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Elucidation of T cell Signalling Models

Nick D. L. Owens, Jon Timmis, Andrew Greensted and Andy Tyrrell

Department of Electronics, University of York, UK

Abstract

A potential mechanism that allows T cells to reliably discriminate pMHC
ligands involves an interplay between kinetic proofreading, negative feedback
and a destruction of this negative feedback. We analyse a detailed model of
these mechanisms which involves the TCR, SHP1 and ERK. We discover that
the behaviour of pSHP1 negative feedback is of primary importance, and
particularly the influence of a kinetic proofreading base negative feedback
state on pSHP1 dynamics. The CD8 co-receptor is shown to benefit from
a kinetic proofreading locking mechanism and is able to overcome pSHP1
negative influences to sensitise a T cell.

Key words: T cell signalling; Kinetic Proofreading; Negative Feedback;
SHP1; CD8; T cell tunability; Stochastic Modelling; Master Equation;
Continuous Time Markov Chain; Numerical Analysis.

1. Introduction

The T lymphocyte is of great importance in the response of the adaptive
immune system. The T cell must perform fine grain discrimination of peptide
bound Major Histocompatability Complex (pMHC) molecules on antigen-
presenting cells (APCs) through its T cell Receptor (TCR) [1]. The discrim-
ination occurs between abundant self-pMHC, 99.9− 99.99% of all pMHC on
an APC, and non-self-pMHC which comprises the other 0.01 − 0.1% of the
total pMHC expressed [2]. The ability of the T cell to respond reliably is re-
markable given the bind between TCR and pMHC is low-affinity [3] and the
TCR is randomly generated through somatic mutations [1]. An explanation
of the T cell’s behaviour can be found in the complex and dynamic signalling
cascades that arise from the TCR [2]. Of particular interest is the possibility
that these pathways exhibit tunable properties [4] which enable a T cell to
alter response to a particular pMHC ligand to a greater or lesser degree.
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In particular we are intersted in early TCR signalling events, those that
occur immediately upon TCR pMHC engagement and before immunological
synapse formation. A set of signalling events that involve kinetic proofread-
ing, a negative influence from SH2 domain-containing phosphatase (SHP1)
and a positive influence from extracellular signal regulated kinase (ERK)
have been discussed in reference to tunability in [2, 5] and have been experi-
mentally investigated in [6, 7]. This system has also received much modelling
attention in [7–11]. The important quantitative and qualitative concepts that
these signalling events impose on T cell discrimination are well summarised
in Chan et al. [8]. Altan-Bonnet and Germain (ABG) [7] complement bi-
ological experiment with a detailed mathematical model of these signalling
events. This ABG model is further discussed in [12] and analysed in [13].
The approach taken by [7] and [13] is to model, as faithfully as possible,
the bio-chemical reactions associated with the TCR, SHP1 and ERK and
to demonstrate their model replicates biological behaviour. To this end [7]
achieves a model of 557 chemical reaction equations which are converted to
238 ordinary differential equations. Artyomov et al. [9] and Lipniacki et al.
[11] both produce simplified versions of the concepts in the ABG model and
perform stochastic analysis. [9, 11] argue the importance of stochastic mod-
elling particularly when small molecule numbers can produce bistabilities in
a stochastic model that do not exist in the deterministic model.

The simplified models analysed in [8, 9, 11] convey an understanding of
the qualitative aspects of TCR, SHP1, ERK signalling. We take this op-
portunity to dissect the biologically detailed ABG model with the objective
of gaining clarified understanding of the biological processes that contribute
to the qualitative behaviour. We build on our previous work [14] which
stochastically investigated a reduced version of the ABG model. Here we
stochastically analyse the entire ABG model1 by investigating behaviour at
the single TCR level and progressively include components to compose the
entire model. With this compositional analysis we achieve a greater under-
standing of the elements of the model without the simplifying assumptions
of [11].

Section 2 provides a biological background to the model; section 3 justi-
fies the stochastic approach and overviews the modelling methods used. The

1We are grateful to Gregoire Altan-Bonnet for proving us with the details of the ABG
model
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subsequent sections break the model and analyse sub-models. Section 4
investigates coreceptor CD8, TCR and pMHC binding; section 5 kinetic
proofreading; section 6 negative feedback; section 7 the mitogen-activated
protein kinase (MAPK) MAPK cascade and protection of TCR; section 8
then re-composes the entire model; finally section 9 provides discussion and
conclusions.

2. Biological Background

The quality of a TCR pMHC association is well abstracted by its average
lifetime [12]. It may be classified by the response illicited in the cell, taking
the definitions of [2]:

• Agonist. Will induce all possible activation signals within a cell. A
TCR-pMHC lifetime of ≈ 18 seconds [7].

• Antagonist. Will actively inhibit activation signals within the cell.

• Partial agonist. Will induce a subset of all possible activation signals
within a cell.

• Null. Will not have any affect, activatory or inhibitory.

A range of signal strengths exists within the first three classes. It is not
the case that the signals induced by a weak agonist are necessarily stronger
than those induced by a partial agonist. Self-peptides fall into antagonist,
partial agonist or null classes [2]. We outline the three salient features of
this TCR signalling model: kinetic proofreading, negative feedback and a
destruction of the negative feedback. Figure 1 depicts these features and
provides reference to the appropriate section for analysis.

2.1. Kinetic Proofreading

Kinetic proofreading was first introduced to describe the accuracy of DNA
replication and protein synthesis [15]. McKeithan [16] applied kinetic proof-
reading to T cell signalling and it is now a widely accepted model to account
for ligand discrimination [6]. The process entails energy consuming steps that
occur after association of pMHC to the TCR. The steps must be overcome
for successful TCR signalling. With dissociation of pMHC from the TCR the
steps are rapidly reversed. The result is step-like discrimination of pMHC
ligands. Fast dissociating pMHC ligands fail to complete all steps, conversely
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Figure 1: The TCR signalling processes. The TCR and pMHC may bind with co-receptor
CD8, see Box 2 and section 4 for analysis. Upon association of pMHC to a TCR kinetic
proofreading may start which involves phosphorylation of ITAMs and binding of ZAP-
70 molecules. Box 4 depicts a partially complete proofreading process; Box 2 depicts a
fully completed proofreading process. See section 5 for kinetic proofreading analysis. A
TCR internal chain with at least one ZAP-70 molecule may initiate negative feedback by
binding and phosphorylating SHP1, see Box 4. Phosphorylated SHP1 (pSHP1) may then
bind a TCR and upon further Lck action all phosphorylations will be lost, see Box 3.
See section 6 for analysis of negative feedback. A completed proofreading process may
phosphorylate an adapter protein which initiates the MAPK cascade, resulting in high
levels of ppERK, see Box 2. ppERK carries the activation signal of the cell and may bind
a TCR internal chain and protect it from the action of pSHP1, see Box 1. See section 7
for analysis of the MAPK cascade and TCR protection; see section 8 for simulations of
the entire system.
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all pMHC that bind long enough to complete all steps signal equally well.
Kinetic proofreading provides a measure of the time the TCR and pMHC
are associated. The steps involve phosphorylations by Leukocyte-specific
protein tyrosine kinase (Lck) of Immunoreceptor tyrosine-based activation
motifs (ITAMs) on the TCR’s internal ζ, ε and δ chains. Kinetic proofread-
ing is, however, insufficient to explain antagonism [12]. Further the model
also fails in the high-density low-quality ligand case where stochastic fluctu-
ations can allow poor quality ligands to overcome kinetic proofreading.

2.2. Negative Feedback

A negative feedback investigated experimentally in [6] may augment proof-
reading to explain antagonistic behaviour. The process is initiated by phos-
phorylation of SHP1 by Lck on the TCR internal complex. Phosphorylated
SHP1 (pSHP1) may then associate to the TCR and dephosphorylate TCR
internal chains. Thus the process is initiated by proofreading steps and ac-
tively inhibits proofreading and so is a true negative feedback. The inclusion
of negative feedback provides an explanation for antagonism and prevents
large populations of low-quality ligands stochastically overcoming proofread-
ing. A model of proofreading with a negative feedback would suggest that the
highest quality pMHC ligands would induce the largest negative feedback.
However this is not the case, there is a point as ligand quality increases where
the pSHP1 negative signal disappears [6].

2.3. Breaking the Negative Feedback

An explanation for the disappearance of the negative feedback is ascribed
to a positive feedback through doubly phosphorylated ERK (ppERK) [7].
ppERK protects the TCR internal complexes from the action of pSHP1 by
preventing pSHP1 from binding. Completion of kinetic proofreading initiates
the MAPK cascade which results in the amplification of the proofreading
activation signal by the production of large amounts of ppERK [7]. This
acts dually to break the negative feedback and to carry the activation signal
for the cell. How the activation signal determines cell fate is beyond the
scope of this work.

The ppERK signal is often labelled as digital [7] in that it exhibits a
step-like response. However a clearer description is binary : it is either high
or low and not found in discrete steps as the term digital would imply. More-
over this signal is strictly not a positive feedback and it can be misleading
to label it as one. The signal breaks the negative feedback allowing kinetic
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proofreading to continue with no inhibition, but only at the rate dictated by
kinetic proofreading. One would expect this to be confirmed by experiment:
a T cell with SHP1 removed would exhibit no negative feedback and allow
observation of ppERK behaviour in isolation. Properties traditionally asso-
ciated with positive feedback such as explosive amplification are present but
are facets of the feed-forward MAPK cascade. We interpet a result found in
Feinerman et al. [13] to confirm this is not a positive feedback. Variation
in the concentration of ppERK has no influence on the ability of a cell to
appropriately signal. If ppERK was involved in a positive feedback its intra-
cellular concentration represents a maximum bound on the positive signal.
Thus variations in ppERK concentration would change the ability of the cell
to signal. Interpretations of results in Lipniacki et al. [11] give further weight
to this not a positive feedback argument. Changes in Lck concentration in-
fluence pSHP1 levels far more than ppERK levels, if ppERK were in positive
feedback the action of Lck would be part of the feedback loop and so would
influence ppERK levels. We note that the behaviour of the MAPK cascade
(analysed in section 7) also contributes to these results. We shall refer to
the ppERK signal as a break in the negative feedback and not a positive
feedback. As discussed in Chan et al. [8] the break in the negative feedback
allows the T cell to remain sensitive to good agonists and helps to define a
sharp discrimination threshold.

