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Abstract 

 

I investigate the stability of the homogeneous equilibrium of a discrete-time 

metapopulation assuming costly dispersal with arbitrary (but fixed) spatial pattern of 

connectivity between the local populations. First, I link the stability of the 

metapopulation to the stability of a single isolated population by proving that the 

homogeneous metapopulation equilibrium, provided that it exists, is stable if and only 

if a single population, which is subject to extra mortality matching the average 

dispersal-induced mortality of the metapopulation, has a stable fixed point. Second, I 

demonstrate that extra mortality may destabilize the fixed point of a single population. 

Taken together, the two results imply that costly dispersal can destabilize the 

homogeneous equilibrium of a metapopulation. I illustrate this by simulations and 

discuss why earlier work, arriving at the opposite conclusion, was flawed. 
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1. Introduction 

 

Discrete-time metapopulation models, cast in the form of coupled map lattices (CML) 

and related modelling frameworks, exhibit very rich dynamics even in the simplest 

case of a single species with passive (density-independent) dispersal. These riches 

include cyclic and chaotic behaviour with complicated bifurcation patterns, multiple 

attractors with fractal basins of attraction, and spatial pattern formation of various 

kinds (e.g. Kaneko 1990, 1998; Hastings 1993; Gyllenberg et al. 1993; Doebeli 1995; 

Lloyd 1995; Doebeli and Ruxton 1998; Utz et al. 2007). Because of this inherently 

complex dynamics, much work on discrete-time metapopulations falls back on 

numerical analysis and simulations, and hence is forced to commit to particular choices 

such as using the logistic map, or assuming nearest-neighbour dispersal or a Gaussian 

dispersal kernel. There are preciously few generalisations that hold true independently 

of the map chosen to describe the within-population dynamics and the pattern of 

coupling via dispersal between populations at various distances.  

 

One such general result was given by Rohani et al. (1996) and, under more relaxed 

conditions, by Jang and Mitra (2000); both are special cases of the multi-species model 

of Jansen and Lloyd (2000). These authors proved that in a homogeneous 

metapopulation of a single species, where local populations are unstructured and 

interact solely via passive and cost-free dispersal, the metapopulation equilibrium 

where all local populations are characterised by the same equilibrium population 

density N̂  is locally stable if and only if N̂  is a stable equilibrium of a single 

population in absence of dispersal. Changes in cost-free passive dispersal thus do not 

affect the stability of the homogeneous equilibrium of a metapopulation.  
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The appeal of this result is twofold. First, it holds for a large class of metapopulation 

models since it is independent of the form of local population dynamics and of the 

spatial pattern of dispersal (the fraction of individuals dispersing to various distances). 

Second, it establishes a simple link between the behaviour of an arbitrarily large 

metapopulation and the well-understood dynamics of a single isolated population. The 

result is however subject to the restrictive assumption that dispersal is free of any cost 

such as mortality during dispersal. In reality, dispersing individuals are often exposed 

to extra sources of mortality; passive dispersal in a fragmented habitat is especially 

likely to entail a high risk of death due to landing outside any suitable habitat 

fragment. 

 

In this paper, I extend the analysis to costly dispersal, retaining arbitrary local 

dynamics and an arbitrary pattern of dispersal. I prove that the homogeneous 

equilibrium ˆ ˆ( ,..., )N N  of a metapopulation is stable if and only if N̂  is a stable 

equilibrium of an isolated population, which is subject to extra mortality that equals 

the average dispersal-related mortality of the metapopulation. This direct link between 

the dynamics of the metapopulation and the dynamics of an isolated population is an 

intuitive and straightforward extension of the result obtained by Rohani et al. (1996), 

Jang and Mitra (2000) and Jansen and Lloyd (2000), but it does not guarantee that the 

stability of the metapopulation is independent of dispersal. It is easy to construct 

examples of the single-population dynamics such that adding extra mortality 

destabilizes the equilibrium. With such dynamics within the local populations, 

increasing dispersal destabilizes the homogeneous equilibrium of the metapopulation.  
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The effect of costly dispersal on metapopulation stability has been investigated by 

Ruxton et al. (1997a,b). My results contradict their conclusions: I explain in the 

Discussion why part of the results of Ruxton et al. (1997a,b) are not generalizable to 

arbitrary metapopulations and another part of their results is not correct. 

