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Population viscosity has been proposed as an important mechanism for the evolution of cooperation. The idea is that if individuals do not disperse far during the course of their lives, they will tend to interact with their genealogical relatives, which may give kin-selected benefits for cooperation. However, in the simplest model of population structure, the evolution of cooperation is unaffected by the rate of dispersal, owing to dispersal also mediating competition between social partners. This surprising result has generated much research interest in recent years. Here I show that dispersal does matter if there is a sex difference in dispersal rate, even when the expression of cooperation is not conditional upon the actor's dispersal status or sex. In particular, I show that cooperation among juveniles is relatively favoured when there is a small sex bias in adult dispersal in favour of the sex with the greatest variance in reproductive success, and is relatively disfavoured when this sex bias is large or in the opposite direction. This is because dispersal by individuals of each sex can have different consequences for the genetic structure of the population.

Introduction

Explaining cooperation is one of the major challenges for evolutionary biology (Maynard Smith & Szathmáry 1995;[START_REF] Hamilton | Evolution of social behaviour[END_REF]West et al. 2007a). Natural selection favours those individuals who have the greatest reproductive success relative to the population average [START_REF] Darwin | The origin of species[END_REF][START_REF] Fisher | The genetical theory of natural selection[END_REF][START_REF] Price | Selection and covariance[END_REF]). Yet, cooperation is when an individual provides a benefit for others and, all else being equal, this will tend to reduce its relative fitness (West et al. 2007a). The problem of cooperation is to explain how it can be favoured by natural selection.

Adaptive explanations for cooperation seek direct and/or indirect fitness benefits for cooperators. Cooperation is readily explained when it returns a direct fitness benefit to the actor (mutually-beneficial cooperation; West et al. 2007a,b), such as reciprocated cooperation from recipients [START_REF] Trivers | The evolution of reciprocal altruism[END_REF]. Alternatively, cooperation may incur a net direct fitness cost for the actor (altruistic cooperation; West et al. 2007a,b), and be favoured owing to indirect fitness benefits, which are derived from improving the reproductive success of the actor's genetic relatives (kin selection; [START_REF] Hamilton | The evolution of altruistic behaviour[END_REF][START_REF] Hamilton | The genetical evolution of social behaviour[END_REF][START_REF] Hamilton | Selfish and spiteful behaviour in an evolutionary model[END_REF][START_REF] Smith | Group selection and kin selection[END_REF]. The sum of direct and indirect fitness is "inclusive fitness", and this describes how well the individual transmits copies of its genes to future generations [START_REF] Hamilton | The genetical evolution of social behaviour[END_REF].

Two major mechanisms have been suggested that ensure cooperative interactions occur between genealogically-close kin, so that individuals are able to derive indirect fitness benefits from their altruism. First, kin discrimination allows individuals to adjust their behaviour conditional upon the relatedness to their social partners A c c e p t e d m a n u s c r i p t 3 [START_REF] Hamilton | The genetical evolution of social behaviour[END_REF]. This mechanism has been shown to operate in a range of species, from microbes to vertebrates (e.g. [START_REF] Russell | Experimental evidence for kin-biased helping in a cooperatively breeding vertebrate[END_REF][START_REF] Mehdiabadi | Kin preference in a social microbe[END_REF]. Second, indiscriminate cooperation may be favoured when individuals do not disperse far during the course of their lifetime, as many social interactions will occur among kin [START_REF] Hamilton | The genetical evolution of social behaviour[END_REF][START_REF] Hamilton | Altruism and related phenomena, mainly in social insects[END_REF]. This second mechanism, termed "population viscosity" suggests a relatively general explanation for cooperation, that could be applied to all levels of biological organization, and particularly to organisms lacking the requisite capacity for kin discrimination.

Surprisingly, in the simplest model of population structure - [START_REF] Wright | Evolution in Mendelian populations[END_REF] infinite, inelastic island model -the degree of population viscosity has no impact on the evolution of cooperation. Taylor (1992a) showed that, in the context of this model, the cooperation-promoting effects of high relatedness due to high viscosity are exactly cancelled by the cooperation-inhibiting effects of intensified kin competition in such populations. This is true irrespective of whether cooperation occurs among juveniles before dispersal or among adults after dispersal. To the extent that individuals do not disperse, they will have interactions with their relatives, but these will include competitive as well as social interactions. This result has led to the emergence of a large literature on how adjustments to the basic island model can decouple the effects of relatedness and kin competition, so that viscosity could favour cooperation (reviewed by [START_REF] Queller | Does population viscocity promote kin selection? Trends[END_REF][START_REF] West | Cooperation and competition between relatives[END_REF].