The signalling mechanisms may be mapped to TCR-pMHC bind classifi-
cation:

1. Agonist – pMHC remains associated sufficiently long for a high prob-
ability of inducing MAPK cascade despite pSHP-1 dampening. The
induction of the MAPK cascade will result in a high ppERK protec-
tion and activation signal.

2. Antagonist – pMHC associates sufficiently long to produce high levels
of pSHP-1 but not to induce MAPK cascade.

3. Partial Agonist (Endogenous Ligand) – Does not induce high levels of
pSHP-1, but may induce some partial phosphorylation of TCR internal
chains.

The spreading of the pSHP-1 and ppERK signals is of interest, it is dis-
cussed in [7] and analysed directly in [8]. pSHP1 generated by a TCR will
spread to dampen surrounding TCRs. The protection signal generated by
a TCR will spread to protect surrounding TCRs. A hypothesis discussed
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in [8, 12] suggests that the protection signal allows endogenous ligands to
“synergise” with agonist ligands and contribute to activation signalling. We
discuss this suggestion in our conclusions (section 9) in light of the results of
this paper and present a clarification of this argument. The model of Chan et
al. [8] investigates the spreading of the negative feedback and protection on
a lattice. No investigation to the necessity of space to the model is given, for
our model we continue with the assumptions of [7] and analyse a non-spatial
model.

3. Modelling Methods

In contrast to the deterministic approach of [7] and [13] the models of [8–
11] are stochastic in nature. The case for stochastic modelling in biology in
general and particularly in T cell signalling is well argued by Artyomov et al.
[9]. Stochastic fluctuations become important when small molecule numbers
are involved (as is the requirement in T cell signalling, sensitivity to < 10
pMHC ligands [12]). Under small molecule conditions bistablities can exist in
the stochastic model which are not present in the deterministic/macroscopic
model. Artyomov et al. [9] give necessary and sufficient conditions for this
deterministic versus stochastic discrepancy. These conditions are fulfilled
by certain reactions investigated in this paper. Lipniacki et al. [11] also
demonstrate the quantitative discrepancies that occur in a simplified version
of the ABG model when the deterministic formulation misses the stochastic
bistabilities. Further, as noted in [17] when choosing between a stochastic
and deterministic approach the stochastic model should be the default and
a deterministic model should only be used with sufficient justification. To
avoid any deterministic model errors we take the stochastic approach. This
approach also provides a method of investigating the reactions of an individ-
ual TCR which proves extremely beneficial to understanding the many TCR
simulations performed in section 8.

We take two approaches to stochastically analyse the reaction equations of
the ABG model. We analyse sub-systems via a master equation/continuous
time Markov chain [18]. Due to model size we are generally restricted to
numerical solutions associated of a rate matrix, an overview of these methods
is given in appendix Appendix E. As we increase the size of the model we
perform simulation with the Gillespie algorithm [19].

The reaction rates supplied in the ABG model are macroscopic and re-
quire conversion to mesoscopic rates for stochastic analysis/simulation. The
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conversion applies to second order reactions and amounts to a change of scale
and units (from mol−1s−1 to s−1). To reduce computational complexity we
analyse a fraction ε ∈ (0, 1] of the cytoplasmic cell volume V . To convert a
macroscopic rate d to a mesoscopic rate r we use the following:

r =
d

NAV ε
(1)

NA = 6.022 × 1023 is the Avogadro Number. For first order reactions the
mesoscopic rate is augmented with the number of reactants; for second order
reactions the rates are augmented with the number of pairs of reactants.
The model contains no reactions higher than second order. The macroscopic
rates of the ABG model are supplied in table A.5. If a molecule has an
initial concentration c ∈ R then the initial discrete number of molecules
N ∈ Z is taken to be N = �cNAV ε�. Three differing choices of ε are used in
this paper, we provide justification of these choices in appendix Appendix B.
The definitions of names and rates are given in appendix Appendix A and
notation used in reaction equations is given in appendix Appendix F.

4. TCR, pMHC, CD8 Binding

The ABG model enumerates the complexes nascent to the CD8-TCR-
pMHC ternary complex. Reactions in and out of intermediate states TCR-
pMHC, CD8-TCR, and CD8-pMHC are included. Other models that include
co-receptor binding such as [10] do not include CD8-TCR and CD8-MHC
intermediates. We investigate the role of these intermediates, particularly
the influence of TCR-CD8. The reactions are depicted in figure 2 and are as
follows:

Reaction 1. TCR pMHC CD8 Binding/Debinding

T + M
ma−−⇀↽−−
md

B T + C
ct−⇀↽−
cd

TC (2)

A+ C
ca−⇀↽−
cd

AC A = {M, C} (3)

TC + M
ca−−−−⇀↽−−−−

cd × cs

BC MC + T
ca−−−−⇀↽−−−−

cd × cs

BC (4)
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TCB MC

BC

ma
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ca
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cd

ca

cd
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cd d d

Figure 2: Diagrammatic representation of reaction 1. A single TCR, pMHC and CD8
molecule are the reactants. U gives the completely unbound state, all other states are
denoted by the bound product. Arcs are labelled with the reaction rate, d denotes reaction
rate mdcs.

The reactions describe the following assumptions: The CD8 co-receptor
acts to hook-in pMHC to the TCR increasing the on-rate; CD8 stabilises
the TCR-pMHC by a multiplicative factor cd < 1; CD8 may dissociate and
re-associate from with fast kinetics [20], with the exception of the state TC
whose on rate ct which is considerably smaller than ca.

A volume restriction ε = N−1
T is applied to scale the rates to the volume

occupied by a single TCR. The stationary and transient distributions param-
eterised by md ∈ [0.001, 1000] are given in figures 3 and 4 respectively. The
distributions show that the unbound state U and the bound state B have
the highest probability. The probability of being in state TC is orders of
magnitude lower than being in any other state nascent to BC. If we write
Pi(j) for the probability that given we are in state i the next state is state
j, then setting md = 1/18 and all other rates as table A.5:

PU(TC) < PU(B) < PU(MC) (5)

There is an order magnitude difference between the three probabilities. In
the opposite direction, the probabilities for leaving state BC:

PBC(TC) = PBC(MC) � PBC(B) (6)

The inequality will hold if md < cd/cs = 1000 which is the case for realistic
ligands. If we write τ(i) for the holding time of state i (that is the expected

9



Acc
ep

te
d m

an
usc

rip
t 

time before leaving state i given that we have entered it):

τ(BC) < τ(TC) = τ(MC) � τ(U) < τ(B) for ε = 1 (7)

τ(TC) = τ(BC) < τ(MC) � τ(B) < τ(U) for ε = N−1
T (8)

τ(U) ≈ τ(B) and τ(BC) ≈ τ(MC) for ε = N−1
T and the inequalities hold for

the majority of realistic ligands. The state TC is the least likely state to enter
and has one of the least holding times, which explains its low probability at
equilibrium.

We recalculate the transient and stationary distributions with the removal
of state TC (the new stationary distribution is labelled πTC) and they are
shown in figures 3 and 4 respectively. The stationary distributions and the
trajectories are effectively identical. Under the assumption of approximately
equal TCR, pMHC and CD8 concentrations the state TC may be removed
from the model. This provides a predication that may be validated against
biology, should more than 2 × 10−3% of all TCRs be found bound solely to
the CD8 co-receptor then this is an incorrect abstraction of biology. The
incorrect abstraction may not be in structure of reactions but in choice of
rate. A clear example of this is state MC which is symmetrically identical
except the rate from U to MC is two orders of magnitude greater than that
U to TC which gives rise to an approximately three orders of magnitude
increased stationary probability in figure 3.

To understand the implications of parameter choice a general system is
analysed algebraically. The rate matrix and solutions for the system are given
in appendix Appendix C in equation C.3. Computing the partial derivatives
∂π/∂ct further demonstrates it is only the low value of ct in the ABG model
that limits the probability of state TC. We also solve the stationary distribu-
tion equations of the simpler system with state TC removed (equation C.4)
for md subject to the additional constraint:

πU = πB + πBC (9)

The solution provides the dissociation rate at there is equal probability of
the TCR and pMHC being bound and unbound. This gives a quadratic in
md:

m2
dcdcs + md(c

2
d + cd(ca + cacs −macs)− c2

a)

−c3
a − c2

a(ma + cd)− 2cacdma − c2
dma = 0 (10)
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Figure 3: Stationary distributions for md ∈ [0.001, 5]. Black dotted lines are the distribu-
tion π, thick grey lines are the distribution πTC. They are effectively identical behaviour
across the range of md. The vertical line is at md = 0.0434 and represents the point where
πU = πB + πBC .
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Figure 4: Transient distributions for time t ∈ [10−3, 104], starting in an unbound state
U with md = 0.05. Black dotted lines are the distribution π, thick grey lines are the
distribution πTC. The probabilities follow the same trajectories.
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There is a single positive solution md = 0.0434 which gives an average bind
life time of 23.04 seconds, a strong agonist. The md = 0.0434 line is marked
on figure 3.

The analysis thus far does not apply if the concentrations of TCR, CD8
or MHC change. The concentration of CD8 is of interest as it has been shown
to be a potential parameter for T cell tuning [13, 21]. We define v = |C|/|T|
and then define new rates: c′t = vct the association rate of T and C; c′a = vca

the association of C to M or B. If we recalculate transient and stationary
distributions a difference is only observed at very high densities v > 100, so
we may be confident in stationary analysis of the reduced binding system
when v < 100.

5. Kinetic Proofreading

The kinetic proofreading in the ABG model has added complexity over
standard kinetic proofreading models [16]. It is described by the following
reactions:

Reaction 2. Soluble Lck Phosphorylation:
Normal Phosphorylation:

Bq
z + L

la−⇀↽−
ld

Bq
zL

lc−→ Bq+1
z + L, q = 0, 1; z = 0, 1, 2 (11)

Bm
3 + L

la−⇀↽−
ld

Bm
3 L

lc−→ Bm+1
3 + L, m = 0, 1, 2 (12)

Reaction 3. CD8 association Lck Phosphorylation:
Normal Phosphorylation:

Bq
zC

lca−−⇀↽−−
lcd

Bq
zCL

lcc−→ Bq+1
z C, q = 0, 1; z = 0, 1, 2 (13)

Bm
3 C

lca−−⇀↽−−
lcd

Bm
3 CL

lcc−→ Bm+1
3 C, m = 0, 1, 2 (14)

Lck associated with CD8 is implicitly part of the C complex.

