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Abstract— The characteristics of biological tissues are determined by the interactions of large 

numbers of autonomous cells. These interactions can be mediated remotely by diffusive 

biochemical factors, or by direct cell-cell contact. E-cadherin is a protein expressed on the surface 

of normal epithelial cells that plays a key role in mediating intercellular adhesion via calcium-

dependent homotypic interactions. E-cadherin is a metastasis-suppressor protein and its loss of 

function is associated with malignant progression. 

The purpose of this study was to apply an agent-based simulation paradigm in order to examine 

the emergent growth properties of mixed populations consisting of normal and E-cadherin 

defective cells in monolayer cell culture. Specifically, we have investigated the dynamics of 

normal cell:cell interactions in terms of intercellular adhesion and migration, and have used a 

simplified rule to represent the concepts of juxtacrine Epidermal Growth Factor Receptor (EGFR) 

activation and subsequent effect on cell proliferation. This cellular level control determines the 

overall population growth in a simulated experiment.  

Our approach provides a tool for modeling the development of defined biological abnormalities 

in epithelial and other biological tissues, raising novel predictions for future experimental testing.  

The results predict that even a relatively small number of abnormal (‘anti-social’) cells can 

modify the rate of the total population expansion, but the magnitude of this effect also depends on 

the extrinsic (culture) environment. In addition to directly influencing population dynamics, ‘anti-

social’ cells can also disrupt the behavior of the normal cells around them. 

 

Keywords—Agent-based computational model, epithelial cells, E-cadherin, intercellular 

adhesion  
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1. INTRODUCTION 

The development of normal tissue architecture is critically dependent on the ability of 

individual cells to form stable adhesive contacts. In many tissue types, contacts are mediated by 

cadherins, a family of transmembrane proteins that mediate intercellular adhesion via interactions 

with homotypic proteins on opposing cell surfaces. Epithelial tissues express the cadherin 

subgroup E-cadherin, which is critical for forming initial adherens contacts between cells in 

developing tissues or cell cultures, allowing more established structures, such as tight junctions 

and desmosomes, to develop. In order to assume a functional conformation, E-cadherin requires 

the presence of extracellular calcium ions, with a concentration of >1mM required for the 

formation of stable contacts (Southgate et al., 1994; Baumgartner et al., 2000).  This gives rise to 

the paradigm that below a concentration of 1 mM, E-cadherin is extrinsically non-functional, but 

becomes functional as the calcium concentration nears physiological (2 mM), which may be 

exploited experimentally.  

Loss of E-cadherin function is associated with a reduction in tissue integrity and loss of normal 

architecture and function. Mutation or epigenetic silencing of the E-cadherin gene have been 

associated with malignant transformation and invasive behaviour (Foty and Steinberg,1997; 

Conacci-Sorrell et al., 2002; Steinberg et al., 2008), whilst increasing the expression of functional 

E-cadherin has been shown to reduce the growth of malignant cell lines in a reconstituted 

extracellular matrix (Foty and Steinberg, 2004). 

In addition to providing mechanical integrity to a growing cell population, E-cadherin also 

plays an important role in growth regulation. The concept of contact-inhibition of growth by 

stable intercellular contacts is well accepted. Although the mechanisms are not yet fully 

understood, one supported hypothesis is that sequestration of the transcription factor �-catenin to 

intercellular contacts leads to the loss of a pro-proliferative mediator (Stockinger et al., 2001). 
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However, there is growing evidence that cell contact may also positively influence cell growth, at 

least in the early stages of tissue formation (Nelson and Chen, 2002; Liu et al., 2006). Both 

positive (Pece and Gutkind, 2000) and negative (Takahashi and Suzuki, 1996) interactions 

between E-cadherin and the Epidermal Growth Factor Receptor (EGFR) have been reported, as 

well as the indirect activation by intercellular contact of a number of intracellular signaling 

molecules including Rac1 (Liu et al., 2006), Akt-PkB (Pece et al., 1999) and the cyclin-dependent 

kinase inhibitor, p27 (St Croix et al., 1998). 

 The aim of the study presented here was to use computational simulation to explore the 

potential effects of loss of E-cadherin function (representing ‘anti-social’ cell behaviour) on the 

growth characteristics of otherwise normal epithelial cell populations. In particular, we were 

interested in whether loss of function from a relatively small subset of a cell population would 

have a discernable effect on the total population growth dynamics and whether the aberrant 

population would be expected to influence the growth of the normal population, or vice versa.  

Traditionally, computational models are based on mathematical equations that represent the 

averaged behaviour of a large number of individuals. However, in order to model mixed cell 

populations, and to resolve interactions at the level of individual cells, it is necessary to adopt a 

modeling paradigm that can inherently represent discrete individuals and their interactions. We 

have previously described Epitheliome, a software agent-based model of epithelial cells that has 

been used to simulate tissue growth (Walker et al., 2004a) and wound healing (Walker et al., 

2004b) in monolayer cell cultures. The model consisted of a population of ‘seeded’ virtual cells, 

or software agents, placed in a specified virtual environment and allowed to interact according to 

pre-programmed rules representing cell cycle progression (represented by increment of an 

internal clock), quiescence and division, intercellular adhesion, changes in morphology, migration 

and simple physical interactions. Each software agent executes these rules according only to its 

current internal state and interaction with its immediate environment (both extracellular factors 

and adjacent cells). There is no concept of overarching control in the model, thus model 
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simulations produce emergent behaviour that arises solely from the behaviour and interactions 

evolving at a cellular level. During the previous decade, the agent- or individual- based paradigm 

has been applied to representing cellular interactions, with examples including tumour growth 

(Anderson and Chaplain, 1998; Mansury et al., 2002; Drasdo and Hoeme , 2005), immune-

vascular cell interactions (Folcik et al., 2007; Tang et al., 2007)  and angiogenesis (Bentley et al., 

2007). 

Previously, we described our prototype agent model of epithelial cell monolayer growth and 

compared the simulation results with in vitro population growth assays (Walker et al., 2004a) 

performed on cultured normal human urothelial (bladder epithelial) cells (Southgate et al., 1994). 

Our previous results (Walker et al., 2004a) and also more recent experimental data based on 

actual cell counts (see figure 1), showed an unexpected enhancement in population growth rate in 

physiological calcium concentrations. This was surprising and counter-intuitive with respect to 

the known growth inhibitory effects of stable intercellular contacts described above. This in 

vitro/in silico comparison prompted a subsequent computational exploration of potential 

biological mechanisms contributing to this unexpected behaviour. We recently used a multi-scale 

agent/signaling model to demonstrate that enhanced proliferation in sub-confluent cultures may 

be mediated by the juxtacrine engagement of the EGFR at intercellular contacts, resulting in 

sustained  downstream activation of cytoplasmic Extracellular signal-regulated kinase (Erk) 

(Walker et al., 2008). It has been reported that Erk activation sustained for several hours in G1 is 

required for cell cycle progression (Roovers and Assoian, 2000; Yamamoto et al., 2006). We 

have incorporated a new rule into our agent model to represent the concept of positive mediation 

of growth associated with increased intercellular contact. In particular, we enforced the 

requirement that a cell must have maintained intercellular contact for a minimum period of time 

during the early G1 phase (arbitrarily set to 4 hours) in order to become proliferative (exit G0). It 

is not stipulated that this contact must relate to the persistence of a single stable contact, but could 

potentially arise from a series of transient contacts formed during cell migration.  
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In our previous publication (Walker et al.,2008), we explored the concept of the emergence of 

phenotypic heterogeneity within genetically homogeneous cell communities – in particular, how 

random migration and contact formation could result in vastly differing intracellular Erk 

activation levels within individual cells, which are not observed when protein expression is 

visualized on a population level (e.g. by western blotting). In the study described here, we 

focused on cellular and population level effects arising within heterogeneous communities. 