A simple extension to Taylor's (1992a) model is to allow organisms to adjust their social behaviour conditional upon their dispersal status [START_REF] Perrin | Is sociality driven by the costs of dispersal or the benefits of philopatry? A role for kindiscrimination mechanisms[END_REF][START_REF] El Mouden | Nice natives and mean migrants: the evolution of dispersal-dependent social behaviour in viscous populations[END_REF]. Non-dispersers are, on average, more related to their social [START_REF] El Mouden | Nice natives and mean migrants: the evolution of dispersal-dependent social behaviour in viscous populations[END_REF]. When dispersal status is not known directly, any cue can be used. For example, [START_REF] Johnstone | Sex-differences in dispersal and the evolution of helping and harming[END_REF] showed that when the sexes disperse at different rates, the sex with the lower dispersal can be favoured to help while the sex with the higher dispersal can be favoured to harm.

In this article, I show that sex-biased dispersal can mediate social behaviour even in the absence of individuals responding to conditional information regarding their dispersal status. In particular, I show that the dispersal of adults mediates the evolution of altruism among juveniles, even if altruism is expressed equally in juveniles of both sexes and before dispersal occurs. This is because the dispersal of individuals of each sex can impact upon the genetic structure of the population in different ways. Altruism is relatively favoured if there is a small dispersal bias towards the sex with the greater variance in reproductive success, and is relatively disfavoured if the bias is strong or in the opposite direction. This extends the scope for population viscosity to act as a general mechanism for the evolution of cooperation in the natural world.

Model & Analysis

I consider an infinite island model [START_REF] Wright | Evolution in Mendelian populations[END_REF], with each patch containing a large number of diploid juvenile individuals. Juveniles engage in social interaction, which mediates their survival to adulthood. Upon reaching maturity, surviving individuals either disperse to a random patch, or else remain in their natal patch. Adult females within their patch, giving rise to the next generation of juveniles. This is Taylor's (1992a, pp355-356) model of cooperation among juveniles before dispersal, extended to include sex-biased dispersal among adults.

The expected relative fitness of a juvenile who invests an amount x into helping, while its patchmates invest an average of y and the population as a whole invests an average of z, is:

W = S x, y ( ) 1 2 1 d f (1 d f )S y, y ( )+ d f S z, z ( ) + d f S z, z ( ) + 1 2 1 d m (1 d m )S y, y ( )+ d m S z, z ( ) + d m S z, z ( ) (1)
where S is the probability that an individual survives to maturity (see Appendix for derivation). I assume that helping incurs a personal survival cost (e.g. S(x,y)/ x = -c < 0) and improves the survival of patchmates (e.g. S(x,y)/ y = b > 0). Analysis of this fitness function -using the kin selection methodology of [START_REF] Taylor | How to make a kin selection model[END_REF] see Appendix for details) reveals that natural selection favours an increase in helping when:

c b < r ar 1 ar , ( 2 
)
where r denotes the kin selection coefficient of relatedness between juveniles within a patch, and a denotes the proportion of competition for breeding opportunities that [START_REF] Frank | Foundations of social evolution[END_REF]. Below, I provide expressions for both of these quantities in terms of the model parameters.

The amount of helping that is predicted to evolve is dependent upon the details of the survival function, S. However, irrespective of such details, the expression A = (rar)/(1-ar) describes how an individual values the survival of its patchmates relative to its own survival. I term this quantity the "potential for altruism" (in the Appendix, I

show that helping is always formally altruistic in this model). In general, the potential for altruism is increased with higher relatedness (r) and decreased with higher scale of competition (a) -the motivation for costly helping is that social partners may be related, but this motivation is reduced if the beneficiaries of one's helping behaviour are likely to interfere with one's own breeding success and that of one's other relatives (Figure 1). [START_REF] Queller | Genetic relatedness in viscous populations[END_REF] has conceived A as a type of relatedness coefficient, which measures the genetic similarity of social partners relative to one's competitors.

