead to eventually exiting the loop-
body and returning output value empty. In this case of linearization the induction hypothesis is not required.

If however the snapshot is deprecated, the executed concrete transition has not been a linearization
point and formula A8 ∧ A can be weakened in step (6). In this case of non-linearization the next symbolic
execution step (8) jumps back to the start of the loop body C4:

N = N ′′ + 1untilB, Indhyp(N),C4, RI, s3 � prefix(A3 ∧ A,B)
N = N ′′ + 1untilB, Indhyp(N),C7, RI, s1,Hddf (i) �= Head � prefix(A3 ∧ A,B)

The new state fulfills s3 which implies ¬ Succdf (i) and the resulting sequent can be closed with the induction
hypothesis (15) in step (9).

7. Related Work

Our approach is based on an expressive temporal logic, which is built into the theorem prover. In this
sense it is similar to the STEP prover [BBO+99] or to PlusCal [Lam06]. All these approaches require to
encode programs to a normal form of transition systems for deduction. Although this is not a drawback for
automated proofs using model checking, we found it very unintuitive to reason about program counters in
interactive verification. Therefore we avoid such an encoding.

An alternative to using temporal logic and rely-guarantee reasoning directly, is to use an encoding into
higher-order logic (e.g. [PA03], [Mer95], [Kal95] or [Pre03]). This has the advantage that soundness of the
logic can be reduced to the soundness of higher-order logic, but it requires to encode a lot of the semantics
(we are not aware of encodings that support all of local variables, recursion, blocking and interleaving).

Verification of lock-free algorithms is currently an active research topic. Various algorithms have been
proved correct, e.g. algorithms working on a global queue [DGLM04, AC05], a lazy caching algorithm [Hes06]
or a concurrent garbage collection [GGH07].

The stack and queue algorithms considered here were taken from Groves et. al. [CDG05, DGLM04], who
have given a correctness proof using IO automata and the theorem prover PVS. Their work adds modification
counts to avoid the ABA problem. In contrast to this formal proof our proof is not monolithic, and does
not require to encode programs as automata using program counters. Another difference is, that their work
needs a intermediate specification and backward simulation for verification of the queue algorithm.

Recent work by the same authors [GC07, GC09] discusses incremental development of the algorithm

19

using refinement calculus and programs very similar to ours. For the stack algorithm we have only studied
the core algorithm, while their work discusses extending the algorithm with elimination arrays from [HSY04].
The resulting steps are rather intuitive for explaining the ideas and possible variations. Again this work also
discusses various extensions and variations of the algorithm. The refinement calculus used is quite close to
parts of the logic used in KIV [RSSB98] (in particular to Dynamic Logic [Har84] for sequential programs).
Therefore, we tried to imitate some of the steps, but we found that this is not really possible. The basic idea
underlying the paper of commuting statements that assign to disjoint variables is almost never applicable,
since most assignments work on one variable: the global heap. Such assignments commute only if it can be
proved that the locations they access are disjoint. Indeed most of the complexity of our assumptions is to
answer the question, why processes cannot modify or access certain locations. Answers to these questions
are only given informally in [GC07, GC09].

In [VHHS06], Vafeiadis et. al. describe a rely-guarantee approach that is applied informally on an imple-
mentation of sets using fine-grained locking. [CPV07, VP07, Vaf09] mechanizes the approach by providing
tool support that checks the proof obligations (correctness of the proof obligations is justified using a rely-
guarantee theorem that is proved on the semantic level). In contrast to our approach, the approach mixes the
abstract and concrete layer, by calling the abstract operation at the linearization point within the concrete
code. We have not used this idea, since it is incompatible with the idea of developing concrete programs in-
crementally from abstract specifications. Nevertheless the technique allows to use a standard rely-guarantee
theorem for a single program and is beneficial for automation. Verification of proof obligations is fully auto-
matic on a number of examples. An impressive range of specialized automation techniques is used: separation
logic [Rey02] is used to reason over pointer structures, the distinction between local (i.e. modifiable only by
one process) and global references (our disj predicate) is encoded as boxed and unboxed formulas. A variant
of the abstraction and invariant generation technique proposed by [DOY06] is used to deal with loops. More
analysis is necessary, how these automation techniques could be integrated with our generic temporal logic
approach that uses arbitrary abstract data types.