We describe how we have applied our agent-based model of epithelial cell growth to explore 

the effect of the mutation of a single gene that results in the loss of E-cadherin function amongst a 

variable subset of cells, on the nature and dynamics of population growth in monolayer cell 

culture. This dysregulated rule set represents how one aspect of malignant transformation and 

hence interactions and influence on a population of normal cells, may be expected to give a novel 

insight into neoplastic growth and malignant progression processes. Whereas the interactions 

between normal cells are homeostatic and regulatory of the cellular community (i.e. “social” 

interactions), we have termed the behaviour of the modified cells as “anti-social”. We have 

chosen to use a monolayer-based simulation, as this allows direct comparison with in vitro 

experiments where the distribution of  E-cadherin can be visualized, thus providing a route for 

model validation.  

2. MODELLING METHODOLOGY 

A full description of the current model, based on the standardised description protocol 

suggested by Grimm et al., (2006) is given below. 

2.1 Purpose 

The agent-based model we have employed in this study is based on an extended version of that 

described in our previous publications (Walker et al., 2004a; Walker et al., 2004b). The purpose 

of this model is to explore the effect of a mutated gene controlling intercellular adhesion in a 

proportion of the population on i) interactions between agents ii) the adoption of a particular 
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phenotype (e.g. migratory, quiescent) amongst subsets of agents and iii) the emergent population 

dynamics. We were particularly interested in the interaction of ‘mixed’ populations of agents e.g. 

those consisting of both cells containing the normal (henceforth referred to as EC-N, or E-

cadherin-normal) cells and mutated gene (EC-A, or E-cadherin abnormal) cells. 

The primary global emergent behaviour produced by this model is the population dynamics i.e. 

the total number of agents as a function of simulation time. The foundation of this behaviour is 

the individual interactions between agents, which initially may come into contact at low to 

moderate densities as a result of random migratory behaviour. These interactions may lead to 

stable or transient adhesions (again, stochastically-based) which in turn affect subsequent 

migration and proliferation/quiescence. 

2.2  State variables and scales 

Agents in the model represented individual urothelial cells placed on a 1mm2 substrate containing 

a fixed, uniform concentration of exogenous calcium ions. Spatial units are measured in �m and 

each model iteration represents 30 minutes of real time. The model is 2.5 dimensional – 

interactions occur only in the x-y plane, but each cell is considered as an oblate spheroid with a 

variable “height” in the z plane. This allows a cell to alter its morphology, whilst maintaining a 

fixed volume. 

Agent memory parameters relevant to this particular computational exploration include: 

� Unique identification number for every cell 

� Current cell cycle phase and position within phase, or flag representing quiescent state 

� Cell radius (may differ between xy and z planes) 

� Current migration direction 

� Number and size of stable (E-cadherin-mediated) intercellular adhesions, and the 

identification flags of those cells with which adhesions are shared 

� Number of current transient (non E-cadherin-mediated) interactions with adjacent cells 
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� Endogenous expression of E-Cadherin protein (=1 for “normal” (EC-N) or 0.01 for 

“abnormal” (EC-A) cells, respectively) 

2.3 Process overview and scheduling 

The model is incremented in fixed time steps according to the order shown in figure 2. Model 

parameters are scaled so that each agent iteration represents a period equivalent to 30 minutes. 

Following the memory update of every agent according to the rules described below, a numerical 

algorithm is used to eliminate or minimise cell overlap that has arisen due to cell growth, division 

and migration. This sub-model runs for a maximum of 200 iterations (empirically determined to 

be sufficient to achieve equilibrium in relatively high agent densities) and returns new positional 

information to the agent model. It should be noted that the purpose of this algorithm is to 

eliminate overlap only, and the concepts of active cell migration and adhesion are dealt with 

entirely within the agent model. Further details of this algorithm can be found in section 2.5.5. 

2.4 Initialisation and data recorded 

The starting point for each simulation was 200 “seeded” cells, each with endogenous E-

cadherin expression set to either 1 (normal, or EC-N) or 0.01 (aberrant, or EC-A), randomly 

placed on a 1mm2 substrate.  The non-zero value for EC-A cells reflects the fact that 

experimentally, genetically-modified cells were observed to express small amounts of E-cadherin 

protein, though very little was localised to cell membranes compared to normal urothelial cells.  

The ratios of EC-N and EC-A cells for each model run is given in Table 1. In the case of mixed 

populations, individual agents were randomly assigned to express normal or reduced E-cadherin 

amounts (i.e. randomly allocated to the EC-N or EC-A category). This intrinsic or endogenous 

expression associated with each agent would later be converted in to an active E-cadherin 

expression value, depending on the exogenous calcium concentration in the cell adhesion rule, as 

described below. Following cell division, each daughter inherited the endogenous E-cadherin 

protein value of the parent cell.  
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Simulation 

number 

% EC-N % EC-A 

1 100 0 

2 90 10 

3 75 25 

4 50 50 

5 25 75 

6 0 100 

Table 1 List of EC-N and EC-A starting population fractions associated with each simulation set 

All ‘seeded’ cells were initialised in G0, representing a confluent, growth-arrested population 

following harvest and re-seeding onto a fresh substrate. For each simulation, the exogenous 

calcium concentration was set to a fixed value which could be accessed by the agents at any time. 

It did not vary spatially and remained constant throughout the simulation. All simulations were 

carried out in both low (0.09mM) virtual exogenous calcium concentrations (where endogenous 

E-cadherin is generally not functional) and physiological (2.0mM) calcium (where endogenous E-

cadherin will function to form adherens junctions). Hence a distinction was made between 

extrinsically non-functional E-cadherin (due to the influence of environmental factors on the 

ability of normally expressed protein to interact effectively) or intrinsically non-functional E-

cadherin (representing a mutation or loss at the epigenetic level).  

For each set of initial conditions, three simulations were run for 225 iterations, representing 

approximately 4 3/4 days of real cell growth. Agent locations and total agent numbers, as well as 

a summary of a selection of more detailed data (e.g. numbers of cells migrating, entering or 

leaving G0 and details of stable intercellular contacts) were stored at each iteration. 

 All standard simulations were carried out using the Matlab software package (The Mathworks 

Inc., www.mathworks.com). Larger simulations to check boundary sensitivity (see section 2.6) 
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were carried out using our in-house C-based agent modelling platform FLAME 

(http://www.flame.ac.uk/) using an identical rule set  and protocol. 

 

2.5 Sub-Models 

Each of the following rule sets is summarised in a pseudo-code form in boxes 1-4. All 

key model parameters associated with each rule are given in table 2. 

2.5.1 Intercellular Bonding/Contact behaviour 

This rule is summarised in box 1.  At every model iteration, an agent will have the opportunity to 

form stable intercellular contacts with up to a maximum of 6 adjacent neighbours with edges 

within 5�m (estimated as the length of maximum lamellapodia extension from time-lapse 

microscopy images). Agents may also form transient contacts with up to 6 neighbours within the 

same distance constraint. Close inspection of time-lapse microscopy images of NHU cells 

cultured in low calcium medium (e.g figure 3)  revealed that cells tended to remain in contact 

with one another for periods of up to one hour, before migrating away to form new contacts. 

These transient contacts are not stabilized by E-cadherin, but could be the result of weak 

interactions mediated by inter-membrane surface tension, as implied by immunofluorescence 

microscopy (see Southgate et al., (1994)). 

The functional E-Cadherin amount of a given agent, Pm, is calculated according to the 

endogenous E-cadherin amount, Em, and exogenous calcium concentration, X, as follows: 

� �� � �
�
�

�

	








�

�


�

�� TMXB
m

Te

CAEP
1

1
*       (1) 

where A=lower asymptote (= 0.1), C=upper asymptote (=0.57), M=point of maximum gradient 

(=1mM), B=growth rate (=1), T determines the relationship between maximum gradient and 

asymptotes (=10) and X is the exogenous calcium concentration in mM.  
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The decision for a pair of agents to form a stable (E-Cadherin-mediated) contact is stochastic, 

based on the following equation for bond formation probability, BPmn: 

q
mn

nm
mn esep

PP
BP

)1(
)*(


�        (2) 

Where Pm and Pn are the functional E-cadherin levels of agents m and n, esepmn is the distance 

between the edges of the cells in �m and the exponent parameter q=1/3 (estimated). The pair of 

cells will form an initial E-cadherin mediated contact if a pseudo-random number is less than 

BPmn.  