In the Appendix, I show that the coefficient of relatedness is given by:

r = + + + 1 ( ) 1 (1 d f ) 2 ( ) + 1 ( ) 1 (1 d m ) 2 ( ) + 2 1 (1 d f )(1 d m ) ( ) , (3) 
where is the probability that two juveniles chosen at random from the same patch share the same mother and is the probability that they share the same father. The parameters and allow for a range of possible mating systems, including details of In the Appendix, I show that the scale of competition is given by:

a = (1 d f ) 2 + (1 d m ) 2 2 , ( 4 
)
which is a decreasing function of both male and female dispersal rates (d f and d m )illustrated in Figure 3. This is because juvenile patchmates only compete for future breeding opportunities to the extent that individuals do not disperse from their natal patch. As the total reproductive success of both sexes is constrained to be equal, all with probability (1-d f ) 2 . With probability the focal individual is male, and he competes with male patchmates to the extent that neither he nor they disperse, i.e.

with probability (1-d m ) 2 . Note that the scale of competition is symmetrical with respect to the two sexes: the quantitative effect of dispersal upon scale of competition is the same for both sexes (e.g. da/dd

f | df=dm=d = da/dd m | df=dm=d = -(1-d)).
Dispersal has two opposing effects on the potential for altruism. First, increased dispersal leads to a lower relatedness (Figure 2), which acts to disfavour altruism (Figure 1). Second, increased dispersal leads to a reduced scale of competition (Figure 3), which acts to favour altruism (Figure 1). The net effect of female and male dispersal is found by substituting equations ( 3) and ( 4) into the RHS of inequality (2), to yield an expression for the potential for altruism which is given purely in terms of model parameters: d f , d m , and . This is too cumbersome to reproduce here; however, its dependence upon each of the four model parameters is illustrated graphically in Figure 4, and analytical expressions for some special cases are considered below.

It is useful to consider first the special case where there is no sex bias in dispersal (d

f = d m = d).
Here, relatedness is given by r

= [ + ]/[ + +(4--)(1-(1-d) 2 )
] and the scale of competition is given by a = (1-d) 2 . While both relatedness and scale of competition are dependent on the rate of dispersal, and the evolution of altruism is dependent upon relatedness and scale of competition, there is no net impact of dispersal rate upon the potential for altruism, which is given by A = ( + )/4. This

A c c e p t e d m a n u s c r i p t

9 mirrors results given by Taylor (1992a) and [START_REF] Johnstone | Sex-differences in dispersal and the evolution of helping and harming[END_REF], who also found an unresponsiveness of helping behaviour to dispersal rate when both sexes disperse at the same rate. Here, the potential for altruism is mediated by the probabilities of maternal and paternal sibship ( & ) of juveniles within a patch, with there being no potential for altruism in the limit of zero sibship (A = 0 when = = 0) and with the survival of patch mates valued at one half of one's own survival in the limit of guaranteed full sibship (A = when = = 1).

More generally, when the dispersal rates of females and males can be varied independently, the rate of dispersal can affect the potential for altruism (Figure 4). If the probabilities of maternal and paternal sibship are equal ( = = ), the potential for altruism is maximized when there is no sex bias in dispersal, and here it is given by A = /2. In this scenario, any sex bias in adult dispersal always reduces the potential for altruism among juveniles (Figure 4, panels on the anti-diagonal).

Altruism is most inhibited when one sex always disperses and the other sex never

disperses (d f = 0 & d m = 1 or d f = 1 & d m = 0
), and here the potential for altruism is reduced by one-third relative to the unbiased-dispersal scenario: A = /3 (i.e. 67% of /2).

If the probabilities of maternal and paternal sibship are not equal ( ), then sexbiased dispersal can also promote altruism. In general, altruism is promoted if there is a small dispersal bias in favour of the sex that has the greater variance in reproductive success (i.e. |=1, this is only a little more than a half as great as in the unbiased-dispersal case (i.e. 1/7 is 57% of 1/4).

