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The problem of energy-efficient precoding is investigated when the terminals in the system are equipped with multiple antennas. Considering static and fast-fading multiple-input multiple-output (MIMO) channels, the energy-efficiency is defined as the transmission rate to power ratio and shown to be maximized at low transmit power. The most interesting case is the one of slow fading MIMO channels. For this type of channels, the optimal precoding scheme is generally not trivial. Furthermore, using all the available transmit power is not always optimal in the sense of energy-efficiency (which, in this case, corresponds to the communication-theoretic definition of the goodput-to-power (GPR) ratio). Finding the optimal precoding matrices is shown to be a new open problem and is solved in several special cases: 1. when there is only one receive antenna; 2. in the low or high signal-to-noise ratio regime; 3. when uniform power allocation and the regime of large numbers of antennas are assumed. A complete numerical analysis is provided to illustrate the derived results and stated conjectures. In particular, the impact of the number of antennas on the energy-efficiency is assessed and shown to be significant.

and transmission rate are respectively two common measures of the cost and benefit of a transmission. Therefore, the ratio transmission rate (say in bit/s) to transmit power (in J/s) appears to be a natural energy-efficiency measure of a communication system. An important question is then: what is the maximum amount of information (in bits) that can be conveyed per Joule consumed? As reported in [START_REF] Verdú | On channel capacity per unit cost[END_REF], one of the first papers addressing this issue is [START_REF] Pierce | Optical channels: Practical limits with photon counting[END_REF] where the author determines the capacity per unit cost for various versions of the photon counting channel. As shown in [START_REF] Verdú | On channel capacity per unit cost[END_REF], the normalized1 capacity per unit cost for the well-known additive white Gaussian channel model Y = X + Z is maximized for Gaussian inputs and is given by lim P →0 log 2 (1+ P σ 2 ) P = 1 σ 2 ln 2 , where E|X| 2 = P and Z ∼ CN (0, σ 2 ). Here, the main message of communication theory to engineers is that energy-efficiency is maximized by operating at low transmit power and therefore at low transmission rates.

However, this answer holds for static and single input single output (SISO) channels and it is legitimate to ask: what is the answer for multiple-input multiple-output (MIMO) channels? In fact, as shown in this paper, the case of slow fading MIMO channels is especially relevant to be considered. Roughly speaking, the main reason for this is that, in contrast to static and fast fading channels, in slow fading channels there are outage events which imply the existence of an optimum tradeoff between the number of successfully transmitted bits or blocks (called goodput in [START_REF] Katz | Transmitting to colocated users in wireless ad hoc and sensor networks[END_REF] and [START_REF] Goodman | Power Control for Wireless Data[END_REF]) and power consumption. Intuitively, this can be explained by saying that increasing transmit power too much may result in a marginal increase in terms of quality or effective transmission rate.

First, let us consider SISO slow fading or quasi-static channels. The most relevant works related to the problem under investigation essentially fall into two classes corresponding to two different approaches. The first approach, which is the one adopted by Verdú in [START_REF] Verdú | On channel capacity per unit cost[END_REF] and has already been mentioned, is an informationtheoretic approach aiming at evaluating the capacity per unit cost or the minimum energy per bit (see e.g., [START_REF] Gamal | Bounds on capacity and minimum energy-per-bit for AWGN relay channels[END_REF], [START_REF] Cai | Achievable rates in low-power relay links over fading channels[END_REF], [START_REF] Yao | On energy-efficiency and optimum resource allocation in wireless relay transmissions[END_REF], [START_REF] Jain | Minimum energy per bit for Gaussian broadcast channels with common message and cooperating receivers[END_REF]). In [START_REF] Verdú | On channel capacity per unit cost[END_REF], two different cases were investigated depending on whether the input alphabet contains or not a zero cost or free symbol. In this paper, only the case where the input alphabet does not contain a zero-cost symbol will be discussed (i.e., the silence at the transmitter side does not convey information). The second approach, introduced in [START_REF] Shah | Power control for wireless data based on utility and pricing[END_REF] is more pragmatic than the previous one. In [START_REF] Shah | Power control for wireless data based on utility and pricing[END_REF] and subsequent works [START_REF] Goodman | Power Control for Wireless Data[END_REF], [START_REF] Saraydar | Efficient power control via pricing in wireless data networks[END_REF], the authors define the energy-efficiency of a SISO communication as u(p) = Rf (η) p where R is the effective transmission data rate in bits, η the signal-to-noise-plus-interference ratio (SINR) and f is a benefit function (e.g., the success probability of the transmission) which depends on the chosen coding and modulation schemes.

To the authors' knowledge, in all works using this approach ( [START_REF] Shah | Power control for wireless data based on utility and pricing[END_REF], [START_REF] Goodman | Power Control for Wireless Data[END_REF], [START_REF] Saraydar | Efficient power control via pricing in wireless data networks[END_REF], [START_REF] Meshkati | An energy-efficient approach to power control and receiver design in wireless data networks[END_REF], [START_REF] Buzzi | Joint receiver and transmitter optimization for energy-efficient CDMA communications[END_REF], [START_REF] Lasaulce | Introducing hierarchy in energy games[END_REF], etc.), the same (pragmatic) choice is made for f : f (x) = (1-e -αx ) N , where α is a constant and N the block length in symbols.

Interestingly, the two mentioned approaches can be linked by making an appropriate choice for f . Indeed, if f is chosen to be the complementary of the outage probability, one obtains a counterpart of the capacity per unit cost for slow fading channels and gives an information-theoretic interpretation to the initial definition of [START_REF] Shah | Power control for wireless data based on utility and pricing[END_REF]. To our knowledge, the resulting performance metric has not been considered so far in the literature. This specific metric, which we call goodput-to-power ratio (GPR), will be considered in this paper. Moreover, we consider MIMO channels where the transmitter and receiver are informed of the channel distribution information (CDI) and channel state information (CSI) respectively. To conclude the discussion on the relevant literature, we note that some authors addressed the problem of energy-efficiency in MIMO communications but they did not consider the proposed energy-efficiency measure based on the outage probability. In this respect, the most relevant works seem to be [START_REF] Cui | Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks[END_REF], [START_REF] Verdú | Spectral efficiency in the wideband regime[END_REF] and [START_REF] Buzzi | Energy-efficient resource allocation in multiuser MIMO systems: A game-theoretic framework[END_REF]. In [START_REF] Cui | Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks[END_REF], the authors adopt a pragmatic approach consisting in choosing a certain coding-modulation scheme in order to reach a given target data rate while minimizing the consumed energy. In [START_REF] Verdú | Spectral efficiency in the wideband regime[END_REF], the authors study the tradeoff between the minimum energy-per-bit versus spectral efficiency for several MIMO channel models in the wide-band regime assuming a zero cost symbol in the input alphabet and unform power allocation over all the antennas. In [START_REF] Buzzi | Energy-efficient resource allocation in multiuser MIMO systems: A game-theoretic framework[END_REF], the authors consider a similar pragmatic approach to the one in [START_REF] Goodman | Power Control for Wireless Data[END_REF], [START_REF] Saraydar | Efficient power control via pricing in wireless data networks[END_REF] and study a multi-user MIMO channel where the transmitters are constrained to using beamforming power allocation strategies. This paper is structured as follows. In Sec. II, assumptions on the signal model are provided. In Sec. III, the proposed energy-efficiency measure is defined for static and fast-fading MIMO channels. As the case of slow fading channels is non-trivial, it will be discussed separately in Sec. IV. In Sec. IV, the problem of energyefficient precoding is discussed for general MIMO slow fading channels and solved for the multiple input single output (MISO) case, whereas in Sec. V asymptotic regimes (in terms of the number of antennas and SNR) are assumed. In Sec. VI, simulations illustrating the derived results and stated conjectures are provided. Sec. VII provides concluding remarks and open issues.