Reaction 4. ZAP-70 Binding:

B2
z + Z

za−⇀↽−
zd

B0
z+1, z = 0, 1, 2 (15)

ZAP-70 Debinding from TCR:
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Tz
zd−→ Tz−1 + Z, z = 1, 2, 3 (16)

Reaction 5. Desphosphorylation upon TCR binding/debinding:

Qq
z

δ−→ Tz Tz
α−→ Qz, z = 0, 1, 2, 3 q > 1 (17)

Here if Q = B then α = ma, δ = md and if Q = BC then α = ca, δ = mdcs

The reactions imply the following assumptions:

• Upon association of pMHC to the TCR internal chains undergo enzy-
matic Lck phosphorylation. This may occur via cytosolic Lck or Lck
associated with CD8. The CD8 associated Lck has a greater rate of
association to the TCR lca � la. The phosphorylations are restricted
to occur in serial in order.

• ZAP-70 may bind and protect a double phosphorylated ITAM and 3
ZAP-70 molecules may bind in all. Three phosphorylations may occur
once the third and final ZAP-70 molecule has bound.

• Dissociation of TCR and pMHC causes loss of phosphorylations not
protected by ZAP-70 via a fast acting phosphatase. The fast-acting
phosphatase is not modelled here, the phosphorylations are immedi-
ately lost upon dissociation. ZAP-70 and its protected phosphoryla-
tions may persist between TCR binds.

• The TCR internal chain may initiate activation signalling from a state
Bq

3 with q > 1. The specific details of the activation signalling are not
included until section 7.

These reactions do not include the negative effects of pSHP1 and so de-
scribe the case when the TCR has been protected by ppERK. We write K
for the rate matrix describing the kinetic proofreading reactions for single
TCR, pMHC, CD8 molecules. We calculate the expected kinetic proofread-
ing state EK . We assign weights ω(s) linearly to all states s ∈ K the set of
bound kinetic proofreading states:

ω(Bq
z) = 3z + q + 1 (18)
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md max{P(Bq
3, q > 1)}

0.03 1.6× 10−1

0.06 0.3× 10−1

0.12 4.5× 10−3

0.23 2.6× 10−3

0.44 1.0× 10−5

0.85 4.3× 10−7

1.64 2.5× 10−8

3.16 2.5× 10−9

Table 1: Maximum probability of signalling state for various md. We can approximate
the expected number of ligands needed to achieve activation via [max{P(BqZ3, q > 1)}]−1

(the coupling between TCRs at this stage only involves competition for Lck and CD8, as
such we believe this approximation should be reasonable). For m−1

d ≈ 30s about 6 ligands
are needed to guarantee a signalling state; for m−1

d ≈ 16s about 25 ligands are required to
guarantee signalling state.

That is, ω(B0
0) = 1, ω(B1

0) = 2, . . . , ω(B3
3) = 13. Then EK is given:

EK =
∑
s∈K

ω(s)P(s) (19)

Figure 5 gives the transient probability for EK over a range of md. We sum-
marise kinetic proofreading behaviour by calculating the maximum proba-
bility of signalling state, that is max{P(Bq

3, q > 1)}, the results are given in
table 1.

Figure 6 gives the kinetic proofreading stationary distributions over md.
The clumping together of probabilities of mid-kinetic proofreading states at
low dissociation rates conveys the notion that all states are equally likely
enroute to the final state. Due to the high concentration of ZAP-70 the
states in which a new ZAP-70 molecule may bind (B2

0, B2
1, B2

2) have the
lowest stationary probability (≈ 10−6).

We analyse the time taken by kinetic proofreading and particularly the
influence of CD8 by calculating the expected hit times of TCR signalling state
while varying v and md, see figure 7. CD8 density v can modulate hitting
times and bring them in line with the 1-5 minute timescales discussed in [12].
An explanation as to why CD8 density is so successful at decreasing kinetic
proofreading times is given in the following section 5.1.
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Figure 5: The transient probability of EK from an initial unbound zero phosphorylation
state, calculated from etK. The dissociation rates are set m−1

d = 1, 3, 6, 12, 15, 18.
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5.1. Proofreading Locking Mechanism

The kinetic proofreading analysed here produces the step-like response
prescribed by conventional kinetic proofreading models [16]. However the
ability of ZAP-70 to “protect” TCR phosphorylations between TCR binds
breaks McKeithan’s model. We directly investigate this mechanism. Remov-
ing the locking system amounts to changing reaction 5 to the following:

Reaction 6. Desphosphorylation and de-binding of ZAP-70 upon TCR de-
binding:

Qq
z

δ−→ T 0
0 , z = 0, 1, 2, 3 q = 0, 1, 2, 3 (20)

If Q = B then δ = md and if Q = BC then δ = mdcs

Calculating non-locking kinetic proofreading transient and stationary dis-
tributions reveals a reduced probability of all later kinetic proofreading states.
Further, the stationary distributions do not exhibit the inflexion of figure 6.

We investigate the differences between non-locking and locking proofread-
ing by varying pMHC and CD8 densities. We define u = |M|/|T| and define
new rates: m′

a = uma the association rate of T and M; c′m = uvca the asso-
ciation rate of C and M; mc = uca the association rate of M to TC; c′a = vca

the association rate of C to B.
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We recalculate the stationary distributions for EK using the new rates
and vary u and v. Figure 8 gives these distributions 2 for a good agonist
md = 1/18, we found the behaviour to be qualitatively similar for other
values of md. High concentrations of CD8 and pMHC result is high EK . A
high concentration of pMHC or CD8 increases TCR association rates and so
increases the probability that the TCR and pMHC will re-associate before a
ZAP-70 is lost. For ε = N−1

T we have mesoscopic rates ma = 0.033, dz = 0.11.
An increase in pMHC concentration of 3.33 will make re-association of the
TCR and pMHC equally likely as the loss of ZAP-70. An increase in CD8
density v also contributes to the completion of kinetic proofreading steps due
to efficient CD8-Lck. Thus changes CD8 density change the T cell’s reactivity
to a given pMHC ligand and it is the locking mechanism which allows the
CD8 co-receptor to be efficacious. We confirm the ZAP-70 hypothesis in
figure 9 by varying ZAP-70 dissociation rate dz with the inclusion of the
locking mechanism. Decreases in dz result in increases in EK because slow
dz increases the probability that a ZAP-70 will remain associated between
TCR-pMHC associations. Due to the high abundance of cytosolic ZAP-70
any ZAP-70 molecules lost during TCR-pMHC association will be rapidly
replaced. Thus the periods when the TCR is dissociated benefit the most of
decreases in dz. Slow dissociations of ZAP-70 increase the efficacy of serial
triggering.

6. Negative Feedback

The negative feedback signal is carried via cytosolic SHP-1, which may
bind to a TCR internal chain with at least one ZAP-70 molecule. The fol-
lowing describes the negative feedback process:

Reaction 7. SHP-1 Binding, and phosphorylation to pSHP-1

Bz + S0 sa−⇀↽−
sd

BzS
0 sc−→ Bz + S1 z = 1, 2, 3 (21)

The phosphorylated pSHP-1 may load and unload from the TCR:

2The extremes of density here are larger than would occur naturally, they are included
to demonstrate the range of behaviour, moreover the contribution to the parameters u
and v could equally come from increased association rates.
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Reaction 8. Binding of pSHP-1

D = {Tz, Bz, B0
3}, z = 0, 1, 2

D + S1 sa−⇀↽−
sd

DS1 (22)

This applies for z < 3 and q > 0 cases, for z = 3 there is one-step dephos-
phorylation:

Bq
3 + S1 sa−→ B0

3 + S1, q = 1, 2, 3 (23)

Upon Lck phosphorylation of a TCR internal chain with pSHP1 loaded
all phosphorylations not protected by ZAP-70 are lost:

Reaction 9. pSHP1 Desphosphorylation through Lck:

Bq
zS

1 + L
la−⇀↽−
ld

Bq
zS

1L
lc−→ B0

zS
1 + L, q = 0, 1, 2; z = 0, 1, 2 (24)

B0
3S

1 + L
la−⇀↽−
ld

B0
3S

1L
lc−→ B0

3S
1 + L (25)

CD8 association Lck Phosphorylation:

Bq
zCS1 lca−−⇀↽−−

lcd

Bq
zCS1L

lcc−→ B0
nCS1, q = 0, 1; n = 0, 1, 2 (26)

B0
3CS1 lca−−⇀↽−−

lcd

B0
3CS1L

lcc−→ B0
3CS1, (27)

The Lck associated with CD8 is implicitly part of the C complex.

The above reactions taken from [7] do not include a conversion of pSHP1
back to SHP1 and so the set of states with all SHP1 converted to pSHP1
are absorbing. To ensure that all states are irreducible and recurrent so
the stationary distribution exists and is meaningful, the following reaction is
added:

Reaction 10. Desphosphorylation of pSHP1.

S1 + PS

qa−⇀↽−
qd

PSS
1 qc−→ PS + S0 (28)
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qd, qc are chosen in line with the phosphatases of the MAPK cascade; qa

is chosen similar to the association of Lck. The association rate qa is rate-
limiting and pSHP1 will persist on a timescale longer than a TCR-pMHC
association. With this choice of rates we observe quantitatively identical
transient behaviour over the first 200 seconds with and without reaction 10.
Since a less than maximal level of pSHP1 is necessary to contain the sub-
sequently discussed rise of EK , the inclusion of this reaction 10 should not
significantly alter the activation threshold of the cell. Thus we feel justified
in the choice of rates as they do not influence initial transient behaviour
which is of importance to our conclusions (section 9). We may now calculate
a potential stationary distribution for negative feedback.