Discussion

The population processes that can generate relatedness between social partnerswhich favours cooperation -can also lead to intensified competition for reproductive resources among social partners -which disfavours cooperation [START_REF] Queller | Does population viscocity promote kin selection? Trends[END_REF][START_REF] West | Cooperation and competition between relatives[END_REF]. A challenge for social evolution theory is to place social interaction in its proper ecological and demographic context, in order to correctly understand the fitness costs and benefits, as well as the relatedness coefficients, relevant to a kin selection analysis. Taylor's (1992a) seminal result -that in the simplest scenario, the relatedness and competition consequences of dispersal exactly cancel so that cooperation evolves no more readily in a structured population than in a fully-mixing population -has painted a rather gloomy picture of the prospects for viscosity to explain cooperation.
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Here, I found that Taylor's (1992a) prediction breaks down when the sexes differ in their dispersal rates. The potential for juveniles to express altruism is increased, relative to the unbiased dispersal case, if there is a small dispersal bias towards the sex with the greater variance in reproductive success. This is because while the scale of competition is symmetrical with respect to the dispersal rate of both sexes, the coefficient of relatedness is not generally symmetrical with respect to the two dispersal rates, so that a slight increase in dispersal of the sex with the greatest variance in reproductive success eases competition without incurring so great a loss of relatedness. For example, if a single male mates with multiple females in each patch, then all juveniles are guaranteed to be paternal siblings -irrespective of the rate of male dispersal -whereas the probability of their being genealogically related through their mothers crucially depends upon the rate of female dispersal.

This result is similar to the prediction, made by [START_REF] Johnstone | Sex-differences in dispersal and the evolution of helping and harming[END_REF], that sexbiased dispersal could promote sex-specific helping and harming behaviours among adults after dispersal. Their model allows individuals to respond to conditional information regarding their dispersal status (namely, their sex), by adjusting their social behaviour. This mechanism is analogous to El Mouden & [START_REF] El Mouden | Nice natives and mean migrants: the evolution of dispersal-dependent social behaviour in viscous populations[END_REF] model of social behaviour conditional upon dispersal status, in which nondispersers are favoured to help while dispersers are favoured to harm their neighbours. The present analysis has made a distinction between this conditional-information effect and a more basic effect due to a sex asymmetry in the dispersal ramifications for the genetic structure of populations. I have isolated the latter effect by situating social interaction prior to dispersal, and among juveniles who do not display sex-differences A c c e p t e d m a n u s c r i p t 12 in social behaviour. For an example of how sex differences in adult dispersal can mediate sex specific social behaviours among juveniles, see [START_REF] Gardner | Spiteful soldiers and sex ratio conflict in polyembryonic parasitoid wasps[END_REF].

A striking difference between the predictions of the present analysis and that of [START_REF] Johnstone | Sex-differences in dispersal and the evolution of helping and harming[END_REF] is that the latter showed costly harming could be favoured in one or both sexes whereas, in the present analysis, costly harming is never favoured among juveniles (this would require A < 1). However, this difference is simply due to the inflated relatedness among juvenile patch mates before dispersal, relative to the relatedness among adult patch mates after dispersal (Taylor 1992a). The two models differ in several other ways. For clarity, and in order to fully isolate the impact of sexbiased dispersal upon social behaviour of juveniles, several features of [START_REF] Johnstone | Sex-differences in dispersal and the evolution of helping and harming[END_REF] model have been removed from the present analysis. These include overlapping generations (see also Taylor &[START_REF] Taylor | Overlapping generations can promote altruistic behavior[END_REF]Irwin &[START_REF] Irwin | Evolution of altruism in stepping-stone populations with overlapping generations[END_REF], biased sex ratios, and a mortality cost of dispersal. The present analysis is more general in one respect: by describing the probabilities of maternal and paternal sibships directly, the present analysis allows for any degree of reproductive skew among breeding adults, not considered by [START_REF] Johnstone | Sex-differences in dispersal and the evolution of helping and harming[END_REF].

The aim of the present study has been to provide a simple illustration of how sexbiased dispersal can decouple genetic relatedness and scale of competition, so that cooperation can be relatively favoured in viscous populations. The model has been developed without any particular species in mind, and the sex-biased-dispersal effect is expected to manifest at all life history stages -not just among juveniles. However, the model does generate a number of readily testable predictions for juvenile cooperation. Typically, males are the sex with the greater variance in reproductive There is scope for future theoretical extension of the present model. Especially useful for proper testing of theory will be the development of models that are more tailored to the specific biology of particular study organisms. In addition, analogous to theory that has shown that the impact of dispersal upon sex allocation can itself mediate the evolution of dispersal rates [START_REF] Leturque | Joint evolution of sex ratio and dispersal: conditions for higher dispersal rates from good habitats[END_REF][START_REF] Wild | Kin selection models for the coevolution of the sex ratio and sex-specific dispersal[END_REF][START_REF] Wild | Sex allocation and dispersal in a heterogeneous two-patch environment[END_REF], there is an interesting possibility that juvenile social behaviour could drive the evolution of sex-biased dispersal. In general, understanding the feedback between social evolution and population demography presents a major challenge for the future. ordinates), probability of maternal sibship of patchmates ( ; columns) and probability of paternal sibship of patchmates ( ; rows), on a scale from 0 (black) to 1 (white).