 

2. The model 

 

Consider a metapopulation of a single species, where all ecological interactions are 

local and populations are connected only by dispersal. Local populations are 

unstructured such that the within-population dynamics is given by  

 

 ( 1) ( ( ))N t f N t1) ( ( ))f1) ( (( (  (1) 

 

where :f � �  may be arbitrary (e.g. may include an Allee-effect and may have 

several nontrivial equilibria, stable or not) but is the same in each population. L local 

populations are connected via passive dispersal, such that a fixed fraction m of 

individuals disperse, and a fraction ijij  of dispersers from population j enter population 

i. The matrix ( )ij( )ij  describes the pattern of dispersal. The dynamics of the 

metapopulation is thus given by 

 

 
1

( 1) (1 ) ( ( )) ( ( ))
L

i i ij j
j

N t m f N t m f N t
1

i1) (1 ) ( ( ))) ( ( ))i1) (1 ) ( ( ))) ( ( )) ))
L

ij j ( )j ((j
1

jijij (ij (  (2) 

 

for 1,...,i L1,..., L1,..., . At a homogeneous equilibrium ˆ ˆ( ,..., )N N , 
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1

ˆ ˆ(1 ) ( )
L

ij
j

N m m f N
L

(1 ))(1 )
j 1

( )
L

ˆ )((( )((
1

ij )f (jijij  (3) 

 

must hold for every index i. Hence for a homogeneous equilibrium to exist, one has to 

assume that 
1

L

ij
j

s
1

L

ijij
1

j s  is the same for each destination patch i. 

 

I make no assumption on the dispersal pattern ( )ij( )ij  other than 
1

L

ij
j

s
1

L

ijij
1

j s  being the 

same for all i, i.e., that a homogeneous equilibrium exists. In particular, dispersal can 

have a mortality cost such that some of the emigrants die during dispersal and do not 

immigrate into any population. This implies that 
1

1
L

ij
i 1

L

ijij
1

j 1  (with equality only for cost-

free dispersal); the sum 
1

L

ij
i 1

L

ijij
1

j  may in general be different for different source patches 

j. The mean probability of survival during dispersal (averaged over all source patches 

at the homogeneous equilibrium) is 
L

j

L

i
ijL

s
1 1

1
ij . 

 

This general model subsumes, among others, the following cases of special interest: 

 

(i) L local populations (with arbitrary spatial locations) are connected via a 

global dispersal pool; each dispersing individual dies with probability 1 ss . In 

this particular case, /ij s Lij /s L/  for all pairs of patches (i,j). 

 



Acc
ep

te
d m

an
usc

rip
t 

 7 

(ii) L populations form a 1-dimensional lattice with periodic boundaries, where 

dispersal depends on the distance between patches and dispersal mortality is 

also distance-related. In this case, ijij  is determined by i jj . More generally, 

ijij  may depend on the (signed) difference i jj , such that dispersal (and/or 

mortality) differs between left and right (e.g. there is a prevailing direction of 

wind). In these cases ( )ij( )ij  is a circulant matrix (cf. Rohani et al. 1996). 

 

(iii) As in (ii), but the L populations form a 2-dimensional lattice of size 1 2L L2L  

with periodic boundaries; a vector of length 1 2L L L1 2L L1  contains the local 

population densities iN  of eqs. (2). In this case, ( )ij( )ij  is a "circulant of 

circulants", i.e., a block circulant where each block itself is a circulant. (Rohani 

et al. (1996) assumed erroneously that ( )ij( )ij  itself is a circulant also for a 2-

dimensional lattice: this is not the case, see e.g. Fig. 1 of White and White 

(2005).) 

 

3. Stability of the homogeneous equilibrium 

 

Consider an isolated population  

 

 ( 1) ( ( ))N t f N t))1) f ( (( (  (4) 

 

with 0 11. From eq. (3) it is obvious that with 1 m msms1 m , the equilibrium 

density of this isolated population, N̂ , equals the local densities of a metapopulation at 

the homogeneous equilibrium, ˆ ˆ( ,..., )N N . In the metapopulation context,  is the 
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probability of not dying due to dispersal (either not dispersing or surviving dispersal). 

The behaviour of the metapopulation is linked to the local dynamics by the following 

proposition: 

 

The homogeneous equilibrium ˆ ˆ( ,..., )N N  of the metapopulation model in eq. 

(2), provided that it exists, is locally asymptotically stable if and only if the 

fixed point N̂  of the single-population dynamics in eq. (4), with extra mortality 

matching the average dispersal-induced mortality at the homogeneous 

metapopulation equilibrium [ 1 m ms[ ms1 m ],  is locally asymptotically stable. 