Fully automatic approaches based on static analysis are given by Amit et. al. in [ARR+07] and by Berdine
et. al. in [BLAM+08]. These work with a simplified problem: first, CSeq calls in CSpawn are replaced bt
using COP (arguing, that two sequential calls of COP by one process could equivalently be done by two
different processes, when the second process starts after the first has finished). Second, they argue that a
standard data refinement could be used to refine AOP by an atomically executed COP (which is outside
their interest). They then formally verify only the problem of refining a number of atomically executed COP
operations by an interleaved execution of the same operations. This is done by comparing the shapes of
the pointer structures during the executions and computing finite approximations of the shape differences.
Their approach also abstracts the arbitrary number of processes into classes which currently execute the
same instruction (since the number of instructions is finite this abstraction is finite too). The approach is
specialized to pointer structures and their shapes of the resulting graphs, while our approach gives a generic
refinement theorem. Nevertheless most lockfree algorithms use pointer structures, and recognizing the shape
of data structures automatically could lead to siginificant improvements in the automation of our approach.

The second author of this paper has also contributed to [DSW07] and [DSW08], where a data refinement
theory for lock-free algorithms is developed. While the goal, to modularize the linearizability proof is similar,
the technique used is rather different: control structure of the operations is encoded using CSP in [DSW07]
and using program counters in [DSW08]. Single steps of the algorithm are given as Z operations. Interleaving
of processes is done explicitly using promotion, while we use the interleaving operator of temporal logic. The
stack algorithm is also used as a running example. The resulting proof obligations resemble the Owicki-Gries
technique [OG76] for proving program correctness. They have the advantage that they can be verified using
predicate logic only. Also, they exploit some more of the symmetry between processes. On the other hand
many intermediate assertions must be defined that the approach given here computes automatically by sym-
bolic execution. [DSW08] explicitly proves that the example satisfies the original criterion of linearizability
that was defined in Herlihy and Wing’s original paper [HW90], while linearizability is only implicitly implied
by this and all other related work we are aware of.

In current work we try to combine the advantages of both techniques by integrating the formal definition
of linearizability and the ideas for exploiting symmetry with the rely-guarantee conditions.

20

8. Conclusion

In this paper we have developed a proof technique based on rely-guarantee reasoning for verifying refinements
of abstract data types to interleaved algorithms.

Compared to other approaches, the main contribution of this work is, that we are able to not only
prove the proof obligation of a rely-guarantee technique, but also to construct and prove the compositional
theorem itself in the same temporal logic framework. The standard example of Treiber’s stack and a more
complicated, practical implementation of a lock-free queue were successfully verified with this technique.
Both, data refinement and decomposition using rely-guarantee reasoning were expressed using the temporal
logic available in the theorem prover KIV.

Tool support delivers proofs of higher quality compared to the verification of programs with pen and
paper. The interactive verifier KIV allows us to directly verify parallel programs in a rich programming
language using the intuitive proof principle of symbolic execution. An additional translation to a special
normal form (as e.g. in TLA [Lam94]) using explicit program counters is not necessary.

For further work we have started to consider more complex examples of lock-free algorithms and to
verify liveness in addition to linearizability. Another direction of research is the integration of techniques for
improving automation, without giving up the incremental development principle based on refinement.

Acknowledgements

We would like to thank the anonymous reviewers for their critical and constructive remarks during the
writing of this paper.

References

[AC05] J.-R. Abrial and D. Cansell. Formal Construction of a Non-blocking Concurrent Queue Algorithm (a Case Study
in Atomicity). Journal of Universal Computer Science, 11(5):744–770, 2005.

[AL95] M. Abadi and L. Lamport. Conjoining specifications. ACM Transactions on Programming Languages and Systems,
1995.

[ARR+07] D. Amit, N. Rinetzky, T. W. Reps, M. Sagiv, and E. Yahav. Comparison under abstraction for verifying lineariz-
ability. In CAV, pages 477–490, 2007.

[AS87] B. Alpern and F. B. Schneider. Recognizing safety and liveness. Distributed Computing, 2(3), 1987.
[Bal05] M. Balser. Verifying Concurrent System with Symbolic Execution – Temporal Reasoning is Symbolic Execution

with a Little Induction. PhD thesis, University of Augsburg, Augsburg, Germany, 2005.
[BBO+99] Nikolaj S. Bjørner, Anca Browne, Michael A. Col On, Bernd Finkbeiner, Henny B. Sipma, and Tomás Uribe. Ver-

ifying temporal properties of reactive systems: A STeP tutorial. In Formal Methods in System Design, volume 16,
page 2000, 1999.