Relatedness is a decreasing function of both female and male dispersal, and an increasing function of both maternal and paternal sibship. 

  dispersers, and hence the former can be favoured to invest in cooperative behaviour (and the latter in harming behaviour) in viscous populations (El Mouden &

  d f , and adult males disperse with probability d m . I assume an even sex ratio. Following dispersal, individuals engage in mating and reproduction
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  of each sex find breeding success within a patch, and how equitably this breeding success is shared among breeders. A higher value of indicates fewer breeding females and/or reproduction being skewed towards one or a few of the breeding females, and a higher value of indicates fewer breeding males and/or reproduction being skewed among one or a few of the breeding males. For example, strict monogamy with n equally-fecund couples in each patch gives = = 1/n, whereas a harem system of n equally-fecund females mated by a single male would give = 1/n and = 1. In general, higher values of and increase relatedness (because this increases the probability that patchmates are siblings), whereas higher values of d f and d m decrease relatedness (because this decreases the probability that patchmates are cousins) -as illustrated in Figure2. Note that relatedness is not symmetrical with respect to the dispersal rates of the two sexes: the quantitative effect of dispersal upon relatedness is different for the two sexes (e.g. dr/dd f | df=dm=d = -2( + )(1-d)(2-)/( + +(4--)(1-(1-d) 2 ) 2 and dr/dd m | df=dm=d = -2( + )(1-d)(2-)/( + +(4--)(1-(1-d) 2 ) 2 , which are not equal if).

  -sex. With probability the focal individual is female, and she competes with female patchmates to the extent that neither she nor they disperse, i.e.

  d f > d m if > , and d m > d f if > ), and altruism is inhibited if this bias is large or in the opposite direction (Figure 4, panels not on the anti-diagonal). The condition for sex-biased dispersal to promote altruism (relative to the unbiased-is d max < (2/(2+| -|))d min + (2 | -|)/(2 + | -|), where d max and d min are the dispersal rates for the more-highly and less-highly dispersing sexes, respectively. The potential for altruism is maximized in the limit of d max 0 and d min = 0: here, the potential for altruism is A = ( + )/(4-| -|), and in the extreme of | -| = 1, this represents one third greater potential for altruism relative to the unbiaseddispersal case (i.e. 1/3 is 133% of 1/4). The potential for altruism is minimized when the 'wrong' sex always disperses and the other sex never disperses (d max = 1 & d min = 0): here, the potential for altruism is A = ( + )/(6+| -|), and in the extreme of | -

  a simple comparative test of theory could be performed by seeing if there is any tendency for species exhibiting a small degree of male-biased dispersal to have greater cooperation among juveniles than species exhibiting a small degree of femalebiased dispersal. More generally, species with extreme sex-bias in dispersal (i.e.dispersal by virtually all individuals of one sex, and virtually no individuals of the other sex) are predicted to exhibit lower levels of juvenile cooperation than otherwise similar species in which the sexes disperse at approximately equal rates. Juvenile cooperation may include striking behaviours such as collective begging (e.g. Bell2007), as well as a simple reduction in investment into competition for limiting resources.
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Fitness function

Here I derive the fitness function given in equation (1) of the main text. It is helpful to treat fitness effects for males and females separately. If the individual is female, then her expected fitness can be written as the product of her probability of survival to adulthood and her expected breeding success conditional upon surviving. I assume that the total breeding success on a patch is independent of the number of individuals striving for a breeding position (a form of inelastic regulation; Taylor 1992b), hence a surviving female's expected reproductive success is inversely proportional to the relative number of other survivors on her patch, which is (1-d f )S(y,y)+d f S(z,z) if she did not disperse, and S(z,z) if she did disperse. Hence, her expected fitness is:

where k is a constant of proportionality. Note that I make no assumption about the number of females successfully breeding on the patch, nor how they share this reproductive success. The average fitness of all females is w = k, and hence the expected fitness of the juvenile female relative to the average for her class is W f = w f / w f , or:

( ) The expected fitness of a juvenile male is given by the product of his probability of survival and his expected breeding success conditional upon his survival. His breeding success is given by his mating success and the contribution of his mating partners to the patch's next generation of juveniles. His expected mating success is simply the ratio of adult females to adult males within the patch, which is [(1- 

The average fitness of juvenile males is w m = k, hence the expected fitness of the juvenile male relative to the average for his class is W m = w m / w m , or:

A gene is favoured by natural selection if it increases the average fitness of its bearers. The correct 'average' is the expected relative fitness of an individual drawn at random from a population, the probability that it is drawn from a particular class being equal to that class's reproductive value (its asymptotic genetic contribution to future generations ;[START_REF] Fisher | The genetical theory of natural selection[END_REF][START_REF] Price | Fisher's Malthusian parameter and reproductive value[END_REF][START_REF] Taylor | Allele-frequency change in a class-structured population[END_REF][START_REF] Taylor | Inclusive fitness arguments in genetic models of behaviour[END_REF]. In this case, average fitness over all juveniles is Hamilton's rule I assume that genetic variation is segregating at a locus controlling the helping behaviour. A gene chosen at random from this locus can be assigned a genic value g, and an additive genetic "breeding" value for helping g can be defined for an individual, by taking the average of its two genic values. Natural selection acts to increase the average genic / breeding value for the population g when larger genic values are associated with greater expected fitness. Assuming vanishing genetic variation, this gives a condition for increase dW/dg > 0. This derivative may be expanded as follows:

where g denotes the average breeding value of an individual's social partners, where the genotype-phenotype map dx / d g = dy / d g can be set to unity, and where all derivatives and partial derivatives are evaluated at x=y=z [START_REF] Taylor | How to make a kin selection model[END_REF][START_REF] Frank | Multivariate analysis of correlated selection and kin selection, with an ESS maximization method[END_REF][START_REF] Frank | Foundations of social evolution[END_REF][START_REF] Taylor | Direct fitness versus inclusive fitness: how shall we model kin selection?[END_REF]). The derivatives d g / dg and d g / dg are equal to the coefficients of consanguinity of an individual to itself and of an individual to its social partner, respectively. These may be denoted p and p´. Hence, equation (A5) can be re-written as: where -C = W/ x is the direct fitness cost of increased helping, B = W/ y is the indirect fitness benefit of receiving help from neighbours, and r = p´/p is the kin selection coefficient of relatedness of juvenile patch mates. Thus, the condition for increase is [START_REF] Hamilton | The evolution of altruistic behaviour[END_REF][START_REF] Hamilton | The genetical evolution of social behaviour[END_REF][START_REF] Hamilton | Selfish and spiteful behaviour in an evolutionary model[END_REF] rule -C + Br > 0.

From equation (1), we have:

where -c is the partial derivative of S with respect to its first argument, and b is the partial derivative of S with respect to its second argument, both evaluated at x = y = z.

Hence, B > 0 and C > 0, which means that helping is formally an altruistic trait [START_REF] Hamilton | The genetical evolution of social behaviour[END_REF]West et al. 2007b).

The condition for increase -C + Br > 0 can be rearranged into the form: calculating its component coefficients of consanguinity [START_REF] Malécot | Les mathématiques de l'hérédité[END_REF]Taylor 1992a;[START_REF] Rousset | Genetic structure and selection in subdivided populations[END_REF]). The consanguinity of a juvenile to itself can be written as p = (1+ )/2, where is the inbredness of that juvenile (the consanguinity of its parents), and is itself given by = (1-d f )(1-d m )p´, i.e. the probability that both parents were previously juveniles on same patch times the consanguinity of juvenile patchmates. The consanguinity of juvenile patchmates is in turn given by: the probability that both randomly chosen genes are maternal (1/4), times the probability that they share the same mother ( ) times the consanguinity of the mother to herself (p), plus the probability that they do not share the same mother (1-) times the expected consanguinity of their mothers ((1-d f ) 2 p´); plus the probability that one of the randomly chosen genes is maternal and the other is paternal (1/2), times the consanguinity of mating partners ( ); plus the probability that both of the genes are paternal (1/4), times the probability that they share the same father ( ) times the consanguinity of the father to himself (p) plus the probability that they do not share the same father (1-) times the expected consanguinity of their fathers ((1-d m ) 2 p´).

This gives: