
HAL Id: hal-00554919
https://hal.science/hal-00554919

Preprint submitted on 11 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Minimal Coverability Set for Petri Nets: Karp and
Miller Algorithm with Pruning

Pierre-Alain Reynier, Frédéric Servais

To cite this version:
Pierre-Alain Reynier, Frédéric Servais. Minimal Coverability Set for Petri Nets: Karp and Miller
Algorithm with Pruning. 2011. �hal-00554919�

https://hal.science/hal-00554919
https://hal.archives-ouvertes.fr

Minimal Coverability Set for Petri Nets:
Karp and Miller Algorithm with Pruning

Pierre-Alain Reynier1, Frédéric Servais2

1 LIF, Université Aix-Marseille & CNRS, France
2 Department of Computer & Decision Engineering (CoDE), ULB, Belgium

Abstract. This paper presents the Monotone-Pruning algorithm (MP)
for computing the minimal coverability set of Petri nets. The original
Karp and Miller algorithm (K&M) unfolds the reachability graph of
a Petri net and uses acceleration on branches to ensure termination.
The MP algorithm improves the K&M algorithm by adding pruning
between branches of the K&M tree. This idea was first introduced in the
Minimal Coverability Tree algorithm (MCT), however it was recently
shown to be incomplete. The MP algorithm can be viewed as the MCT

algorithm with a slightly more aggressive pruning strategy which ensures
completeness. Experimental results show that this algorithm is a strong
improvement over the K&M algorithm as it dramatically reduces the
exploration tree.

1 Introduction

Petri nets form an important formalism for the description and analysis of con-
current systems. While the state space of a Petri net may be infinite, many
verification problems are decidable. The minimal coverability set (MCS) [2] is a
finite representation of a well-chosen over-approximation of the set of reachable
markings. As proved in [2], it can be used to decide several important prob-
lems. Among them we mention the coverability problem to which many safety
problems can be reduced (is it possible to reach a marking dominating a given
one?); the boundedness problem (is the set of reachable markings finite?); the
place boundedness problem (given a place p, is it possible to bound the number
of tokens in p in any reachable marking?); the semi-liveness problem (is there a
reachable marking in which a given transition is enabled?). Finally, the regularity
problem asks whether the set of reachable markings is regular.

Karp and Miller (K&M) introduced an algorithm for computing theMCS [8].
This algorithm builds a finite tree representation of the (potentially infinite)
unfolding of the reachability graph of the given Petri net. It uses acceleration
techniques to collapse branches of the tree and ensure termination. By taking
advantage of the fact that Petri nets are strictly monotonic transition systems,
the acceleration essentially computes the limit of repeatedly firing a sequence
of transitions. The MCS can be extracted from the K&M tree. The K&M

Algorithm thus constitutes a key tool for Petri nets, and has been extended to
other classes of well-structured transition systems [1].

However, the K&M Algorithm is not efficient and in real-world examples
it often does not terminate in reasonable time. One reason is that in many
cases it will compute several times a same subtree; two nodes labelled with the
same marking will produce the same subtree, K&M will compute both. This
observation lead to the MCT algorithm [2]. This algorithm introduces clever
optimizations for ensuring that all markings in the tree are incomparable. At
each step the new node is added to the tree only if its marking is not smaller
than the marking of an existing node. Then, the tree is pruned: each node labelled
with a marking that is smaller than the marking of the new node is removed
together with all its successors. The idea is that a node that is not added or
that is removed from the tree should be covered by the new node or one of its
successors. It was recently shown that the MCT algorithm is incomplete [7]. The
flaw is intricate and, according to [7], difficult to patch. As an illustration, an
attempt to resolve this issue has been done in [9]. However, as proved in [6], the
algorithm proposed in [9] may not terminate. In [7], an alternative algorithm,
the CoverProc algorithm, is proposed for the computation of the MCS of a Petri
net. This algorithm follows a different approach and is not based on the K&M

Algorithm.

We propose here the Monotone-Pruning algorithm (MP), an improved K&M

algorithm with pruning. This algorithm can be viewed as the MCT Algorithm
with a slightly more aggressive pruning strategy which ensures completeness.
The MP algorithm constitutes a simple modification of the K&M algorithm,
and is thus easily amenable to implementation and to extensions to other classes
of systems [1, 3, 4]. Moreover, as K&M Algorithm, and unlike the algorithm pro-
posed in [7], any strategy of exploration of the Petri net is correct: depth first,
breadth first, random. . . It is thus possible to develop heuristics for subclasses
of Petri nets. Finally experimental results show that our algorithm is a strong
improvement over the K&M Algorithm, it indeed dramatically reduces the ex-
ploration tree. In addition, MP Algorithm is also amenable to optimizations
based on symbolic computations, as proposed in [5] for MCT.

While the algorithm in itself is simple and includes the elegant ideas of the
original MCT Algorithm, the proof of its correctness is long and technical. In
fact, the difficult part is its completeness, i.e. any reachable marking is covered
by an element of the set returned by the algorithm. To overcome this difficulty,
we reduce the problem to the correction of the algorithm for a particular class of
finite state systems, which we call widened Petri nets (WPN). These are Petri
nets whose semantics is widened w.r.t. a given marking m: as soon as the number
of tokens in a place p is greater than m(p), this value is replaced by ω. Widened
Petri nets generate finite state systems for which the proof of correction of the
Monotone-Pruning algorithm is easier as accelerations can be expressed as finite
sequences of transitions.

Definitions of Petri nets and widened Petri nets are given in Section 2, to-
gether with the notions of minimal coverability set and reachability tree. In
Section 3, we recall the K&M Algorithm and present the Monotone-Pruning
Algorithm. We compare it with the MCT Algorithm, and prove its termination

2

and correction under the assumption that it is correct on WPN. Finally, in Sec-
tion 4, we develop the proof of its correction on widened Petri nets. Experimental
results are given in Section 5. Omitted proofs can be found in Appendix.

2 Preliminaries

N denotes the set of natural numbers. To denote that the union of two sets X
and Y is disjoint, we write X

⊎

Y . A quasi order ≤ on a set S is a reflexive and
transitive relation on S. Given a quasi order ≤ on S, a state s ∈ S and a subset
X of S, we write s ≤ X iff there exists an element s′ ∈ X such that s ≤ s′.

Given a finite alphabet Σ, we denote by Σ∗ the set of words on Σ, and
by ε the empty word. We denote by ≺ the (strict) prefix relation on Σ∗: given
u, v ∈ Σ∗ we whave u ≺ v iff there exists w ∈ Σ∗ such that uw = v and w 6= ε.
We denote by � the relation obtained as ≺ ∪ =.

2.1 Markings, ω-markings and labelled trees

Given a finite set P , a marking on P is an element of the set Mark(P) = N
P .

The set Mark(P) is naturally equipped with a partial order denoted ≤.

Given a marking m ∈ Mark(P), we represent it by giving only the positive
components. For instance, (1, 0, 0, 2) on P = (p1, p2, p3, p4) is represented by the
multiset {p1, 2p4}. An ω-marking on P is an element of the set Markω(P) =
(N∪{ω})P . The order ≤ on Mark(P) is naturally extended to this set by letting
n < ω for any n ∈ N, and ω ≤ ω. Addition and substraction on Markω(P) is
obtained using the rules ω + n = ω − n = ω for any n ∈ N. The ω-marking
(ω, 0, 0, 2) on P = (p1, p2, p3, p4) is represented by the multiset {ωp1, 2p4}.

Given two sets Σ1 and Σ2, a labelled tree is a tuple T = (N,n0, E, Λ) where
N is the set of nodes, n0 ∈ N is the root, E ⊆ N × Σ2 ×N is the set of edges
labelled with elements of Σ2, and Λ : N → Σ1 labels nodes with elements of Σ1.
We extend the mapping Λ to sets of nodes: for S ⊆ N , Λ(S) = {Λ(n) | n ∈ S}.
Given a node n ∈ N , we denote by AncestorT (n) the set of ancestors of n in T
(n included). If n is not the root of T , we denote by parentT (n) its first ancestor
in T . Finally, given two nodes x and y such that x ∈ AncestorT (y), we denote
by pathT (x, y) ∈ E∗ the sequence of edges leading from x to y in T . We also
denote by pathlabelT (x, y) ∈ Σ∗

2 the label of this path.

2.2 Petri nets

Definition 1 (Petri nets (PN)). A Petri net N is a tuple (P, T, I, O,m0)
where P is a finite set of places, T is a finite set of transitions with P ∩T = ∅,
I : T → Mark(P) is the backward incidence mapping, representing the input
tokens, O : T → Mark(P) is the forward incidence mapping, representing output
tokens, and m0 ∈ Mark(P) is the initial marking.

3

The semantics of a PN is usually defined on markings, but can easily be
extended to ω-markings. We define the semantics of N = (P, T, I, O,m0) by its
associated labeled transition system (Markω(P),m0,⇒) where ⇒⊆ Markω(P)×
Markω(P) is the transition relation defined by m ⇒ m′ iff ∃t ∈ T s.t. m ≥

I(t)∧m′ = m−I(t)+O(t). For convenience we will write, for t ∈ T , m
t

=⇒ m′ if
m ≥ I(t) and m′ = m− I(t) +O(t). In addition, we also write m′ = Post(m, t),
this defines the operator Post which computes the successor of an ω-marking

by a transition. Given an ω-marking m and a transition t, we write m
t
⇒ · iff

there exists m′ ∈ Markω(P) such that m
t
⇒ m′. The relation ⇒∗ represents the

reflexive and transitive closure of ⇒. We say that a marking m is reachable in N
iff m0 ⇒∗ m. We say that a Petri net is bounded if the set of reachable markings
is finite.