 

To prove this claim, perform a standard stability analysis by substituting 

ˆ( ) ( )i iN t N n tˆ ( )i ((  into eq. (2). Linearization yields ˆ( 1) ( ) ( )t f N t( )(f1) ( )ˆ( )n Bn , where matrix 

B has the elements 

 

 
1 for 

for 
ii

ij
ij

m m i j
b

m i jffo

jii fm ifor ii111

jijm ijm ijmm
 (5) 

 

and, by the assumption that the homogeneous equilibrium exists, 

 

 
1 1

1 1    for all 
L L

ij ij
j j

b m m m ms iiall 
1 1j1

o   for a
L L

ij ijbij
1 1

j jij11 ij 1  (6) 

 

1 B  is therefore a stochastic matrix (all elements are non-negative and each row sums 

to 1). Since the leading eigenvalue of a stochastic matrix is 1, the leading eigenvalue of 

B must be ; and the eigenvalue of the Jacobian matrix ˆ( )f N̂( )( B  with greatest 
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modulus is ˆ( )f N )f N( ˆ( )( . Hence ˆ ˆ( ,..., )N N  is stable if ˆ( ) 1f N )f N( ˆ( )( 1, which is precisely the 

same as the condition for the single-population dynamics in eq. (4) having a stable 

equilibrium at N̂ .  

 

This proof is a straightforward extension of Jang and Mitra (2000) to the case of costly 

dispersal (but as Silva et al. (2001) also noticed, matrix ( )ij( )ij  need not be irreducible as 

Jang and Mitra (2000) required for the proof to hold; indeed, two unconnected 

networks of populations with identical within-population dynamics and identical value 

of  yield a reducible matrix for ( )ij( )ij , yet the two networks will independently 

equilibrate to the same homogeneous equilibrium upon a small perturbation). The 

same result can also be obtained from the framework of Jansen and Lloyd (2000) by 

introducing some cost to dispersal (but their technical assumption that ( )ij( )ij  is 

diagonalizable is not necessary for the proof above). The pattern of dispersal need not 

be shift invariant, i.e., ( )ij( )ij  need not be circulant as assumed by Rohani et al. (1996). 

 

If dispersal entails no cost ( 11), then the homogeneous equilibrium of the 

metapopulation is stable whenever ˆ( ) 1f N̂( )( 1,  i.e., whenever a single population has 

a stable equilibrium, as found earlier. Costly dispersal destabilizes the metapopulation 

under precisely the same conditions as when extra mortality destabilizes a single 

population. I shall thus explore when decreasing  in eq. 4 leads to loss of stability. 
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4. Destabilization by extra mortality 

 

A fixed point N̂  of the single-population model in eq. (4) undergoes a bifurcation 

when ˆ( ) 1f N )f N( ˆ( )( 1. Here I shall focus on the case when ˆ( ) 1f N )f N( ˆ( )( 1  and extra 

mortality (somewhat counter-intuitively) increases the propensity for "boom and bust" 

behaviour, such that population cycles replace a stable equilibrium. In the alternative 

case of 1)ˆ(' 1Nff  (with ˆ 0N 0), the fixed point generically undergoes a tangent 

bifurcation and disappears. Extra mortality can then drive the population extinct or can 

send it to some other attractor, and destabilization can occur because the population 

may be attracted to a limit cycle or to chaos when N̂  is lost. What happens, however, 

depends on the concrete model at hand and cannot be predicted from the local 

properties of N̂ .  

 

Suppose that the parameters of f are chosen such that ˆ( ) 1f N )f N( ˆ( )( 1  occurs at 00 ; 

for example, one can set 0 10 1  by choosing the parameters of f such that the dynamics 

is at a period-doubling bifurcation point in absence of any extra mortality. Implicit 

differentiation of the equilibrium condition ˆ ˆ( ) 0f N Nˆf N( ) ˆ 0  yields 

0 0
ˆ ˆ ˆ ˆ[ / ] ( ) /[1 ( )] / 2dN d f N f N Nd ]

0000 0
ˆ / 2f f0f f( ) /[1 ( )]( ) /[1 0ff ˆ ˆ( )])] , and therefore 

 

0 0

0 0
0

ˆ ˆ[ ( )] 1 1ˆ ˆ ˆ ˆ( ) ( ) ( )
2

d f N dNf N f N f N N
d d
f N[ ( )]