[BBRS08] M. Balser, S. Bäumler, W. Reif, and G. Schellhorn. Interactive Verification of Concurrent Systems using Symbolic
Execution. In Proceedings of 7th International Workshop of Implementation of Logics (IWIL 08), 2008.

[BLAM+08] J. Berdine, T. Lev-Ami, R. Manevich, G. Ramalingam, and M. Sagiv. Thread quantification for concurrent shape
analysis. In CAV’08. Springer, 2008.

[BNBR08] S. Bäumler, F. Nafz, M. Balser, and W. Reif. Compositional proofs with symbolic execution. In Bernhard
Beckert and Gerwin Klein, editors, Proceedings of the 5th International Verification Workshop, volume 372 of
Ceur Workshop Proceedings, 2008.

[BS03] E. Börger and R. F. Stärk. Abstract State Machines—A Method for High-Level System Design and Analysis.
Springer-Verlag, 2003.

[Bur74] R. M. Burstall. Program proving as hand simulation with a little induction. Information processing 74, pages
309–312, 1974.

[CC96] A. Cau and P. Collette. Parallel composition of assumption-commitment specifications: A unifying approach for
shared variable and distributed message passing concurrency. Acta Informatica, 33(2):153–176, 1996.

[CDG05] R. Colvin, S. Doherty, and L. Groves. Verifying concurrent data structures by simulation. ENTCS, 137:93–110,
2005.

[CGP00] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.
[CMZ02] A. Cau, B. Moszkowski, and H. Zedan. ITL – Interval Temporal Logic. Software Technology Research Laboratory,

SERCentre, De Montfort University, The Gateway, Leicester LE1 9BH, UK, 2002. www.cms.dmu.ac.uk/∼cau/
itlhomepage.

[CPV07] C. Calcagno, M. J. Parkinson, and V. Vafeiadis. Modular safety checking for fine-grained concurrency. In SAS,
pages 233–248, 2007.

[DGLM04] S. Doherty, L. Groves, V. Luchangco, and M. Moir. Formal verification of a practical lock-free queue algorithm.
In FORTE 2004, volume 3235 of LNCS, pages 97–114, 2004.

[Dij65] E. W. Dijkstra. Solution of a problem in concurrent programming control. Commun. ACM, 8(9):569, 1965.

21

[DOY06] D. Distefano, P.W. O’Hearn, and H. Yang. A local shape analysis based on separation logic. In TACAS, volume
3920, pages 287–302. Springer, 2006.

[dRdBH+01]W.-P. de Roever, F. de Boer, U. Hannemann, J. Hooman, Y. Lakhnech, M. Poel, and J. Zwiers. Concurrency
Verification: Introduction to Compositional and Noncompositional Methods. Number 54 in Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 2001.

[DSW07] J. Derrick, G. Schellhorn, and H. Wehrheim. Proving linearizability via non-atomic refinement. In IFM, pages
195–214, 2007.

[DSW08] J. Derrick, G. Schellhorn, and H. Wehrheim. Mechanising a correctness proof for a lock-free concurrent stack. In
Prooceedings of FMOODS 2008, Oslo, volume 5051 of LNCS, pages 78–95, 2008.

[GC07] L. Groves and R. Colvin. Derivation of a scalable lock-free stack algorithm. Electron. Notes Theor. Comput. Sci.,
187:55–74, 2007.

[GC09] L. Groves and R. Colvin. Trace-based derivation of a scalable lock-free stack algorithm. Formal Aspects of
Computing (FAC), 21(1–2):187–223, 2009.

[GGH07] H. Gao, J. F. Groote, and W. H. Hesselink. Lock-free parallel and concurrent garbage collection by mark&sweep.
Sci. Comput. Program., 64(3):341–374, 2007.

[Gur95] Y. Gurevich. Evolving algebras 1993: Lipari guide. In E. Börger, editor, Specification and Validation Methods,
pages 9–36. Oxford Univ. Press, 1995.

[Har84] David Harel. Dynamic logic. In D. Gabbay and F. Guenther, editors, Handbook of Philosophical Logic, volume 2,
pages 496–604. Reidel, 1984.