II. GENERAL SYSTEM MODEL

We consider a point-to-point communication with multiple antenna terminals. The signal at the receiver is modeled by:

y(τ ) = H(τ )x(τ ) + z(τ ), (1) 
where H is the n r × n t channel transfer matrix and n t (resp. n r ) the number of transmit (resp. receive)

antennas. The entries of H are i.i.d. zero-mean unit-variance complex Gaussian random variables. The vector

x is the n t -dimensional column vector of transmitted symbols and z is an n r -dimensional complex white Gaussian noise distributed as N (0, σ 2 I). In this paper, the problem of allocating the transmit power between the available transmit antennas is considered. We will denote by Q = E[xx H ] the input covariance matrix (called the precoding matrix), which translates the chosen power allocation (PA) policy. The corresponding total power constraint is

Tr(Q) ≤ P . (2) 
At last, the time index τ will be removed for the sake of clarity. In fact, depending on the rate at which H varies with τ , three dominant classes of channel models can be distinguished:

1) the class of static channels;

2) the class of fast fading channels;

3) the class of slow fading channels.

The matrix H is assumed to be perfectly known at the receiver (coherent communication assumption) whereas only the statistics of H are available at the transmitter. The first two classes of channels are considered in Sec.

III and the last one is treated in detail in Sec. IV and V.

III. ENERGY-EFFICIENT COMMUNICATIONS OVER STATIC AND FAST FADING MIMO CHANNELS

A. Case of static channels

Here the frequency at which the channel matrix varies is strictly zero that is, H is a constant matrix. In this particular context, both the transmitter and receiver are assumed to know this matrix. We are exactly in the same framework as [START_REF] Telatar | Capacity of multi-antenna gaussian channels[END_REF]. Thus, for a given precoding scheme Q, the transmitter can send reliably to the receiver log 2 I nr + ρHQH H bits per channel use (bpcu) with ρ = 1 σ 2 . Then, let us define the energy-efficiency of this communication by:

G static (Q) = log 2 I nr + ρHQH H Tr(Q) . (3) 
The energy-efficiency G static (Q) corresponds to an achievable rate per unit cost for the MIMO channel as defined in [START_REF] Verdú | On channel capacity per unit cost[END_REF]. Assuming that the cost of the transmitted symbol x, denoted by b[x], is the consumed energy b[x] = x 2 = Tr(xx H ), the capacity per unit cost defined in [START_REF] Verdú | On channel capacity per unit cost[END_REF] is:

C slow sup x,E[b[x]]≤P I(x; y) E[b[x]]
. The supremum is taken over the p.d.f. of x such that the average transmit power is limited

E[b[x]] ≤ P .
It is easy to check that:
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C slow = sup Q,Tr(Q)≤P 1 Tr(Q) sup x,E(xx H )=Q I(x; y) = sup Q,Tr(Q)≤P G static (Q). (4) 
The second equality follows from [START_REF] Telatar | Capacity of multi-antenna gaussian channels[END_REF] where Telatar proved that the mutual information for the MIMO static channel is maximized using Gaussian random codes. In other words, finding the optimal precoding matrix which maximizes the energy-efficiency function corresponds to finding the capacity per unit cost of the MIMO channel where the cost of a symbol is the necessary power consumed to be transmitted. The question is then whether the strategy "transmit at low power" (and therefore at a low transmission rate) to maximize energy-efficiency, which is optimal for SISO channels, also applies to MIMO channels. The answer is given by the following proposition, which is proved in Appendix A.

Proposition 3.1 (Static MIMO channels):

The energy-efficiency of a MIMO communication over a static channel, measured by G static , is maximized when Q = 0 and this maximum is

G * static = 1 ln 2 Tr(HH H ) n t σ 2 . (5) 
Therefore, we see that, for static MIMO channels, the energy-efficiency defined in Eq. ( 3) is maximized by transmitting at a very low power. This kind of scenario occurs for example, when deploying sensors in the ocean to measure a temperature field (which varies very slowly). In some applications however, the rate obtained by using such a scheme can be not sufficient. In this case, considering the benefit to cost ratio can turn out to be irrelevant, meaning that other performance metrics have to be considered (e.g., minimize the transmit power under a rate constraint).

B. Case of fast fading channels

In this section, the frequency with which the channel matrix varies is the reciprocal of the symbol duration (x(τ ) being a symbol). This means that it can be different for each channel use. Therefore, the channel varies over a transmitted codeword (or packet) and, more precisely, each codeword sees as many channel realizations as the number of symbols per codeword. Because of the corresponding self-averaging effect, the following transmission rate (also called EMI for ergodic mutual information) can be achieved on each transmitted codeword by using the precoding strategy Q :

R fast (Q) = E H log 2 I nr + ρHQH H . (6) 
Interestingly, R fast (Q) can be maximized w.r.t. Q by knowing only the statistics of H that is, E HH H , under the standard assumption that the entries of H are complex Gaussian random variables. In practice, this means that only the knowledge of the path loss, power-delay profile, antenna correlation profile, etc is required at the transmitter to maximize the transmission rate. At the receiver however, the instantaneous knowledge of H is required. In this framework, let us define energy-efficiency by:

G fast (Q) = E H log 2 I nr + ρHQH H Tr(Q) . (7) 
By defining g i as the i-th column of the matrix √ ρHU, i ∈ {1, . . . , n t }, U and {p i } nt i=1 an eigenvector matrix and the corresponding eigenvalues of Q respectively, and also by rewriting G fast (Q) as

G fast (Q) = E H       log 2 I nr + nt i=1 p i g i g H i nt i=1 p i       , (8) 
it is possible to apply the proof of Prop. 3.1 for each realization of the channel matrix. This leads to the following result.

Proposition 3.2 (Fast fading MIMO channels):

The energy-efficiency of a MIMO communication over a fast fading channel, measured by G fast , is maximized when Q = 0 and this maximum is

G * fast = 1 ln 2 Tr(E HH H ) n t σ 2 . ( 9 
)
We see that, for fast fading MIMO channels, maximizing energy-efficiency also amounts to transmitting at low power. Interestingly, in slow fading MIMO channels, where outage events are unavoidable, we have found that the answer can be different. This is precisely what is shown in the remaining of this paper.

IV. SLOW FADING MIMO CHANNELS: FROM THE GENERAL CASE TO SPECIAL CASES

A. General MIMO channels

In this section and the remaining of this paper, the frequency with which the channel matrix varies is the reciprocal of the block/codeword/frame/packet/time-slot duration that is, the channel remains constant over a codeword and varies from block to block. As a consequence, when the channel matrix remains constant over a certain block duration much smaller than the channel coherence time, the averaging effect we have mentioned for fast fading MIMO channels does not occur here. Therefore, one has to communicate at rates smaller than the ergodic capacity (maximum of the EMI). The maximum EMI is therefore a rate upper bound for slow fading MIMO channels and only a fraction of it can be achieved (see [START_REF] Zheng | Optimal Diversity-Multiplexing Tradeoff in Multiple Antenna Channels[END_REF] for more information about the famous diversity-multiplexing tradeoff). In fact, since the mutual information is a random variable, varying from block to block, it is not possible (in general) to guarantee at 100 % that it is above a certain threshold. A suited performance metric to study slow-fading channels [START_REF] Ozarow | Information theoretic conisderations for cellular mobile radio[END_REF] is the probability of an outage for a given transmission rate target R. This metric allows one to quantify the probability that the rate target R is not reached by using a good channel coding scheme and is defined as follows:

P out (Q, R) = Pr log 2 I nr + ρHQH H < R . (10) 
In terms of information assumptions, here again, it can be checked that only the second-order statistics of H are required to optimize the precoding matrix Q (and therefore the power allocation policy over its eigenvalues).

In this framework, we propose to define the energy-efficiency as follows:

Γ(Q, R) = R[1 -P out (Q, R)] Tr(Q) . (11) 
In other words, the energy-efficiency or goodput-to-power ratio is defined as the ratio between the expected throughput (see [START_REF] Katz | Transmitting to colocated users in wireless ad hoc and sensor networks[END_REF], [START_REF] Shamai | Outages, expected rates and delays in multiple-users fading channels[END_REF] for details) and the average consumed transmit power. The expected throughput can be seen as the average system throughput over many transmissions. In contrast with static and fast fading channels, energy-efficiency is not necessarily maximized at low transmit powers. This is what the following proposition indicates.

Proposition 4.1 (Slow fading MIMO channels):

The goodput-to-power ratio

Γ(Q, R) is maximized, in gen- eral, for Q = 0.
The proof of this result is given in Appendix B. Now, a natural issue to be considered is the determination of the matrix (or matrices) maximizing the goodput-to-power ratio (GPR) in slow fading MIMO channels. It turns out that the corresponding optimization problem is not trivial. Indeed, even the outage probability minimization problem w.r.t. Q (which is a priori simpler) is still an open problem [START_REF] Telatar | Capacity of multi-antenna gaussian channels[END_REF], [START_REF] Katz | On the outage probability of a multiple-input single-output communication link[END_REF], [START_REF] Jorswieck | Outage probability in multiple antenna systems[END_REF]. This is why we only provide here a conjecture on the solution maximizing the GPR.

Conjecture 4.2 (Optimal precoding matrices):

There exists a power threshold P 0 such that:

• if P ≤ P 0 then Q * ∈ arg min Q P out (Q, R) ⇒ Q * ∈ arg max Q Γ(Q, R); • if P > P 0 then Γ(Q, R) has a unique maximum in Q * = p * nt I nt where p * ≤ P .
This conjecture has been validated for all the special cases solved in this paper. One of the main messages of this conjecture is that, if the available transmit power is less than a threshold, maximizing the GPR is equivalent to minimizing the outage probability. If it is above the threshold, uniform power allocation is optimal and using all the available power is generally suboptimal in terms of energy-efficiency. Concerning the optimization September 29, 2010 DRAFT problem associated with [START_REF] Meshkati | An energy-efficient approach to power control and receiver design in wireless data networks[END_REF] several comments are in order. First, there is no loss of optimality by restricting the search for optimal precoding matrices to diagonal matrices: for any eigenvalue decomposition Q = UDU H with U unitary and D = Diag(p) with p = (p 1 , . . . , p nt ), both the outage and trace are invariant w.r.t. the choice of U and the energy-efficiency can be written as:

Γ(D, R) = R[1 -P out (D, R)] nt i=1 p i . ( 12 
)
Second, the GPR is generally not concave w.r.t. D. In Sec. IV-B, which is dedicated to MISO systems, a

counter-example where it is not quasi-concave (and thus not concave) is provided.

Uniform Power Allocation policy

An interesting special case is the one of uniform power allocation (UPA): D = p nt I nt where p ∈ [0, P ] and Γ UPA (p, R) Γ p nt I nt , R . One of the reasons for studying this case is that the famous conjecture of Telatar given in [START_REF] Telatar | Capacity of multi-antenna gaussian channels[END_REF]. This conjecture states that, depending on the channel parameters and target rate (i.e., σ2 , R), the power allocation (PA) policy minimizing the outage probability is to spread all the available power uniformly over a subset of * ∈ {1, . . . , n t } antennas. If this can be proved, then it is straightforward to show that the covariance matrix D * that maximizes the proposed energy-efficiency function is p * * Diag(e * ), where e * ∈ S * 2 . Thus, D * has the same structure as the covariance matrix minimizing the outage probability except that using all the available power is not necessarily optimal, p * ∈ [0, P ]. In conclusion, solving Conjecture 4.2 reduces to solving Telatar's conjecture and also the UPA case.

The main difficulty in studying the outage probability or/and the energy-efficiency function is the fact that the probability distribution function of the mutual information is generally intractable. In the literature, the outage probability is often studied by assuming a UPA policy over all the antennas and also using the Gaussian approximation of the p.d.f. of the mutual information. This approximation is valid in the asymptotic regime of large number of antennas. However, simulations show that it also quite accurate for reasonable small MIMO systems [START_REF] Wang | Outage mutual information of space-time MIMO channels[END_REF], [START_REF] Moustakas | MIMO capacity through correlated channels in the presence of correlated interferers and noise: A (not so) large N analysis[END_REF].

Under the UPA policy assumption, the GPR Γ UPA (p, R) is conjectured to be quasi-concave w.r.t. p. Quasiconcavity is not only useful to study the maximum of the GPR but is also an attractive property in some scenarios such as the distributed multiuser channels. For example, by considering MIMO multiple access channels with single-user decoding at the receiver, the corresponding distributed power allocation game where the transmitters' utility functions are their GPR is guaranteed to have a pure Nash equilibrium after Debreu-Fan-Glicksberg theorem [START_REF] Fudenberg | Game Theory[END_REF].

Before stating the conjecture describing the behavior of the energy-efficiency function when the UPA policy is assumed, we study the limits when p → 0 and p → +∞. First, let us prove that lim p→0 Γ UPA (p, R) = 0.

Observe that lim p→0 P out p n t I nt , R = 1 and thus the limit is not trivial to prove. 

|h ij | 2
is a 2n r n t Chi-square distributed random variable. Thus Γ UPA (p, R) can be approximated by:

Γ UPA (p, R) = R exp -d p nrnt-1 k=0 d k k! 1 p k+1 with d = n t (2 R -1)σ 2 .
It is easy to see that this approximate tends to zero when p → 0. Second, note that the limit lim p→+∞ Γ UPA (p, R) = 0. This is easier to check since lim p→+∞ P out p n t I, R = 0.