02d d0 d
0 0

0 20d

ˆ( )] 1 1 N̂Nfff ( ) 0 f0 ( )0000( )( )
1 11 1 ˆ1 1 N( ) ( )( ) (
1 1

( )(( )( ) N( ) ( )( ) (0 00  (7) 
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Adding extra mortality (decreasing ) will destabilize the fixed point (decrease the 

value of ˆ( )f N )f N( ˆ( )(  beyond -1) if the right hand side of eq. (7) is positive, i.e., if f is 

sufficiently convex such that 

 

 
2
0

2ˆ( ) ˆf N
N2

0 N
ˆ( )(

2
2 N̂

 (8) 

 

holds at the bifurcation point 0
ˆ( ) 1f N0 )f N( )ˆ( )f ( )) 1. In the opposite case, adding extra 

mortality stabilizes the fixed point. 

 

It is straightforward to construct biologically plausible maps f for which condition (8) 

is satisfied and therefore extra mortality has a destabilizing effect. To do this, simply 

choose 00  (where the bifurcation is to occur) and N̂  (which can be scaled to 1 without 

loss of generality). Then choose f to satisfy the local conditions 0
ˆ ˆ( )f N N0
ˆf N( )) N̂ , 

0
ˆ( ) 1f N0 )f N( )ˆ( )f ( )) 1 and ˆ( )f N̂( )(  sufficiently large positive such that condition (8) holds; the 

rest of the function can be chosen arbitrarily and such that it is biologically 

interpretable [e.g. (0) 0f 0]. An example is shown in Fig. 1a. Increasing extra 

mortality by decreasing  shifts the fixed point to the left, and makes the function 

( )f N( )f N(  less steep at every point: Hence to destabilize the fixed point, f must be 

sufficiently convex such that the shift towards the left makes the slope steeper (more 

negative) at the fixed point, despite that at every individual point the function is 

becoming less steep [this verbal condition is quantified by (8)]. The example in Fig. 1 

was chosen to make this visually clear; but the function does not have to be so 

exaggerated as this example. Note that the shape of f right to the fixed point with 11 
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( 1.15N 1.15 in Fig. 1a) is irrelevant for the stability of the fixed point with any extra 

mortality ( 11). 

 

Fig. 1b shows the bifurcation diagram of the single-population dynamics in eq. (4) 

with the map ff  as in Fig. 1a. The population is viable for 0.240.24 ; the nontrivial 

fixed point is unstable and the population has an attracting 2-cycle for 0.5 0.780.78 . 

There is another attracting 2-cycle that appears at 0.90.9  via a tangent bifurcation of 

the second iterated map ( ( ))f f N( ( ))f f N( ((  and undergoes a rapid period-doubling cascade, 

but this does not affect the stability of the fixed point of ( )f N( )f N( . 

 

5. Destabilization by costly dispersal 

 

As proven in section 3, the homogeneous equilibrium of a metapopulation is stable if 

and only if the fixed point of the single-population dynamics with 1 m msms1 m  is 

stable, where m is the fraction of individuals who disperse and s is the average survival 

of dispersers. If the single-population fixed point is unstable in the interval 1 0( , )1 0( , )1 0 , 

then the homogeneous metapopulation will be unstable, irrespectively of the pattern of 

dispersal, for the dispersal fractions 0 1(1 ) /(1 ) (1 ) /(1 )s m s0 1) /(1 ) (1 ) /(1 )0 1) (1 ) /(1) (1 ) /(11 .  

 

As an example, consider a metapopulation like in Ruxton et al. (1997), where 10 

patches are arranged in a circle and dispersers are evenly divided between the two 

nearest neighbour patches. Assume that local population dynamics is given by the map 

f shown in Fig. 1a (thick line). As Fig. 2 illustrates, the homogeneous equilibrium is 

stable in absence of dispersal, but costly dispersal destabilizes the equilibrium for 

some values of m. 
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6. Discussion 

 

In this paper, I obtained two results: (1) The homogeneous equilibrium of a 

metapopulation, provided that it exists, is stable if and only if a single population, 

which is subject to extra mortality matching the average dispersal-induced mortality of 

the metapopulation, has a stable fixed point; (2) Extra mortality may destabilize the 

fixed point of a single population. Taken together, these imply that costly dispersal can 

destabilize the homogeneous equilibrium of a metapopulation (see an example in Fig. 

2). Costly dispersal affects metapopulation stability exclusively due to the extra 

mortality it implies: If extra mortality stabilizes the fixed point of an isolated 

population then costly dispersal stabilizes the homogeneous equilibrium of a 

metapopulation, and if extra mortality destabilizes an isolated population then costly 

dispersal destabilizes the metapopulation. Cost-free dispersal has no effect (cf. Rohani 

et al. 1996; Jang and Mitra 2000; Jansen and Lloyd 2000). Because the effect on 

stability is independent of any aspect of dispersal but the average cost, costly dispersal 

can destabilize the homogeneous equilibrium even in the simplest metapopulation 

model with a global dispersal pool. 

 

Ruxton et al. (1997a,b) have previously investigated the effect of costly dispersal on 

the dynamics of a metapopulation, and they concluded that costly dispersal stabilizes 

the homogeneous equilibrium. In particular, they found that extra mortality has a 

stabilising effect in isolated populations, and that the stabilizing effect of costly 

dispersal in a metapopulation is even stronger than the stabilizing effect of extra 

mortality in an isolated population. My results contradict these conclusions. First, I 
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have proven that there is no difference between the stabilizing effect of extra mortality 

and the stabilizing effect of costly dispersal; costly dispersal affects stability only via 

the extra mortality. This discrepancy is due to a simple algebraic error in the proof of 

Ruxton et al. (1997b). [In equations (B.2) and (B.3) of Ruxton et al. (1997b), the 

derivative of the within-population map should appear without being multiplied by 

1 , the probability of not dying due to dispersal in their notation; but their Q 

contains this extra multiplicative factor, so that they account for dispersal-related 

mortality twice. The same results are reproduced as equations (5) and (6) of Ruxton et 

al. (1997a).] Second, Ruxton et al. (1997a,b) found that extra mortality stabilizes the 

fixed point in an isolated population, but their analysis assumed a particular form of 

local population dynamics. Extra mortality indeed has a stabilizing effect in the model 

they studied and also in other widely used discrete-time population models, but this is 

not true in general for all biologically plausible dynamics. 

 

Adding extra mortality destabilizes the fixed point of a single-population model if 

ˆ ˆ( ) 2 /f N Nˆ( ) N̂2 /2  holds at the bifurcation point ˆ( ) 1f N̂( )( 1  (this is inequality (8) with 00  

set to 1 by factoring it into f), i.e., if the map f is sufficiently convex at the point of 

period-doubling bifurcation. All overcompensating models with a differentiable and 

positivity-preserving map f have convex parts (the concave quadratic or logistic map 

needs to be truncated to avoid negative population densities). The few widely used 

maps, however, fail to satisfy condition (8), because the bifurcation does not occur in 

the convex part or the function is not convex enough. Consider the Ricker map, 

( ) aNf N NeNe aN , where 00  is factored into . The Ricker model has a single 

nontrivial fixed point at ˆ (ln ) /N aa(ln(ln ) / a) /  and undergoes a period-doubling bifurcation at 
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2e2e . At the bifurcation point, therefore, ˆ 2 /N a2 / a2 /  and ˆ( ) 0f N̂( )( 00; i.e., the 

bifurcation happens exactly when the fixed point passes through the point of inflection 

of f. Condition (8) is never satisfied in the Hassell (1975) model 

[ ( ) /(1 )bf N N aN )b/(1/(1/(1 ] or in the Maynard Smith and Slatkin (1973) model 

[ ( ) /(1 ( ) )bf N N aN ) )b/(1 (/(1 (/(1 ( ] either; the latter was used by Ruxton et al. (1997a,b). 

 

This of course does not mean that extra mortality could not destabilize the fixed point 

with other maps, and indeed it is easy to construct biologically reasonable maps where 

extra mortality is destabilizing. Fig. 1 shows an example where the relevant property of 

f is visually clear: multiplying f with 11 makes the slope steeper at the fixed point. 

But f does not have to be as strongly convex as in Fig. 1a. A small "dent" added on the 

Maynard Smith and Slatkin (1973) model, for example, is enough to satisfy inequality 

(8) and to destabilize the fixed point under extra mortality. We know relatively little 

about the underlying mechanisms that create the discrete-time maps (see e.g. 