There is a discrepancy between pSHP1 dephosphorylation in the B3 case
compared to Bq with q = 0, 1, 2. An investigation is provided in appendix Ap-
pendix D and we continue with uniform negative feedback as described in
appendix Appendix D. A volume restriction of ε = N−1

T gives ≈ 26 SHP-1
molecules. The rate matrix for negative feedback may be written as block
tridiagonal matrix:

N =

⎛
⎜⎜⎜⎝

Y0 A

Q Y1
. . .

. . . . . . A
Q Ym

⎞
⎟⎟⎟⎠ Yi =

(
K P
D K

)
(29)

Yi is the kinetic proofreading matrix with i pSHP1 molecules. K describes
the basic kinetic proofreading reactions; P and D give the binding and de-
binding of the pSHP1 phosphatase respectively. A contains sc from reaction 7
on appropriate diagonal positions. Q contains rate qc from reaction 10 on
all diagonal positions. N is 7420 × 7420 with only 50438 non-zeros (ap-
proximately 0.09% of N), it is amenable to the analysis methods outlined in
appendix Appendix E.

The influence of negative feedback will be overestimated in the stationary
distribution without the inclusion of the protection from pSHP1 by ppERK
(see section 7). However the TCR must generate an activation signal at
least once without ppERK and so consideration of the non-protection case
is necessary.
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Similar to EK we also calculate the expected pSHP1 level ES:

ES =

max |S1|∑
i=1

iP(|S1| = i) (30)

In figure 10 we plot the transients of EK and ES. The increase of ES lags
that of EK because kinetic proofreading must reach state B1

1 before pSHP1
can be produced. The level of pSHP1 will rise, arrest and reverse kinetic
proofreading to a state < B1

1. With the conversion of pSHP1 back to SHP1
equilibrium is reached. We believe the existence of non-zero kinetic proof-
reading state that must be overcome before negative feedback is generated to
be of great importance. We determine this state the base negative feedback
state. If we recalculate the transients of EK and ES with the first kinetic
proofreading bound state (B0

0) as the base negative feedback state we do not
observe the hump in EK or ES. Moreover the expected kinetic proofreading
state and consequently expected pSHP1 levels are very low. In section 7 we
see that the existence of this base negative feedback state is of importance
at the population level. The implications of this state are discussed in detail
in our conclusions (section 9).

The stationary distributions of N and ES (with the base negative feedback
state reinstated) are given in figure 11. States with zero phosphorylations not
protected by ZAP-70 have the greatest probability. We write EK(md) and
ES(md) for the expectations parameterised by md. For extremes of realistic
ligands we have ES(0.05) ≈ 15 and ES(1) ≈ 2. So kinetic proofreading of high
quality pMHC ligands may be arrested by just over half-maximal pSHP1.
One would expect confirmation of this behaviour would come from exper-
imentation with cells with ERK removed. One could confirm that pSHP1
will rise sufficiently the dampen kinetic proofreading of all ligands including
agonists. Observations of the phosphorylation states of TCR internal chains
would confirm the behaviour of the ZAP-70 locking mechanism.

6.1. Positive Tuning and Negative Feedback

In section 5, particularly section 5.1, we demonstrated that CD8 and
pMHC density parameters u and v may desensitise the cell. We now in-
vestigate their influence with the inclusion of negative feedback. Figure 12
gives the stationary distributions for EK and ES. Increases in u and v ini-
tially result in increases in EK and ES, with u being slightly more efficacious.
However further increases in v result in a maximum in ES. This demonstrates
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Figure 10: The transients of ES (black lines, left axis) and EK (grey lines, right axis)
from initial unbound zero phosphorylation state U. With m−1

d = 1, 3, 6, 12, 15, 18. Lev-
els of pSHP1 lag the increase in kinetic proofreading state. For strong enough ligands
pSHP1 overshoots its stationary value and decreases EK , then EK falls to its stationary
value. Compare the heavily reduced values of EK to kinetic proofreading without negative
feedback in figure 5
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Figure 12: Stationary distributions for EK (left) and ES (right), varying u, v ∈ [10−3, 103],
with md = 1/18. Contour lines EK are ω(B0

0) = 1, ω(B0
1) = 4, ω(B0

2) = 7 and ω(B0
3) = 10.

Contours for ES are selected values of |S1|. Increases in u and v result in increases in both
EK and ES . However, there is a maximum in ES in the v direction, which results in a
decrease in ES at high v.

that increases in v are able to maintain increased EK despite also increasing
ES. This also suggests that there is a v which produces maximum negative
feedback. This hints towards the qualitative property to T cell tunability
outlined in [21]: that a T cell is able to desensitise to a pMHC ligand μa

whilst remaining sensitive to ligand μb with the dissociation rate of μa not
necessarily faster than that of μb. Currently the results do not confirm or
deny this behaviour, greater modelling and analysis is required.

7. MAPK Cascade and Negative feedback Destruction

The MAPK cascade may be initiated from a kinetic proofreading sig-
nalling state. The ABG model includes a generic adapter protein that con-
nects the TCR to the MAPK cascade. The product of the MAPK cascade,
ppERK, is able to bind to the TCR internal chain and protect it from the
action of pSHP1. The reactions are as follows:

Reaction 11. Phosphorylation of Adapter

Bq
3 + A0 ka−⇀↽−

kd

Bq
3A

0 kc−→ Bq
3 + A1 q > 0 (31)

These reactions does not occur for S1 bound to B.
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Reaction 12. Desphosphorylation of Adapter

A1 + PA
ka−⇀↽−
kd

A1PA
kc−→ A0 + PA (32)

Reaction 13. Phosphorylation of Raf1

R0 + A1 ka−⇀↽−
kd

R0A1 kc−→ R1 + A1 (33)

Reaction 14. Dephosphorylation of pRaf1

R1 + PR
ka−⇀↽−
kd

R1PR
kc−→ R0 + PR (34)

Reaction 15. Phosphorylation of Mek/pMek

Kn + R1 ka−⇀↽−
kd

KnR1 kc−→ Kn+1 + R1, n = 0, 1 (35)

Reaction 16. Dephosphorylation of pMek/ppMek

Kn + PK
ka−⇀↽−
kd

KnPK
kc−→ Kn−1 + PK, n = 1, 2 (36)

Reaction 17. Phosphorylation of ERK/pErk

En + K2 ka−⇀↽−
kd

EnK2 kc−→ En+1 + K2, n = 0, 1 (37)

Reaction 18. Dephosphorylation of pErk / ppERK

En + PE
ka−⇀↽−
kd

EnPE
kc−→ En−1 + PE, n = 1, 2 (38)

Reaction 19. Protection of TCR by ppERK

F = {T, B}

F + E2 ea−⇀↽−
ed

FE2 ec−→ F + E2 (39)

The reaction does not occur for S1 bound to F
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This instantiation of the MAPK cascade follows a familiar form modelled
elsewhere [22]. It is necessary to understand its precise behaviour with the
choice of parameters here. The n× n rate matrix that describes the MAPK
cascade at ε = N−1

T has n = 21004075008 with approximately 438083896320
non-zero entries, which is beyond computational means with the methods
used here. Simulation offers a tractable solution. The MAPK cascade is
simulated with a volume of restriction ε = 10−2; the volume of ≈ 300
TCRs. The molecule quantities are: |R| = 1000, |K| = 4000, |E| = 1000,
|PA|, |PR|, |PK|, |PE| = 20. Simulations are performed for 250 seconds and
with initial |A1| ∈ [1, 9] for 2000 repeats. A1 is converted back to A0 through
the action of PA, however there is no mechanism included to convert A0 to
A1. Thus the results give a lower bound to the behaviour of ppERK, as
one would expected A1 to be produced during the operation of the MAPK
cascade. The results in figure 13 are given in terms of half-maximal ppERK
response (|E2| = 500). A single A1 molecule is sufficient for at least half
the simulation runs to break the half-maximal E2 barrier. With |A1| ≥ 3 the
|E2| = 500 barrier is broken on all runs within 25 seconds and remains broken
until ≈ 220 seconds. During this period the mean |E2| is at a plateau very
close to the maximum for all |A1| (not shown). With these parameters the
MAPK cascade is sensitive, only requiring one or two initial A1 molecules for
long periods of near maximum ppERK signal. The results describe switch
like behaviour of ppERK. This is potentially in line with the result of [13]
that variation in ppERK concentration has little influence on the ability of
the cell to signal. If the variation is small in comparison to the “on” and
“off” levels of the ppERK switch then the variation is unlikely influence the
designation of the switch. If small quantities of A1 are sufficient to generate
enough E2 to be recognised as an activation signal, then a single TCR may
be sufficient to activate the cell. Further if the levels of E2 are near maximal
(or at least |E2|/|T| > 1) as the simulations suggest then it is likely that
all TCRs will receive ppERK protection. This has important implications
for the spreading of the protection signal, particularly whether endogenous
ligands do synergise with agonist ligands and contribute to the activation
signal as discussed in [12] and [10]. We will discuss these issues in detail in
the concluding comments in section 9.

We note that currently the MAPK cascade serves to guarantee a high
ppERK signal if a kinetic proofreading state is reached. We suggest as an
extension to the experimental work of [13], an investigation in the variation
of MAPK cascade components would be more revealing than an investigation
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Figure 13: Half-maximal response of ppERK in MAPK cascade simulation results. Bars
read from left “Runs” axis: total bar height indicates the runs in which |E2| > 500
occurred; dark grey lower bar indicates the runs in which |E2| > 500 occurred and then
fell below 500 within 250 seconds. Lines and error bars are read on right “Time” axis:
Black line (bottom) gives the median time of first |E2| > 500 occurrence, the error bars
are the lower and upper quartiles; red line (top) gives the median time when |E2| fell back
below 500, the error bars are the quartiles. Medians and quartiles are depicted as they
give a better representation of the distribution.

of ERK levels alone.

8. The Entire system

We now simulate all components investigated thus far: kinetic proofread-
ing with negative feedback and protection from the MAPK cascade. We
increase the simulation size to ε = 10−1, ≈ 3000 TCRs 3.

We specifically test the influence of increasing TCR simulation to TCR
activation. The pMHC is partitioned into: MS a class of strong antigen (md =
0.055) and ME a class of weak antigen (md = 1.0) with |M| = |MS| + |ME|.
|MS| is varied in [1, 2000] and the results are given in figure 14. One or two
strong ligands are as efficacious as thousands at producing at high ppERK

3In 1000 simulations with ε = N−1
T with md = 0.055 no runs achieve a TCR signalling

state due to the increased influence of stochastic fluctuations. However we do observe
qualitative similarities between ε = N−1

T and ε = 10−1 in figures B.21 and 17 respectively.
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Figure 14: Simulations at ε = 10−1 with |MS| ∈ [1, 2000] for 250 seconds and 20 repeats.
Grey crosses are the times at which a signalling state is first reached, solid black line gives
the mean of these times. Dashed black line is read on the right protection count axis gives
the number of times a protection occurred normalised by the number of runs.

signal in 10%− 20% of all runs. Increasing MS results in quicker responses,
with the first signalling state being reached in the first 100 seconds.

An understanding of the activation behaviour can be gained by observing
unbound pSHP1 over time. Figures 15 and 16 show 50 simulations of 250
seconds for |MS| = 30 and |MS| = 3000 respectively. The ppERK generated
by a single TCR is sufficient to protect all TCRs from pSHP1 and in all cases
the ppERK signal is close to maximal ≈ εNE. When TCR protection occurs
pSHP1 is unable to rebind the TCR resulting in a large spike in unbound
pSHP1. For |MS| = 30, 5 activations occur throughout the first 250 seconds;
for |MS| = 300 only 2 activations occur and they are within the first 50
seconds. The greater number of strong ligands produces a sharper increase
in pSHP1. For t > 50 pSHP1 levels are so great that it is improbable that
even a strong agonist will complete proofreading. Figure 16 suggests that
this point occurs when |S1| > |T|, there is at least one unbound pSHP1
molecule for every TCR. This is in agreement with section 6 that a quantity
of pSHP1 far less than maximal is sufficient to arrest the kinetic proofreading
of a strong agonist.

Figure 17 plots all trajectories through kinetic proofreading state of the
50 runs with |MS| = 3000 whose unbound pSHP1 is given in figure 16. In
agreement with small-ε figures 10, B.21 there is a greater occurrence in late
kinetic proofreading states early in the simulation runs (t < 50). We also note
that simulations runs are generally confined to zero non-ZAP-70-protected
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Figure 15: Simulation with |MS| = 30 for 250 seconds with 50 repeats plotting unbound
pSHP1. Grey lines are simulations where no signalling state and no ppERK signal are
achieved. Black lines are simulations where a ppERK protection of all TCR is achieved.

phosphorylation states (B0
z) in agreement with the small-ε stationary distri-

butions given in figure 11.
We compare ligands in agonist and antagonist roles. Simulations are

performed varying ligand quality m−1
d ∈ {1, 3, 6, 12, 16, 18} for 250 seconds

and 50 repeats. Agonist tests are performed with 30 pMHC at the given md,
the other |M|− 30 pMHC have md = 1. Antagonist tests are performed with
30 pMHC with md = 1/18 and then other |M| − 30 pMHC are at given md.
The results are summarised in table 2.

The antagonist tests show higher number of activations. Low quality
ligands generate little pSHP1 (figure 11) allowing good ligands to signal
uninhibited. This is unrelated to the synergy of [12], the very low qual-
ity ligands are “synergising” by not inhibiting the high quality ligands. As
pMHC ligand quality increases levels of pSHP1 increase resulting in antago-
nism. Activations are seen with further increases in ligand quality, all pMHC
are now good agonists and have a higher probability of completing kinetic
proofreading (figure 11).

An explanation for poor quality ligands completing kinetic proofreading
is due to initial |S1| = 0. Cells are expected to exhibit pSHP1 levels based
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Figure 16: Simulation with |MS| = 3000 for 250 seconds with 50 repeats plotting unbound
pSHP1. Grey lines are simulations where no signalling state and no ppERK signal are
achieved. Black lines are simulations where a ppERK protection of all TCR is achieved.
Two activations occur in the first 50 seconds, after this time unbound pSHP1 levels are
sufficient that it is improbable that a TCR will reach a signalling state. These results are
also plotted as a trajectory plot in figure 17.

 1

 10

 50

 0  50  100  150  200  250

Time /s

N
pS

H
P

P
ro

t

Figure 17: Trajectory plot (see Appendix Appendix G for advice on reading this plot) for
the simulations given figure 16, |MS| = 3000 for 250 seconds with 50 repeats. Simulations
are generally confined to the B0

z states for z = 0, 1, 2, 3. Two activations occur, they can
be seen early within the “N” section. Note hump in later kinetic proofreading states at
t < 50 before the rise of pSHP1 has occurred. This is in agreement with small-ε results in
figures 10, B.21.
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m−1
d Agonist Antagonist

1 0 5
3 1 1
6 1 0
12 3 4
16 2 4
18 5 2

Table 2: Agonist and antagonist tests. The second column gives simulation runs in which
a high ppERK signal occurs in the agonist tests; the third column gives simulation runs in
which a high ppERK signal occurs for the antagonist tests. There is an overlap between
agonist and antagonists tests, simulations with 30 pMHC with md = 1/18 and |M| −
30 pMHC with md = 1 are performed only once and the results used for agonist and
antagonist cases.

on their recent interactions [7] 4 and particularly post-thymic T cells exhibit
significantly increase pSHP1 [2]. Simulations are performed varying initial
pSHP1 for 1000 seconds with 50 repeats, |MS| = 400 agonists ligands (md =
0.05) and |ME| = 2600 weak pMHC ligands (md = 1.0). The results are
summarised in table 3.

Increasing initial pSHP1 is able to reduce the probability of an activa-
tion signal for even strong agonist pMHC. However when observed over long
enough timescale (900+ seconds) the initial pSHP1 decays to the point where
stochastic fluctuations allow good agonists to produce activations. Figure 18
shows the unbound pSHP1 for initial |S1| = 6000.

We examine the result given in figure 12, that increases produces a max-
imum in ES but not in EK . That is, that increasing the CD8 density is able
to overcome increases in pSHP1. Figure 18 demonstrates zero activations in
fifty with |S1| = 6000 and v = 1. Simulations are performed with v = 2, 5
for 1000 seconds with 50 repeats, other simulation parameters are as figure
18. The unbound pSHP1 for v = 2, 5 is given in figure 19. Despite initial
pSHP1 increases in v is able to induce activations. Agreeing with figure 12
increases in v result in greater pSHP1 but also an increased probability of

4The rate at which pSHP1 is converted back to SHP1 is perhaps too great here, pSHP1
decays on the minutes rather than hours timescale, this will only mean that the affect of
pSHP1 could be underestimated here.
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Initial |S1| Activations Within Time /s

0 7 100
2000 6 100
3000 4 3 in 100, 1 in 900
6000 0 –
12000 1 900
8× 105 0 –

Table 3: Simulations increasing initial |S1|. The second column gives simulation runs in
which a high ppERK signal occurs; the third column gives an approximate timescale in
which all ppERK signals occur. Since we have already performed |S1| = 0 simulations we
do not repeat these and present the result given in figure 14, it should be noted that this
result involves simulations of 250 seconds not 1000.
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Figure 18: Simulations of |MS| = 400, |ME| = 2600, with initial |S1| = 6000 for 1000
seconds with 50 repeats. Grey lines are simulation runs in which no ppERK signal occurs.
There is an immediate drop in unbound pSHP1 by ≈ |T| as it binds to all TCRs. No
simulation runs achieve ppERK signalling.
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Figure 19: Simulations with |MS| = 400; |ME| = 2600; initial |S1| = 6000; for with v = 2
(|C| = 6000) (left) and v = 5 (|C| = 15000) (right); for 1000 seconds with 25 repeats. Grey
lines are simulation runs in which no ppERK signal occurs, black lines are simulation runs
in which kinetic proofreading is successful. v = 2 results in 6 activations; v = 5 results in
16 activations, the most reliable activation seen thus far.

reaching later kinetic proofreading states and so increased activations.

9. Discussion

We have analysed a detailed biological model originally presented in [7]
of TCR signalling with respect to the behaviour of cytosolic SHP1 and ERK.
This signalling system has received much modelling attention in [8–11, 13]
who have often focused on the macroscopic or general qualitative behaviour.
However rather than make simplifying assumptions (such as those in [9, 11])
to gain understanding we have opted to retain the biological detail to discover
how this detail maps to the identified general qualitative cell behaviours. We
have achieved this by dissecting, analysing and then re-composing the key
components of the model. In contrast to the original presentation of the ABG
model [7] we have performed stochastic analysis. We believe the stochastic
approach was appropriate given the small molecule numbers required to ini-
tiate the MAPK cascade (section 7) and consequently the small numbers of
signalling TCRs required to generate a high ppERK activation signal (sec-
tion 8). Further [9, 11] have clearly highlighted that stochastic effects leading
to bistabilities are of importance in TCR signalling models such as the one
here. Certainly some reactions considered fulfil the sufficiency conditions
(branching, irreversibility and feedback) for a stochastic bistability given in
[9]. However, it should be noted that the larger number of reactions in this
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model complicates the issue. For example, the switch like behaviour and
large molecule numbers of the MAPK cascade provides effective irreversibil-
ity. When observing the global cell response to the MAPK the deterministic
approach could give reasonable results. However, the stochastic bistability
conditions are effectively fulfilled by the reactions that initialise the MAPK
cascade (reaction 11). We have branching; the reactions are reversible, but
the forward rate is an order of magnitude greater than the backward rate
(NP � NA); the feedback in the positive direction arises from many “cas-
cading” steps of the MAPK process (see the well known depiction of reactions
in [7, 22]), there is no negative feedback. Consequently small initial molecule
numbers of A1 fulfil the bistability conditions. Further, this stochastic switch
is weighted toward the “on” position as there is no negative feedback. The
result is that we expect the stochastic MAPK cascade to be far more sensitive
(see figure 13 compared in figure S8A in [7]). As such a smaller activation
signal from the TCRs is required to produce a cell activation, the activations
due to a single TCR in section 8 are confirmation.

Our results are in agreement with the qualitative behaviours discussed in
[7, 8, 11] as outlined in section 2. Due to our approach direct results com-
parisons are difficult as we focus on differing levels of detail to the models
in [7, 8, 11]. However, our results are perhaps most readily comparable with
those in [7] as the underlying reactions equations are identical. Certainly
we agree with the three predictions of the model given in [7]: lengthening
of ppERK response time at low ligand densities (see figures 13, 14, 15); hi-
erarchy of antagonism, that is, superior sub-agonist ligands produce greater
negative feedback (see figure 11); flexibility in ligand discrimination under-
going differentiation, that is, the ability of a T cell to tune its response (see
analysis involving u, v and figures 18, 19). We have refrained from stochas-
tically running the numerical experiments in [7] and comparing the quanti-
tative results. This task has been performed on a simpler model in [11]. We
expect any quantitative differences to arise where the bistability conditions
apply, as discussed in the previous paragraph this includes the sensitivity of
the MAPK cascade and by a similar argument the strength of the pSHP1
negative feedback.

We now summarise the key findings of this paper. In section 4 we demon-
strate that rate choices should be made in unison with model structure
choices. This can reveal equivalently behaved simpler models and most im-
portantly this provides an opportunity to validate against biology. What
remains is to return to biology to discover the occurrence of the CD8-TCR
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complex and adjust the model accordingly, a solution could a more complex
model of CD8, TCR, pMHC binding similar to that in [21]. Section 5 inves-
tigates the ABG formulation of kinetic proofreading and the expected step-
like discrimination is observed. The phosphorylation protection of ZAP-70 is
shown to be of importance by aiding pMHC and CD8 density parameters u
and v to sensitise the cell. This is due to the relative stability of the ZAP-70
association which allows ZAP-70 molecules to remain bound between TCR
pMHC associations. Thus the kinetic proofreading state may be preserved
between TCR pMHC binding events. We demonstrate that decreases in dz

can cause retention of kinetic proofreading state despite decreases in CD8
density v. The influence of this locking mechanism is largely undiscussed in
[7].

The analysis of the negative feedback behaviour in section 6 demonstrates
a transient hump in expected kinetic proofreading state before a rise in ex-
pected pSHP1 level. This is due to a non-zero kinetic proofreading state
which much be reached before the negative feedback can be generated, we
determined this the base negative feedback state. Examining the response to
changes in pMHC and CD8 density parameters we show that u and v are
able increase expected proofreading state and pSHP1 levels. However there
is a maximum in ES in the v direction, as discussed in section 6, this is an
appropriate step towards the necessary condition for full tunability given in
[21].

In section 7 the MAPK cascade is shown to act as an ultra-sensitive
amplification switch, amplifying small numbers of A1 molecules to thousands
of ppERK molecules. The ppERK signal is near maximal and remains so for
long periods of time and with sustained A1 production ppERK would remain
near maximal permanently. As discussed in section 7 this raises issues for
the determination of the activation signal and the spreading of the protection
signal. First, if a near maximal ppERK whose duration is > 200 seconds
is sufficient for a cell to recognise an activation then a single TCR may be
sufficient to activate the cell. Second, since numbers of near maximal ppERK
are an order magnitude greater than the number of TCRs we expect the
total protection of all TCRs (as is the case in the activations in section 8) 5.

5The TCR protection state is absorbing in this model and so all TCRs will receive
protection with probability 1 over a suitable timescale. However protection is expected to
persist on a timescale longer than the signalling events considered here, if a loss of protec-
tion reaction were included we would expect observe very high levels of TCR protection,
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This has implications for the hypothesis presented in [12] that suggests that
protected endogenous ligands may contribute towards signalling. The issue
is that these ligands must still overcome kinetic proofreading. As discussed
in section 2 consideration of the structure of the ppERK reactions reveal that
it is not involved in a positive feedback and so ppERK protection does not
aid the ability of any ligand to overcome kinetic proofreading. We discuss a
classification of ligands based on the signalling induced:

• Class I: Are able to complete kinetic proofreading despite negative
feedback and generate an activation signal. Effectively agonists.

• Class II: Are unable to complete kinetic proofreading in the presence
of negative feedback 6, but are able to complete kinetic proofreading if
protected from negative feedback. Effectively antagonists.

• Class III: Are unable to complete kinetic proofreading even when pro-
tected. They are strong enough achieve a kinetic proofreading state
larger than the base negative feedback state, that is, they are able to
generate negative feedback. Effectively antagonists/partial agonists.

• Class IV: Are unable to complete kinetic proofreading when protected.
They are also unable to break the base negative feedback state. Effec-
tively partial agonists/null ligands.

We have not used the agonist, antagonist etc. labels because the definitions of
the classes differ from those given in section 2. Within these classes only I &
II may “synergise” with the signalling agonists, III & IV will never complete
kinetic proofreading. Generally we expect endogenous ligands to be members
of classes II–IV. However a common hypothesis is that endogenous ligands
are most often not antagonists [7, 12] and non-antagonist/non-agonist ligands
are members of classes III & IV. Thus the majority of endogenous ligands
will not be able to synergise due to their inability to overcome proofreading.
The expected hitting time of protected kinetic proofreading signalling state

but not total
6Within the stochastic methods and the biological mechanisms of the models considered

here all ligands will be able to complete kinetic proofreading, with or without negative
feedback, if considered over a long enough time period. When we discuss inability to
complete kinetic proofreading we mean that the probability a ligand will complete kinetic
proofreading in a time period that is relevant to the cell is effectively nil.
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(figure 7) shows a sharp increase with increases in md. This suggests that
whilst members of class II can complete kinetic proofreading on a suitable
timescale they may take substantially longer than members of class I and
consequently generate substantially less A1. It is possible that a handful of
class I ligands can generate far more A1 than a population of class II ligands.
We conclude the discussions of the behaviour of the MAPK cascade with two
statements. First, if a single TCR is able to generate a near maximal ppERK
signal then synergising ligands can only contribute be ensuring the ppERK
signal remains near maximal over a longer period of time than the original
ligand could achieve. Second, if the TCRs receive total protection this is not
necessarily an indicator that all TCRs require protection, simply that this
guarantees that TCRs of interest are protected.

Section 8 re-composes the entire model to perform stochastic simulations
on a system of many TCRs. The simulations demonstrate that a few agonists
can be as efficacious as a population of thousands in producing activations.
Moreover, we find that the large-ε results are in qualitative agreement with
the small-ε single TCR predictions. It is elucidating to observe the dynamics
of unbound pSHP1. The pSHP1 generated is dependant on TCR stimulation,
which is dependant on the quantity of pMHC and distribution of dissociation
rates. As a consequence in simulations with zero initial pSHP1 consisting
solely of weak ligands (normally considered to be members of class II ) little
pSHP1 is generated and the weak ligands can induce activations. Increased
TCR stimulation results in a sharper rise of pSHP1, the statistics of the sharp
rise are related to the position of the base negative feedback state. Once
the rise has occurred it becomes very unlikely that any TCR, even a good
agonist, will complete kinetic proofreading. Performing simulations with
ligands in agonist and antagonist roles we observe the expected agonist and
antagonist behaviour. With increases initial pSHP1 we are able to prevent
weak ligands from inducing activations, with further increases we are able to
prevent agonist pMHC from inducing any activations. Finally we validate
the small-ε v prediction that increased CD8 density is able to increase the
expected kinetic proofreading state despite increasing the expected pSHP1.

Combining the results of the paper we discuss a hypothesis for reliable T
cell activation with respect to the base negative feedback state. If the T cell
is presented a population comprising 0.01−0.1% agonists and 99.9−99.99%
endogenous ligands and if the expected time for agonists to complete kinetic
proofreading is less than the expected time for endogenous ligands to reach
the base negative feedback state, then the T cell will be reliably activated.
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This hypothesis is depicted in figure 20 along with validating results from the
model. The results state that agonist ligands with md = μa are expected to
reach a kinetic proofreading signalling state before endogenous ligands with
md = μe reach the base negative feedback state. The expected times given
in figure 20 are calculated from the kinetic proofreading without negative
feedback rate matrix K described in section 5. As justification for calculating
without negative feedback we note that during the period in which agonist
ligands generate negative feedback the endogenous ligands do not generate
pSHP1. Since agonist ligands are in the vast minority and appealing to
the assumption that pSHP1 is not diffusion-limited then the population of
endogenous ligands “absorb” the pSHP1 generated by the agonist ligands.
Further, we are assuming that the endogenous ligand comprise a sufficiently
large proportion of all pMHC that the influence of agonist pSHP1 does not
significantly alter their time to base negative feedback state given in figure 20.

This hypothesis requires more detailed modelling and analysis to confirm,
in reality the negative feedback generated by the agonists will dampen their
own proofreading as well that of the endogenous ligands. However we believe
the arguments given here certainly demonstrate the point.

This hypothesis suggests that the reason why the T cell can react to only
0.01–0.1% of the total pMHC expressed [2] is because this is a very effective
way of producing T cell activation. Altan-Bonnet and Germain [7] suggest
that the agonist ligands can quickly overcome the negative feedback due to its
“limited nature”. The results in this paper suggest that the negative feedback
is not limited in nature and is capable of arresting the proofreading of any
realistic ligand. We wish to clarify their argument by adding that agonist
ligands can induce activations by their ability to complete proofreading before
weaker ligands can generate negative feedback.

We note that the hypothesis does not prevent a population of agonists
inducing an activation for two reasons. First, the larger population of ago-
nists have a higher probability of sampling a proofreading time substantially
faster than the mean. Second, the negative feedback parameters currently
allow agonist ligands to complete kinetic proofreading despite high pSHP1
levels over an increased time period (see table 3).

Finally we suggest biological experimentation which could test the results
here. If APCs can be prepared which present endogenous ligands in the
majority and agonist ligands in the minority; and if the concentration of
agonist ligands can be incrementally increased then the statistics of the rise
time of pSHP1 and ppERK could confirm the details of the hypothesis in
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Figure 20: Left : Depiction of reliable activation hypothesis. The hypothetical distribution
of agonist (md = μa) ligands reaching signalling state is given on the left (dark grey),
ha is the expected hit time of signalling state. Hypothetical distribution of endogenous
ligands (md = μe) reaching base negative feedback state is given on left (light grey), he is
expected hit time of the base state. The distributions are purely illustrative and are sum
of exponential distributions, specifically Erlang Distributions (Gamma distribution with
integer shape parameter) and as such the mean is greater than the mode. Dotted line gives
the hypothetical rise of negative feedback, again illustrative and calculated as a function of
cumulative hit time distributions, expected agonist/endogenous pSHP1 levels and assumed
agonist/endogenous populations ratio. Right: Validation of hypothesis within the model.
Solid black line (hs) is expected hit time of signalling state for agonist ligands (md = μa)
(taken from figure 7), dotted line (hn) is the expected hit time of base negative feedback
state for endogenous ligands (md = μe). All ligands with md ≤ μa are expected to reach
signalling state before ligands with md > μe reach base negative feedback state.
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figure 20. Further, our analysis suggests that the pSHP1 levels needed to
dampen a strong agonists are an order of magnitude smaller than the total
SHP1. Consequently a variation in pSHP1 less than an order of magnitude
will not necessarily inhibit a cell in producing the required pSHP1 to dampen
strong agonists. However a reduction in SHP1 levels will reduce the rate
at which pSHP1 can be produced and so increase the time taken to reach
equilibrium. This should extend the time window in which activations can
reliably occur and so cell activations will be observed over a longer time
period. One could also look for the dynamics of unbound pSHP1 which
would suggest its relationship to the protected TCR and particularly the
spreading of the protection signal. We add that any investigations into the
time taken for kinetic proofreading of varying strength ligands, particularly
looking for the existence and position of a base negative feedback state would
prove very useful in validating the hypothesis presented in figure 20.

Appendix A. Components and Rates

All components and their labels are given in table A.4, all rates are given
in table A.5.

Appendix B. Justification for ε

In sections 4, 5 and 6 we set ε = N−1
T with NT the number of TCRs in the

ABG model. This restricts the volume of interest to that of a single TCR
and allows us to analyse a TCR in isolation. We believe this to be invaluable
in understanding the reactions incorporated in the model. Certainly this
will increase the influence of stochastic noise in the system. There may be
quantitative discrepancies in small-ε results and non-obvious effects when the
model is scales. However there is qualitative agreement between small and
large ε (see figures 17 and B.21). Small-ε calculations are made with solely
rate matrices and unlike simulation do not require many runs to view the
entire distribution of behaviour. We expect the rate matrix N to be most
susceptible to noise as it analyses varying cytosolic molecule numbers. An
increase of a single pSHP1 molecule at the single TCR level corresponds to
a large increase in pSHP1 in the entire cell. However we discovered that the
results matched well with those obtained with a real pSHP1 concentration
parameter defined similarly to v defined in section 4 (not shown).
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Component Label Comments

TCR Tz T cell Receptor complex with z ZAP-70 molecules bound.
pMHC M Antigenic peptide bound to major-histocompatability

complex MHC
CD8 C Co-receptor CD8
Lck L Leukocyte-specific protein tyrosine kinase (Lck)
SHP1 S SH2 domain containing tyrosine phosphatase (SHP-1).

Phosphorylated pSHP-1 represented as S1

ERK E Extracellular signal-regulated kinase (ERK). Single and
double phosphorylated versions represented as E1 and E2

respectively.
ZAP-70 Z ζ-chain associated protein kinase 70 (ZAP-70)
Adapter A Adapter protein that initiates the MAPK cascade. Phos-

phorylated form represented as A1.
Raf1 R Part of MAPK cascade. Phosphorylated form repre-

sented as R1.
Mek K Part of the MAPK cascade. Single and double phospho-

rylated forms represented as K1 and K2 respectively
MAPKPase PE MAPK Phosphatase, acts dephosphorylating ERK
MAPKKPase PK MAPK Phosphatase, acts dephosphorylating Mek
MAPKKKPase PR MAPK Phosphatase, acts dephosphorylating Raf1
Adapter Pase PA Adapter Phosphatase, acts desphosphorylating Adapter
SHP Pase PS pSHP-1 Phosphatase, acts desphosphorylating S1

TCR-pMHC Bq
z TCR-pMHC complex with q non-protected phosphoryla-

tions and z ZAP-70 molecules bound.

Protection Cq
z, Tz Internal TCR complex after protection by ppERK, with

q non-protected phosphorylations of the ζ-chain

Table A.4: Components in the model and their labels.
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Rate Value Comments

ma 1× 104 Association rate of pMHC to TCR.
md – Dissociation rate of pMHC from TCR.
ct 1000 Association rate of CD8 to TCR.
ca 3× 105 Association rate of CD8 to pMHC, TCR-pMHC complex.
cd 100 Dissociation rate of CD8 from TCR, pMHC TCR-pMHC

complexes.
cs 0.1 Stabilising effect of CD8 to TCR-pMHC complex, multi-

plies dissociation rate md.
la 1× 104 Association rate of Lck to internal TCR complex.
ld 50 Dissociation rate of Lck from internal TCR complex.
lc 10.4 Rate of Lck phosphorylation of the internal TCR com-

plex.
lca 50.0 Association rate of CD8 associated Lck to ITAMs, ZAP-

70 etc.
lcd 40.0 Dissociation rate of CD8 associated Lck from ITAMs,

ZAP-70 etc.
lcc 10.4 Rate of CD8 associated Lck phosphorylation of the in-

ternal TCR complex.
za 1.2× 107 ZAP-70 association to phosphorylated ITAMs.
zd 0.11 ZAP-70 dissociation from phosphorylated ITAMs.
sa 2.9× 105 Association rate of SHP-1 to TCR complex.
sd 0.13 Dissociation rate of SHP-1 from TCR complex.
sc 35.0 Rate of phosphorylation of SHP-1.
pa 3.2× 105 Association rate of pSHP-1 to TCR complex.
pd 0.05 Dissociation of pSHP-1 from complex.
aa 5.0× 106 Association rate of adapter to TCR complex.
ea 1.0× 107 Association rate of ppERK to TCR complex.
ed 2.0 Dissociation rate of ppERK from TCR complex.
ec 3.4 Rate of protection of TCR by ppERK.
ka 1.2× 107 Association rate of any component of MAPK cascade.
kd 0.15 Dissociation rate of any component of MAPK cascade.
ka 2.6 Rate of (de)phosphorylation of any component of MAPK

cascade.
qa 1.0× 104 Association rate of pSHP1 phosphatase.
qd 0.15 Dissociation rate of pSHP1 phosphatase.
qc 2.6 Rate of (de)phosphorylation of pSHP1 phosphatase.

Table A.5: Macroscopic rates from the ABG model in [7]. All association rates are given
in mol−1s−1 all other rates have units s−1 with the exception of cs which is dimensionless.
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Component Quantity Comment

V 15× 10−15 Cytoplasmic volume of a T cell
NT 3× 104 Quantity of TCR
NM 3× 104 Quantity of pMHC
NC 3× 104 Quantity of CD8
NL 3× 104 Quantity of Lck
NS 8× 105 Quantity of SHP1
NE 105 Quantity of ERK
NZ 1.2× 106 Quantity of ZAP-70
NA 1.5× 105 Quantity of Adapter
NR 105 Quantity of Raf1
NK 4× 105 Quantity of Mek
NP 2000 P = {E, K, R, A, S} Quantity of all dephosphorylating

phosphatases

Table A.6: Quantity of all components found in the cytoplasmic volume V , taken from [7]

In section 7 we use ε = 10−2 for simulations of the MAPK cascade and in
section 8 ε = 10−1 for simulations of the entire system. We found the molecule
numbers to be sufficient that stochastic fluctuations do not dominate and
results to be in good agreement with other large ε choices, including ε = 1.

Unlike the models in [9–11] we model all enzymatic reactions by a two
stage process which should reduce the influence of stochastic fluctuations.

Appendix C. General Binding System

The binding system may be generalised and described by the following
matrix:

G =

⎛
⎜⎜⎜⎜⎝
−σ1 k1 k3 k5 0
k2 −σ2 0 0 k7

k4 0 −σ3 0 k9

k6 0 0 −σ4 k11

0 k8 k10 k12 −σ5

⎞
⎟⎟⎟⎟⎠ (C.1)
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Figure B.21: Trajectories of 1000 runs of a simulation resticted to a single TCR and
md = 0.054 for 1000 seconds. See appendix Appendix G for instructions on how to read
this figure. No simulations reach the grey signalling region. Two orange strips in the
pSHP1 bound state section indicate that the majority of simulations are in unbound state
T0S1 or in bound state B0

0S
1. Within the first 100 seconds states Bz with z > 0 are

reached, this is during the rise time of pSHP1 maximum before the maximum is reached
(see figure 11). Once the maximum pSHP1 level is reached the TCR is rarely found in
a state with z > 0. Note the qualitative agreement with figure 17 in terms of the early
hump in kinetic proofreading states and then the long term confinement to B0

z states.
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With σi =
∑

j gij. The rate matrix for choice of rates here:

H =

⎛
⎜⎜⎜⎜⎝
−s1 ma ct ca 0
md −s2 0 0 ca

cd 0 −s3 0 ca

cd 0 0 −s4 ca

0 cd mdcs mdcs −s5

⎞
⎟⎟⎟⎟⎠ (C.2)

With si =
∑

j hij. The solution to πH = 0 subject to
∑

i πi = 1 is given in
equation C.3.

π =
ϕP
i ϕ

ϕ =

0
BBB@

mdcd(cd + ca)(ca(2cs + 1) + 2mdcs + cd)
cd(cd + ca)(c2a + ca(ma + ct) + 2mamdcs + macd)

md(ctcd(cd + ca) + cs(c3a + c2a(md + ct + ma) + ca(mdct + macd + 2cdct) + 2cdct))
md(c2acd + cac2d) + cs(c3amd + c2a(m2

d + md(2cd + ct + ma)) + ca(m2
d(2cd + ct) + macdmd))

ca(cd + ca)(c2a + (md + ct + ma)ca + macd + mdct)

1
CCCA

(C.3)

The rate matrix for the binding system with TC removed:

W =

⎛
⎜⎜⎝
−w1 ma ca 0
md −w2 0 ca

cd 0 −w3 ca

0 cd mdcs −w4

⎞
⎟⎟⎠ (C.4)

With wi =
∑

j wij. Solving πTCW = 0 subject to
∑

i π
TC
i = 1 gives:

πTC =
ρ∑
i ρi

ρ =

⎛
⎜⎜⎝

mdcd(cd + ca(1 + cs) + mdcs)
cd(c

2
a + cama + mamdcs + cdma)

mdca(cd + cs(ca + ma + md))
c3
a + c2

a(ma + md) + cacdma

⎞
⎟⎟⎠ (C.5)

Appendix D. Negative Feedback

The action of pSHP1 on the TCR internal complex with 3 ZAP-70 molecules
is a one step process, see reaction 8 (as reproduced from [7]). The action of
pSHP1 on the TCR internal chains containing 0, 1, or 2 ZAP-70 molecules is
a many step process. To clarify, if N and P are non-phosphorylated and phos-
phorylated complexes respectively, L is Lck and S is pSHP1, in the standard
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case:

N + L + S
la−⇀↽−
ld

NL + S

NL + S
lc−→ P + L + S

P + L + S
pa−⇀↽−
pd

PS + L

PS + L
la−⇀↽−
ld

PSL (D.1)

PSL
lc−→ NS + L

NS + L
pd−→ N + L + S

In the B3 case:

N + L +S
la−⇀↽−
ld

NL + S

NL + S
lc−→ P + L + S

P + L +S
pa−→ N + S + L

N + L +S
pa−⇀↽−
pd

NS + L (D.2)

Rate matrix RS describes the standard case:

RS =

⎛
⎜⎜⎜⎜⎜⎜⎝

−la − pa|S| la 0 0 0 pa|S|
ld −ld − lc lc 0 0 0
0 0 −pa|S| pa|S| 0 0
0 0 pd −pd − la la 0
0 0 0 ld −ld − lc lc
pd 0 0 0 0 −pd

⎞
⎟⎟⎟⎟⎟⎟⎠

(D.3)

The stationary distribution given by πRS
RS = 0:

πRS
=

φ∑
φi

φ =

⎛
⎜⎜⎜⎜⎜⎜⎝

pdpa|S|(lc + ld)
lapdpa|S|

p2
d(lc + ld) + pdlalc
pdpa|S|(lc + ld)

lapdpa|S|
(pa|S|)2(lc + ld) + pa|S|lalc

⎞
⎟⎟⎟⎟⎟⎟⎠

(D.4)
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The rate matrix R3 describes the B3 case:

R3 =

⎛
⎜⎜⎝
−la − pa|S| la 0 pa|S|

ld −ld − lc lc 0
pa|S| 0 −pa|S| 0
pd 0 0 −pd

⎞
⎟⎟⎠ (D.5)

Whose stationary distribution:

πR3 =
θ∑
θi

θ =

⎛
⎜⎜⎝

pdpa|S|(lc + ld)
lapdpa|S|

lalcpd

(pa|S|)2(lc + ld)

⎞
⎟⎟⎠ (D.6)

The stationary distributions exhibit differences dependant on |S|. For
example the difference in probability of the phosphorylated state Δ is:

Δ =
lalcpa|S|

p2
d(lc + ld) + lalc(pd + ld) + pa|S|(pd(la + lc + ld) + lalc)

(D.7)

≈ 10−10|S|
40 + |S|

(D.8)

The approximation is taken for CD8-associated Lck phosphorylation rates
and holds for N−1

T ≤ ε ≤ 1. The stationary differences between the two
are negligible, numerical solutions of the transient behaviour reveal larger
differences however the behaviour is qualitatively identical.

A detailed look at the pSHP1 reaction equations reveals that doubly-
phosphorylated ITAMs are exempt from the SHP1 negative signal. This
is a consequence of the precondition for Lck binding: q < 2 when z =
0, 1, 2 and q < 3 when z = 3. We compare the negative feedback as found
in the ABG model in [7] and a uniform application of negative feedback
with multi-step desphosphorylation and no state exempt from the action
of pSHP1, we determine this uniform negative feedback. Calculating the
transient distributions reveals the two methods are qualitatively similar, but
uniform negative feedback (despite applying to a larger number of kinetic
proofreading states) gives a higher stationary probability of expected kinetic
proofreading states. Further we find that the for ABG negative feedback
the ordering of most probable md is preserved in the hump but is broken as
the transient moves towards stationarity. We find the multi-step form with
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uniform action on all kinetic proofreading states preferable and so all results
in this paper use uniform negative feedback.

Appendix E. Modelling Methods – Continuous Time Markov Chains

Definition 1. A continuous time Markov chain is a continuous time stochas-
tic process {X(t) : t ≥ 0} with state space S that satisfies the Markov
property:

P(X(t) = j|X(s) = i,X(tn−1) = in−1, . . . ,X(t0) = i0)

=P(X(t) = j|X(s) = i) (E.1)

Where 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn−1 ≤ s ≤ t, and i0, i1, . . . , in−1, i, j,∈,S.

Three key properties of a CTMC are of interest: the time evolution of
the chain starting from a particular state (transient analysis), the long term
behaviour of the chain (its stationary distribution), and the expected time
to reach of a set of states C ⊆ S from a state h (the hitting time). Denote:

pij(t) = P(X(t) = j|X(s) = i) for 0 ≤ s, t and i, j ∈ S (E.2)

P(t) is the matrix with entries pij(t). The time evolution of P(t) is described
by the following differential equation:

Ṗ(t) = GP(t) (E.3)

G is the generator matrix or rate matrix of the chain and its entries are:

gij =

{
kij for i �= j,

−∑
q kiq for i = j

(E.4)

kij describes the exponential rate of transitioning from state i to j, and kii

can be thought of as the rate of leaving state i so:∑
j

gij = 0 ∀i (E.5)

The general solution to equation E.3 is given by the matrix exponential:

P(t) = etG ≡
∞∑

n=0

(tG)n

n!
(E.6)
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Generally we calculate the matrix exponential numerically, for small dense
G we use Matlab’s expm(G) function which uses a scaling and squaring
algorithm with a Padé approximation as detailed in [23]. For large sparse G
we use the methods provided in Expokit [24] which uses Krylov subspace
projection techniques to calculate p0e

tG directly (i.e. etG is not explicitly
calculated) for an initial distribution p0.

The stationary or invariant distribution π = (π1, π2, . . . π|S|) exists for a
CTMC if it is irreducible and recurrent [25], which will be the case for the
all the CTMCs considered in this paper. If the stationary distribution exists
then it may be found by solving the following:

πG = 0 with
∑

i

πi = 1 (E.7)

A numerical solution to the stationary distribution equation can often be
difficult to find [26], particularly when G is large and sparse as is the case
here. The inverse iteration method [26] is used, rather than solve equation E.7
directly solve and scale:

GT x1 = x0 πT =
x1

1T
|S|x1

(E.8)

x0 is the the column vector length |S| of all zeros with 1 in the |S| position.
1n is the length n column vector of ones.

The vector of expected first hit times hC = (hCi | i ∈ S) of states C ⊆ S,
where hCi is the expected time to reach a C starting from state i can be found
by solving the following equations [25]:

hCi = 0 for i ∈ C
−

∑
j

kijh
C
k = 0 for i /∈ C (E.9)

Appendix F. Reaction Equation Notation

To describe reaction equations more succinctly we use set notation to
group together common reactions. A reaction applied to a set represents
application of the reaction to every member of the set:

{A, B}+ C
r−→ {A, B}C (F.1)
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Represents reactions:

A + B
r−→ AB , A + C

r−→ AC (F.2)

Concatenation of terms represents a complex containing the elements of the
concatenation. Generally any set manipulation can be used to reduce the
reaction description:

S = ({A} × {∅, B, C} × {D}) ∪ {GH, GJ} (F.3)

Represents:
S = {AD, ABD, ACD, GH, GJ} (F.4)

Then reactions may be described using S, for example the binding of F may
occur for all i ∈ S:

S+F
r−→ SF (F.5)

Components may be supplied with indices:

An + B
r−→ An-B, n = 1, 2, 3 (F.6)

which represents:

A1 + B
r−→ A1-B

A2 + B
r−→ A2-B (F.7)

A3 + B
r−→ A3-B

Algebraic manipulations of indices apply to all values that the index is de-
fined, for example:

An, n = 1, 2, 3 =⇒ A1, A2, A3

An+1, n = 1, 2, 3 =⇒ A2, A3, A4

This notation can increase the possibility for ambiguity of determining
reactants and products. Any ambiguities can be resolved by conservation,
i.e. the same numbers of molecules on both sides of the equation. In the
reactions given in this paper conservation looks to be broken in two places.
First, the action of Lck causes a phosphate to explicitly appear on the right
hand side of an equation. This is not unbalanced, the phosphate is implicitly
included in the reactants. Second, the unbinding of MHC causes all left hand
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side phosphates to disappear, this is valid due to the assumption of the model
that all are removed through a highly abundant fast action phosphatase.

In all reactions if a component that may be associated to a complex and
that component is not explicitly given in the reaction, then it is assumed
that the reaction may proceed with and without the component associated.
For example if B and D may be bound to A, then the reaction:

A + C
r−→ AC (F.8)

includes all the following reactions:

A + C
r−→ AC, neither B nor D bound (F.9)

AB + C
r−→ ABC, B bound (F.10)

AD + C
r−→ ADC, D bound (F.11)

ABD + C
r−→ ABDC, B and D bound (F.12)

If A has p phosphorylations it is represented Ap. If no phosphorylation
state is given, i.e. A, this represents that the phosphorylation state of A has
no affect on the reaction.

Appendix G. Reading Trajectory Plots

This sections describes how to read the trajectory plots such as figure B.21
and 17. It is desirable to be able to visualise the results of multiple simulation
runs without taking averages, indicating both common and rare behaviour.
The trajectory plots go some way to do this. Time is given on the horizontal
axis, and state is given on the vertical axis. Specifically the kinetic proofread-
ing states are repeated three times on the vertical axis for the three mutually
exclusive cases: N – neither pSHP1 bound nor protected; pSHP – pSHP1
bound; Prot – ppERK protected. Within each section the kinetic proofread-
ing states are laid out in order with unbound states first: U0

0, U0
1, U0

2,U
0
3,

B0
0, B1

0, B2
0, B0

1, . . ., B3
3. The final three signalling states are highlighted with

a grey background. A dot represents that at least one simulation passed
through the given state at the given time, and a coloured square represents
how many runs passed through the state at the time.
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