Although phenomenological in nature, the form of this rule results in a relationship between BP 

and exogenous calcium that closely mirrors the relationship between binding activity and calcium 

reported in Baumgartner et al., (2000). For a pair of agents with normal endogenous E-cadherin 

expression, this implies that formation of a stable contact is significantly higher in physiological 

calcium concentrations, than for concentrations less than 1mM. 

Any pair of cells within 5�m that have not already formed a stable contact according to the rule 

described above, interact transiently. In order to incorporate the concept that cells with a larger 

mutual contact would experience a larger attractive force, and therefore be likely to remain in 

contact for longer, we included the rule that for cells with edge separation, esepmn, less than 5�m, 

the mutual contact length, clenmn, is given by: 

sep
rpesepsep

clen mnmn
mn max_

max_**)(max_ �
�     (3) 

where max_sep is the maximum separation distance at which cells can form an initial contact 

(estimated as 5�m), max_rmn is the radius of the larger of the two cells in contact, and p is a 

dimensionless constant linking this radius to the size of the contact formed (estimated to have a 

value of 1.5 from observation of time-lapse microscopy images of the interactions of urothelial 

cells in culture). For the case that esep<=0 (cells touching or forced together by high local 

population density) clenmn = 1.5 x max_rmn.  
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This phenomenological relationship produces a range of contact lengths that give reasonable 

agreement with that observed in microscopy images of growing NHU cell cultures. At every 

iteration, each agent calculated the value of clenmn for each of its transient contacts, and the sum 

of these values, tlenm, was used in the migration rule (see equation 4).  

2.5.2 Morphological Behaviour 

Whilst cells maintain a spherical morphology in suspension, once plated on a 2D substrate, 

cultured cells have been observed to increase their surface area, assuming a more flattened 

morphology (e.g. Nelson and Chen, 2002). At high density, cells will become increasingly 

‘squashed’ by their neighbours, and once again, reduce their surface area to compensate. This 

behavior is accounted for in the model by allowing cells to actively ‘spread’ to a maximum of 1.5 

times their initial rounded radius in low density, and to round to their original radius in high 

density. The decision for an individual agent to spread or round is determined by the magnitude 

of the compressive force returned by the overlap elimination algorithm (see section 2.5.5). Cells 

BOX 1 - Adhesion Rule 
1. Stable (E-cadherin-mediated) adhesion 
If number_stable_bonds<6 
 Calculate functional Ecad level Pm (eq 1) 
 Find separation to all neighbours within 5�m 
 For each non-bonded neighbour  
  Calculate functional Ecad level Pn (eq 1) 
  Calculate bonding probability BPmn (eq 2) 
 
 Generate random number, k 
 Form stable adhesion with all neighbours with BPmn>k 
 
For every existing stable contact 
 Update contact length (eq 3) 
 
2. Transient contact 
If num_curr_bond<6 
 Find separation to all neighbours within 5�m 
 For each non-bonded neighbour 
  Calculate length of transient contact (eq 4) 
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are permitted to spread only for compressive force values of less than 5 units, and will round for 

higher compression values. This rule is summarised in box 2. 

 

2.5.3 Migratory Behaviour 

This rule is summarised in box 3. In our earlier agent models (Walker et al., 2004a; Walker et al., 

2004b), only cells without intercellular contacts were able to migrate. Introduction of the 

modified bond probability rules and the concept of transient contacts described above, resulted in 

very limited migration, even in low calcium conditions. This situation did not mirror that 

observed in real NHU cell cultures (e.g. note the movement of cells C and D in figure 3, which 

continue migrating in spite of their interaction). Hence, new rules were introduced that 

determined the ability of an agent to migrate based on the difference between the active migration 

force and intercellular adhesion force resulting from stable and transient cell contacts.  

The active migration force, MF, has been reported to be approximately 20 nN (Lee et al.,1994), 

and the adhesion force arising from normal E-cadherin mediated interactions between pairs of 

cells has been estimated to be approximately 100 nN after 30 minutes (AF1), and 200 nN after 

one hour (AF2) of intercellular contact (Chu et al.,2004). Published data also suggests that when 

E-cadherin amounts are varied, the adhesion force is linearly related to the square of the amount 

of E-cadherin present at the cell surface (Chu et al, 2004). In the case of transient contacts, 

surface tension per unit length (ST) between non-adherent cells has been calculated to be 

approximately 0.32nN per micrometre of boundary in contact (Foty and Steinberg, 2005). Taken 

together, these observations lead to the following formulation for total adhesion force, AF, in nN, 

acting on the mth cell: 

BOX 2 - Morphology Rule 
If total compressive force <5 and xy-radius<15�m 
 Increase xy_radius by 10% 
 Reduce z radius to maintain a constant volume 
Else if  total compressive force >=5 
 Decrease xy_radius by 1% 
 Increase z radius to maintain a constant volume 
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� � ��
��

�
2

1

1

1
21*

N

k
km

N

n
nmmm PPAFPPAFtlenSTAF     (4) 

where tlenm is the length of cell boundary in micrometres involved in transient contacts (the 

summation of clenmn values calculated according to equation 3 above), N1 and N2 are the number 

of E-cadherin mediated interactions that have existed for less and more than one hour 

respectively, and Pm and Pn, or Pk are the amounts of functional E-cadherin expression by the two 

cells involved in these interactions (dimensionless).  

The model rule implemented was that a total intercellular adhesion force of less than 20 nN 

would result in migration for a particular cell, but for larger values, the cell is not permitted to 

migrate. The maximum migration velocity, vmax, was estimated from time-lapse images of 

cultured NHU cells (in 0.09mM calcium) to be in the region of 80�m/hour. For cells with normal 

functional E-cadherin expression, this effectively means that cells with one or more E-cadherin 

contacts are prevented from migration (as was the case in the earlier versions of our model), but 

that cells with contacts defined as transient, or mediated by sub-normal  E-cadherin, may be 

permitted to migrate.  

 

2.5.4 Cell cycle regulation and cell contact 

This rule is summarised in box 4. As described in Walker et al. (2004a), agents contain memory 

parameters representing their current position in a particular phase of the cell cycle. The G1 phase 

BOX 3 - Migration Rule 
If total compressive force <5 

Calculate surface tension force due to transient contacts  
Calculate total adhesion force due to E-cadherin mediated 
contacts (eq 5) 
If total intercellular force<migratory force 
 If random no. <0.1 

Randomly alter current direction by up to 90 
degrees 

  Calculate new x co-ordinate 
  Calculate new y co-ordinate 
  Adjust position if crossed model edge 
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includes a checkpoint at which cells must either commit to progressing through the rest of the 

cycle, ultimately resulting in a mitotic division, or enter the G0 (quiescent) phase. As in our 

previous model, contact inhibition of growth is represented by the rule that agents with four or 

more E-Cadherin mediated contacts arrest in G0. Ultimately, it is our intention to replace this 

phenomenological rule with a more sophisticated model of the mechanisms governing contact 

inhibition (see Discussion), but this simplistic representation was deemed sufficient for the 

simulations described here. 

 

BOX – 4 Cell Cycle rule 
If cell is halfway through G1 
 if condition1=true & condition2=true & condition3=true 
  Increment cycle step and grow 
 else  
  Enter G0 
else if cell is elsewhere in G1  
 Increment cycle step and grow 
else if cell is at end of G1 phase 
 progress to S/G2 phase 
else if cell is in G0  
 if condition1=true & condition2=true & condition3=true 
  Re-enter G1, increment cycle step and grow 
 else  
  Remain in G0 
else if cell is in S/G2 phase 
 Increment cycle step 
else if cell is at end of S/G2 phase 
 Progress to M phase 
else if cell is in M phase 
 Increment cycle step 
else if cell is at end of M phase 
 Divide 
 
Condition 1 (juxtacrine condition) – cell has maintained at least 
one contact (stable or transient) for >= 8 hours 
Condition 2 (contact inhibition condition ) – cell has <=4 stable 
contacts 
Condition 3 (morphology condition) -  cell has radius in xy plane 
>=15�m 
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The influence of cell shape on growth was also included, with cells allowed to progress only once 

they had assumed a flattened morphology on the substrate (based on experimental observations in 

Nelson and Chen (2002). Cells that have reduced their substrate contact area in response to 

compressive forces in high density culture will eventually exit the mitotic cycle into G0. This rule 

remains unchanged for this study. 