Conjecture 4.3 (UPA and quasi-concavity of the GPR): Assume

that D = p nt I nt . Then Γ UPA (p, R) is quasi- concave w.r.t. p ∈ 0, P . Table IV-A distinguishes
between what has been proven in this paper and the conjectures which remain to be proven.

B. MISO channels

In this section, the receiver is assumed to use a single antenna that is, n r = 1, while the transmitter can have an arbitrary number of antennas, n t ≥ 1. The channel transfer matrix becomes a row vector h = (h 1 , ..., h nt ).

Without loss of optimality, the precoding matrix is assumed to be diagonal and is denoted by D = Diag(p) with p T = (p 1 , ..., p nt ). Throughout this section, the rate target R and noise level σ 2 are fixed and the auxiliary quantity c is defined by: c = σ 2 (2 R -1). By exploiting the existing results on the outage probability minimization problem for MISO channels [START_REF] Jorswieck | Outage probability in multiple antenna systems[END_REF], the following proposition can be proved (Appendix C). 

|X i | 2 ≤ x -Pr 1 i=1 |X i | 2 ≤ x = 0 where X i are i.i.d.
zero-mean Gaussian random variables with unit variance. By convention c 0 = +∞, c nt = 0. Let ν nt be the unique solution of the equation (in y)

y n t (nt-1)! - nt-1 i=0 y i i! = 0.
Then the optimum precoding matrices have the following form:

D * = P Diag(e ) if P ∈ c c -1 , c c min σ 2 (2 R -1) νn t , P nt I if P ≥ c cn t -1 (13) 
where c = σ 2 (2 R -1) and e ∈ S .

Similarly to the optimal precoding scheme for the outage probability minimization, the solution maximizing the GPR consists in allocating the available transmit power uniformly between only a subset ≤ n t antennas.

As i.i.d entries are assumed for H, the choice of these antennas does not matter. What matters is the number of antennas selected (denoted by ), which depends on the available transmit power P : the higher the transmit power, the higher the number of used antennas. The difference between the outage probability minimization and GPR maximization problems appears when the transmit power is greater than the threshold c cn t -1 . In this regime, saturating the power constraint is suboptimal for the GPR optimization. The corresponding suboptimality becomes more and more severe as the noise level is low; simulations (Sec. VI) will help us to quantify this gap.

Unless otherwise specified, we will assume from now on that UPA is used at the transmitter. This assumption is, in particular, useful to study the regime where the available transmit power is sufficiently high (as conjectured in Proposition 4.1). Under this assumption, our goal is to prove that the GPR is quasi-concave w.r.t. p ∈ [0, P ] with D = p nt I nt and determine the (unique) solution p * which maximizes the GPR. Note that the quasi-concavity property w.r.t. p is not always available for MISO systems (and thus is not always available for general MIMO channels). In Appendix D, a counter-example proving that in the case where n r = 1 and n t = 2 (two input single output channel, TISO) the energy-efficiency Γ TISO Diag(p), R is not quasi-concave w.r.t. p = (p 1 , p 2 ) is provided. 

y nt (n t -1)! - nt-1 i=0 
y i i! = 0. ( 14 
)
Proof: Since the entries of h are complex Gaussian random variables, the sum

nt k=1 |h k | 2 is a 2n t -Chi-
square distributed random variable, which implies that:

Γ MISO (p, R) = R 1 -Pr[log 2 1 + ρp nt h H h < R] p = R 1 -Pr nt i=1 |h i | 2 < d p p = R × e -d p nt-1 i=0 d i p i+1 1 i! , (15) 
with d = cn t = (2 R -1)n t σ 2 . The second order derivative of the goodput R e -d p nt-1 i=0

d p i 1 i! w.r.t. p is R d n t p n t +3 1 
nt! e -d/p (d -(n t + 1)p) . Clearly, the goodput is a sigmoidal function and has a unique inflection point in p 0 = d nt+1 . Therefore, the function Γ MISO (p, R) is quasi-concave [START_REF] Rodriguez | An Analytical Foundation for Ressource Management in Wireless Communication[END_REF] and has a unique maximum in p * = min d νn t , P where ν nt is the root of the first order derivative of Γ MISO (p, R) that is, the solution of [START_REF] Ozarow | Information theoretic conisderations for cellular mobile radio[END_REF].

The SIMO case (n t = 1, n r ≥ 2) follows directly since |I + ρphh H | = 1 + ρph H h.
To conclude this section, we consider the most simple case of MISO channels namely the SISO case (n t = 1, n r = 1). We have readily that:

Γ SISO (p, R) = e -c p p . ( 16 
)
To the authors' knowledge, in all the works using the energy-efficiency definition of [START_REF] Goodman | Power Control for Wireless Data[END_REF] for SISO channels, the only choice of energy-efficiency function made is based on the empirical approximation of the block error rate which is (1-e -x ) M

x , M being the block length and x the operating SINR. Interestingly, the function given by ( 16) exhibits another possible choice. It can be checked that the function e -c p is sigmoidal and therefore September 29, 2010 DRAFT Γ SISO is quasi-concave w.r.t. p [START_REF] Rodriguez | An Analytical Foundation for Ressource Management in Wireless Communication[END_REF]. The first order derivative of Γ SISO is

∂Γ SISO ∂p = R (c -p)e -c p p 3 . ( 17 
)
The GPR is therefore maximized in a unique point which p * = c = σ 2 (2 R -1). To make the bridge between this solution and the one derived in [START_REF] Goodman | Power Control for Wireless Data[END_REF] for the power control problem over multiple access channels, the optimal power level can be rewritten as:

p * = min σ 2 E|h| 2 (2 R -1), P (18) 
where E|h| 2 = 1 in our case. In [START_REF] Goodman | Power Control for Wireless Data[END_REF], instantaneous CSI knowledge at the transmitters is assumed while here only the statistics are assumed to be known at the transmitter. Therefore, the power control interpretation of (18) in a wireless scenario is that the power is adapted to the path loss (slow power control) and not to fast fading (fast power control).

V. SLOW FADING MIMO CHANNELS IN ASYMPTOTIC REGIMES

In this section, we first consider the GPR for the case where the size of the MIMO system is finite assuming the low/high SNR operating regime. Then, we consider the UPA policy and prove that Conjecture 4.3 claiming that Γ UPA (p, R) is quasi-concave w.r.t. p (which has been proven for MISO, SIMO, and SISO channels) is also valid in the asymptotic regimes where either at least one dimension of the system (n t , n r ) is large but the SNR is finite. Here again, the theory of large random matrices is successfully applied since it allows one to prove some results which are not available yet in the finite case (see e.g., [START_REF] Zheng | Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels[END_REF], [START_REF] Dumont | On the capacity achieving covariance matrix of Rician MIMO channels: an asymptotic approach[END_REF] for other successful examples).

A. Extreme SNR regimes

Here, all the channel parameters (n t , n r , and P in particular) are fixed. The low (resp. high) SNR regime is defined by σ 2 → +∞ (resp. σ 2 → 0). In both cases, we will consider the GPR and the optimal power allocation problem.