[Hes06] W. H. Hesselink. Refinement verification of the lazy caching algorithm. Acta Inf., 43(3):195–222, 2006.
[HSY04] D. Hendler, N. Shavit, and L. Yerushalmi. A scalable lock-free stack algorithm. In SPAA ’04: ACM symposium

on Parallelism in algorithms and architectures, pages 206–215, New York, NY, USA, 2004. ACM Press.
[HW90] M. Herlihy and J. Wing. Linearizability: A correctness condition for concurrent objects. ACM Transactions on

Programming Languages and Systems, 12(3):463–492, 1990.
[Jon83] C. B. Jones. Tentative steps toward a development method for interfering programs. ACM Transactions on

Programming Languages and Systems, 5(4):596–619, 1983.
[JT96] B. Jonsson and Y.-K. Tsay. Assumption/guarantee specifications in linear-time temporal logic. Theor. Comput.

Sci., 167(1-2):47–72, 1996.
[Kal95] S. Kalvala. A formulation of TLA in Isabelle. http://www.research.digital.com/SRC/personal/ lamport/

tla/tla.html, June 1995.
[KIV] Web presentation of the composition theorem and the lock-free stack and queue case study in KIV.

URL: http://www.informatik.uni-augsburg.de/swt/projects/lock-free.html.
[Lam94] L. Lamport. The temporal logic of actions. ACM Transactions on Programming Languages and Systems, 16(3):872–

923, May 1994.
[Lam06] L. Lamport. The +CAL algorithm language. Technical report, Microsoft, 2006.
[MC81] Jayadev Misra and K. Mani Chandi. Proofs of networks of processes. IEEE Transactions of Software Engineering,

1981.
[Mer95] S. Merz. Mechanizing TLA in Isabelle. In Robert Rodošek, editor, Workshop on Verification in New Orientations,

pages 54–74, Maribor, July 1995. Univ. of Maribor.
[Mos86] B. Moszkowski. Executing Temporal Logic Programs. Cambridge University Press, Cambridge, 1986.
[MS96] M. M. Michael and M. L. Scott. Simple, fast, and practical non-blocking and blocking concurrent queue algorithms.

In Proc. 15th ACM Symp. on Principles of Distributed Computing, pages 267–275, 1996.
[OG76] S. S. Owicki and D. Gries. An Axiomatic Proof Technique for Parallel Programs I. Acta Inf., 6:319–340, 1976.
[PA03] A. Pnueli and T. Arons. TLPVS: A PVS-based LTL verification system. In Verification–Theory and Practice:

Proceedings of an International Symposium in Honor of Zohar Manna’s 64th Birthday, Lect. Notes in Comp. Sci.,
pages 84–98. Springer-Verlag, 2003.

[Pre03] L. Prensa Nieto. The rely-guarantee method in Isabelle /HOL. In P. Degano, editor, European Symposium on
Programming (ESOP’03), volume 2618 of LNCS, pages 348–362. Springer, 2003.

[Rey02] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In LICS ’02: Proceedings of the
17th Annual IEEE Symposium on Logic in Computer Science, pages 55–74, Washington, DC, USA, 2002. IEEE
Computer Society.

[RSSB98] W. Reif, G. Schellhorn, K. Stenzel, and M. Balser. Structured specifications and interactive proofs with KIV.
In W. Bibel and P. Schmitt, editors, Automated Deduction—A Basis for Applications, volume II: Systems and
Implementation Techniques, chapter 1: Interactive Theorem Proving, pages 13 – 39. Kluwer Academic Publishers,
Dordrecht, 1998.

[Tre86] R. K. Treiber. System programming: Coping with parallelism. Technical Report RJ 5118, IBM Almaden Research
Center, 1986.

[Vaf07] V. Vafeiadis. Modular fine-grained concurrency verification. PhD thesis, University of Cambridge, 2007.
[Vaf09] V. Vafeiadis. Shape-value abstraction for verifying linearizability. In Proceedings VMCAI 2009, volume 5403 of

LNCS. Springer, 2009.
[VHHS06] V. Vafeiadis, M. Herlihy, T. Hoare, and M. Shapiro. Proving correctness of highly-concurrent linearisable objects.

In PPoPP ’06: Proceedings of the eleventh ACM SIGPLAN symposium on Principles and practice of parallel
programming, pages 129–136, New York, NY, USA, 2006. ACM.

[VP07] V. Vafeiadis and M. J. Parkinson. A marriage of rely/guarantee and separation logic. In CONCUR, pages 256–271,
2007.

22

Received 10 March 2009
Revised 30 June 2009 and 9 September 2009
Accepted 14 September 2009 by Egon Börger and Michael Butler

23