•p1

p3

p6

p4

p5t1

t5

t3

t6

t4

2

(a) A Petri net N .

p1

p6 p3

p4, 2p5 p4

p3, 3p5 p3, p5

p4, 3p5

t5 t1

t6 t3

t4 t4

t3

(b) Prefix of its reachability tree.

Fig. 1. A Petri net with its reachability tree.

Example 1. We consider the Petri net N depicted on Figure 1(a), which is a
simplification of the counter-example proposed in [7], but is sufficient to present
our definitions. The initial marking is {p1}, depicted by the token in the place
p1. This net is not bounded as place p5 can contain arbitrarily many tokens. The
execution of the Monotone-Pruning algorithm on the original counter-example
of [7] can be found in Appendix D. y

2.3 Minimal Coverability Set of Petri Nets

We recall the definition of minimal coverability set introduced in [2].

Definition 2. A coverability set of a Petri net N = (P, T, I, O,m0) is a finite
subset C of Markω(P) such that the two following conditions hold:

1) for every reachable marking m of N , there exists m′ ∈ C such that m ≤ m′,

4

2) for every m′ ∈ C, either m′ is reachable in N or there exists an infinite
strictly increasing sequence of reachable markings (mn)n∈N converging to m′.

A coverability set is minimal iff no proper subset is a coverability set. We denote
by MCS(N) the minimal coverability set of N .

Note that two elements of a minimal coverability set are incomparable. Com-
puting a minimal coverability set from a coverability set is easy. Note also that
if the PN is bounded, then a set is a coverability set iff it contains all maximal
reachable markings.

Example 2 (Example 1 continued). The MCS of the Petri net N is composed of
the following ω-markings: {p1}, {p6}, {p3, ωp5}, and {p4, ωp5}.

2.4 Reachability tree of Petri nets

We recall the notion of reachability tree for a PN. This definition corresponds
to the execution of the PN as a labelled tree. We require it to be coherent with
the semantics of PN (soundness), to be complete w.r.t. the firable transitions,
and to contain no repetitions. Naturally, this reachability tree may be infinite as
soon as the PN has an infinite execution.

Definition 3 (Reachability tree of a PN). The reachability tree of a PN

N = (P, T, I, O,m0) is (up to isomorphism) a labelled tree R = (N,n0, E, Λ),
with E ⊆ N × T ×N and Λ : N → Mark(P), s. t.:

Root: Λ(n0) = m0,

Sound: ∀(n, t, n′) ∈ E,Λ(n)
t
⇒ Λ(n′),

Complete: ∀n ∈ E, ∀t ∈ T,
(

∃m | Λ(n)
t
⇒ m

)

⇒ (∃n′ ∈ N | (n, t, n′) ∈ E)

Unicity: ∀n ∈ N, ∀t ∈ T, (n, t, n′) ∈ E ∧ (n, t, n′′) ∈ E ⇒ n′ = n′′

Using notations introduced for labelled trees, the following property holds:

Lemma 1. ∀x, y | x ∈ AncestorR(y), Λ(y) = Post(Λ(x), pathlabelR(x, y)).

Example 3 (Example 1 continued). A prefix of the reachability tree of N is de-
picted on Figure 1(b). Each node is represented by its label (a marking). y

2.5 Widened Petri nets

We present an operation which, given a (potentially unbounded) Petri net, turns
it into a finite state system. Let P be a finite set, and ϕ ∈ Mark(P) be a marking.
We consider the finite set of ω-markings whose finite components (i.e. values
different from ω) are less or equal than ϕ. Formally, we define Markωϕ(P) =
{m ∈ Markω(P) | ∀p ∈ P,m(p) ≤ ϕ(p) ∨ m(p) = ω}. The widening operator
Widenϕ maps an ω-marking into an element of Markωϕ(P): ∀m ∈ Markω(P),

∀p ∈ P,Widenϕ(m)(p) =

{

m(p) if m(p) ≤ ϕ(p)
ω otherwise.

Note that this operator trivially satisfies m ≤ Widenϕ(m).

5

Definition 4 (Widened Petri net). A widened Petri net (WPN for short)
is a pair (N , ϕ) composed of a PN N = (P, T, I, O,m0) and of a marking
ϕ ∈ Mark(P) such that m0 ≤ ϕ.

The semantics of (N , ϕ) is given by its associated labelled transition sys-
tem (Markωϕ(P),m0,⇒ϕ) where for m,m′ ∈ Markωϕ(P), and t ∈ T , we have

m
t
⇒ϕ m′ iff m′ = Widenϕ(Post(m, t)). We carry over from PN to WPN the

notions of reachable marking, reachability tree... We define the operator Postϕ
by Postϕ(m, t) = Widenϕ(Post(m, t)). Subscript ϕ may be omitted when it is
clear from the context. Finally, the minimal coverability set of a widened Petri
net (N , ϕ) is simply the set of its maximal reachable states as its reachability
set is finite. It is denoted MCS(N , ϕ).

We state the following result, whose proof easily follows by induction.

Proposition 1. Let (N , ϕ) be a WPN, and m be a reachable marking of N .
Then there exists an ω-marking m′ reachable in (N , ϕ) such that m ≤ m′.

Example 4 (Example 1 continued).
Consider the mapping ϕ associating 1 to places p1, p3, p4 and p6, and 2 to

place p5, and the widened Petri net (N , ϕ). Then for instance from marking
{p5, p6}, the firing of t6 results in the marking {p4, ωp5}, instead of the mark-
ing {p4, 3p5} in the standard semantics. Similarly, consider the prefix of the
reachability tree of N depicted on Figure 1(b). For (N , ϕ), the reachability tree
is obtained by substituting the ω-marking {p3, ωp5} (resp. {p4, ωp5}) to the
marking {p3, 3p5} (resp. {p4, 3p5}), as we have ϕ(p5) = 2. One can compute the
MCS of this WPN. Due to the choice of ϕ, it coincides with the MCS of N . y

3 Monotone-Pruning Algorithm

3.1 Karp and Miller Algorithm.

The K&M Algorithm [8] is a well known solution to compute a coverability set
of a PN. It is represented as Algorithm 1 (with a slight modification as in [8],
the algorithm computes simultaneously all the successors of a marking). K&M

algorithm uses an external acceleration function Acc : 2Mark
ω(P) ×Markω(P) →

Markω(P) which is defined as follows:

∀p ∈ P,Acc(M,m)(p) =

{

ω if ∃m′ ∈ M | m′ < m ∧m′(p) < m(p) < ω
m(p) otherwise.

K&M Algorithm builds a tree in which nodes are labelled by ω-markings and
edges by transitions of the Petri net. Roughly, it consists in exploring the reach-
ability tree of the PN, and in applying the acceleration function Acc on branches
of this tree. Note that the acceleration may compute ω-markings that are not
reachable. The correction of this procedure relies on the strict monotonicity of
PN and on the fact that the order ≤ on ω-markings is well-founded.

Theorem 1 ([8]). Let N be a PN. K&M algorithm terminates and computes
a coverability set of N .

6

Algorithm 1 The K&M Algorithm

Require: A Petri net N = (P, T, I,O,m0).
Ensure: A labelled tree C = (X, x0, B, Λ) such that X is a coverability set of N .
1: Let x0 be a new node such that Λ(x0) = m0.

2: X := {x0}; Wait := {(x0, t) | Λ(x0)
t
⇒ ·}; B := ∅;

3: while Wait 6= ∅ do

4: Pop (n′, t) from Wait. m := Post(Λ(n′), t);
5: if 6 ∃y ∈ AncestorC(n

′) | Λ(y) = m then

6: Let n be a new node s.t. Λ(n) = Acc(Λ(AncestorC(n
′)),m);

7: X+ = {n}; B+ = {(n′, t, n)}; Wait+ = {(n, u) | Λ(n)
u
⇒ ·};

8: end if

9: end while

10: Return C = (X,x0, B, Λ).

3.2 Definition of the algorithm

We present in this section our algorithm which we call Monotone-Pruning Al-
gorithm as it includes a kind of horizontal pruning. We denote this algorithm
by MP. It involves the acceleration function Acc used in the Karp and Miller
algorithm. However, it is applied in a slightly different manner.

Algorithm 2 Monotone Pruning Algorithm for Petri Nets.

Require: A Petri net N = (P, T, I,O,m0).
Ensure: A labelled tree C = (X, x0, B, Λ) and a partition X = Act

⊎
Inact

such that Λ(Act) = MCS(N).
1: Let x0 be a new node such that Λ(x0) = m0;

2: X := {x0}; Act := X; Wait := {(x0, t) | Λ(x0)
t
⇒ ·}; B := ∅;

3: while Wait 6= ∅ do

4: Pop (n′, t) from Wait.
5: if n′ ∈ Act then

6: m := Post(Λ(n′), t);
7: Let n be a new node such that Λ(n) = Acc(Λ(AncestorC(n

′) ∩ Act),m);
8: X+ = {n}; B+ = {(n′, t, n)};
9: if Λ(n) 6≤ Λ(Act) then
10: Act− = {x | ∃y∈AncestorC(x).Λ(y)≤Λ(n) ∧ (y∈Act ∨ y /∈ AncestorC(n))};
11: Act+ = {n}; Wait+ = {(n, u) | n

u
⇒ ·};

12: end if

13: end if

14: end while

15: Return C = (X,x0, B, Λ) and (Act, Inact).

As Karp and Miller Algorithm, MP Algorithm builds a tree C in which nodes
are labelled by ω-markings and edges by transitions of the Petri net. Therefore
it proceeds in an exploration of the reachability tree of the Petri net, and uses
acceleration along branches to reach the “limit” markings. In addition, it can

7

prune branches that are covered by nodes on other branches. Therefore, nodes
of the tree are partitionned in two subsets: active nodes, and inactive ones.
Intuitively, active nodes will form the minimal coverability set of the Petri net,
while inactive ones are kept to ensure completeness of the algorithm.