Gyllenberg et al. 1997; Gamarra and Sole 2002; Johansson and Sumpter 2003; Thieme 

2003; Geritz and Kisdi 2004; Eskola and Geritz 2007; Eskola and Parvinen 2007 for 

mechanistic underpinnings of various discrete-time models), and therefore we don't 

have a priori constraints on the convexity of f.  Empirical data are usually too noisy to 

ascertain the precise shape of f. There is thus no ground for narrowing research to the 

few famous discrete-time population models. As the present study also underlines, it is 

dangerous to overuse just a few models, because results based on them may not carry 

over to other models. 

 

To put the present results into proper perspective, note that a metapopulation may have 

alternative attractors next to its homogeneous equilibrium. For example, equilibria 
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with unequal population densities exist when an Allee-effect operates within local 

populations and dispersal is weak (see Gruntfest et al. 1997; Amarasekare 1998; 

Gyllenberg et al. 1999). Cyclic or chaotic attractors may also coexist with the 

homogeneous equilibrium; in fact, an asynchronous (possibly chaotic) attractor exists 

in the example of Fig. 2 for some small values of m (not shown), where the 

homogeneous equilibrium is also stable. The existence and stability of these alternative 

attractors generally depend on dispersal even if dispersal is passive and cost-free.  

 

As shown here, costly passive dispersal can either destabilize or stabilize the 

homogeneous equilibrium, depending on the properties of local population dynamics 

(see condition (8)). It is well known that destabilization can occur also in other ways. 

The homogeneous equilibrium can be destabilized if dispersal is cost-free but depends 

on local population density (Ruxton 1996; Jang and Mitra 2000; Silva et al. 2001). 

Destabilization can result also if the local population dynamics has more than one 

variable, either because populations are structured e.g. by age or because there are 

several interacting species (such as predator-prey or host-parasitoid), provided that 

different age/stage classes or different species differ in dispersal (Hastings 1992; 

Rohani and Ruxton 1999a,b; Jansen and Lloyd 2000; White and White, 2005; de 

Castro et al. 2006). Concerning the reverse case, cost-free dispersal cannot stabilize the 

homogeneous equilibrium if it is unstable in absence of dispersal: this holds for 

density-dependent dispersal (Silva et al. 2001) and for multi-species systems (Jansen 

and Lloyd 2000) as well. A simple continuity argument shows that adding dispersal 

cost can change this conclusion. If dispersal cost is stabilizing (as it is the case for 

several widely used models of within-population dynamics, see above) whereas 

density dependence of dispersal is weak and different species have sufficiently similar 
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dispersal behaviour, then dispersal will have an overall stabilizing effect on the 

homogeneous equilibrium of the metapopulation. Because dispersal costs are 

ubiquitous in nature and they may stabilize as well as destabilize the metapopulation, 

general inferences on the effect of dispersal seem unfortunately not possible. 
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Figure legends 

 

Figure 1. Destabilization by extra mortality. (a) An example for the map ( )f N( )f N(  in the 

single-population dynamics in eq. (4) such that extra mortality destabilizes the fixed 

point. Thick line: the map without extra mortality ( 11, the fixed point is stable); 

dashed line: the map with extra mortality ( 0.70.7 , the fixed point is unstable). f was 

obtained as an Interpolation function of Mathematica® with points and derivatives as 

follows: ( , ) (0,0)N f (0,0)  with derivatives (0) 4.25f (0) 4.254.25  and (1) 4.25f (1) 4.254 ; 

( , ) (1,1.275)N f (1,1.275)  with derivatives (1) 1.275f (1) 1.2751.2 , (1) 6.8f (1) 6.86.8  and (1) 12.75f (1) 12.75; 

( , ) (2,0)N f (2,0)  with slope (1) 1.36f (1) 1.361.3 . (b) Bifurcation diagram of the single-

population model with ff  as in (a).  

 

Figure 2. Simulated dynamics of a 10-patch metapopulation with periodic boundaries 

and nearest-neighbour dispersal with 0.2s 0.2 ; local population dynamics is given by 

the map in Fig. 1a (thick line). Since the single-population fixed point is unstable for 

0.5 0.780.78 , the homogeneous equilibrium of the metapopulation must be unstable 

for dispersal fractions 0.275 0.625m 0.625 (see text). Starting from the vicinity of the 

homogeneous equilibrium (with an independent small perturbation added to each 

population), 5000 generations were simulated to let the transients die out and the 

subsequent 50 generations are shown. (a) 0m 0, the homogeneous equilibrium is 

stable in absence of dispersal; (b) 0.5m 0.5, the homogeneous equilibrium is unstable 

with costly dispersal and the metapopulation has converged to a synchronous 2-cycle. 
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