As we describe in Section I above, we have incorporated the requirement that cells must maintain 

at least one intercellular contact (stable or transient) to be released from G0 at the start of the 

simulation. The latter represents the concept of cell cycle modulation via juxtacrine signaling 

mechanisms explored in a recent study (Walker et al., 2008). 

 
2.5.5 Overlap elimination algorithm 

Following each iteration, any overlap between agents (represented as circles in the plane of the 

substrate) due to movement, growth and division was resolved by application of a simple 

numerical algorithm which calculated displacement due to agent overlaps (interpreted as 

repulsive contact forces in arbitrary units) until equilibrium was reached, or specified 

convergence criteria were met. New position data, along with any residual overlap (interpreted as 

residual compressive force), was passed back to the agent model for the next time step, 

where,according to the morphology rule, it could result in cells reducing their radius in the plane 

of the substrate, and ultimately, exiting the cell cycle. It is important to note that this algorithm 

deals with “passive” shifting of the agents by relatively small distances in order to eliminate 

overlap only. “Active” movement mechanisms (e.g. migration, cell division) are handled entirely 

by the rule-based model. 

The acceleration induced in the ith cell, by the force exerted by its n neighbours is given by 

Newton’s second law, with damping: 

1

n

i i i i
j

m u c u F
�

 ���� �       (5) 
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where im  is the mass of the cell, ic is its damping constant and u  is its displacement. As the cells 

only interact in two dimensions, the ‘mass’ of the cell is based on the planar area of the cell, 

assuming a unit density: 

2
ii rm ��        (6) 

The inclusion of this inertial term resulted in a tendency of smaller cells to be shifted more than 

larger cells when subject to intercellular forces. 

The damping constant, ic  is proportional to the mass of the cell: 

 i ic m��        (7) 

where the proportionality constant � is assigned according to the global location of the cell. By 

default, �=0.1, but cells close to the edge of the model are given higher damping factors to inhibit 

their movement and prevent them being pushed off the edge of the model. Damping factors in the 

x and y direction can be manipulated independently, thus a cell may be more easily pushed in one 

direction than the other. 

All agent locations and radii are passed from the agent model to the physical model. For each 

‘physical’ iteration, a check is made to identify with which nearby cells an agent is overlapping. 

In addition, a list of the flags of other agents to which it has formed an intercellular bond is 

passed, and an attractive force is assumed to exist between the latter in order to counteract any 

tendency for bonded cells to be forced apart. Forces are assumed to be zero between agents that 

are neither overlapping, nor bonded.  

The repulsive force exerted the cell i by neighbour j is defined to be proportional to the overlap or 

edge separation ijO  between the cells. 

ij ij ijF k O�        (8) 
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where ijk  is an arbitrary ‘stiffness’ constant defined to be equal to the inverse of the separation of 

the centres of cells i and j. If cells i and j have radii ir  and jr  and are located at � �,i ix y  and 

� �,j jx y  respectively, then: 

� � � � � �2 2

ij j i j i i jO x x y y r r� �  � �     (9) 

Note that the signs of the constants are constructed in such a way that cells experience a repulsive 

force from overlapping neighbours, and an attractive force from bonded neighbours that may be 

separated by a small distance.  

Assuming the vector i j�  is orientated at angle �  with respect to the x axis, resolving into two 

orthogonal directions and substituting into (9) gives: 

� � � � � �� �cosij j i i jij xF k x x r r �� � �      (10a) 

 � � � � � �� �sinij j i i jij yF k y y r r �� � �      (10b) 

The co-ordinates of cell i at time t are the co-ordinates � �,Oi Oix y  at the previous time step plus 

the displacement ,xi yiu u  during the current time step, so equation 10a can be written: 

� � � � � �� � � �1 2ij Oi Oj xi xj xij i jij xF k x x u u k r r� �  � �    (11a) 

and likewise for equation 10b: 

 � � � �� � � �jiyijyjyijiijyij rrkuuyykF ���� 2001)(   (11b) 

where 1k  and 2xk  are constants depending on the location of the two cells: 

� � � �
1 2 2

1
ij

j i j i

k
x x y y

�
�  �

     (12a) 

 
� � � �

2 2 2

cos
xij

j i j i

k
x x y y

�
�

�  �
    (12b) 
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� � � �

2 2 2

sin
yij

j i j i

k
x x y y

�
�

�  �
    (12c) 

The value of the differential terms in equation 5 at time t, can be written as difference equations: 

, , , 2
, 2

2i t i t t i t t
i t

u u u
u

t
�� � �� 

�
�

��      (13a) 

, ,
,

i t i t t
i t

u u
u

t
���

�
�

�       (13b) 

 where ,i t tu ��  and , 2i t tu � �  denote the displacement of the ith cell evaluated at the two 

previous time points. Substituting equations 11 and 13 a and b into 5 gives the complete equation 

of motion for cell i in the x direction: 

� � � �� � � �, , , 2 , ,
1 22

1

2 n
i t i t t i t t i t i t t

i i i ij Oi Oj xi xj xij i j
j

u u u u u
m m k x x u u k r r

t t
��� � � ��

�

�  �� � � � � 	 � �  � � � � � � � �� �� � � �
�

          

(14a) 
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         (14b) 

Similar equations can be assembled to describe the x and y displacements of every cell in the 

model. Equation 14 a and b can then be rearranged: 

� � � �� � � �� ��
�

��

��

���
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The above can be solved explicitly to give u x,t and uy,t for every cell at every time step. The 

updated position will thus depend upon the displacements at the previous two time steps. 

This algorithm is run until empirically determined convergence criteria are fulfilled, or for a 

maximum of 200 iterations. The upper limit is required to allow for situations where the model 

approaches confluence and convergence will never be reached. In this case, any residual ‘force’ 

or overlap is passed back into the agent model, along with the updated cell locations. This is 

interpreted as compressive force, resulting in subsequent rounding of the cells according to the 

morphology rule (see section 2.5.2 above). 

2.6  Sensitivity Testing 

In order to ascertain whether the model predictions were dependent on particular parameter 

values, a sensitivity analysis was carried out on a selection of parameters associated with each of 

the agent rules sets. Priority was given to parameters that were estimated, rather than those 

extracted directly from the literature or from experimental data (e.g. observation of time-lapse 

images). Parameters subjected to sensitivity testing are indicated in table 2. 

 Each of a total of ten parameters was perturbed in turn by between 10 and 50% of the default 

value, and the results of the subsequent simulations analysed in order to assess the sensitivity. 

This analysis was restricted to 100% normal (EC-N) or 100% abnormal (EC-A) populations only, 

and three replicate simulations were carried out for each test using different randomly assigned 

distributions of seeded agents and varying random number generator seeds to account for 

variation due to stochastic effects. 

 A quantitative measure of sensitivity to each parameter was obtained by fitting a sigmoidal 

function to each mean growth curve, and comparing the parameters describing this function to 

those obtained from the unperturbed simulation. As shown in figure 4, the sigmoidal function 

describing total cell number, N at time t is given by: 
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  � �� �btc
aNtN

�
�

exp1
)( 0     (16) 

were N0 is the starting cell number (fixed at 200) a is the maximum cell number, c is the 

maximum gradient of the curve and b is the time point at which this maximum gradient occurs. 

Curve fitting was carried out using Matlab’s optimisation toolbox (Mathworks.com).  

Parameter 
Name 

Application Value Source Sensitivity 
test? 