Given a pair (n′, t) popped from Wait, the introduction in C of the new node
obtained from (n′, t) proceeds in the following steps:

1. node n′ should be active (test of Line 5) ;
2. the “regular” successor marking is computed: m = Post(Λ(n′), t) (Line 6) ;
3. this marking is accelerated w.r.t. the active ancestors of node n′, and a new

node n is created with this marking: Λ(n) = Acc(Λ(AncestorC(n
′)∩Act),m)

(Lines 7 and 8) ;
4. the new node n is declared as active if, and only if, it is not covered by an

existing active node (test of Line 9 and Line 11) ;
5. update of Act: some nodes are “deactivated” (Line 10).

We detail the update of the set Act. Intuitively, one wants to deactivate nodes
(and their descendants) that are covered by the new node n. This would lead
to deactivate a node x iff it owns an ancestor y dominated by n, i.e. such that
Λ(y) ≤ Λ(n). This condition has to be refined to obtain a correct algorithm (see
Remark 1). In MP Algorithm (see Line 10), node x is deactivated iff its ancestor
y is either active (y ∈ Act), or is not itself an ancestor of n (y 6∈ AncestorC(n)).
In this case, we say that x is deactivated by n. This subtle condition constitutes
the main difference between MP and MCT Algorithms (see Remark 1).

Consider the introduction of a new node n obtained from (n′, t) ∈ Wait, and
a node y such that Λ(y) ≤ Λ(n), y can be used to deactivate nodes in two ways:

– if y 6∈ AncestorC(n), then no matter whether y is active or not, all its descen-
dants are deactivated (represented in gray on Figure 2(a)),

– if y ∈ AncestorC(n), then y must be active (y ∈ Act), and in that case all
its descendants are deactivated, except node n itself as it is added to Act at
Line 11 (see Figure 2(b)).

root

y n′

n

x

(a) y 6∈ AncestorC(n)

root

y ∈ Act

n′

nx

(b) y ∈ AncestorC(n) ∩ Act

Fig. 2. Deactivations of MP Algorithm.

The main result of the paper is that MP Algorithm terminates and is correct:

8

Theorem 2. Let N be a PN. MP algorithm terminates and computes a mini-
mal coverability set of N .

Step 5

1 : p1

2 : p6 3 : p3 : 5

4 : p4 : 5

5 : p3, ωp5

t5 t1

t3

t4

Step 6

1 : p1

2 : p6 3 : p3 : 5

4 : p4 : 5

5 : p3, ωp5 : 6

6 : p4, 2p5

t5 t1

t6 t3

t4

Step 10

1 : p1

2 : p6 3 : p3 : 5

4 : p4 : 5

5 : p3, ωp5 : 6

6 : p4, 2p5 : 8

7 : p3, 3p5 : 8

8 : p4, ωp5

9 : p3, ωp5

10 : p4, ωp5 : 10

t5 t1

t6 t3

t4t4

t3

t4

t3

Fig. 3. Snapshots of the execution of MP Algorithm on PN N .

Example 5 (Example 1 continued). We consider the execution of MP Algorithm
on the PNN . Three intermediary steps (5, 6 and 10) are represented on Figure 3.
The numbers written on the left (before the separator “:”) of nodes indicate the
order in which nodes are created. Nodes that are deactivated are represented in
light gray, and dashed arrows indicate how nodes are deactivated. In addition,
the number of the node in charge ot the deactivation is represented at the right
(after the separator “:”). In the following explanations, node ni denotes the node
that has been created at step i:

– At step 5, the new node n5 ({p3, p5}) covers node n3 ({p3}), which is thus
deactivated, together with its descendants, except node n5 that is just added.

– At step 6, the new node n6 ({p4, 2p5}) covers node n4 ({p4}). This node
was already deactivated but as it lies on another branch, it can be used to
discard its descendants. As a consequence node n5 is deactivated.

– At step 10, the new node n10 is covered by node n8, which is still active.
Thus n10 is immediately declared as inactive. y

After step 10, MP terminates and the active nodes give the MCS of N .

9

Remark 1 (Comparison with the MCT Algorithm.). One can verify that, except
the fact that theMCT algorithm develops all successors of a node simultaneously
(as K&M does), the MCT Algorithm can be obtained from the MP Algorithm
by a subtle modification. The only difference comes from the deactivation of
nodes. In MP, inactivate nodes can be used to deactivate nodes. In MCT, only
active nodes are used to deactivate nodes. More precisely, MCT Algorithm is
obtained by replacing Line 10 by the following Line :
10′ : Act− = {x | ∃y∈AncestorC(x).Λ(y)≤Λ(n) ∧ y∈Act};

Thus, condition (y∈Act∨y /∈ AncestorC(n)) in MP is replaced by the stronger
condition y∈Act to obtain MCT. In particular, this shows that more nodes are
pruned in MP Algorithm.

Note also that if one considers the trivial condition true, i.e. one considers
all active and inactive nodes to discard nodes, then one looses the termination of
the algorithm. Consider Example 5. With this condition, node n9 covers node n7

and thus deactivates node n8 (this does not happen in MP as n7 is an inactive
ancestor of n9). But then, node n10 covers n8 and deactivates n10, and so on.

Remark 2 (MP Algorithm for widened Petri nets.). In the sequel, we will con-
sider the application of MP Algorithm on widened Petri nets. Let (N , ϕ) be a
WPN. The only difference is that the operator Post (resp. ⇒) must be replaced
by the operator Postϕ (resp. ⇒ϕ). For WPN, MP Algorithm enjoys an addi-
tional property. One can prove by induction that all markings computed by MP

are reachable in (N , ϕ). Indeed, the acceleration is consistent with the seman-
tics of (N , ϕ), i.e. all markings computed by Acc belong to Markωϕ(P) (where P
denotes the set of places of N), provided the arguments of Acc do.

Example 6 (Example 4 continued). Consider the WPN (N , ϕ) introduced in
Example 4. Running MP on thisWPN also yields the trees depicted on Figure 3.

3.3 Termination of MP Algorithm

Theorem 3. MP Algorithm terminates.

Proof. We proceed by contradiction, and assume that the algorithm does not
terminate. Let C = (X,x0, B, Λ) and X = Act

⊎

Inact be the labelled tree and
the partitions computed by MP. As C is of finite branching (bounded by |T |),
there exists by König’s lemma an infinite branch in this tree. We fix such an

infinite branch, and write it b = x0
t0−→ x1

t1−→ x2 . . ., with (xi, ti, xi+1) ∈ B, ∀i.
Let n ∈ X \ {xi | i ≥ 0}. We claim that n cannot deactivate any of the xi’s.

By contradiction, if for some i, xi is deactivated by n, then all the descendants
of xi are also deactivated, except n if it is a descendant of xi. As n does not
belong to b, this implies that for any j ≥ i, xj is deactivated. This is impossible
because branch b is infinite and the algorithm only computes successors of active
nodes (test of Line 5).

By definition of the acceleration function, two cases may occur: either one of
the active ancestors is strictly dominated, and then a new ω will appear in the

10

resulting marking (∃p | Λ(n)(p) = ω > m(p)), or no active ancestors is strictly
dominated, and then the acceleration has no effect on marking m (Λ(n) = m).
We say that in the first case, there is an “effective acceleration”.

By definition of the semantics of a Petri net on ω-markings, once a marking
has value ω on a place p, so will all its successors. Thus, as there are finitely
many places, a finite number of effective accelerations can occur on branch b.
We consider now the largest suffix of the branch b containing no effective accel-
erations: let i be the smallest positive integer such that for any j ≥ i, we have
Λ(xj+1) = Post(Λ(xj), tj).

We will prove that the set S = {xj | j ≥ i} is an infinite set of active nodes
with pairwise incomparable markings, which is impossible as the set Markω(P)
equipped with partial order ≤ is a well-founded quasi-order, yielding the contra-
diction.

We proceed by induction and prove that for any j ≥ i the set Sj = {xk | j ≥
k ≥ i} contains active nodes with pairwise incomparable markings. Recall that
we have shown above that nodes not on b cannot deactivate nodes of b. Consider
set Si. When node xi is created, it must be declared as active, otherwise none of
its successors are built, that is impossible as b is infinite. Let j ≥ i, assume that
property holds for Sj , and consider the introduction of node xj+1. We prove that
xj+1 is active, that it deactivates no node of Sj , and that the markings of Sj+1 are
pairwise incomparable. First, as for node xi, the new node xj+1 must be declared
as active when it is created. Thus it is covered by no active node (Line 9). By
induction, elements of Sj are active, and thus we have Λ(xj+1) 6≤ Λ(x) for any
x ∈ Sj . Second, as we have Λ(xj+1) = Post(Λ(xj), tj), we do not use an effective
acceleration, and thus xj+1 strictly dominates none of its active ancestors. In
particular, this implies that it does not deactivate any of its ancestors, and thus
any element of Sj . Moreover, by induction, elements of Sj are active nodes, thus
Λ(xj+1) 6> Λ(x) for any x ∈ Sj : elements of Sj+1 are pairwise incomparable. ⊓⊔

3.4 Correction of MP Algorithm

We reduce the correction of MP Algorithm for Petri nets to the correction of
this algorithm for widened Petri nets, which are finite state systems. This latter
result is technical, and proved in the next section (see Theorem 5).

We use this theorem to prove:

Theorem 4. MP Algorithm for Petri nets is correct.

Proof. Let N = (P, T, I, O,m0) be a PN, C = (X,x0, B, Λ) be the labelled tree
and X = Act

⊎

Inact be the partition built by MP Algorithm on N . As MP

Algorithm terminates, all these objects are finite. We will prove that Λ(Act) is
the minimal coverability set of N .