1) Low SNR regime:

Let us consider the general power allocation problem where D = Diag(p) with p = (p 1 , . . . , p nt ). In [START_REF] Jorswieck | Outage probability in multiple antenna systems[END_REF], the authors extended the results obtained in the low and high SNR regimes for the MISO channel to the MIMO case. In the low SNR regime, the authors of [START_REF] Jorswieck | Outage probability in multiple antenna systems[END_REF] proved that the outage probability P out (Diag(p), R) is a Schur-concave (see [START_REF] Marshall | Inequalities: Theory of majorization and its applications[END_REF] for details) function w.r.t. p. This implies directly that beamforming power allocation policy maximizes the outage probability. These results can be used (see Appendix E) to prove the following proposition: 2) High SNR regime: Now, let us consider the high SNR regime. It turns out that the UPA policy maximizes the energy-efficiency function. In this case also, the proof of the following proposition is based on the results in [START_REF] Jorswieck | Outage probability in multiple antenna systems[END_REF] (see Appendix E).

Proposition 5.2 (High SNR regime): When σ 2 → 0, the energy-efficiency function Γ(Diag(p), R) is Schurconvex w.r.t. p and maximized by an uniform power allocation policy D * = p * nt I nt with p * ∈ (0, P ]. Furthermore, the limit when p → 0 such that p σ 2 → ξ is Γ p nt I nt , R → +∞ which implies that p * → 0. In other words, in the high SNR regime, the optimal structure of the covariance matrix is obtained by uniformly spreading the power over all the antennas, D * = p * nt I nt the same structure which minimizes the outage probability in this case. Nevertheless, in contrast to the outage probability optimization problem, in order to be energy-efficient it is not optimal to use all the available power P but to transmit with zero power.

B. Large MIMO channels

The results we have obtained can be summarized in the following proposition.

Proposition 5.3 (Quasi-concavity for large MIMO systems): If the system operates in one of the following asymptotic regimes:

(a) n t < +∞ and n r → +∞;

(b) n t → +∞ and n r < +∞;

(c) n t → +∞, n r → +∞ with lim ni→+∞,i∈{t,r} n r n t = β < +∞, then Γ UPA (p, R) is quasi-concave w.r.t. p ∈ [0, P ].
Proof: Here we prove each of the three statements made above and provide comments on each of them at the same time.

Regime (a): n t < +∞ and n r → ∞. The idea of the proof is to consider a large system equivalent of the function Γ UPA (p, R). This equivalent is denoted by Γ a UPA (p, R) and is based on the Gaussian approximation of the mutual information log 2 I + ρp nt HH H (see e.g., [START_REF] Hochwald | Multiple-antenna channel hardening and its implications for rate feedback and scheduling[END_REF]). The goal is to prove that the numerator of Γ a UPA (p, R) is a sigmoidal function w.r.t. p which implies that Γ a UPA (p, R) is a quasi-concave function [START_REF] Rodriguez | An Analytical Foundation for Ressource Management in Wireless Communication[END_REF]. In the considered asymptotic regime, we know from [START_REF] Hochwald | Multiple-antenna channel hardening and its implications for rate feedback and scheduling[END_REF] that:

log 2 I + ρp n t HH H → N n t log 2 1 + n r n t ρp , n t n r log 2 (e) . (19) 
A large system equivalent of the numerator of Γ UPA (p, R), which is denoted by N a (p, R), follows:

N a (p, R) = RQ   R -n t log 2 1 + nr nt ρp nt nr log 2 (e)   (20) 
where

Q(x) = 1 √ 2π +∞ x exp -t 2 2 dt. Denote the argument of Q in (20) by α a . The second order derivative of N a (p, R) w.r.t. p ∂ 2 N a (p, R) ∂p 2 = 1 √ 2π α a (p)(α a (p)) 2 -α a (p) exp - α a (p) 2 2 . ( 21 
)
Therefore N a (p, R) has a unique inflection point

pa = n t n r ρ 2 
1 n t R-1 n t n t log 2 (e) nr 3/2 -1 . (22) 
Clearly, for each equivalent of Γ UPA (p, R), the numerator has a unique inflection point and is sigmoidal, which concludes the proof. In fact, in the considered asymptotic regime we have a stronger result since lim nr→+∞ pa = 0, which implies that N a (p, R) is concave and therefore Γ a UPA (p, R) is maximized in p * a = 0 as in the case of static MIMO channels. This translates the well-known channel hardening effect [START_REF] Hochwald | Multiple-antenna channel hardening and its implications for rate feedback and scheduling[END_REF]. However, in contrast to the static case, the energy-efficiency becomes infinite here since Γ UPA (p, R) → 1 p with p * a → 0. Regime (b): n t → +∞ and n r < +∞. To prove the corresponding result the same reasoning as in (a) is applied. From [START_REF] Hochwald | Multiple-antenna channel hardening and its implications for rate feedback and scheduling[END_REF] we know that:

log 2 I + ρp n t HH H → N n r log 2 (1 + ρp), n r n t log 2 (e) ρp 1 + ρp 2 . (23) 
A large system equivalent of the numerator of

Γ UPA (p, R) is N b (p, R) = RQ (α b (p)) with α b (p) = n t n r log 2 (e) 1 + ρp ρp [R -n r log 2 (1 + ρp)]. (24) 
The numerator function N b (p, R) can be checked to have a unique inflection point given by:

pb = σ 2 2 R nr -1 (25) 
and is sigmoidal, which concludes the proof. We see that the inflection point does not vanish this time (with n t here) and therefore the function N b (p, R) is quasi-concave but not concave in general. From [START_REF] Rodriguez | An Analytical Foundation for Ressource Management in Wireless Communication[END_REF], we know Regime (c): n t → +∞, n r → ∞. Here we always apply the same reasoning but exploit the results derived in [START_REF] Debbah | MIMO channel modeling and the principle of maximum entropy[END_REF]. From [START_REF] Debbah | MIMO channel modeling and the principle of maximum entropy[END_REF], we have that:

log 2 I + ρp n t HH H → N n t µ I , σ 2 I ( 26 
)
where . We observe that, in the equation (α c (p)) 2 α c (p) - α c (p) = 0, there are terms in n 3 t , n 2 t , n t and constant terms w.r.t. n t . When n t becomes sufficiently large the first order terms can be neglected, which implies that the solution is given by µ I (p) = 0. It can be shown that µ I (0) = 0 and that µ I is an increasing function w.r.t. p which implies that the unique solution is pc = 0.

µ I = β log 2 (1 + ρp(1 -γ)) -γ + log 2 (1 + ρp(β -γ)), σ 2 I = -log 2 1 -γ 2 β , γ = 1 2 1 + β + 1 ρp -(1 + β + 1 ρp ) 2 -4β . It can be checked that (α c (p)) 2 α c (p) -α c (p) =
Similarly to regime (a) we obtain the trivial solution p * c = 0.

VI. NUMERICAL RESULTS

In this section, we present several simulations that illustrate our analytical results and verify the two conjectures stated. Since closed-form expressions of the outage probability are not available in general, Monte Carlo simulations will be implemented. The exception is the MISO channel for which the optimal energy-efficiency can be computed numerically (as we have seen in Sec. IV-B) without the need of Monte Carlo simulations.

UPA, the quasi-concavity property and the large MIMO channels.

Let us consider the case of UPA. In Fig. 1, we plot the GPR Γ UPA (p, R) as a function of the transmit power p ∈ [0, P ] W for an MIMO channel where n r = n t = n with n ∈ {1, 2, 4, 8} and ρ = 10 dB, R = 1 bpcu, P = 1 W. First, note that the energy-efficiency for UPA is a quasi-concave function w.r.t. p, illustrating Conjecture 4.3. Second, we observe that the optimal power p * maximizing the energy-efficiency function is decreasing and approaching zero as the number of antennas increases and also that Γ UPA (p * , R) is increasing with n. In Fig. 2, this dependence of the optimal energy-efficiency and the number of antennas n is depicted explicitly for the same scenario. These observations are in accordance with the asymptotic analysis in subsection V-B for Regime (c).

Similar simulation results were obtained for the case where n t is fixed and n r is increasing, thus illustrating the asymptotic analysis in subsection V-B for Regime (a).

In Fig. 3, we plot the energy-efficiency Γ UPA (p, R) as a function of the transmit power p ∈ [0, P ] W for MIMO channel such that n r = 2, n t ∈ {1, 2, 4, 8} and ρ = 10 dB, R = 1 bpcu, P = 1 W. The difference w.r.t.

the previous case, is that the optimal power p * does not go to zero when n t increases. This figure illustrates the results obtained for Regime (b) in section V-B where the optimal power allocation p * b → 2 R nr -1 ρ = 0.0414 W and the optimal energy-efficiency

Γ * U P A → ρ 2(2 R nr -1)
= 12, 07 bit/Joule when n t → +∞.

UPA and the finite MISO channel

In Fig. 4, we illustrate Proposition 4.4 for n t = 4. We trace the cases where the transmitter uses an optimal UPA over only a subset of ∈ {1, 2, 3, 4} antennas for ρ = 10 dB, R = 3 bpcu. We observe that: i) if P ≤ c c1 then the beamforming PA is the generally optimal structure with D * = P Diag(e 1 ); ii) if P ∈ c c1 c c2 then using UPA over three antennas is the generally optimal structure with D * = P /2 Diag(e 2 ); iii

) if P ∈ c c2 c c3
then using UPA over three antennas is generally optimal with D * = P /3 Diag(e 3 ); iv) if P ≥ c c4 then the UPA over all the antennas is optimal with D * = 1 4 min 4 * c ν4 , P I 4 . The saturated regime illustrates the fact that it is not always optimal to use all the available power after a certain threshold.

UPA and the finite MIMO channel

Fig. 5 represents the success probability, 1-P out (D, R), in function of the power constraint P for n t = n r = 2, R = 1 bpcu, ρ = 3 dB. Since the optimal PA that maximizes the success probability is unknown (unlike the MISO case) we use Monte-Carlo simulations and exhaustive search to compare the optimal PA with the UPA and the beamforming PA. We observe that the result is in accordance with Telatar's conjecture. There exists a threshold δ = 0.16 W such that if P ≤ δ, the beamforming PA is optimal and otherwise the UPA is optimal. Of course, using all the available power is always optimal when maximizing the success probability. The objective is to check whether Conjecture 4.2 is verified in this particular case. To this purpose, Fig. 6 represents the energy-efficiency function for the same scenario. We observe that for the exact threshold δ = 0.16 W, we obtain that if P ≤ δ the beamforming PA using all the available power is optimal. If P > δ the UPA is optimal.

Here, similarly to the MISO case, we observe a saturated regime which means that after a certain point it is not optimal w.r.t. energy-efficiency to use up all the available transmit power. In conclusion, our conjecture has been verified in this simulation.

Note that for the beamforming PA case we have explicit relations for both the outage probability and the energy-efficiency (it is easy to check that the MIMO with beamforming PA reduces to the SIMO case) and thus Monte-Carlo simulations have not been used.

VII. CONCLUSION

In this paper, we propose a definition of energy-efficiency metric which is the extension of the work in [START_REF] Verdú | On channel capacity per unit cost[END_REF] to static MIMO channels. Furthermore, our definition bridges the gap between the notion of capacity per unit cost [START_REF] Verdú | On channel capacity per unit cost[END_REF] and the empirical approach of [START_REF] Goodman | Power Control for Wireless Data[END_REF] in the case of slow fading channels. In static and fast fading channels, the energy-efficiency is maximized at low transmit power and the corresponding rates are also small. On the the other hand, the case of slow fading channel is not trivial and exhibits several open problems. It is conjectured that solving the (still open) problem of outage minimization is sufficient to solve the problem of determining energy-efficient precoding schemes. This conjecture is validated by several special cases such as the MISO case and asymptotic cases. Many open problems are introduced by the proposed performance metric, here we just mention some of them:

• First of all, the conjecture of the optimal precoding schemes for general MIMO channels needs to be proven.

• The quasi-concavity of the goodput-to-power ratio when uniform power allocation is assumed remains to be proven in the finite setting.

• A more general channel model should be considered. We have considered i.i.d. channel matrices but considering non zero-mean matrices with arbitrary correlation profiles appears to be a challenging problem for the goodput-to-power ratio.

• The connection between the proposed metric and the diversity-multiplexing tradeoff at high SNR has not been explored.

• Only single-user channels have been considered. Clearly, multi-user MIMO channels such as multiple access or interference channels should be considered.

• The case of distributed multi-user channels become more and more important for applications (unlicensed bands, decentralized cellular networks, etc.). Only one result is mentioned in this paper: the existence of a pure Nash equilibrium in distributed MIMO multiple access channels assuming uniform power allocation transmit policy. Uniform PA Beam-forming PA General PA δ=0.16 W Fig. 5. Success probability vs. power constraint P , comparison between beamforming PA, UPA and General PA for MIMO nt = nr = 2, R = 1 bpcu, ρ = 3 dB. We observe that Telatar's conjecture is validated. There is a threshold, δ = 0.16 W, below which (P ≤ δ) the beamforming PA is optimal and above it, UPA is optimal. As Q is a positive semi-definite Hermitian matrix, it can always be spectrally decomposed as Q = UDU H where D = Diag(p 1 , . . . , p nt ) is a diagonal matrix representing a given PA policy and U a unitary matrix. Our goal is to prove that, for every U, G static is maximized when D = Diag(0, 0, ..., 0). To this end we rewrite

G static as G static (U Diag(p 1 , . . . , p nt ) U H ) = log 2 I nr + nt i=1 p i g i g H i nt i=1 p i , (27) 
where g i represents the i th column of the n r × n t matrix G = √ ρHU and proceed by induction on n t ≥ 1.

First, we introduce an auxiliary quantity (whose role will be made clear a little further)

E (nt) (p 1 , . . . , p nt ) Tr I nr + nt i=1 p i g i g H i -1 nt i=1 p i g i g H i -log 2 I nr + nr i=1 p i g i g H i . (28) 
and prove by induction that it is negative that is, ∀(p 1 , . . . , p nt ) ∈ R nt + , E (nt) (p 1 , . . . , p nt ) ≤ 0. For n t = 1, we have E (1) 

(p 1 ) = Tr (I nr + p 1 g 1 g H 1 ) -1 p 1 g 1 g H 1 -log 2 I nr + p 1 g 1 g H 1 .
The first order derivative of E (1) (p 1 ) w.r.t. p 1 is:

∂E (1) ∂p 1 = -p 1 [g H 1 (I nr + p 1 g 1 g H 1 ) -1 g 1 ] 2 ≤ 0 (29) 
and thus E (1) (p 1 ) ≤ E (1) (0) = 0.

Now, we assume that E (nt-1) (p) ≤ 0 and want to prove that E (nt) (p, p nt ) ≤ 0, where p = (p 1 , . . . , p nt-1 ).

It turns out that:

∂E (nt) ∂p nt = - nt j=1 p j g H j I nr + nt i=1 p i g i g H i -1 g nt 2 ≤ 0, (30) 
and therefore E (nt) (p 1 , . . . , p nt-1 , p nt ) ≤ E (nt) (p 1 , . . . , p nt-1 , 0) = E (nt-1) (p 1 , . . . , p nt-1 ) ≤ 0.

As a second step of the proof, we want to prove by induction on n t ≥ 1 that

arg max p,pn t G (nt) static (p, p nt ) = 0. (31) 
For n t = 1 we have G

static (p 1 ) =

log 2 |In r +p1g 1 g H 1 | p1 = log 2 (1+p1g H 1 g 1 ) p1
which reaches its maximum in p 1 = 0. 

∂p k = N nt i=1 p i 2 , (32) 
with 

N = nt i=1 p i Tr     I nr + nt j=1 p j g j g H j   -1 g k g H k   -log 2 I nr + nt i=1 p i g i g H i ( 33 
and takes Q = q nt I nt with q → 0.

APPENDIX B PROOF OF PROPOSITION 4.1

The proof has two parts. First, we start by proving that if the optimal solution is different than the uniform spatial power allocation P * = p nt I nt with p ∈ 0, P then the solution is not trivial P * = 0. We proceed by reductio ad absurdum. We assume that the optimal solution is trivial P * = 0. This means that when fixing (p 2 , . . . , p nt ) = (0, . . . , 0) the optimal p 1 ∈ [0, P ] that maximizes the energy-efficiency function is p * 1 = 0. The energy-efficiency function becomes: is the sum of n r i.i.d. exponential random variables of parameter λ = 1 and thus follows an 2n r chi-square distribution (or an n r Erlang distribution) whose c.d.f. is known and given by ς(x) = 1exp(-x)

Γ(Diag(p 1 , 0, . . . , 0), R) = R 1 -Pr log 2 (1 + ρp 1 h 1 2 ) < R p 1 (35) 
nr-1 k=0

x k k! . We can explicitly calculate the outage probability and obtain the energy-efficiency function:

Γ(Diag(p 1 , 0, . . . , 0), R) = R exp - c p 1 nr-1 k=0 c k k! 1 p k+1 1 (36) where c = 2 R -1 ρ > 0. It is easy to check that lim p1→0 Γ(p 1 , R) = 0, lim p1→∞ Γ(p 1 , R) = 0.
By evaluating the first derivative w.r.t. p 1 , it is easy to check that the maximum is achieved for p * 1 = c νn r ≥ 0 where ν nr is the unique positive solution of the following equation (in y):

1 (n r -1)! y nr - nr-1 k=0 y k k! = 0. (37) 
Considering the power constraint the optimal transmission power is p * 1 = min{ 2 R -1 νn r ρ , P }, which contradicts the hypothesis and thus if the optimal solution is different than the uniform spatial power allocation then the solution is not trivial P * = 0.

APPENDIX C PROOF PROPOSITION 4.4

Let p T = (p 1 , ..., p nt ) be the vector of powers allocated to the different antennas i ∈ {1, ..., n t } and thus D = Diag(p). Define the two sets: C(x) = p ≥ 0, nt i=1 p i ≤ x and ∆(x) = p ≥ 0, nt i=1 p i = x . Using these notations, they key observation to be made is the following: 

sup p∈C(P ) Γ MISO (D, R) (a) = R sup p∈C(P ) 1 -P MISO out (D, R) nt i=1 p i (b) = R sup x∈[0,P ] sup p∈∆(x) 1 -P MISO out (D, R) x (c) = R sup x∈[0,P ]
Thus the function 1

x g c x is increasing for x ∈ (0, x ) and decreasing on x ∈ (x , ∞). The maximum point is reached in x = c y where y is the unique positive solution of the equation φ (y) = 0 where

φ (y) = 1 ( -1)! y - -1 i=0 1 i! y i . ( 40 
)
We have that φ(0) = -1 < 0 and

φ ( ) = 1 ( -1)! - -1 i=0 1 i! i = -1 i=0 -i -1 i! i > 0. (41) 
This implies that y ≤ and thus x ≥ c. Since c nt-1 ≥ 1 we also have x ≥ c cn t -1 for all ∈ {1, . . . , n t -1}. Therefore, all the functions 1

x g c x are increasing on the intervals 0, c cn t -1 . Moreover, on the interval c cn t -1 , ∞ , they are increasing on c cn t -1 , x and decreasing on [x , ∞). Proposition 4.4 follows directly.

such that Γ TISO (Diag(q, 0), R) = Γ TISO (Diag(0, q), R) < Γ TISO Diag q 2 , q 2 , R . It turns out that all upperlevel sets U γq with γ q Γ TISO (Diag(q, 0), R) are not convex sets. This follows directly from the fact that (q, 0), (0, q) ∈ U γq but q 2 , q 2 / ∈ U γq since Γ TISO Diag q 2 , q 2 , R < γ q .

APPENDIX E EXTREME SNR CASES, GPR

In [START_REF] Jorswieck | Outage probability in multiple antenna systems[END_REF], the authors proved that in the low SNR regime the outage probability P out (p, R) is Schur-concave w.r.t. p. This means that for any vectors p, q such that p q then P out (p, R) ≤ P out (q, R). The operator denotes the majorization operator which will be briefly described (see [START_REF] Marshall | Inequalities: Theory of majorization and its applications[END_REF] for details). For any two vectors p, q ∈ R nt + , p majorizes q (denoted by p q) if This operator induces only a partial ordering. The Schur-convexity and ≺ operator can be defined in an analogous way. Also, an important observation to be made is that the beamforming vector majorizes any other vector, whereas the uniform vector is majorized by any other vector (provided the sum of all elements of the vectors is equal). Otherwise stated, xe 1 p

x nt 1 for any vector p such that , P , with y nr the unique solution of Φ nr (y) = 0. Since σ 2 → 0 then c → +∞ and thus the optimal power allocation is p * = P e 1 .

Similarly, for the high SNR case we have: 

We have used the results in [START_REF] Jorswieck | Outage probability in multiple antenna systems[END_REF], where the UPA was proven to minimize the outage probability.

Let us now consider the limit of the energy-efficiency function when p → 0, σ 2 → 0 such that p σ 2 → ξ with ξ a positive finite constant. We obtain that 1 -P out x nt I nt , R → Pr I nr + ξ nt HH H > 0 which implies directly that Γ x nt I nt , R → +∞.

Proposition 4 . 4 (

 44 Optimum precoding matrices for MISO channels): For all ∈ {1, ..., n t -1}, let c be the unique solution of the equation (in x) Pr 1 +1 +1 i=1

Proposition 4 . 5 (

 45 UPA and quasi-concavity (MISO channels)): Assume the UPA, Q = p nt I nt , then Γ(p, R) is quasi-concave w.r.t. p ∈ 0, P and has a unique maximum point in p * = min (2 R -1)ntσ 2 νn t , P where ν nt is the solution (w.r.t. y) of:

Proposition 5 . 1 (

 51 Low SNR regime): When σ 2 → +∞, the energy-efficiency function Γ(Diag(p), R) is Schurconcave w.r.t. p and maximized by a beamforming power allocation policy D * = P Diag(e 1 ).
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 21 that the optimal solution p * b represents the point where the tangent that passes through the origin intersects the S-shaped function RQ (α b (p)). As n t grows large, the function Q (α b (p)) becomes a Heavyside step function since ∀p ≤ pb , lim nt→+∞ Q (α b (p)) = 0 and ∀p ≥ pb , lim nt→+∞ Q (α b (p)) = 1. This means that the optimal September 29, 2010 DRAFT power p * b that maximizes the energy-efficiency approaches pb as n t grows large, p * b → n t → +∞.
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 224 0 has a unique solution where α c (p) = R-ntµI (p) σI (p) . We obtain α c (p) = ntµI σ I -ntµ I σI -Rσ I σ and α c (p) = (ntµI σ I -ntµ I σI -Rσ I )σ -2σI σ I (ntµI σ I -ntµ I σI -Rσ I ) σ

Fig. 1 .

 1 Fig. 1. Energy-efficiency (GPR) vs. transmit power p ∈ [0, 1] W for MIMO channels where nr = nt = n ∈ {1, 2, 4, 8}, UPA D = p nt In t , ρ = 10 dB, R = 1 bpcu. Observe that the energy-efficiency is a quasi-concave function w.r.t. p. The optimal point p * is decreasing and Γ UPA (p * , R) is increasing with n.

Fig. 2 .

 2 Fig. 2. Energy-efficiency vs. the number of antennas n for MIMO nr = nt = n ∈ {1, 2, 4, 8}, UPA, D = p nt In t , ρ = 10 dB, R = 1 bpcu and P = 1 W. Observe that Γ UPA (p * , R) is increasing with n.
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 3441 Fig. 3. Energy-efficiency vs. transmit power p ∈ [0, 1] W for MIMO nr = 2, nt ∈ {1, 2, 4, 8}, UPA D = p nt In t , ρ = 10 dB, R = 1 bpcu. Observe that the energy-efficiency is a quasi-concave function w.r.t. p. The optimal point p * is not decreasing with n but almost constant.

Fig. 6 .

 6 Fig.6. Optimal energy-efficiency vs. power constraint P , comparison between beamforming PA, UPA and General PA for MIMO nt = nr = 2, R = 1 bpcu, ρ = 3 dB. We observe that our Conjecture 4.2 is validated. For the exact same δ = 0.16 W, we have that for P ≤ δ the beamforming PA structure optimal and above it, UPA structure is optimal.

  Now, we assume that arg max p G (nt-1) static (p) = 0 and want to prove that arg max (p,pn t ) G (nt) static (p, p nt ) = 0. Let k = arg min i∈{1,...,nt} calculating the first order derivative of G (nt) static w.r.t. p k one obtains that: ∂G (nt) static

=

  Pr log 1 + ρ nt i=1 p i |h i | 2 ≤ R : (a) translates the definition of the GPR; (b) follows from the property sup{A∪B} = sup{sup{A}, sup{B}} for two sets A and B, applied to our context; in (c) the functiong(z) = g (z), ifz ∈ c c -1 , c c is a piecewise continuous function where g (z) = 1 -Pr 1 nt i=1 |h i | 2 ≤ z for z ∈ c c -1 , c cand ∈ {1, . . . , n t }. The function g(z) corresponds to the solution of the minimization problem of the outage probability[START_REF] Jorswieck | Outage probability in multiple antenna systems[END_REF]. Now, we study the function g . By calculating the first order derivative of 1 x g c x w.r.t. x we obtain:

  for all m ∈ {1, . . . , n t -1} and

nt i=1 p i = x and 1 = ( 1 , 1 , 1 ∈ S 1 .[ 1 -[ 1 -

 1111111 . . . , 1) and e It is straightforward to see that if P out (Diag(p), R) is Schur-concave w.r.t. p then 1 -P out (Diag(p), R) is Schur-convex w.r.t. p. Since the majorization operator implies the sum of all elements of the ordered vectors to be identical, Γ(Diag(p), R) = 1-Pout(Diag(p),R) nt i=1 p iwill also be Schur-convex w.r.t. p and thus is maximized by a beamforming vector. Using the same notations as in Appendix C we obtain:P out (Diag(p), R)] Pr[log(1 + xρh H 1 h 1 ) ≤ R],where (a) follows by considering beamforming power allocation policy on the first transmit antenna (with no generality loss) and replacing p = xe 1 with e 1 = (1, 0, . . . , 0) and h 1 denoting the first column of the channel matrix; in (c) we make use the definition in Appendix C for the function 1 x g nr c nrx which has a unique September 29, 2010 DRAFT optimal point in min c yn r

[ 1 - 1 -P out Diag x n t ( 1 ,

 111 P out (Diag(p), R)] . . . , 1) , R .

  Is D * known? Is Γ UPA (p) quasi-concave? Is p * known?

	General MIMO	Conjecture	Conjecture	Conjecture
	MISO	Yes	Yes	Yes
	1 × 1	Yes	Yes	Yes
	Large MIMO	Conjecture	Yes	Yes
	Low SNR	Yes	Yes	Yes
	High SNR	Yes	Yes	Conjecture
		TABLE I		
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  September 29, 2010 DRAFT where h 1 represents the first column of the channel matrix H. Knowing that the elements in h 1 are i.i.d.h 1j ∼ CN (0, 1) for all j ∈ {1, . . . , n r } we have that |h 1j | 2 ∼ expon(1). The random variable h 1 2 =

	nr	
	j=1	|h 1j | 2

In[START_REF] Verdú | On channel capacity per unit cost[END_REF] the capacity per unit cost is in bit/s per Joule and not in bit/J, which amounts to normalize by a quantity in Hz.September
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We denote by S = v ∈ {0, 1} nt | nt i=1 vi = the set of nt dimensional vectors containing ones and ntzeros, for all ∈ {1, . . . , nt}. September 29, 2010 DRAFT

APPENDIX D COUNTER-EXAMPLE, TISO

Consider the particular case where n t = 2 and n r = 1. From Proposition 4.4, it follows that for a power constraint P < c c1 the beamforming power allocation policy maximizes the energy-efficiency and

+ | p 1 + p 2 ≤ P } denotes the energy-efficiency function. We want to prove that Γ TISO (Diag(p 1 , p 2 ), R) is not quasi-concave w.r.t. (p 1 , p 2 ) ∈ P 2 . This amounts to finding a level γ ≥ 0 such that the corresponding upper-level set [START_REF] Boyd | Convex Optimization[END_REF] for a detailed analysis on quasi-concave functions). Consider an arbitrary 0 < q < min P ,