Adhesion rule 
q Equation 1 exponent 1/3 estimated Y 
A, C, M, B,T Equation 2 parameters A= 0.1, C= 

0.57, M= 
1mM, B= 1, 
T =1  

(Baumgartner 
et al., 2000) 

N 

p Equation 3 parameter controlling 
maximum length of transient contact 

1.5 estimated Y 

max_sep Equation 3 parameter – maximum 
separation at which cells can form an 
initial contact 

5�m Estimated 
from time- 
lapse images 

Y 

Migration/morphol
ogy rule 

    

CF Critical compressive force at which 
cells cease actively migrating and 
round up 

5 (arbitrary 
units) 

estimated Y 

Migration rule     
MF Active migration force 20nN (Lee et al., 

1994) 
N 

ST Eq. 4. Surface tension per unit length 0.32nN/�m (Foty and 
Steinberg, 
2005) 

Y 

AF1 Eq. 4. Adhesive force due to nascent (< 
1 hour old) E-cadherin mediated 
contacts 

100nN (Chu et al., 
2004) 

Y 

AF2 Eq. 4. Adhesive force due to > 1 hour 
old E-cadherin mediated contacts 

200nN (Chu et al., 
2004) 

Y 

vmax Maximum migration speed 80�m/hour Estimated 
from time- 
lapse images 

Y 

Cell cycle rule     
cyc_len Cell cycle length (if no G0 entry) 15 hours (Southgate et 

al., 1994) 
N 

ci_bond Number of bonds required for contact 
inhibition (G0 entry) 

4 estimated Y 

min_contact_time Minimum intercellular time required 
for S phase entry  

4hours estimated Y 

min_size Minimum radius in xy plane required 
for S phase entry 

15�m estimated Y 

Table 2 Summary of parameters used in agent model 
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Finally, in order to assess the sensitivity to edge effects, simulations for 100% normal and 100% 

abnormal populations were also carried out with the substrate size fixed at 2mm x 2mm and a 

seeded population of 800 agents. 

3. RESULTS 

3.1 Simulation results 

Figure 5 shows growth curves obtained for each of the simulations listed in Table 1. Error bars 

represent the standard deviation of three replicate simulations. Data are plotted only at intervals 

of 5 iterations for clarity. 

In the case where all cells expressed normal amounts of E-cadherin (simulation 1 – figure 5a), 

population growth depended on the concentration of exogenous calcium. Initially, there was no 

growth in either low (0.09mM) or physiological (2.0mM) exogenous calcium due to the lag phase 

where cells take several hours to adhere to the substrate, then migrate to form initial intercellular 

contacts. As described above, once a cell maintained intercellular contacts for a period not less 

than 4 hours, it was permitted to re-enter the cell cycle, resulting in cell division approximately 10 

hours later.  

After approximately 15 hours, cells in 2.0mM calcium expanded in number more quickly (due 

to the increased tendency to maintain intercellular contact and hence greater propensity to fulfill 

the conditions to re-enter the cell cycle). The periodicity that can be seen in the growth curves at 

early time points reflects the synchronicity in cell cycle phase – all cells were initially in G0 and 

were released into the cell cycle within a relatively small number of iterations. Cell numbers in 

the low calcium environment initially increased more slowly, but as more cells were gradually 

produced by mitosis, contacts become more frequent, releasing yet more cells from G0 and the 

population began to expand exponentially. The total number of cells in the population maintained 

in the low calcium environment overtook that in physiological calcium after approximately 130 

iterations (~2.7 days).  As confluence was approached, the high number of stable, E-cadherin 
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mediated contacts resulted in many cells in physiological calcium becoming contacted-inhibited 

and re-entering G0. High cell density resulted in some cells in 0.09mM calcium also forming E-

cadherin mediated contacts (this is supported experimentally by observations from  

immunofluorescence images of high density urothelial monolayers), but most cells in low 

calcium became quiescent due to increasing cell compression and the minimum radius rule (see 

box 4). At the end of the simulation period (representing approximately 4.7 days), the virtual 

population ‘cultured’ in 2 mM calcium conditions contained approximately 47% fewer cells 

relative to the equivalent low calcium simulations. 

Inspection of figure 5 b-f) suggests that this pattern of normal population growth could be 

modified by a relatively small proportion of abnormal cells. Figure 5 b shows that when only 

10% of the seeded population had inactive E-cadherin, the difference in the growth rates in the 

different calcium environments was reduced, resulting in a difference in cell number of 

approximately 28% at confluence. Most significantly, cells with aberrant E-cadherin failed to 

form multiple stable contacts, even in physiological calcium and hence did not tend to become 

contact-inhibited when approaching confluence, resulting in a prolonged exponential growth 

phase before ultimately arresting as a result of the minimum radius rule. This pattern became 

increasingly evident as the proportion of abnormal cells in the seeded population was increased. 

When 75% of the initial population had abnormal E-cadherin expression (figure 5e), the effect of 

contact inhibition at high cell density was reduced to such a degree that there was virtually no 

difference in the final population density between simulations in virtual 2.0mM and 0.09mM 

exogenous calcium. However, normal cells in the physiological calcium environment in mixed 

populations were able to form stable contacts at a frequency sufficient to produce elevated growth 

rates at earlier time points (up to 150 iterations). The similarity between the blue and green curves 

in figure 5 a-f) suggests that E-cadherin mutation had a minimal effect on population growth in a 

low calcium environment. 

Figure 6 shows the growth data for heterogeneous population simulations in 2.0mM exogenous 
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calcium. In this case, population increase (as a multiple of the plated cell number) for each sub-

population (EC-N or EC-A) is plotted separately at each time point. For comparison purposes, the 

results for 100% EC-N and 100% EC-A (simulations 1 and 6) are plotted on each set of axes. As 

well as demonstrating the relative ability of each sub-population to expand over time, this also 

reveals how the growth characteristics of each population is changed relative to the homogeneous 

case by the interactions with the other cell type. 

As shown in figure 6 a), whereas normal cells in 2.0mM calcium increased their numbers by a 

factor of approximately 8 during the course of the simulation, the mutated cell population 

expanded by approximately a factor of 18 in the same time period (note that the relatively large 

error bars for this curve relate to the small size of the absolute number of EC-A cells at t=0 in this 

simulation). This was in spite of the fact that mutated cells had a slightly reduced growth 

advantage compared to EC-N cells when the culture was relatively sparse (before 110 iterations), 

due to their decreased tendency to form stable contacts. As the seeded fraction of abnormal cells 

was increased, their overall growth advantage relative to the EC-N population was gradually 

diminished and that of the latter increased. At starting ratios of 1:1 or above (figure 6 c and d), 

abnormal cells were actually at a slight disadvantage compared to normal cells due to their 

reduced likelihood of maintaining intercellular contact for a minimum of four hours (see section 

2.5.4 and box 4), resulting in an initial delay in this sub-population re-entering the cell cycle.  

Comparing the ability of sub-populations to expand in heterogeneous, relative to homogeneous 

cultures also revealed interesting results. When just 10% of the seeded population comprised EC-

A cells, the steady state population of normal cells increased to 8 times the starting population 

over the simulation period (figure 6a), whereas this value for a purely homogeneous EC-N 

population was 6.5. This represents a 20% increase in the expansion of these cells. As the seeded 

fraction of EC-A cells was increased, the expansion of EC-N cells increased further (figure 6 b-

d). This relates to a reduced effect from contact inhibition due to the inability of neighbouring 

EC-A cells to form stable contacts. The effect of EC-N cells on the expansion capacity of the EC-
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A population is a little more complex. In situations where abnormal cells are present as a 

relatively small proportion of the seeded population, there was an early enhancement of growth 

amongst this sub-population due to the greater opportunity for intercellular contact (as abnormal 

cells may be ‘trapped’ by the colonies formed by their normal counterparts). However, as the 

growth of the normal population slowed upon approaching confluence due to contact inhibition, 

the abnormal cells continue to expand rapidly, leading to a relatively large increase in this sub-

population. As the mix ratio became more balanced, and normal cells benefitted from the relative 

lack of contact inhibition, the opportunity for continued expansion of the mutated population was 

diminished. Finally, when abnormal cells are in the majority at the time of seeding, the 

opportunity for population expansion is actually reduced compare to a 100% abnormal 

population, due to competition for space with the rapidly expanding normal cells. 

Figure 7 shows snapshots of the cell populations at iteration numbers 20, 50, 75 and 100 for 

homogeneous simulations 1 (both 0.09mM and 2.0mM calcium) and 6 (2.0mM calcium only). 

Figure 8 shows snapshots at the same time points for heterogeneous simulations 2-5. Movies 

corresponding to the simulations 1, 4 and 6 in both low and physiological calcium are provided as 

additional files 1-6. Inspection of figure 7 row a demonstrates that, as previously reported 

(Walker et al.,2004a), normal cells in 0.09mM calcium did not tend to grow in colonies but 

remain dispersed. In additional movie file 1, generated from the consecutive sequence of these 

snapshots, it can be seen that a large number of cells were migratory. Row b shows that normal 

cells in physiological calcium tended to grow in colonies and the corresponding movie (additional 

file 2) shows little individual cell migration. When all cells were mutated (figure 7 row c and 

additional file 6), there was some grouping of cells, but the cellular distribution was dispersed and 

similar in appearance to the low calcium case (row a). 

When mutated cells were present as sub-populations (figure 8), they tended to be pushed to the 

outside of the colonies, and movies show frequent migration of these cells between colony edges 

(e.g. see additional file 4). In the case where the mutated population was dominant (row d), 
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colony formation amongst the remaining normal subpopulation was significantly disrupted. As 

the mixed population simulations reached confluence, abnormal cells formed islands surrounded 

by normal cells and, due to the lack of contact inhibition, these islands continued to expand 

significantly after confluence was reached (as for EC-N cells in low calcium, these cells 

eventually entered G0 due to the rules that state that cells become increasingly rounded in 

response to intercellular compression forces, and become quiescent when their radius in the plane 

of the substrate falls below a threshold value). Inspection of movies corresponding to low calcium 

simulations showed little difference in behaviour according to the proportion of EC-A cells (e.g. 

compare additional files 1, 3 and 5).  

By examining the behaviour of individual subsets of cells in the model in more detail, it was 

possible to ascertain whether the alterations observed in the population level dynamics were a 

result of the altered phenotype of the abnormal cells only, or whether the presence of these cells 

could also modify the behavior of their normal counterparts. Figure 9a  and c show the mean 

number of stable contacts per cell in the homogeneous and heterogeneous 2.0mM calcium 

simulations for EC-N and EC-A cells respectively. Figure 9b and d shows the fraction each sub-

population that actively migrated at each iteration. This figure demonstrates that, as expected, the 

mean number of stable contacts established by EC-A cells is consistently lower than those 

established by EC-N cells, irrespective of total cell density. Consequently, the migration rate for 

EC-A cells is consistently higher than for normal cells. 

 It can be seen that the presence of 10% mutated cells slightly reduces the mean number of 

stable contacts maintained by normal cells. This effect is enhanced as the seeded fraction of 

mutated cells is increased and the normal cells in these simulations adopt a more migratory 

phenotype. This suggests that the influence of the mutated cells on the mixed population 

dynamics is complex and cannot simply be attributed directly to an altered cell proliferation rate 

amongst the mutated sub-population.   
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3.2 Results of Sensitivity Testing 

The parameters selected for sensitivity testing are listed in Table 2. As described in section 2.6, 

a sigmoidal curve was fitted to the mean growth curve obtained for each of the parameter 

perturbations. Parameter values obtained for each test were then assessed against those obtained 

for the control simulations (no parameter perturbation) in order to give a quantitative measure of 

sensitivity, S: 

 

� �
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�       (17) 

where Sn is the sensitivity to parameter n, Pn is the output (a or b in equation 16) for the 

perturbed simulation, P0 is the equivalent parameter for the control simulations, In is the value of 

the input parameter for the test simulation and I0 is the equivalent value from the control 

simulations (given in Table 2).  

This process was carried out for the parameters a and b in equation 16. These relate to directly 

observable characteristics of the growth curve (a is equivalent to the steady state population 

number and b to the time point of maximum population growth, both of  which have been shown 

to vary according to exogenous calcium concentration). The parameter c, which relates to the 

maximum curve gradient, was not observed to vary significantly, and results are not presented. 

Both a quantitative and a qualitative analysis of sensitivity data was carried out.  

Figure 10 shows the sensitivity factors calculated based on the values of a and b above plotted 

on a 3D surface plot. The x and y axis represent the sensitivity factors for a and b respectively (as 

calculated according to equation 17) for any parameter with a Sn value greater than 0.1. The z axis 

(surface height) is used for illustrative purposes only to emphasise the relative sensitivity factors. 

Separate plots are used to represent 100% EC-N cells in low calcium (figure 10a), 100% EC-N 

cells in physiological calcium (figure 10b) and 100% EC-A cells in low calcium (figure 10c - 

results did not depend on exogenous calcium in this case). Plots d-f are rescaled versions of a-c to 
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more clearly display the clusters of parameters with sensitivity factors <1. 

A qualitative analysis was also carried out where Sn values were ranked as low (<0.5), 

intermediate (0.5-1.0) or high (>1.0) for each simulation category and each parameter in turn was 

checked in order to ascertain whether variation within the tested limits resulted in the violation of 

the four primary growth characteristics reported above: 

I. Populations of normal cells enter the exponential phase more rapidly in physiological 

calcium compared to low calcium 

II. Populations of normal cells in low calcium reach a higher steady state density than 

those cultured in physiological calcium. 

III. Populations of mutated cells grown in either calcium concentration reach a steady state 

population number which is approximately equivalent to normal cells grown in 

physiological calcium 

IV. Populations of mutated cells grown in either calcium concentration enter the 

exponential phase at approximately the same interval as normal cells cultured in low 

calcium.  

The results of the qualitative sensitivity analysis are shown in Table 3. 

As shown in figure 10 and table 3, certain parameters do have high sensitivity values in terms 

of their influence on both final population density (a) and time to reach maximum growth rate 

post-seeding (b). Specifically, these are the parameter ci_bond, which dictates the maximum 

number of E-cadherin mediated contacts required for contact inhibition (this is critical in 

determining the final cell number in normal physiological calcium simulations), and min_size, 

which determines the minimum x-y plane radius at which cells are permitted to proceed through 

the cell cycle checkpoint (important in determining the steady state population in all simulations). 

Parameters with a moderate influence on observed population growth include vmax (maximum 

migration velocity), and the minimum time a contact must be maintained to allow cell cycle 

progression. However, whilst these parameters may influence the absolute values associated with 
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population growth, it was observed that none of the sensitivity tests resulted in a violation of the 

general relative characteristics of growth reported for either the 100% normal, or 100% mutated 

cell populations. 

Finally, the growth characteristics of 100% normal, or 100% mutated cell populations were 

found to hold for simulations carried out on a 2mm x 2mm virtual substrate, which suggests that 

our results are not sensitive to boundary effects (results not shown). 

Maximum Sensitivity 
Factor 

Observation violated Parameter 
Name 

100% 
EC-N, 
[Ca2+]=
0.09mn 

100% 
EC-N, 
[Ca2+]=
2.0mM 

100% 
EC-M, 
[Ca2+]=
0.09mn 

I II III IV 

Adhesion rule        
Q L L L x x x x 
P L L L x x x x 
max_sep L L L x x x x 
Migration/morp
hology rule 

       

CF L L L x x x x 
Migration rule        
ST L L L x x x x 
AF L L L x x x x 
vmax M M M x x x x 
Cell cycle rule        
ci_bond M H L x x x x 
min_contact_time H M M x x x x 
Min_size H H H x x x x 
Table 3 Qualitative results of sensitivity analysis. Maximum sensitivity factors associated with each 
model parameter are classified as low (L) - <0.5, medium (M) 0.5-1.0 or high (H) - >1.0. An x 
indicates that the relevant growth characteristic is not violated (see text in Section 3.2 for further 
details). 
 

4.  DISCUSSION 

Understanding the mechanisms by which cell-cell interactions determine cellular behavior is 

central to understanding not only normal tissue growth but also neoplastic development. We have 

described the extension and application of an agent-based model of epithelial cells in culture in 

order to explore these concepts. In particular, we have focused on the adhesion protein E-

cadherin, its role in governing cell:cell adhesion and modulating proliferation under different 

environmental conditions and the consequences of loss of function from all, or a subset of cells. 
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We have included an enhanced rule set describing adhesion, migration and proliferation effects 

in response to current and recent cell-cell contacts. This rule set is based on our own observations 

of the behaviour of NHU cells in culture (as revealed by time-lapse microscopy), data reported in 

the biological literature, and our own previously developed multi-scale computational exploration 

of juxtacrine intercellular signaling mechanisms (Walker et al., 2008). In this previous paper, we 

described a potential pro-proliferative effect mediated by juxtacrine activation of EGFR that 

required direct contact with ligands on juxtaposed cell membranes, with frequent transient 

contacts or expanding E-cadherin bonded contacts required to maintain Erk in an active form over 

a period of several hours, as required to promote cell cycle progression (Roovers and Assoian 

2000; Yamamoto et al., 2006). This informed a new rule, which can be considered an abstraction 

of this mechanism, stating that in order to progress though the G1/G0 checkpoint, a cell must 

have maintained intercellular contact for a continuous period of at least 4 hours.  

Although the parameters defining this rule set (and in particular, the time period over which 

contact must be maintained) are essentially arbitrary, a good qualitative match with the growth of 

NHU cells cultured in low and physiological calcium conditions was obtained (figure 1 and figure 

5a). A sensitivity analysis revealed that changes of " 2 hours in this time threshold caused some 

change in the predicted growth rates, but the relative patterns of growth in the two environments 

were not significantly affected. Thus, our rule set was deemed to be suitably robust for the 

computational exploration described here. It should be noted that we have ignored the effect of 

soluble growth factors, which might be expected to have a similar growth enhancing effect on 

cells in both low and physiological calcium environments. 

We have applied our model to investigate the behavior of mixed populations consisting of two 

sub-groups of cells: those that normally express E-cadherin and those in which this protein has 

been compromised or down regulated. Introduction of a sub-population of mutated or “anti-

social” cells into the model yielded interesting predictions. The presence of even a relatively 

small fraction of mutated cells was predicted to affect the population growth characteristics, but 
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the degree to which population growth was modified was highly dependent on the extracellular 

environment of the cells. When the exogenous calcium concentration was very low, no significant 

effect was seen. These predictions highlight the importance of the role of the tissue environment 

in determining cellular behavior, reinforcing the concept that a particular genotype does not 

necessarily always yield the expected phenotype. 

Varying the relative proportion of normal and abnormal cells in a physiological calcium 

environment suggested that the different cell sub-populations had a relative growth advantage or 

disadvantage that depended both on the mix ratio and the degree of confluence of the culture. In 

particular, our model predicted that even a small number of “anti-social” cells could modulate the 

confluent cell population density, as the lack of contact inhibition yielded a growth advantage in 

the mutated population as confluence was approached. As the fraction of the mutated population 

in the seeded culture was increased further, intercellular contact was disrupted to such a degree 

that proliferation in the sparse culture was negatively modulated, leading to an initial reduction in 

population growth rate. Under these conditions, cells with E-cadherin mutations were actually at 

a disadvantage, compared to those that could form stable contacts.  

Previous publications  (e.g Glazier and Graner, (1993); Hogeweg, ( 2000)) describe the 

computational exploration of the Differential Adhesion Hypothesis (reviewed in Foty and 

Steinberg, (2005)): the idea that differences in the adhesive properties of cells can drive tissue 

formation and embryogenesis, resulting in diverse tissue morphologies. Our simple rule-based 

model, coupled with a mathematical representation of rigid body interactions is in agreement with 

these more complex models, predicting an emergent behaviour whereby subpopulations of 

mutated cells were pushed to the outside of the colonies, or in the case where this population is 

dominant, disrupted colony formation amongst the remaining normal population. 

Our model also predicted that population dynamics were not only directly influenced by the 

presence of abnormal cells in terms of a density-dependent growth advantage or disadvantage in 

relation to their normal untransformed counterparts, but also that the presence of these cells may 
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actually modify the behaviour of their normal neighbours. This results in an indirect modulation 

of population growth. As shown in Figure 6, the relative expansion capacity (cell number at 

steady state compared to seeded  cell number) of normal cells in heterogeneous cultures, as 

compared to the homogeneous case, was progressively increased as the fraction of abnormal cells 

in the seeded population was increased, due to the reduced effect from contact inhibition at high 

density.  This may have implications for the development of hyperplastic epithelium, where 

genetically ‘normal’ cells may proliferate excessively, potentially due to loss of contact inhibition 

cues in their local environment. Our results suggest that the appearance of even a relatively small 

number of cells whose ability to form stable contacts is genetically compromised could 

potentially provide such a cue for abnormal proliferative behaviour among their non-transformed 

counterparts. 

As shown in figure 9a), the mean number of stable contacts among normal cells in mixed 

populations was decreased and their propensity to migrate increased, relative to cells in entirely 

normal populations, again, simply due to their interaction with abnormal cells which were less 

likely to form stable contacts. This ability of transformed cells to influence the behavior of 

normal cells is likely to be further modified in real biological tissue, for instance, through 

alterations in the production of excreted or surface bound growth factors which are not explicitly 

included in this model. This phenomenon may have important implications for understanding the 

process of neoplastic transformation and natural selection advantage. 

In our simulations, we have assumed that the only change associated with the abnormal cells is 

their inability to form stable intercellular contacts. The requirement for sustained intercellular 

contact (comprising either stable, or serial transient contacts) to facilitate initial release from G1 

still holds for our EC-A population. However, in many malignant cell types, there are multiple 

changes to cell phenotype, particularly involving growth control mechanisms, which have not 

been considered here.  

In this study, we have modelled cell populations that are well mixed and initially at low density. 



Acc
ep

te
d m

an
usc

rip
t 

 

 33

During in vivo malignant transformation, tissues are confluent, and tumours may arise and grow 

in spatially-confined locations. Modelling the behaviour of a single, or small group of 

transformed cells in a confluent, quiescent  monolayer would allow us to explore the concept that 

mutated cells may remain nascent within a normal tissue until an event, such as tissue injury, acts 

to drive tumour formation as part of a proliferative wound healing response.   

Recently, Ramis-Conde et al., (2008;2009) used a multiscale model of E-cadherin/�-catenin 

signaling in confluent cell populations to demonstrate that the loss of adhesion in a small area 

could give rise to a ‘wave’ of cell detachment propagating from the initial site of disruption. The 

mechanism they postulated was that �-catenin released from intercellular contacts acts as a 

transcription factor to upregulate expression of genes responsible for promoting migratory 

behaviour, ultimately resulting in an epithelial-mesenchymal transition. The potential role of cell 

proliferation or interaction(s) with the extracellular environment was not explicitly explored in 

their model. However, these computational studies can potentially play an important role in 

probing the relative importance of cellular level phenomena in determining tissue characteristics. 

It is unavoidable that some parameters in any computational or mathematical model must be 

either estimated or assumed, as exact values are difficult or impossible to obtain experimentally. 

The process of methodological sensitivity testing of model parameters is important in identifying 

particular control parameters that are critical in regulating model behaviour. Our sensitivity 

analysis revealed that parameters associated with cell cycle control were most important in 

determining quantitative aspects of population growth, though none of our parameter 

perturbations violated the relative growth characteristics under different simulation conditions 

and hence, our model can be assumed to be qualitatively robust. Parameters controlling migratory 

and adhesive behaviour (which were generally taken directly from the literature, or derived from 

observation of time-lapse images) generally had a much smaller influence on the model. 

In an agent-based model, certain parameters may themselves represent abstractions of particular 
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underlying biological mechanisms. An example of the latter is the rule in our model, which states 

that a cell with four or more stable intercellular contacts becomes contact-inhibited and enters the 

G0 phase. This simplistic rule is intended to represent intracellular processes relating to cell 

contact and control of proliferation, some of which are yet to be fully elucidated. A candidate 

mechanism for contact-mediated downregulation of proliferation is the sequestration of the 

intracellular protein �-catenin to intercellular contacts, thus preventing it from entering the 

nucleus where it can act as a transcription factor in cell cycle progression (Stockinger et al., 

2001). We are currently in the process of developing a more detailed mechanistic model of this 

process, which will ultimately replace our simple contact inhibition rule, and hence eliminate the 

ci_bond parameter which has a relatively strong influence on steady-state population in 

physiological calcium concentrations. This ability to extend model complexity as deemed 

necessary by sensitivity analysis, or comparison with experimental data is an inherent advantage 

of the agent-based paradigm.  Other important parameters, including min_contact_time and 

min_size may in future be more tightly constrained by further analyses of time-lapse microscopy 

data.  

Although particular model parameters (e.g. minimum cell cycle duration, migration speed) are 

set to reflect the behavior of a particular cell type (human urothelial cells), many of the behaviors 

represented by the model (proliferation, adhesion, migration) are generic across many biological 

tissue types.  Application of our model to other tissue types would simply involve adjusting the 

appropriate parameters. The addition of new rule sets in order to represent different biological 

processes (e.g. differentiation, stratification) is also a relatively trivial task. 

As discussed above, some parameters in our model are currently, by necessity, arbitrary. 

However, the ability of the model to predict experimentally observed emergent behaviour is a 

good indication of its robustness. In order to test this, we intend to carry out in vitro experiments 

on mixed populations of human urothelial cells, where E-cadherin expression in a subset of cells 

has been altered by genetic manipulation. Comparison of our model predictions with 
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experimentally-acquired growth curves and also observation of individual cell behaviour by time-

lapse microscopy will either support our current model rule set, or direct further in vitro and 

computational experimentation. This iterative, symbiotic relationship between in vitro and in 

virtuo experimentation is essential for enhancing our understanding of biological behaviour and 

will ultimately result in validated rule sets that can be translated into three dimensional 

geometries that are more representative of in vivo tissue environments. 

5. CONCLUSION 

We have described simulations generated by our agent-based model of growing cell 

populations consisting of sub-groups of cells expressing normal and abnormally low amounts of 

the adhesion molecule E-cadherin.  Our model has predicted that sub-populations of abnormal 

cells can influence population growth dynamics, both directly, and via their interactions with 

normal, E-cadherin intact cells. The magnitude of the effect of E-cadherin loss-of-function 

amongst a subpopulation of cells on the overall population dynamics is not pre-determined, but 

also depends on the extracellular calcium concentration. 

Our study demonstrates that individual- or agent-based modeling of mixed cell populations can 

provide an insight into biological processes that may be non-intuitive. Ultimately, it is anticipated 

that understanding complex cellular interactions will enhance our knowledge and understanding 

of the development of neoplasia in epithelial tissues and provide new insight into the design of 

treatment regimens. 
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Figure Captions 

Figure 1 Typical growth curves obtained from normal human urothelial (NHU) cells, cultured in 

low and physiological calcium ion concentrations 

 

Figure 2 (a) Schematic showing simulation process (b) Information passed between agent model 

and ‘physical’ solver (a numerical algorithm which eliminates or minimizes cell overlap – see 

Walker et al, (2004a) for further details). 

 

Figure 3 Time-lapse microscopy images of NHU cells cultured in 0.09mM (low) calcium. Frames 

taken at (a) 0 minutes, (b) 10 minutes and (c) 20 minutes, illustrating the persistence of large 

intercellular contacts between cell pairs A and B and C and D. 

 
Figure 4 – Parameters derived from sigmoidal curve fit to modelled population growth 

characteristics. Parameter a represents to total cell number at steady state, and b to the time delay in 

reaching maximum growth rate. 

 

Figure 5 Growth curves (total cell number against model iteration) obtained from mixed 

population simulations resulting from seeded populations consisting of (a) 100% EC-N, (b) 90% 

EC-N, (c) 75% EC-N, (d) 50% EC-N, (e) 25% EC-N and (f) 0% EC-N. Curves in (a) are repeated 

on all axes for comparison. Error bars indicate the standard deviation obtained from 3 separate 

simulations, and are plotted only every five iterations for clarity. 

 

Figure 6 Fractional growth (total sub-population number at iteration divided by seeded sub-

population number) for heterogeneous populations of normal and abnormal cells in 2.0mM 

(physiological) calcium (a) 90% EC-N (b) 75% EC-N (c) 50% EC-N (d) 25% EC-N. Growth curves 
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for homogeneous EC-N and EC-A cells (i.e. from simulations 1 and 6) are included on each set of 

axes for comparison. 

 

Figure 7 Snapshots of normal (blue/dark) and E-cadherin mutant (green/light) cells at various 

time points during homogeneous simulations. Small spherical pink cells are mitotic (both normal 

and abnormal). Row a) Simulation1, 0.09mM exogenous calcium, b) simulation 1, 2.0mM calcium, 

c) simulation 6, 2.0mM calcium. 

 

Figure 8 Snapshots of normal (blue/dark) and E-cadherin mutant (green/light) cells at various 

time points during heterogenous simulations in 2.0mM calcium. Small spherical pink cells are 

mitotic (both normal and abnormal).a) simulation 2, b) Simulation 3, c) simulation 4, d) simulation 

5  

 

Figure 9 (a) mean number of stable (E-cadherin-mediated) contacts per normal cell and (b) 

fraction of normal cells migrating (c) mean number of stable (E-cadherin-mediated) contacts per 

abnormal cell and (d) fraction of abnormal cells migrating in a physiological calcium (2.0mM) 

environment according to initial population mix ratio. 

 
Figure 10 Results of sensitivity analysis presented as surface plots. x axis represents sensitivity of 

parameter a, y axis sensitivity to parameter b (see text and equations 16 and 17 for details), surface 

height and shading is for illustrative purposes only  for a) 100% EC-N population in 0.09mM 

calcium, b) 100% EC-N population in 2.0mM calcium and c) 100% EC-A population in 2.0mM 

calcium. Plots d)-f) are zoomed in versions of a)-c) respectively, to highlight the effect of input 

parameters with sensitivity values < 1. 
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Additional files 
 
Additional file 1  

Virtual time-lapse movie of agent simulation of 100% EC-N cells  in a low calcium (0.09mM) 

environment. Blue =   EC-N cells, pink = cells in M phase of cell cycle. 1 frame = 30 minutes. 

 

Additional file 2  

Virtual time-lapse movie of agent simulation of 100% EC-N cells  in a physiological calcium 

(2.0mM) environment. Blue =  EC-N cells, pink = cells in M phase of cell cycle. 1 frame = 30 

minutes. 

 

Additional file 3  

Virtual time-lapse movie of agent simulation of 50% EC-N cells  and 50% EC-A cells in a low 

calcium (0.09mM) environment. Blue =   EC-N cells, green= EC-A cells, pink = EC-N and EC-A 

cells in M phase of cell cycle. 1 frame = 30 minutes. 

 

Additional file 4 

Virtual time-lapse movie of agent simulation of 50% EC-N cells  and 50% EC-A cells in a 

physiological calcium (2.0mM) environment. Blue =  EC-N cells,  green= EC-A cells, pink = cells 

in M phase of cell cycle. 1 frame = 30 minutes. 

 

Additional file 5  

Virtual time-lapse movie of agent simulation of 100% EC-A cells  in a low calcium (0.09mM) 

environment. Green =  EC-A cells, pink = cells in M phase of cell cycle. 1 frame = 30 minutes. 
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Additional file 6  

Virtual time-lapse movie of agent simulation of 100% EC-A cells  in a physiological calcium 

(2.0mM) environment. Green =  EC-A cells, pink = cells in M phase of cell cycle. 1 frame = 30 

minutes. 
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