First note that elements of Λ(Act) are pairwise incomparable: this is a simple
consequence of Lines 9, 10 and 11. Thus, we only have to prove that it is a
coverability set.

The soundness of the construction, i.e. the fact that elements of Λ(Act) satisfy
point 2 of Definition 2, follows from the correction of the acceleration function.

11

To prove the completeness, i.e. point 1 of Definition 2, we use the correction of
MP Algorithm on widened Petri nets. We can consider, for each place p ∈ P ,
the largest value appearing in a marking during the computation. This defines
a marking ϕ ∈ Mark(P).

We consider now the widened Petri net (N , ϕ) and the execution of MP

Algorithm on it (see Remark 2). We claim that there exists an execution of this
algorithm which builds the same labelled tree C and the same partition. This
execution is obtained by picking the same elements in the listWait. This property
can be proven by induction on the length of the execution of the algorithm.
Indeed, by definition of marking ϕ, operators Post and Postϕ are equivalent on
the markings computed by the algorithm. Thus, both algorithms perform exactly
the same accelerations and compute the same ω-markings.

By correction of MPAlgorithm onWPN (see Theorem 5), we obtain Λ(Act) =
MCS(N , ϕ). By Proposition 1, any marking reachable inN is covered by a reach-
able marking of (N , ϕ), and thus by MCS(N , ϕ) = Λ(Act). ⊓⊔

4 MP Algorithm for WPN

We devote this section to the proof that MP Algorithm is correct on WPN.

4.1 Outline

As for Petri nets, the main difficulty is to prove the completeness of the set
returned by MP. Therefore, we introduce in

Subsection 4.2 a notion of exploration of a WPN which corresponds to a tree
built on the reachability tree of the WPN, with some additional properties. This
structure allows to explicit the effect of accelerations. We prove in Subsection 4.3
that MP indeed builds an exploration. In fact, other algorithms like K&M or
MCT also do build explorations. Finally, we prove that the exploration built
by MP is complete in Subsection 4.4: we show that any reachable marking is
covered by an active node. Therefore, we introduce a notion of covering path
which intuitively explicits the sequence of transitions that remain to be fired
from a given active node to reach the desired marking. We prove that such
covering paths are not cyclic, that is promesses are always fulfilled.

4.2 Exploration of a WPN

To build a coverability set the different algorithms we consider (K&M,MCT and
MP) proceed in a similar way. Roughly, the algorithm starts with the root of the
reachability tree and picks a firable transition t. Then it picks a descendant that
may either be the direct child by t (no acceleration) or a descendant obtained
after skipping a few nodes (acceleration), this descendant must be strictly greater
than the direct child (by t). Then if this node is not covered by the previously
selected (and active) nodes, a pruning may occur (not in the K&M algorithm):

12

some active nodes are deactivated, intuitively because the subtree rooted at the
new node should cover those nodes. The process continues with active nodes.

This process can be viewed as an exploration of the reachability tree R =
(N,n0, E, Λ) in the following sense. We define below an exploration as a tuple
E = (X,B, α, β), where X is the subset of N explored by the algorithm, B is
an edge relation on X, such that (x, t, x′) ∈ B if x′ is the node built by the
algorithm when processing the transition t firable from x. The function α gives
the order in which nodes of X are explored by the algorithm. The function β
gives the position at which a node is deactivated, i.e. β(n) = i if n is deactivated
(pruned) when the i-th node appears.

Definition 5 (Exploration). Given a WPN (N , ϕ) and its reachability tree
R = (N,n0, E, Λ), an exploration of S is a tuple E = (X,B, α, β) such that

– X is a finite subset of N ,
– B ⊆ X × T ×X,
– n0 ∈ X,
– (X,n0, B, Λ|X) is a labelled tree,
– α is a bijection from X to {1, . . . , |X|}, and
– β is a mapping from X to {1, . . . , |X|} ∪ {+∞}.

For any 1 ≤ i ≤ |X|, we define the sets Xi = {x ∈ X | α(x) ≤ i}, Inacti =
{x ∈ X | β(x) ≤ i}, and Acti = Xi \ Inacti. We let Act = Act|X| and Inact =
Inact|X|.

In addition, we require the following conditions:

(i) α ≤ β,
(ii) ∀x, y ∈ X, x ∈ AncestorR(y) ⇒ α(x) ≤ α(y),
(iii) ∀(x, t, y) ∈ B,α(y) ≤ β(x),

(iv) T -completeness: ∀x ∈ Act, ∀t ∈ T s.t. Λ(x)
t
⇒ϕ ·, ∃y ∈ X | (x, t, y) ∈ B,

(v) ∀(x, t, y) ∈ B, there exists z ∈ N such that:
(a) (x, t, z) ∈ E, and z ∈ AncestorR(y),
(b) Postϕ(Λ(x), t) = Λ(z) ≤ Λ(y).

The first condition states that nodes cannot be deacti-

x

z

y

t

t

Fig. 4. Condition
(v) of Definition 5.

vated strictly before being selected. The second condition
states that nodes are selected downward: one can not se-
lect a node that has a descendant already selected. Con-
dition (iii) states that the algorithm explores subtrees of
active nodes only. Condition (iv) enforces that all firable
transitions of active nodes are explored. The last condition
requires that the selected descendant is either the direct
child by the selected transition t or a descendant of this
child whose marking is greater than the marking of the child (acceleration). In
the sequel, we denote by AncestorE(·) the ancestor relation considered in the la-
belled tree (X,n0, B, Λ|X). By definition, we have the following simple property:
∀x ∈ X,AncestorE(x) = AncestorR(x) ∩X.

It is easy to verify that sets Acti and Inacti form a partition of Xi (Xi =
Acti

⊎

Inacti) and that sets (Inacti)i are increasing (Inacti ⊆ Inacti+1, ∀i < |X|).

13

Remark 3. A trivial case of exploration is obtained when relation B coincides
with the restriction of relation E to the set X. This case in fact corresponds to
the exploration obtained by an algorithm that would perform no acceleration.

Remark 4. It can be proven that K&M and MCT applied on WPN do build
explorations. Consider K&M Algorithm. As it deactivates no node, it yields
β(n) = +∞ for any node n. However, it uses some accelerations and therefore
some nodes are skipped but it respects condition (v).

4.3 MP-exploration of a WPN

Let (N , ϕ) be a WPN with N = (P, T, I, O,m0), and C = (X,x0, B, Λ), X =
Act

⊎

Inact be the labelled tree and the partition returned by the MP Algorithm.
We define here the two mappings α and β that allow to show that the labelled
tree C can be interpreted as an exploration in the sense of Definition 5.

Mapping α. It is simply defined as the order in which elements of X are built
by the MP Algorithm.

Mapping β. Initially, the set Act contains the node x0. Any new node n can
enter only once in set Act, immediately when it is added in X (Line 11) (and
can thus be removed from Act at most once). We define mapping β as follows:

– if a node x never enters set Act, then we let β(x) = α(x).
– if a node x enters set Act and is never removed, then we let β(x) = +∞.
– finally, in the last case, let x be a node which enters set Act and is removed

from it during the execution of the algorithm. Nodes can only be removed
from set Act at Line 10. Then let n be the node added to X at Line 8 during
this execution of the while loop, we define β(x) = α(n).

Remark 5. Using these definitions of mappings α and β, one can verify that
intermediary values of sets X and Act computed by the algorithm coincide with
sets Xi and Acti defined in Definition 5.

Example 7 (Example 6 continued). On Figure 3, numbers indicated on the left
and on the right of nodes correspond to values of mappings α and β. When no
number is written on the right, this means that the node is active, and then the
value of β is +∞.

Embedding of C = (X,x0, B, Λ) in the reachability tree. In the labelled tree C
built by the algorithm, the label of the new node n obtained from the pair (n′, t) is
computed by function Acc. To prove that C can be embedded in the reachability
tree of (N , ϕ), we define a mapping called the concretization function which
expresses the marking resulting from the acceleration as a marking reachable in
(N , ϕ) from marking Λ(n′). Intuitively, an acceleration represents the repetition
of some sequences of transitions until the upper bound is reached. As the system
is finite (we consider widened Petri nets), we can exhibit a particular sequence
of transitions which allows to reach this upper bound.

14

Definition 6 (Concretization function). The concretization function is a
mapping γ from B∗ to T ∗. Given a sequence of adjacent edges b1 . . . bk ∈ B, we
define γ(b1 . . . bk) = γ(b1) . . . γ(bk). We let M = max{ϕ(p) | p ∈ P}+ 1.

Let b = (n′, t, n) ∈ B. The definition of γ proceeds by induction on α(n′): we
assume γ is defined on all edges (x, u, y) ∈ B such that α(x) < α(n′).

Let m = Postϕ(Λ(n
′), t), then there are two cases, either :

1. Λ(n) = m (t is not accelerated), then we define γ(b) = t, or
2. Λ(n) > m. Let X ′ = {x1, . . . , xk} (xi’s are ordered w.r.t. α) defined by:

X ′ = {x ∈ AncestorC(n
′) ∩ Actα(n)−1 | Λ(x) ≤ m ∧ ∃p.Λ(x)(p) < m(p) < ω}.

For each j ∈ {1, . . . , k}, let wj = pathC(xi, n
′) ∈ B∗. Then we define: γ(b) =

t(γ(w1)t)
M . . . (γ(wk)t)

M .

We prove in Appendix the following Lemma which states the expected prop-
erty of the concretization function:

Lemma 2. Let x, y ∈ X such that x ∈ AncestorC(y), and let w = pathC(x, y).
Then we have Postϕ(Λ(x), γ(w)) = Λ(y).

This result allows to prove by induction that the labelled tree built by MP is,
up to an isomorphism, included in the reachability tree of the WPN (see details
in Appendix B.2), and is thus an exploration:

Proposition 2 (MP-exploration). The execution of MP Algorithm on a
WPN (N , ϕ) defines an exploration E of (N , ϕ). We call this exploration an
MP-exploration of (N , ϕ).

4.4 Main proof

Theorem 5. MP Algorithm for WPN terminates and computes the MCS.

Termination of MP for WPN can be proved as in Theorem 3. As a conse-
quence of Lemma 2, MP algorithm only computes markings that are reachable
in the WPN, therefore the algorithm is sound. We devote the rest of this section
to the proof of its completeness.

Fix a WPN (N , ϕ), with N = (P, T, I, O,m0), and let E = (X,B, α, β) be an
MP-exploration of (N , ϕ). We will use notationsX, Act and Inact of Definition 5.

Preliminary properties. Given a node n ∈ X, we define the predicate disc(n)
as β(n) = α(n). When this holds, we say that n is discarded as it is immediately
added to the set Inact. In that case, no other node is deactivated.

Given two nodes n, x ∈ X such that α(n) ≤ α(x) and n ∈ Inact, we define the
predicate prune(n, x) as ∃y ∈ AncestorE(n).Λ(y) ≤ Λ(x) ∧ (y ∈ Actβ(n)−1 ∨ y 6∈
AncestorE(x)).

One can check that the MP-exploration E satisfies the following properties.
Arbitrary explorations do not satisfy them.

Proposition 3. Let n ∈ Inact, then:

(i) disc(n) ⇐⇒ Λ(n) ≤ Actα(n)−1.
(ii) ¬disc(n) ⇒ prune(n, x), where x = α−1(β(n)).
(iii) ∀x ∈ X s.t. α(n) ≤ α(x), if prune(n, x) ∧ ¬disc(x), then β(n) ≤ α(x)

15

Covering Function. We introduce a function Temp-Cover which explicits why
nodes are deactivated. Intuitively, for a node n ∈ Inact, if we have Temp-Cover(n) =
(x, ̺) ∈ X × T ∗, this means that node x is in charge of deactivation of n, and
that the firing of the sequence ̺ from Λ(x) leads to a state dominating Λ(n).
Note that to identify the sequence in T ∗, we use the path between nodes in the
reachability tree. This is possible as by definition, the exploration is embedded
in the reachability tree.

Definition 7 (Temp-Cover). The mapping Temp-Cover is defined from Inact

to X × T ∗ as follows. Let n ∈ Inact, and i = β(n). We distinguish two cases:

Discarded: If disc(n), then by Proposition 3.(i), there exists a node x ∈ Acti−1

such that Λ(n) ≤ Λ(x), we define 3 Temp-Cover(n) = (x, ε).
Not discarded: Otherwise, ¬disc(n) holds. By Proposition 3.(ii), prune(n, x)

holds, where x = α−1(i). We fix 4 a witness y of property prune(n, x), and
let ̺ = pathlabelR(y, n) ∈ T ∗. We define Temp-Cover(n) = (x, ̺).

The following property easily follows from Definition 7 and Lemma 1:

Lemma 3. Let n ∈ Inact, Temp-Cover(n) = (x, ̺). Then Λ(n) ≤ Postϕ(Λ(x), ̺).

The previous definition is temporary, in the sense that it describes how a node
is deactivated. However, active nodes may be deactivated, and thus nodes refer-
enced by mapping Temp-Cover may not belong to set Act. In order to recover an
active node from which a dominating node can be obtained, we define a mapping
which records for each inactivate node the successive covering informations:

Definition 8 (Covering function). The covering function Cover is a mapping
from X to sequences of pairs in Inact × T ∗. It is recursively defined as follows.
Let n ∈ X.

1. if n ∈ Act, then Cover(n) = ε ;
2. otherwise, let Temp-Cover(n) = (x, ̺). We define Cover(n) = (x, ̺)·Cover(x).

Example 8 (Example 6 continued). We illustrate the definition of the covering
function on Example 6. MP Algorithm terminates at step 10. Consider node n3,
deactivated at step 5. We have Temp-Cover(n3) = (n5, ε). Indeed, it is directly
covered by node n5. Node n5 is deactivated at step 6 by node n6 through node n4,
which is its ancestor by transition t4, then we have Temp-Cover(n5) = (n6, t4).
Node n6 is deactivated at step 8 because it is directly covered by node n8, thus
we have Temp-Cover(n6) = (n8, ε). We finally obtain Cover(n3) = (n5, ε)·(n6, t4)·
(n8, ε). One can verify that Λ(n3) ≤ Postϕ(Λ(n8), t4). y

We state the next property which follows from Lemma 3 by induction:

Lemma 4. Let n ∈ Inact be such that Cover(n) = (x1, ̺1) · · · (xk, ̺k). Then
Λ(n) ≤ Postϕ(Λ(xk), ̺k̺k−1 . . . ̺1).

3 We choose any such node x.
4 We could pick any such node y.

16

We now state a core property of mapping Cover, holding forMP-explorations.
It is fundamental to prove the absence of cycles, and thus the fact that the
exploration yields a minimal coverability set. Roughly, it states that intermediary
markings skipped by accelerations would not modify activations/deactivations:

Proposition 4. Let x ∈ Inact be such that Cover(x) = (x1, ̺1) · · · (xk, ̺k). De-
fine ̺ = ̺k̺k−1 . . . ̺1, and let n ∈ Act and ̺′ ∈ T ∗. Then we have:

(̺′ ≺ ̺ ∧ Λ(n) ≥ Postϕ(Λ(xk), ̺
′)) ⇒ β(x) ≤ α(n)

Covering Path. Before turning to the proof of Theorem 5, we introduce an
additional definition. Our aim is to prove that any reachable state s is covered
by some active node. Therefore we define a notion of covering path, which is
intuitively a path through active nodes in which each node is labelled with a
sequence (a stack) of transitions that remain to be fired to reach a state s′

dominating the desired state s. Formally, a covering path is defined as follows:

Definition 9 (Covering Path). A covering path is a sequence p = (ni, ̺i)i≥1 ∈

(Act× T ∗)
N
such that Λ(n1)

̺1

⇒ϕ · and for any i ≥ 1, we have either

(i) ̺i = ε, and then it has no successor, or
(ii) ̺i = ti̺

′
i, then let n be such that (ni, ti, n) ∈ B (possible as E is T -

complete). If n ∈ Act then (ni+1, ̺i+1) = (n, ̺′i). Otherwise, let Cover(n) =
(x1, η1) · · · (xk, ηk), we define (ni+1, ̺i+1) = (xk, ηk . . . η1 · ̺′i).

Note that given a node n ∈ Act and ̺ ∈ T ∗ such that Λ(n)
̺
⇒ϕ ·, there exists a

unique covering path p = (ni, ̺i)i≥1 such that (n1, ̺1) = (n, ̺). We say that this
path is associated with the pair (n, ̺).

Example 9 (Example 8 continued). We illustrate the definition of covering path
on Example 6. Consider the covering path associated with the pair (n1, t1t3t4).
Successor of node n1 by transition t1 is the inactive node n3. We have already
shown in Example 8 that Cover(n3) = (n5, ε) · (n6, t4) · (n8, ε). In addition,
successor of node n8 by transition t4 is the active node n9. Finally, one can verify
that the covering path is: (n1, t1t3t4), (n8, t4t3t4), (n9, t3t4), (n8, t4), (n9, ε). Note
that the marking {p3, p5} reached from node n1 by the sequence t1t3t4 is covered
by the marking {p3, ωp5} of node n9. y

Lemma 5. Let p = (ni, ̺i)i≥1 be a covering path. Then we have Postϕ(Λ(n1), ̺1) ≤
Postϕ(Λ(ni), ̺i) for all i. In particular, if for some i we have ̺i = ε, we obtain
Postϕ(Λ(n1), ̺1) ≤ Λ(ni).

Proof. We prove that for any i, we have Postϕ(Λ(ni), ̺i) ≤ Postϕ(Λ(ni+1), ̺i+1).
In the definition of covering path, we extend the path only in case (ii). Two cases
can occur, in the first one, the property is trivial. In the second one, the property
follows from Lemma 4. ⊓⊔

17

As a consequence of this lemma, to prove the completeness result, it is suffi-
cient to show that for any reachable marking, there exists a finite covering path
that covers it.

We introduce a notion of cycle for covering paths:

Definition 10. Let (n, t) ∈ Act×T such that Λ(n)
t
⇒ϕ ·, and p = (ni, ̺i)i≥1 be

the covering path associated with (n, t). The pair (n, t) is said singular if there
exists i > 1 such that (ni, ̺i) = (n, t̺), with ̺ ∈ T ∗.

Proof of Theorem 5. We will prove that any reachable marking of (N , ϕ) is
covered by some active node. Let m ∈ Markωϕ(P) be a reachable marking. There

exists ̺ ∈ T ∗ such that m0
̺
⇒ϕ m. One can prove (see Appendix C.3) that

there exists a node n′
0 ∈ Act such that Λ(n0) ≤ Λ(n′

0) (n
′
0 covers the root). As a

consequence, there exists m′ ∈ Markωϕ(P) such that Λ(n′
0)

̺
⇒ϕ m′ and m ≤ m′.

We can then consider the covering path associated with the pair (n′
0, ̺).

We now prove that all covering paths

tl

ti

̺2

̺1

ti

(nl, σl) (nl+1, σl+1) (ni, σi)· · ·

Fig. 5. Stacks of a singular pair.

are finite. This will conclude the proof by
Lemma 5. One can prove (see Appendix C.4)
that if a covering path is infinite, then it
contains a singular pair.

We will prove that the MP-exploration
E can not admit a singular pair. Consider
a singular pair (n, t) ∈ Act×T , and denote
by p = (ni, σi)i≥1 its infinite covering path.
As it is singular, there exists k > 1 such
that (nk, σk) = (n, tσ′

k). For any 1 ≤ i ≤ k,
we write σi = tiσ

′
i (this is possible as the path is infinite and thus never contains

empty stacks).

For each 1 < i ≤ k, we define the position prod(i) = max{1 ≤ j < i | |σj | ≤
|σi|}. This definition is correct as |σ1| = |t| = 1, and for any 1 < i ≤ k, we
have |σi| ≥ 1 as σi 6= ε. Intuitively, the value prod(i) gives the position which
is responsible of the addition in the stack of transition ti. Indeed, let 1 < i ≤ k
and l = prod(i). As for any position j such that l < j < i, we have |σj | > |σi|,
the transition ti is present in σj “at the same height”.

Consider now the position 1 < i ≤ k such that α(ni) is minimal among
{α(nj) | 1 ≤ j ≤ k} (recall that n1 = nk), and let l = prod(i). By the T -
completeness of E , there exists a node x ∈ X such that edge (nl, tl, x) belongs
to B. As we have |σl| ≤ |σl+1|, this implies that x ∈ Inact.

We write the covering function associated with node x as follows: Cover(x) =
(x1, η1) . . . (xk, ηk). Following the definition of a covering path, we obtain xk =
nl+1. In addition, following the above mentionned property of l = prod(i), there
exist two sequences ̺1, ̺2 ∈ T ∗ such that ηk . . . η1 = ̺1ti̺2, and verifying:

σl+1 = ̺1ti̺2σ
′
l and σi = ti̺2σ

′
l

18

This means that the head of the stack σl, i.e. transition tl, has been replaced by
the sequence ̺1ti̺2, and that between positions l+1 and i, transition ti (which
is the head of the stack σi), is never consumed. This situation is depicted on
Figure 5. In particular, this implies the following property:

Λ(ni) ≥ Postϕ(Λ(nl+1), ̺1)

Indeed, there are two cases, either i = l+1, and then we necessarily have ̺1 = ε
and the property is trivial, or l + 1 < i, and then we have that the covering
path starting in pair (nl+1, ̺1) ends in pair (ni, ε). The result then follows from
Lemma 5.

To conclude, we use the key Proposition 4. Indeed, one can verify that the
proposition can be applied on nodes x and ni using sequences ̺ = ̺1ti̺2 and
̺′ = ̺1. This result yields the following inequality: β(x) ≤ α(ni). As x is the
successor of nl by transition tl, property (ii) of an exploration implies α(nl) <
α(x). As we always have α(x) ≤ β(x), we finally obtain α(nl) < α(ni), which is
a contradiction with our choice of i.

5 Comparison and Experiments

Experimental results are presented in Table 1. The K&M and MP algorithms
were implemented in Python and tested on a 3 Ghz Xeon computer. The tests
set is the one from [7]. We recall in the last column the values obtained for
the CoverProc [7] algorithm. Note that the implementation of [7] also was in
Python, and the tests were run on the same computer. We report for each test
the number of places and transitions of the net and the size of its MCS, the time
the K&M and MP algorithms took and the numbers of nodes each algorithm
constructed.

As expected the MP algorithm is a lot faster than K&M algorithm and the
tree it constructs is, in some instances, dramatically smaller. K&M algorithm
could not compute theMCS for the last five tests (we time out after 20 minutes),
while the MP algorithm took less than 20 seconds for all five tests. Note that
the time reported for K&M algorithm is the time to build the K&M tree, from
this tree one has to extract the minimal coverability set which maybe costly if
the set is big (see K&M results in [7]). The MP algorithm directly computes
the minimal coverability set (Act), i.e. no additional computation is needed.

CoverProc is significantly slower than MP. Moreover, MP algorithm has, in
our view, another important advantage over CoverProc. In MP, the order of
exploration is totally free, any exploration strategy yields a minimal coverability
set while, in CoverProc, when an acceleration is performed the algorithm imposes
to first treat the whole subtree of this accelerated node.

References

1. A. Finkel. A generalization of the procedure of Karp and Miller to well structured
transition system. In Proceedings of the 14th International Colloquium on Automata,

19

Table 1. K&M and MP algorithm comparison. #P, #T, # MCS : number of places
and transitions and size of the MCS of the Petri net. # nodes : number of nodes in
the tree constructed by the algorithm.

Test K&M MP CoverProc[7]
name #P #T # MCS #nodes time (s) #nodes time (s) time (s)

BasicME 5 4 3 5 < 0.01 5 < 0.01 0.12
Kanban 16 16 1 72226 9.1 114 < 0.01 0.19
Lamport 11 9 14 83 0.02 24 < 0.01 0.17
Manufacturing 13 6 1 81 0.01 30 < 0.01 0.14
Peterson 14 12 20 609 0.2 35 0.02 0.25
Read-write 13 9 41 11139 6.33 76 .06 1.75
Mesh2x2 32 32 256 x x 6241 18.1 330
Multipool 18 21 220 x x 2004 4.9 365
pncsacover 31 36 80 x x 1604 1.6 113
csm 14 13 16 x x 102 .03 0.34
fms 22 20 24 x x 809 0.28 2.1

Languages and Programming (ICALP’87), volume 267 of Lecture Notes in Computer
Science, pages 499–508. Springer-Verlag, 1987.

2. A. Finkel. The minimal coverability graph for Petri nets. In Papers from the
12th International Conference on Applications and Theory of Petri Nets (APN’91),
volume 674 of LNCS, pages 210–243. Springer-Verlag, 1993.

3. A. Finkel and J. Goubault-Larrecq. Forward analysis for wsts, part i: Completions.
In Proc. 26th International Symposium on Theoretical Aspects of Computer Science,
STACS 2009, volume 3 of LIPIcs, pages 433–444, 2009.

4. A. Finkel and J. Goubault-Larrecq. Forward analysis for wsts, part ii: Complete
wsts. In Proc. 36th Internatilonal Colloquium on Automata, Languages and Pro-
gramming (ICALP 2009), volume 5556 of Lecture Notes in Computer Science, pages
188–199. Springer, 2009.

5. A. Finkel, J.-F. Raskin, M. Samuelides, and L. V. Begin. Monotonic extensions of
petri nets: Forward and backward search revisited. Electr. Notes Theor. Comput.
Sci., 68(6), 2002.

6. G. Geeraerts. Coverability and Expressiveness Properties of Well-structured Tran-
sitions Systems. Thèse de doctorat, Université Libre de Bruxelles, Belgique, June
2007.

7. G. Geeraerts, J.-F. Raskin, and L. Van Begin. On the efficient computation of the
coverability set for petri nets. International Journal of Foundations of Computer
Science, 21(2):135–165, 2010.

8. R. M. Karp and R. E. Miller. Parallel program schemata. Journal of Computer and
System Sciences, 3(2):147–195, 1969.

9. K. Luttge. Zustandsgraphen von petri-netzen. Master’s thesis, Humboldt-
Universitat, 1995.

20

A MP Algorithm for WPN

Algorithm 3 Monotone Pruning Algorithm for Widened Petri Nets.

Require: A widened Petri net (N , ϕ) with N = (P, T, I,O,m0).
Ensure: A labelled tree C = (X, x0, B, Λ) and a partition X = Act

⊎
Inact

such that Λ(Act) = MCS(N , ϕ).
1: Let x0 be a new node such that Λ(x0) = m0;

2: X := {x0}; Act := X; Wait := {(x0, t) | Λ(x0)
t
⇒ϕ ·}; B := ∅;

3: while Wait 6= ∅ do

4: Pop (n′, t) from Wait.
5: if n′ ∈ Act then

6: m := Postϕ(Λ(n
′), t);

7: Let n be a new node such that Λ(n) = Acc(Λ(AncestorC(n
′) ∩ Act),m);

8: X+ = {n}; B+ = {(n′, t, n)};
9: if Λ(n) 6≤ Λ(Act) then
10: Act− = {x | ∃y∈AncestorC(x).Λ(y)≤Λ(n) ∧ (y∈Act ∨ y /∈ AncestorC(n))};
11: Act+ = {n}; Wait+ = {(n, u) | n

u
⇒ϕ ·};

12: end if

13: end if

14: end while

15: Return C = (X,x0, B, Λ) and (Act, Inact).

B Properties of the concretization function

In this section, as the WPN (N , ϕ) is fixed, we omit the subscript ϕ in the
operator Post.

B.1 Proof of Lemma 2

Lemma 2. Let x, y ∈ X such that x ∈ AncestorC(y), and let w = pathC(x, y).
Then we have Postϕ(Λ(x), γ(w)) = Λ(y).

Proof. We prove the result for the case where w is a single edge, that is w =
(x, t, n) ∈ B. The general result follows easily. We let m = Post(Λ(x), t).

We distinguish two cases :
If Λ(n) = m: then by definition we have γ(w) = t and the result is trivial.
If Λ(n) > m: then an acceleration has been applied. We prove the property by
induction on α(x).

– if α(x) = 1, then the acceleration is necessarily applied w.r.t. node x,
that is Post(Λ(x), t) > Λ(x). Let add ∈ Markωϕ(P) be defined by add(p) =
Post(Λ(x), t)(p) − Λ(x)(p) for any p ∈ P . Naturally, the vector is positive

21

exactly for places p which have strictly increased, and which will thus be ac-
celerated. For these places, after M iterations of t, the value in these places
has exceeded the maximum value, i.e. value ϕ(p), and thus is equal to ω. In
the other places, the value is let unchanged. As a concequence, we exactly
obtain Post(Λ(x), tM) = Λ(n).

– otherwise, we have α(x) > 1. Following the definition of the concretization
function, let x1, . . . , xk denote the nodes used to compute the concretized
path γ(t), and w1, . . . , wk the paths associated. By induction hypothesis,
we have Post(Λ(xi), γ(wi)) = Λ(x) for any i = 1 . . . k. By definition, we
have γ(t) = t.(γ(w1).t)

M . . . (γ(wk).t)
M . For i ∈ {0, . . . , k}, let macc

i denote
the marking reached from Λ(x) by the sequence t.(γ(w1).t)

M . . . (γ(wi).t)
M ,

i.e. such that macc
i = Post(Λ(x), t.(γ(w1).t)

M . . . (γ(wi).t)
M). We prove, by

induction on i ∈ {0, . . . , k}, the following property:

∀p ∈ P,macc
i (p) =

{

ω if ∃1 ≤ j ≤ i s.t. Λ(xj)(p) < m(p) < ω
m(p) otherwise.

• For i = 0, the property is trivial by definition of m.
• Let i < k, assume property holds for i and let prove it for i+1. To prove
the result we split the set of places P into three parts and successively
prove that for each case the property is satisfied:

(i) P1: ∃1 ≤ j ≤ i | Λ(xj)(p) < m(p) < ω. Intuitively, P1 represents
places accelerated by one of the nodes x1, . . . , xi. By the induction
hypothesis, we have macc

i (p) = ω, and we thus we will still have
macc

i+1(p) = ω, as expected.
(ii) P2: p 6∈ P1 ∧ Λ(xi+1)(p) < m(p) < ω. Intuitively, P2 denotes places

not accelerated by one of x1, . . . , xi, but that should be accelerated
by xi+1. By induction hypothesis, we have macc

i (p) = m(p), and
we have to prove that macc

i+1(p) = ω. By the induction hypothesis
of the external induction, we have Λ(x) = Post(Λ(xi+1), γ(wi+1)).
Thus we obtain m = Post(Λ(xi+1), γ(wi+1).t). Let p ∈ P2. Following
properties stated above, we have Λ(xi+1)(p) < m(p) = macc

i (p).
Thus, the iteration of the sequence γ(wi+1).t will increase the value
of place p. By the choice of M , the value ϕ(p) will be exceeded and
we obtain macc

i+1(p) = ω as expected.
(iii) P3: p 6∈ P1∧p 6∈ P2. This last case concerns places that should not be

accelerated by any of the xj ’s, with j ≤ i+1. Thus induction hypoth-
esis entails thatmacc

i (p) = m(p) and we have to prove thatmacc
i+1(p) =

m(p). As in the previous case, we havem = Post(Λ(xi+1), γ(wi+1).t).
Let p ∈ P2, then we have Λ(xi+1)(p) = m(p) = macc

i (p). Here, the
iteration of the sequence γ(wi+1).t will let the value of place p un-
changed. We thus obtain macc

i+1(p) = m(p) as expected.

It is then trivial to verify that the application of this property for i = k
leads to the result.

This concludes the proof. ⊓⊔

22

B.2 Details on the embedding of C in R

To embed C in R, we define the mapping η from X to N which maps a node
x ∈ X to a node n ∈ N that is labelled with the same marking. η is recursively
defined by:

– η(x0) = n0,

– let b = (x, t, y) ∈ B, n = η(x), and ̺ = γ(b). By Lemma 2, we have Λ(n)
̺
⇒ ·.

Thus there exists a unique node n′ ∈ N such that n ∈ AncestorR(n′) and
pathlabelR(n, n′) = ̺. We define η(y) = n′.

One can verify that using this definition, the C-labelling of a node x ∈ X coin-
cides with the R-labelling of the node η(x) ∈ N . As a consequence, we identify
in the sequel node x ∈ X with node η(x) ∈ N .

To conclude, we check properties (i) to (v):

(i) the property is trivial,
(ii) first, note that (x, t, y) ∈ B entails α(x) < α(y). Second, the definition of η

implies that ∀x, y ∈ X,x ∈ AncestorR(y) ⇒ x ∈ AncestorC(y). This proves
the property.

(iii) This is a consequence of test of Line 5.
(iv) This is a consequence of the termination of the MP Algorithm. Indeed,

when the algorithm terminates, the set Wait is empty, what implies that
all possible successors of active nodes have been built.

(v) Let b = (x, t, y) ∈ B. By Lemma 2 applied on b, one can verify that the
sequence γ(t) ∈ T ∗ starts with transition t and thus the successor in the
reachability tree of node x by the transition t satisfies all constraints.

B.3 Minimal Completeness

We prove an additional property of MP Algorithm related to its accelerations.
Intuitively, some nodes may be hidden when an acceleration is performed. The
property states that if a node y is hidden, then it owns an ancestor y′ which has
been explored (y′ ∈ X), and whose label is strictly less than the label of y. We
call this property the minimal completeness of the exploration.

Lemma 6 (Minimal Completeness). For any edge b = (x, t, x′) ∈ B corre-
sponding to an acceleration (i.e. such that Λ(x′) > Postϕ(Λ(x), t)), there exists
a node z such that:

(i) z ∈ AncestorE(x) and β(z) = α(x′),
(ii) for any node y ∈ AncestorE(x

′) \ AncestorE(x), there exists a node y′ ∈
AncestorR(y) ∩X such that Λ(y′) < Λ(y) and z ∈ AncestorE(y

′).

Proof. The proof proceeds by induction on α(x). If α(x) = 1 (x is the root),
then one can easily verify that one can choose z = x, and for any node y that is
skipped by the acceleration, y′ = x is a correct candidate.

23

We now consider x such that α(x) > 1, and consider an edge b = (x, t, x′) ∈
B. We consider the notations introduced in the definition of the concretization
function, and let γ(b) = t(γ(w1)t)

M . . . (γ(wk)t)
M , where wi is the path in B∗

associated with node xi. We assume that nodes xi’s are ordered w.r.t. α, and
thus x1 is an ancestor of all xi’s. We let z = x1, it verifies property (i).

Let us prove property (ii). Let y ∈ N be a node of the reachabilty tree
such that there exists a word ε 6= ̺ � γ(b) verifying Λ(y) = Post(Λ(x), ̺). As
̺ � γ(b), there exists a unique i such that t(γ(w1)t)

M . . . (γ(wi)t)
M ≺ ̺ and

̺ � t(γ(w1)t)
M . . . (γ(wi+1)t)

M .
We can thus decompose ̺ as ̺ = t(γ(w1)t)

M . . . (γ(wi)t)
M (γ(wi+1)t)

lη where
0 ≤ l < M and ε ≺ η � γ(wi+1)t.

Consider the node y′ in the reachability tree defined as follows: it is the
successor of node xi+1 by the sequence η.

We first prove that Λ(y′) ≤ Λ(y). Following notations introduced in the
proof of Lemma 2, we have that Λ(y) can be reached from marking macc

i by the
sequence (γ(wi+1)t)

lη. According to previous properties, we obtain m ≤ macc
i ≤

Post(macc
i , (γ(wi+1)t)

l) and thus Λ(y′) = Post(Λ(xi+1), η) ≤ Post(m, η) ≤ Λ(y).
Now, we prove that the inequality is strict. By contradiction, if Λ(y′) = Λ(y),

according to previous inequalities, we obtain Post(Λ(xi+1), η) = Post(m, η). By
completing η to obtain the sequence γ(wi+1)t, we obtain Post(Λ(xi+1), γ(wi+1)t) =
Post(m, γ(wi+1)t). By Lemma 2, we have Post(Λ(xi+1), γ(wi+1)) = Λ(x). By
definition of m, we obtain m = Post(m, γ(wi+1)t). This is a contradiction with
our choice of xi+1! Indeed, in Definition 6, we require the following property:
∃p.Λ(xi+1)(p) < m(p) < ω. One can prove that this implies the following strict
inequality: m(p) < Post(m, γ(wi+1)t)(p), yielding the contradiction

Then, we distinguish two cases:

– if y′ ∈ X, then we are done (z = x1 is an ancestor y′).
– otherwise (y′ 6∈ X), this implies that y′ is skipped by an acceleration on the

path between xi+1 and x, related to an edge b′ = (n, u, n′). But then we can
apply the induction hypothesis on this edge as we have α(n) < α(x), and
obtain two nodes z′ and y′′ verifying properties (i) and (ii). By transitivity,
we trivially obtain y′′ ∈ AncestorR(y) ∩X and Λ(y′′) < Λ(y). It remains to
prove that z ∈ AncestorE(y

′′). As xi+1 is an ancestor of node n, active at
step α(x), it can not be deactivated by the acceleration related to edge b′,
what implies that z′ must be “below” xi+1, i.e. xi+1 ∈ AncestorE(z

′). This
yields the result.

This concludes the proof. ⊓⊔

C Complements on Subsection 4.4

C.1 Additional preliminary properties

Proposition 5. Let E an MP-exploration, and i ∈ {1, . . . , |X|}. Let three dis-
tinct nodes x, y, n ∈ X such that n ∈ Act, Λ(y) ≤ Λ(n), y ∈ AncestorE(x) and
y 6∈ AncestorE(n). Then we have β(x) ≤ α(n).

24

y n ∈ Act

x

≤

Fig. 6. Illustration of Proposition 5.

Proof. The property which is illustrated on Figure 6. First note that α(n) < α(y)
cannot hold. Indeed, if it was the case, then n would stop y as n ∈ Act and
Λ(y) ≤ Λ(n). This is impossible as y is a strict ancestor of x. Thus, we have
α(n) > α(y) (the equality is impossible as y and n are distinct). Then, one can
verify that the introduction of n will deactivate node x, if it has not yet been
deactivated: node y is an ancestor of x, covered by n, and y is not an ancestor
of n. We obtain β(x) ≤ α(n). ⊓⊔

Lemma 7. Let n ∈ Inact, Temp-Cover(n) = (x, ̺) and c such that pathlabelR(c, n) =
̺. Then we have:

(i) β(n) < β(x) ;

(ii) ̺ 6= ε ⇒ β(n) = α(x) ;

(iii) if ̺ 6= ε, then ∀y ∈ X, c ∈ AncestorE(y)∧x 6∈ AncestorE(y) ⇒ β(y) ≤ α(x).

Proof. Property (i) is a consequence of the following property: we have x ∈
Actβ(n). Intuitively, this means that x is active when it deactivates node n.

Property (ii): by definition of Temp-Cover(n), ̺ 6= ε implies that property
¬disc(n) holds. Then we obtain x = α−1(β(n)), as expected.

Last, consider property (iii). As for the previous property, by definition of
Temp-Cover(n), ̺ 6= ε implies that prune(n, x) holds and that c is a witness of
the property prune(n, x). Then, by definition of the pruning of MP Algorithm,
the whole subtree rooted in c is deactivated by node x, except node x itself if it
belongs to the subtree. Let y ∈ X such that c ∈ AncestorE(y)∧x 6∈ AncestorE(y).
Then y belongs to the subtree rooted in c, but not to the subtree rooted in x.
As a consequence, it is deactivated by node x, and we obtain β(y) ≤ α(x). ⊓⊔

C.2 Proof of Proposition 4

Proposition 4. Let x ∈ Inact be such that Cover(x) = (x1, ̺1) · · · (xk, ̺k). De-
fine ̺ = ̺k̺k−1 . . . ̺1, and let n ∈ Act and ̺′ ∈ T ∗. Then we have:

(̺′ ≺ ̺ ∧ n ≥ Post(xk, ̺
′)) ⇒ β(x) ≤ α(n)

25

Proof. As ̺′ ≺ ̺, there exists a unique index j such that 1 ≤ j ≤ k and
̺′ = ̺k̺k−1 . . . ̺j+1̺

′′ with ε � ̺′′ ≺ ̺j . In particular, this yields that ̺j 6= ε.
By definition of Cover, we have that for any ℓ ∈ {1, . . . , k}, (xℓ, ̺ℓ) =

Temp-Cover(xℓ−1) (where we let x0 = x). By Lemma 7. (i), this implies β(xℓ−1) <
β(xℓ). We thus obtain the inequality β(x) ≤ β(xj−1), as x0 = x (the inequality
is non strict as we may have j = 1).

Consider the peculiar case xj ∈ AncestorE(n). This implies α(xj) ≤ α(n). As
̺j 6= ε, we have by Lemma 7. (ii) the equality β(xj−1) = α(xj), which yields
the result. In the sequel we thus assume xj 6∈ AncestorE(n).

Node xj−1 is deactivated by node xj , and with sequence ̺j . This means
the ancestor of node xj−1 by the sequence ̺j in the reachability tree, which we
denote by c, belongs to X and is covered by xj . As ̺

′′ ≺ ̺j , we can consider the
successor of c by the sequence ̺′′ (in the reachability tree), and denote this node
by y, which is thus a (strict) ancestor of xj−1 ∈ X. We now distinguish two cases:
either y ∈ X or y 6∈ X. Let detail more precisely the second case: node y lies
inbetween nodes c and xj−1 and as it does not belong to X, it is “skipped” by an
acceleration. We denote by (y1, t, y2) ∈ B the edge of the exploration that skipps
the node y. By the minimal-completeness property of the exploration E applied
on edge (y1, t, y2) and node y, there exist two nodes z and y′ in X verifying the
following properties:

(i) z ∈ AncestorE(y1) and β(z) = α(y2),
(ii) y′ ∈ AncestorR(y) ∩X, Λ(y′) < Λ(y) and z ∈ AncestorE(y

′).

We will prove that in the first case (y ∈ X), and respectively in the second one
(y 6∈ X), we can apply Proposition 5 to nodes xj−1, y and n (resp. xj−1, y

′ and
n in the second case). Therefore, we prove each of the hypotheses:

– First, properties n ∈ Act and y ∈ AncestorE(xj−1) (resp. y
′ ∈ AncestorE(xj−1))

are trivial. In addition, we obviously have xj−1 6= y (resp. xj−1 6= y′) as y is
a strict ancestor of xj−1 (and y′ is itself a strict ancestor of y). We also have
xj−1 6= n as n ∈ Act while xj−1 is deactivated by xj .

– Second, we prove that Λ(n) ≥ Λ(y) (resp. Λ(n) ≥ Λ(y′) in the second case).
Indeed, we can prove using Lemma 3 that Post(Λ(xk), ̺k̺k−1 . . . ̺j+1) ≥
Λ(xj). By definition of c, we have Λ(xj) ≥ Λ(c). By definition of y, this
yields Post(Λ(xk), ̺) ≥ Λ(y), and thus Λ(n) ≥ Λ(y). In the second case, the
property follows from Λ(y) > Λ(y′).

– Third, we prove that y 6∈ AncestorE(n) (resp. y′ 6∈ AncestorE(n)), which
also entails y 6= n (resp. y′ 6= n). Consider the first case and proceed by
contradiction: assume that y is an ancestor of node n. This implies that
c ∈ AncestorE(n), and then by Lemma 7.(iii), as xj 6∈ AncestorE(n) and
̺j 6= ε, we obtain β(n) ≤ α(xj) which is impossible as n ∈ Act.
Consider now the second case and proceed by contradiction: assume that
y′ ∈ AncestorE(n). Then y2 is necessarily an ancestor of n, otherwise n is
deactivated at step α(y2) (see Lemma 7.(iii)). But then we can apply a
reasoning similar to that of the first case and prove that n is deactivated by
node xj , what yields a contradiction.

26

Finally, we obtain by Proposition 5 the inequality β(xj−1) ≤ α(n). Combined
with a previous inequality, this entails β(x) ≤ α(n) as expected. ⊓⊔

C.3 An additional Lemma on the root

We now prove a Lemma stating that the root of the reachability tree is always
covered by an active node, which in addition is the root of the current tree
(restricted to the active nodes).

Lemma 8. Let E be an MP-exploration with root n0. Then there exists a node
n′
0 ∈ Act such that Λ(n0) ≤ Λ(n′

0).

Proof. We prove that the property holds for the set Acti all i ≤ |X|. For all i
such that n0 ∈ Acti, there is nothing to prove. Consider, if it exists, the smallest
i such that n0 ∈ Acti and n0 6∈ Acti+1. Let n = α−1(i+ 1). Following definition
of Acti+1, as n0 is the root of the tree, we must have Λ(n0) < Λ(n). As i has
been chosen to be minimal, n can not be covered by another node, and thus
n ∈ Acti+1. As a consequence, the property is true at step i + 1. Moreover,
note that as n0 is the root of the tree, n is necessarily a descendant of n0. As
a consequence, the definition of active and inactive nodes yields that the only
remaining active node after step i+1 is the node n. We thus have Acti+1 = {n}.
In other terms, this means that from this step, the exploration will start from a
new root, and thus by the all new (active or node) nodes are descendant of n.
Then, we can inductively apply the same reasoning to node n, and conclude by
the transitivity of relation ≤. ⊓⊔

C.4 An additional Lemma on singular pairs

Lemma 9. Let (n, ̺) ∈ Act× T ∗ such that Λ(n)
̺
⇒ ·, and p = (ni, ̺i)i≥1 be the

coverability path s.t. (n1, t1) = (n, ̺). If p is infinite, then there exists a position
i ≥ 1 such that the pair (ni, ti) is singular, where ̺i = ti̺

′
i.

Proof. We distinguish two cases:

– If there exists a bound k ∈ N
∗ such that infinitely often, the length of the

sequence ̺i is smaller than k. Then, as the number of sequences of length
bounded by k and the number of active nodes are finite, there exist two
positions 1 ≤ j < l such that (nj , ̺j) = (nl, ̺l). Let i be an index in the
interval [j, l] such that the length of the sequence ̺i is minimal. This implies
that the construction of the coverability path from (ni, ̺i) only depends on
the first transition ti of ̺i: the pair (ni, ti) is singular.

– Otherwise, for any bound k, there exists a position after which all sequences
of transitions have a length larger than k. For each k, we note l(k) the first
position verifying this property: ∀l ≥ l(k), |̺l| ≥ k. Note that the sequence
starting at l(k) only depends on the node nl(k) and the transition tl(k) such
that ̺l(k) = tl(k)̺

′
l(k). As the number of active nodes and the set of transitions

are finite, there exist k < k′ such that l(k) < l(k′), nl(k) = nl(k′) and
tl(k) = tl(k). Then the pair (nl(k), tl(k)) is singular. ⊓⊔

27

D Running MP Algorithm on the counter-example of [7]

The Petri net considered in [7] to prove the incompleteness of the MCT Algo-
rithm is depicted on Figure 7. We represent on Figure 8 an execution of the MP

Algorithm on it.
The difference with the execution of the MCT Algorithm occurs at step 8:

node n7 is deactivated because node n6 is covered by node n8. This deactivation
does not happen in MCT because node n6 is inactive. This exactly corresponds
to the difference between the two algorithm.

•p1

p2 p3

p4
p5

p6

p7

t1

t2 t3

t4

t5
t6

t7
t8

2

Fig. 7. The counter-example of [7]: Petri net Ncex.

1 : p1

2 : p6 3 : p2 : 13 4 : p7

5 : p3 : 7

6 : p4 : 7

7 : p3, ωp5 : 8

8 : p4, 2p5 : 10

9 : p3, 3p5 : 10

10 : p4, ωp5

11 : p3, ωp5

12 : p4, ωp5 : 12

13 : p2, p5

14 : p3, p5 : 14

t5
t1

t7

t8

t2

t6 t2

t3

t4

t4

t3

t4

t3

Fig. 8. An execution of MP Algorithm on Ncex.

28

