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Abstract 

Estimates of transmitted HIV drug-resistance prevalence vary widely among and 

within epidemiological surveys. Interpretation of trends from available survey data is 

therefore difficult. Because the emergence of drug-resistance involves small 

populations of infected drug-resistant individuals, the role of stochasticity (chance 

events) is likely to be important. The question addressed here is: how much variability 

in transmitted HIV drug-resistance prevalence patterns arises due to intrinsic 

stochasticity alone, i.e., if all starting conditions in the different epidemics surveyed 

were identical? This `thought experiment’ gives insight into the minimum expected 

variabilities within and among epidemics.  A simple stochastic mathematical model 

was implemented. Our results show that stochasticity alone can generate a significant 

degree of variability and that this depends on the size and variation of the pool of new 

infections when drug treatment is first introduced. The variability in transmitted drug-

resistance prevalence within an epidemic (i.e. the temporal variability) is large when 

the annual pool of all new infections is small (fewer than 200, typical of the HIV 

epidemics in Central European and Scandinavian countries), but diminishes rapidly as 

that pool grows. Epidemiological surveys involving hundreds of new infections 

annually are therefore needed to allow meaningful interpretation of temporal trends in 

transmitted drug-resistance prevalence within individual epidemics.  The stochastic 

variability among epidemics shows a similar dependence on the pool of new 

infections if treatment is introduced after endemic equilibrium is established, but can 

persist even when there are more than 10,000 new infections annually if drug therapy 

is introduced earlier. Stochastic models may therefore have an important role to play 

in interpreting differences in transmitted drug-resistance prevalence trends among 

epidemiological surveys. 



Acc
ep

te
d m

an
usc

rip
t 

 4

Keywords  

Viruses, mathematical model, epidemiology. 

 

  



Acc
ep

te
d m

an
usc

rip
t 

 5

1. Introduction 

The use of highly-active anti-retroviral therapy (HAART) for treating HIV infections 

is increasing. However, resistant strains of HIV-1 arise due to drug failure or poor 

drug adherence, leading to the potential for drug-resistant HIV strains to be 

transmitted to susceptible individuals. Transmitted resistance has been documented 

for each of the three classes of widely-used anti-retroviral drugs: nucleoside reverse-

transcriptase inhibitors (NRTIs), non-nucleoside reverse-transcriptase inhibitors 

(NNRTIs) and protease inhibitors (PIs) (for  recent reviews see Tang and Pillay, 2004; 

Geretti, 2007). 

In recent years a number of surveys have been carried out  monitoring changes 

in the proportion of newly infected (i.e. with acute or primary infection) individuals 

carrying an HIV-1 drug-resistant strain, potentially providing insight into the 

transmission dynamics of drug-resistant strains. Reported estimates of the transmitted 

anti-retroviral drug resistance prevalence range from 0.0% (Alexander et al., 1999) to 

over 25% (Grant et al., 2002; de Mendoza et al., 2005) of recently infected individuals 

carrying virus with at least one primary resistance mutation. Thus, the variability 

among epidemics is high. Some of this variability arises due to differing prevailing 

conditions. For example, treatment regimens in different countries vary, affecting the 

transmission of drug-resistant virus. The temporal trends within some individual 

surveys appear to show a decrease in transmitted drug-resistance, (Ammaranond et 

al., 2003; Bezemer et al., 2004; de Mendoza et al., 2005; Routy et al., 2005; Yerly et 

al., 2001) whereas others show that the prevalence is increasing (Grant et al., 2002; 

Little et al., 2002; UK HIV Drug Resistance Database, 2003; UK Group on 

Transmitted HIV Drug Resistance, 2005). That is, the temporal behaviour of 

individual epidemics is not consistent among surveys. While it is possible that these 
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trends are real, arising from temporal changes in clinical conditions or behaviour 

(Sánchez et al., 2005, 2006), it is important to avoid incorrect interpretations which 

may lead to ill-informed, detrimental changes in public health policies. For example, 

observed declines in transmitted drug resistance may lead to decreased support for 

HIV drug-resistance monitoring or drug adherence counselling (Sánchez et al., 2006). 

  Two modelling studies (Blower et al., 2000, 2001) have addressed the problem 

of uncertainty in clinical and biological conditions, but assume that the time evolution 

of an epidemic is deterministic (see Table 1).  The latter assumption is hard to defend 

when dealing with small populations, when the role of chance events can alter the 

course of an epidemic. However, although the importance of stochasticity has been 

highlighted with regard to the within-host evolution of HIV viral strains (Leigh-

Brown, 1997; Leigh-Brown and Richman, 1997; Nijhuis et al., 1998; Phillips et al., 

2001), its role in influencing the prevalence trends of transmitted drug-resistant viral 

strains at the population level has not been extensively explored  (for a very recent 

stochastic modelling study with a different emphasis, see Vardavas and Blower, 2007, 

and for a meeting abstract outlining similar issues to those addressed here, see Brown 

et al., 2002). Of particular interest here is the role of intrinsic stochasticity i.e., 

stochastic effects or noise arising directly from the inherent (and discrete) nature of 

interactions between susceptible and infectious individuals. With this in mind, the 

question that we address in this study is: how much variability in transmitted drug-

resistance patterns arises due to intrinsic stochasticity alone, that is, if all starting 

conditions (population sizes and rate parameters) in the different epidemics surveyed 

were identical? This `thought experiment’ gives insight into the minimum expected 

variabilities within and among epidemics.  The question addressed here is therefore 

different from that posed in earlier modelling studies (Blower et al., 2000, 2001) 
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which explore the issue of uncertainty in starting and treatment conditions (see Table 

1). These are further sources of uncertainty that would add to the purely stochastic 

variability among epidemics explored here. 

 

2. Methods 

 The compartment model used in this study is a homosexual transmission model, very 

similar to that used by Blower et al., (Blower et al., 2000, 2001). It comprises five 

types of individual: susceptible (S); untreated and infected with wild-type (drug-

sensitive) virus (Iww));;  untreated and infected with pure resistant (r) or mixed (w,r) viral 

strains (Ir); treated and infected with either drug-sensitive (Tw) or drug-resistant (Tr) 

viral strains. A flow diagram is given in Figure 1 illustrating the compartments and 

transmission dynamics used in the model. The corresponding differential equations 

are given in the Appendix. Deterministic simulations were carried out through 

numerical solution of the ordinary differential equations using a 5th-order variable-

step Runge-Kutta method (Press et al., 1992). The parameter values were selected to 

give a basic reproductive ratio R0 (in the absence of treatment) of 3.33. Estimates of 

R0 for HIV are often lower than this (e.g., R0 = 2.4, Bezemer et al., 2008), but we 

consider our choice to be reasonable for high-risk groups. Indeed, a recent study 

suggests that in the early stages of the Scandinavian epidemic, R0 was as high as 15.0 

(Amundsen et al., 2004).  The choice of a relatively high value for R0 results in fewer 

epidemic extinctions and if anything reduces the stochastic effect that we are 

studying.  The model parameters were also selected to be broadly representative of 

HAART as currently practised (see Table 2 and references therein). The treatment 

uptake rate was assumed to be 40% p.a., and the rate of (temporarily) ceasing therapy 

was 10% p.a.. The average time for conversion of an untreated drug-resistant 
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infection to a drug-sensitive infection (1/�) was taken to be 1 year, longer than in 

previous modelling studies. This represents an average value reflecting the fact that 

whilst `growing out’ of archived drug-sensitive viral strains (in those with acquired 

drug-resistance) occurs within a few months,  reversion of drug-resistant virus to a 

drug-sensitive strain by mutation (in those with a transmitted drug-resistant infection) 

may take years (Brenner et al., 2001).    

Deterministic simulations were used for comparison with the stochastic 

means.  A deterministic simulation with a given set of parameters represents the mean 

behaviour of a collection of epidemics. A repeat deterministic simulation with the 

same parameters would give an identical result, i.e., there is no error in the 

deterministic mean. Variability in deterministic simulations arises only from varying 

the initial parameters (Blower et al., 2000, 2001).  

Monte Carlo stochastic simulations were carried out using the Gillespie 

algorithm (Gillespie, 1976, 1977) and a random number generator (Chandler and 

Northrop, 1999; Marsaglia and Zaman, 1991) (see Appendix and Table 1) to assess 

the variability of transmitted drug-resistance prevalence outcomes. During a 

simulation, for each year we calculated the total number of new infections and the 

proportion of these that are drug-resistant, giving the prevalence of transmitted 

(primary) drug resistance in newly infected individuals.  

The sensitivity of our results to changes in model parameters was also 

explored, and it was found that although these affect the predicted mean values of 

transmitted drug-resistance prevalence, they do not have a major effect on the 

variability of transmitted drug-resistance prevalence.  A dominating driver of 

variability in this study is the initially small number of drug resistant infections – a 

reflection of the process of the emergence of drug resistance that is present for any 
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realistic set of parameter values.  However, an important factor in determining the 

degree of variability in transmitted drug-resistance prevalence is the size and variation 

of the pool of infected individuals at the time when drug therapy begins. We have 

used two different treatment introduction times (ti) in our simulations to illustrate this 

point. However, it is important to note that ti by itself cannot be used to predict the 

variability in transmitted drug-resistance prevalence. It is the effect of ti on the mean 

size and variation of epidemics that is important, and this will depend on the values of 

the model parameters used. 

 

3. Results and Discussion 

Stochastic Monte Carlo simulations were used to investigate how intrinsic 

stochasticity influences variability in the prevalence of transmitted drug-resistant HIV 

infections. Our results indicate that stochasticity alone can generate a significant 

degree of variability. We suggest that much of the variability in and among 

epidemiological surveys can be attributed to intrinsic stochasticity.  Our main findings 

are that the variability in transmitted drug-resistance prevalence within an epidemic 

(i.e. the temporal variability) is large when the annual pool of all new infections is 

small (fewer than 100-200), but diminishes rapidly as that pool grows. A similar 

dependence is found for the variability among epidemics when treatment is 

introduced after each epidemic has reached equilibrium. In contrast, if drug treatment 

is introduced prior to endemic equilibrium, the variability among epidemics can 

persist even when there are more than 10,000 new infections annually. 

 

(a) Epidemiological surveys of transmitted drug-resistance prevalence. 
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Before describing our simulations, we first illustrate in Figure 2(a) examples of 

observed epidemiological time series measuring the prevalence of primary (i.e. 

transmitted) drug resistance mutations in newly-diagnosed HIV-1 infections in 

countries where HAART is used. The available temporal data sets are very limited, 

and cases of homosexual and heterosexual HIV transmission, and transmission in 

injecting drug users are often “lumped” together. In addition, some data sets are 

collected from single cities, whereas others are heterogeneous, multi-centre studies. 

We note also that in some of the larger studies (Bennett et al., 2003; UK HIV Drug 

Resistance Database, 2003; Wensing et al., 2003), the newly diagnosed infections are 

not necessarily recent infections. This may result in an underestimate of transmitted 

drug resistance (due to reversion of drug-resistant viral mutations over time) in these 

studies.   

Typical values for the prevalence of primary drug resistance mutations are in 

the range 10-15%, but there is considerable variability among the surveys, ranging 

from 0-33%. In some surveys, annual variations in primary HIV drug-resistance 

prevalence were recorded, but in others the data are “lumped” and the latter are 

indicated by horizontal lines.  In addition, the surveys range from those focussing on 

new HIV cases arising in a single city (e.g. San Fransisco (Grant et al., 2002) , New 

York (Simon et al., 2002) and Amsterdam (Bezemer et al., 2004)) to national or 

international multi-centre surveillance schemes such as those carried out in the USA 

(Bennett et al., 2003; Little et al., 2002),UK (UK HIV Drug Resistance Database, 

2003), Switzerland (Yerly et al., 2001) and Europe (Wensing et al., 2003). The 

temporal variability associated with a single survey is difficult to assess because data 

are available for only a few years (since the introduction of HAART in 1996) and in 

addition, the datasets are typically small (tens to hundreds of new HIV cases per 
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year).  In some cases, these comprise comprehensive data collected from small 

epidemics in individual cities (e.g. San Francisco (Grant et al., 2002)), and in others 

they consist of samples taken from larger epidemics (e.g. the UK study (UK HIV 

Drug Resistance Database, 2003)). Despite this, there have been a number of attempts 

to rationalise and interpret observed trends such as apparent decreases (Ammaranond 

et al., 2003; de Mendoza et al., 2005; Yerly et al., 2001) or increases (Grant et al., 

2002; Little et al., 2002; UK Group on Transmitted HIV Drug Resistance, 2005) in 

transmitted drug-resistance prevalence.    

The available epidemiological time series data shown in Figure 2(a) are 

included here to illustrate the observed range of variability in transmitted drug-

resistance prevalence. It is neither plausible, nor our intention to make a detailed 

comparison of these epidemiological data with our simple model simulations. Instead, 

we are trying to illustrate (using a minimal, homosexual HIV transmission model with 

homogeneous mixing) the simple point that  intrinsic stochasticity alone may 

contribute significantly to the observed variability in transmitted drug-resistance 

prevalence, and should not be ignored.  

 

(b) Stochastic simulations of transmitted drug-resistance prevalence. 

In our stochastic simulations, a single infected wild-type case (Iw) was 

introduced into a susceptible population of 50,000. Two scenarios were considered, in 

which the course of an epidemic was followed initially for either 20 or 30 years with 

no drug treatment, allowing a population of drug-sensitive infected individuals to 

build up. The choice of two treatment introduction times (ti) was used as a means to 

generate different average epidemic sizes. A time interval of 20 years until treatment 

commences (ti = 20 yr) resulted in small epidemics, with a mean of 396 infections at t 
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= 20 years, and a mean of 1129 infections (both drug-sensitive and drug-resistant) ten 

years after treatment commenced. The mean annual number of new infections at t =20 

yr was 137. These figures are similar to the HIV statistics of many Central European 

and Scandinavian countries (EuroHIV, 2007; UNAIDS WHO, 2007).  

An interval of 30 years before introduction of drug treatment (ti = 30 yr) 

results in larger epidemics, and was chosen to correspond to an equivalent period 

from HIV emergence in the USA (Gilbert et al., 2007) to first treatment. In this case, 

there was a mean of 4698 infections at t=30 years, and a mean of 8280 infections 

(both drug-sensitive and drug-resistant) ten years after treatment begins. The mean 

annual number of new infections at t=30 years was 1430. The incidence and 

prevalence of HIV ten years after the start of treatment were 2.5%  and 19.4% 

respectively, typical of HIV epidemics within male homosexual communities in many 

cities of the USA (CDC MMWR, 2005) and Western Europe (Dougan et al., 2007).  

For each scenario, 1000 stochastic simulations were followed, of which  

286 (ti = 20 yr) and 294 (ti = 30 yr) died out before treatment was initiated. These 

values are close to the predicted extinction probability of 1/R0 =0.30, or 300/1000 

simulations. Identical parameters were used in each stochastic simulation (see Table 

2), to illustrate the potential variability in transmitted drug-resistance prevalence 

arising from stochasticity alone.  Each stochastic simulation represents a possible 

realization of the time-course of a single epidemic, whereas a deterministic simulation 

represents the mean expected behaviour of a collection of epidemics.  

Figures 2(b) and 2(c) show the percentage of new infections with drug-

resistant virus per annum (p.a.) (i.e., the primary or transmitted drug-resistance 

prevalence) when ti = 20 yr and ti = 30 yr respectively.  In the former case, the 

transmitted drug-resistance prevalence rises to an initial plateau of 15%. However, 
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after 75 years there is a further rise, leading to an equilibrium value (not shown) of 

approximately 24%. When ti = 30 yr, (Figure 2(c)) there is no quasi-equilibrium 

plateau, and the equilibrium prevalence of 24% is reached 50 years after 

commencement of drug treatment.  The mean of the stochastic simulations follows the 

corresponding deterministic result quite closely, but the variability in the stochastic 

prevalence values is high when ti = 20 yr and moderate when ti = 30 yr. Thus, the 

variability in transmitted drug resistance prevalence among epidemics is higher when 

drug treatment is introduced earlier in an epidemic.  The range of simulated values for 

the prevalence of transmitted drug resistance in Figures 2(b) and 2(c) is similar to that 

observed in the epidemiological studies (see Figure 2(a)) and indicates that even if all 

other conditions were equal, a significant amount of variability may be observed due 

to intrinsic stochasticity alone. When drug treatment is introduced after 20 years, the 

total number of new infections annually is quite small and the percentage of new 

infections with drug-resistance shows a great deal of variability (Figure 2(b)). In 

individual stochastic simulations involving very small numbers (e.g. single figures) 

the prevalence fluctuates between 0-100% (upper limit not shown in Figures 2(b)).  

That is, in a given year, all new infections may, by chance, be drug-sensitive or drug-

resistant.  

We note that most of the epidemiological surveys begin in 1996 or later, 

coinciding with the introduction of combination therapies (HAART). However, drug 

treatment in the form of monotherapy had already been in place for some years. This 

means that by 1996, drug resistance was already present in the infected population, 

and so the relatively steep initial rise in the transmitted drug-resistance prevalence 

seen in our simulations (at the onset of drug treatment) are not evident in the 

epidemiological surveys summarised in Figure 2(a).   
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(c) Comparison of simulations with epidemiological surveys. 

   As stated in section 3(a) it is not our intention to make an in-depth comparison of 

our simulations with the epidemiological data illustrated in Figure 2(a). Rather, we are 

trying to illustrate a simple point, namely that intrinsic stochasticity alone can 

generate significant variability in transmitted drug-resistance prevalence, and that 

stochasticity should not be ignored when analysing or modelling epidemiological data 

relating to transmitted (primary) drug-resistance. 

In Figures 3(a) and 3(b) we illustrate nine stochastic simulations selected 

randomly from Figures 2(b) and 2(c) respectively. We have plotted the simulation 

data beginning 10 years after introduction of drug treatment, after the initial steep rise 

in transmitted drug-resistance prevalence. This is to allow a better comparison with 

the epidemiological surveys, since by 1996 (when data collection and HAART began) 

drug-resistance was already present in the infected populations as a result of earlier 

monotherapy.  

It is clear that when ti = 20 yr (Figure 3(a)), there is a high degree of variability 

in transmitted drug-resistance prevalence both among epidemics and within individual 

epidemics. When ti = 30 yr (Figure 3(b)), the variability in transmitted drug-resistance 

prevalence among epidemics at any point in time, and the temporal variability of 

individual epidemics, are both reduced. Comparing Figures 3(a) and 3(b) with the 

nine epidemiological surveys illustrated in Figure 2(a) shows that much of the 

variability among epidemics recorded in these surveys could  be explained as intrinsic 

stochastic variability arising from initially identical systems. Figures 3(a) and (b) also 

illustrate the potential for temporal variability within individual epidemics due to 

stochasticity, and in some cases there are significant annual fluctuations in 
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prevalence, including both transient increases and decreases. Such effects have been 

observed in epidemiological surveys, and our simulations predict that they are to be 

expected on stochastic grounds alone. For example, in a North American study (Grant 

et al., 2002), NRTI resistance decreased from 30% in 1997 to 5% in 1999, rising to 

20% in 2000 then falling again to 15% in 2001. 

The epidemiological studies comprise datasets of small numbers (tens to 

hundreds) of new HIV cases per year, but do not record the number of infected 

persons in the population, or the sub-set of the susceptible population that is screened.  

Thus, it is not possible to make a precise comparison with our simulations, in which 

every simulated new infection is recorded. The annual number of new infections in 

the stochastic simulations with ti = 20 yr is of the same magnitude (mean 178 p.a. ten 

years after treatment commences) as the number of new infections in Central 

European and Scandinavian countries (EuroHIV, 2007; UNAIDS WHO, 2007); when 

ti = 30 yr, the mean annual number of new infections ten years after treatment begins 

is 987, comparable to the estimated annual number of new HIV cases in countries 

such as Switzerland and the Netherlands (EuroHIV, 2007; UNAIDS WHO, 2007).  

 

(d) The annual pool of new infections and transmitted drug-resistance 

prevalence.  

The transmitted drug-resistance prevalence of interest in this study depends on 

the annual number of new drug-sensitive infections (Nw) and new drug-resistant 

infections (Nr), and is given by %100
)(

×
+ rw

r

NN
N . It is therefore useful to examine 

the size and variation of the pools of new drug-sensitive and drug-resistant infections 

for differing treatment introduction times.   
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Figures 4(a) and 4(b) show individual stochastic simulation results for the 

number of new infections each year that are drug-sensitive and drug-resistant 

respectively when drug treatment is introduced after 20 years. Also shown are the 

mean of the stochastic values and the deterministic outcomes. Figures 4(c) and 4(d) 

show the corresponding results when treatment is introduced after 30 years. Stochastic 

simulations that died out before commencement of drug treatment are excluded from 

the stochastic mean. When ti = 20 yr, the stochastic mean is less than the deterministic 

prediction in the range t=60-90 years (Figures 4(a) and 4(b)) but the values later 

converge; when ti = 30 yr, there is also a deviation, with convergence after 80 years. 

These differences between deterministic and stochastic means occur because many of 

the stochastic epidemics take a long time to become established. In an individual 

epidemic, the annual number of new drug-sensitive infections  (Nw) and the annual 

number of new drug-resistant infections (Nr) are positively correlated. The transmitted 

drug-resistance prevalence is given by %100
)(

×
+ rw

r

NN
N , and the stochastic and 

deterministic means of this quantity show much less deviation (see Figures 2(b) and 

2(c)).  

Because each simulated epidemic differs due to stochasticity, when treatment 

is initiated the total number of drug-sensitive individuals Iw in the population varies, 

contributing to the variability seen later in time.  At the onset of treatment, when  ti = 

20 yr the number of new drug-sensitive cases is in the range 0-800 p.a. (Figure 4(a)), 

with a mean of 137 p.a., whereas when ti = 30 yr there are up to 4000 new drug-

sensitive cases p.a., with a mean of 1430 p.a. (Figure 4(c)) There are no drug-resistant 

cases initially (see Figures 4(b) and 4(d)), but after some time on drug treatment, 

cases of acquired drug resistance arise which may subsequently cause new drug-

resistant infections by transmission of the drug-resistant viral strain. For example, 
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when ti = 20 yr, 10 years after treatment begins there are up to 150 new drug-resistant 

cases p.a. (with a mean of 23 p.a.) and  up to 700 new drug-sensitive cases p.a. (with a 

mean of 155 p.a.); when  ti = 30 yr, ten years after treatment begins there are up to 300 

new  drug-resistant cases p.a. (with a mean of 150 p.a.), and up to 1200 new drug-

sensitive cases p.a. (mean 780  p.a.). A significant number of the simulated epidemics 

show large deviations from the mean (and from the deterministic result), illustrating 

the potential for high variability among epidemics due to stochasticity alone. This 

variability is more pronounced when ti = 20yr, corresponding on average to smaller 

epidemics.  

One potential source of stochastic variability is the timing of first emergence 

of transmitted drug-resistance. In Figure 5 we illustrate the range of times over which 

transmitted drug-resistance first appears in the stochastic simulations. In the majority 

of simulated epidemics transmitted (primary) drug-resistance emerges less than 2 

years after drug treatment is first introduced. Thus, the timing of emergence of 

transmitted drug-resistance does not appear to play a major role in determining the 

variability in transmitted drug-resistance prevalence. 

 

 (e) Analysis of the stochastic variability in transmitted drug-resistance 

prevalence within individual epidemics. 

  In order to investigate the temporal variability in transmitted drug-resistance 

prevalence within individual epidemics, for each stochastic simulation ( illustrated in 

Figures 2(b) and 2(c)) a least-squares fit  was obtained over a 30 year time period (ti + 

10, ti + 40) yr. A quadratic function was used for the fitting procedure because there 

was some non-linearity in the simulations. The standard deviation of the residuals 

(RSD) was calculated and the residual coefficient of variation (RCV) was estimated 
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as (RSD/M)× 100%, where M is the mean transmitted drug-resistance prevalence for 

the individual simulation.  

For each stochastic epidemic, the RCV was plotted against the mean annual number 

of new infections (drug-sensitive and drug-resistant) occurring over the 30 year time 

interval. This is shown in Figure 6 for ti  = 20 yr,  ti  = 30 yr and for treatment 

introduction after the epidemic has reached equilibrium (ti  = 150 yr). The temporal 

variability in transmitted drug-resistance prevalence within an epidemic is high when 

the annual number of new infections is small, but decreases rapidly for larger 

epidemics. Once the annual number of new infections exceeds about 200, the 

variability as measured by the RCV is less than 20%. The trends observed are 

independent of the treatment introduction time ti. However, because early introduction 

of drug treatment results in smaller numbers of new infections, the variability within 

epidemics on average decreases with ti (see Figures 3(a) and 3(b)).  If treatment is 

introduced after an epidemic has reached equilibrium there is much less stochastic 

variability in the annual number of new infections, a factor that reduces the variability 

in transmitted drug-resistance prevalence among epidemics described later.  

 

  The general trends shown in Figure 6 were reproduced for a range of model 

parameters. However, in cases where the model parameters led to significantly 

lower/higher transmitted drug-resistance prevalence values, the RCV for a specific 

number of new infections was correspondingly higher/lower. A better correspondence 

among different models was obtained by plotting the RCV against the number of new 

drug-resistant infections p.a. rather than the total number of new infections p.a. (See 

Supplementary Figure S1). This highlights the fact that the dominant driver of 

variability in transmitted drug-resistance prevalence is the annual number of new 
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drug-resistant infections, rather than the total annual number of new infections.  

Overall, our results indicate that the RCV is less than 20% when the annual number of 

new drug-resistant infections exceeds around 30.  For `typical’ HIV epidemics with a 

transmitted drug-resistance prevalence of 10%-20%, this corresponds to 

approximately 150-300 new infections p.a..In summary, the temporal variability in 

transmitted drug-resistance prevalence within an epidemic depends principally on the 

annual number of new drug-resistant infections. The timing of introduction of drug 

treatment is not in itself important, and neither is the value of R0. An epidemic with 

low numbers of new infections will have large variability in transmitted drug 

resistance prevalence regardless of the cause of those low numbers (e.g., a small 

susceptible population, a small value of R0, or early introduction of drug treatment).   

 

(f) Analysis of the stochastic variability in transmitted drug-resistance 

prevalence among epidemics. 

In addition to analysing the temporal variability in transmitted drug-resistance 

prevalence within an individual epidemic, we can also ask the question: what amount 

of variability in transmitted drug-resistance prevalence arises among initially identical 

epidemics at any point in time? This thought experiment might aid in understanding 

some of the observed variability among real epidemics. 

To quantify the variability in transmitted drug-resistance prevalence among 

epidemics at any point in time, we calculated the coefficient of variation (CV = 

(standard deviation/mean)×100 %) as a function of time, for differing times of 

introduction of drug treatment. This is illustrated in Figure 7 (a). In each case the CV 

decreases with time, and the variability among epidemics becomes smaller as the time 

until first introduction of drug treatment (ti) increases. The time of first introduction of 
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treatment affects the size and variation of the pool of infected individuals at the time 

when drug therapy begins. At the point of introduction of drug treatment, stochasticity 

will already have led to a range of epidemics of differing sizes. As can be seen in 

Figures 4(a) and 4(c), initially identical epidemics can diverge significantly prior to 

treatment introduction, but tend to converge later, some years after therapy begins. 

When treatment is introduced after an epidemic has reached equilibrium there is much 

less variation in the annual number of new infections among epidemics (see, e.g. 

Figure 6, which shows `clustering’ of  the number of new infections for  ti = 150 yr).   

The two principal factors affecting the variability in transmitted drug-

resistance prevalence among epidemics at a given time are the mean number of new 

drug-resistant infections p.a., and variations in the dynamics of the drug-sensitive and 

drug-resistant epidemics (see Section 3(d)).  Figure 7(b) shows the variability in 

transmitted drug-resistance prevalence among epidemics ten years after treatment 

begins, as a function of the mean number of drug-resistant infections p.a.. Differing 

mean numbers of drug-resistant infections were obtained by running the model 

simulations with different susceptible population sizes. Also shown is a typical scatter 

plot illustrating the temporal variability within individual epidemics (as discussed in 

Section 3(e)). When treatment is introduced after equilibrium, the trend in variability 

among epidemics is very similar to the temporal variability within individual 

epidemics, showing that here the dominant factor is the mean number of new drug-

resistant infections. When treatment is introduced relatively early in each epidemic 

(e.g. ti = 30 yr) the variability persists at a higher level (CV approximately 20%) as 

the number of new drug-resistant infections increases. Here, significant divergence in 

the dynamics of different epidemics gives an additional source of variability. 
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 It would be unrealistic for all epidemics to be exactly the same size when 

treatment is introduced. However, by comparing our stochastic simulations with a 

`thought experiment’ in which all epidemics were of equal size at ti , we ascertained 

that in the first 20 years after ti,  at least 50% of the variability in transmitted drug-

resistance prevalence among epidemics arises from the variation  in epidemics already 

existing when drug treatment begins (see Supplementary Figure S2).  

The focus so far has been on relatively small epidemics. However, Figure 7(b) 

indicates how the variability can persist as the number of new infections increases. 

In order to investigate the variability when the annual number of new infections is 

very large, we performed simulations with ti = 40 years, and a susceptible population 

size S=500,000, allowing a large population of drug-sensitive infected individuals 

(mean Iw = 67,000) to build up. Ten years after commencement of drug therapy, the 

mean number of new drug-sensitive infections p.a. was approximately  8000, with 

2000 new drug-resistant infections p.a. (compared with 700 new Iw and 200 new Ir 

p.a. when S=50,000 and ti  = 40 yr).  Despite a 10-fold increase in the annual number 

of infections, the coefficients of variation in the first 20 years following introduction 

of drug treatment are very similar, in the range 15%-20%. This implies that even if 

the annual pool of new infections is large (around 10,000 p.a., greater than the annual 

number of newly diagnosed HIV cases in the UK, which was about 9,000 in 2006 

(UNAIDS WHO, 2007)), intrinsic stochasticity alone can generate significant 

variability in transmitted drug-resistance prevalence among epidemics. Further 

simulations with even larger susceptible populations (up to 5 million with ti = 20, 30 

and 40 yr) showed that the variability among epidemics comprising a mean of up to 

30,000 annual infections has a CV of 10% or more for approximately 40 years 

following introduction of drug treatment.  
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The variability in transmitted drug-resistance prevalence among epidemics 

shows some dependence on the model parameters used (see Supplementary Figure 

S3), but the general conclusion is that if drug treatment is introduced prior to endemic 

equilibrium, then even when the mean annual number of new infections is of the order 

of tens of thousands, the variability among epidemics may have a CV of at least 10% 

for 40 years or more after first introduction of drug treatment. The principal reason for 

this variability among large epidemics is the fact that at the point of introduction of 

drug therapy (ti  ), stochasticity has already given rise to a range of epidemics of 

differing sizes and dynamics. Examples of this range can be seen in Figures 4 (a) (at t  

= 20 yr) and 4(c) (at  t = 30 yr).  In contrast, if treatment is introduced after each 

epidemic has reached equilibrium, then the stochastic variability in transmitted drug-

resistance prevalence among epidemics is much smaller. This is because at 

equilibrium the epidemic dynamics have converged and the variability now depends 

principally on the number of new drug-resistant infections p.a. (Figure 7(b)). 

Most well-established HIV epidemics (e.g. those in the USA) are assumed to 

have stabilised very rapidly, prior to introduction of drug treatment (see e.g., 

Bongaarts et al., 2008). Thus, the stochastic variability among these epidemics at a 

given time is predicted to be similar to the temporal variability within individual 

epidemics (see Figure 7(b)). However, a number of epidemics in Eastern European 

countries did not begin until the late 1990s (Kelly and Amirkhanian, 2003) and have 

not yet stabilised (Bongaarts et al., 2008). The predicted stochastic variability in 

transmitted drug-resistance prevalence among these epidemics might therefore be 

better represented by an `early treatment introduction’ model scenario. 
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 (g) Limitations of the Study. 

Our model is a simple one, and its limitations include the fact that it is a 

compartmental model which assumes homogeneous mixing of the susceptible and 

infected populations. The model structure ignores the role of early (acute) infection, 

which may affect the detailed transmission dynamics of HIV (Brenner et al., 2007; 

Hollingsworth et al., 2008; Yerly et al., 2001), and assumes homosexual transmission 

of a single drug-resistant HIV strain. The stochastic implementation of the model 

assumes exponentially distributed passage times for all events. Exponential 

distributions are not always the most realistic for describing infectious periods 

(Keeling and Grenfell, 1998; Lloyd, 2001) and the detailed dynamics may again be 

affected.   

One of the discrepancies between our model and reality is the fact that the 

time-scale for reaching epidemic equilibrium before treatment introduction in our 

model is many decades, whereas real HIV epidemics stabilise much more quickly. 

One reason for this is that we use a single parameter �w to describe HIV 

transmissibility over time. In reality epidemics usually increase rapidly initially 

(equivalent to a very large �w or R0 value )and then, as awareness of the epidemic 

increases, behavioural changes lead to a slowing down of the spread of infection and a 

reduction in R0  (see, e.g., Amundsen et al., 2004; Gran et al., 2008). Another factor 

contributing to the longer timescale for epidemic stabilisation in our simulations is the 

fact that we assume exponentially distributed infectious periods, whereas early (acute) 

infections are known to be much more infectious than the asymptomatic stage (see, 

e.g., Hollingsworth et al., 2008) and may therefore contribute significantly to an 

earlier peak in epidemic incidence.  However, as mentioned earlier, the drug treatment 
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introduction times (ti ) used in our model were selected principally as a means to 

generate different average epidemic sizes, and their absolute values are not relevant to 

the conclusions of our study.  Furthermore, our study focuses on the emergence of 

transmitted drug-resistance and its prevalence (i.e., the proportion of all new 

infections that are drug-resistant). The latter is a relative quantity and its temporal 

evolution is not significantly affected by the two timescale factors discussed above. 

Sensitivity of the model to changes in parameter values was investigated, and 

there are some differences in results (see Supplementary Figures S1 and S3), but these 

do not affect the general conclusions of our study.We emphasise that our aim in this 

study was to use a simple stochastic model to explore the minimum expected 

variabilities in transmitted drug-resistance prevalence within and among epidemics. 

Uncertainties in starting and treatment conditions (e.g, Blower 2000, 2001), and 

sampling errors in the epidemiological surveys clearly constitute additional sources of 

variability. However, the question of how heterogeneous mixing (e.g. contact 

networks) affects the predicted stochastic variability in transmitted drug-resistance 

prevalence is worthy of further investigation. A very recent study using a simple 

susceptible-infectious-susceptible (SIS) epidemic model (i.e., not involving drug 

treatment) suggests that during the early exponential growth phase heterogeneous 

mixing leads to slightly lower variability in epidemic sizes, but that at endemic 

equilibrium the variability is slightly greater than that predicted by a homogeneous 

mixing model (Dangerfield et al., 2008).   

 

4. Conclusion 

We have shown using a simple model that intrinsic stochasticity plays an 

important role in generating variability in transmitted drug-resistance prevalence 
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patterns both among epidemics and within individual epidemics. This is true even 

when the susceptible population studied is large, because the important factor in 

governing stochasticity here is the relatively small numbers of new infections (both 

drug-sensitive and in particular, drug-resistant) occurring each year. For a given set of 

model parameters the degree of variability depends on the time ti at which drug 

treatment is first introduced, because this affects the size and variation of the pool of 

new infections.  It is important to note that the absolute value of ti by itself cannot be 

used to predict the variability in transmitted drug-resistance prevalence. It is the effect 

of ti on the mean size and variation of the pool of new infections that is important, and 

this will depend on the values of the model parameters. 

A small pool of new infections results in high variability within individual 

epidemics, and a large variation in the pool of new infections at the time of treatment 

introduction (see e.g. Figures 4(a) and 4((c)) contributes to the subsequent variability 

in transmitted drug-resistance prevalence among epidemics. These intrinsic stochastic 

effects are different from the variability introduced by uncertainty in parameter values 

(see Table 1). The latter effects cause variability among epidemics additional to that 

arising from intrinsic stochasticity.    

 Our results indicate that stochastic temporal variability in transmitted drug-

resistance prevalence within individual epidemics is driven by the small annual 

number of drug-resistant infections, and that when this exceeds around 30, the 

residual coefficient of variation is less than 20%. For typical HIV epidemics with a 

transmitted drug-resistance prevalence of 10%-20%, this corresponds to small 

epidemics with fewer than around 150-300 new infections p.a., such as those 

occurring in many Central European countries. This suggests that epidemiological 

surveys involving a minimum of hundreds of new infections annually are required to 
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allow meaningful interpretation of temporal trends within individual epidemics. The 

same conclusion applies to the variability in transmitted drug-resistance prevalence 

among epidemics, when comparing epidemics in which treatment was introduced 

after equilibrium (a situation observed for most well-established HIV epidemics). 

However, for epidemics where treatment is introduced prior to equilibrium, the 

uncertainty in interpretation of transmitted drug-resistance prevalence trends among 

epidemics is much larger and significant variability may persist even when the annual 

pool of new infections  exceeds tens of thousands. This observation may be relevant 

to HIV epidemics that have emerged relatively recently in some Eastern European 

countries and have not yet stabilised.  

 

Because none of the epidemiological studies include data on the exact number 

of infected persons in the population or the sub-set of the total population that is 

screened, it is not possible to make a precise comparison with our simulations. 

However, the annual number of new infections in the simulations is of the same 

magnitude as the pool of new infections from which samples are drawn in 

epidemiological surveys of cities or small countries, giving credibility to our 

conclusions. We have shown that intrinsic stochasticity alone causes significant 

variability in transmitted drug-resistance prevalence patterns. However, there are 

other sources of variability not addressed here. These include real differences 

(heterogeneities) among the communities surveyed, temporal changes in behaviour 

and treatment regimens, and measurement error in initial conditions and parameter 

values. In addition, whereas our computer simulations record all new HIV cases, the 

data collected in epidemiological surveys are samples taken from the pool of new 

HIV infections, and this sampling constitutes a further source of variability.  These 
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simulations of intrinsic stochasticity therefore give an indication of the minimum 

expected inherent variability in drug-resistance prevalence patterns.  

In order to understand the role of intrinsic stochasticity in epidemiological 

surveys it would be useful if these surveys reported an estimate of the size of the 

underlying pool of infections as well as the sample size. 

The role of stochasticity in influencing the transmission dynamics of drug-

resistant viral strains in infected populations has been explored previously by 

Vardavas and Blower, 2007, within the context of the large (around 300,000 infected) 

HIV epidemic in Botswana. In that paper, the focus is on temporal variability in 

transmitted drug-resistance prevalence during the first five years following 

introduction of drug therapy. The paper concludes that stochastic effects are important 

early on, but does not explore the longer-term dynamics. In contrast, in our study we 

explore the influence of stochasticity on the longer-term dynamics of transmitted drug 

resistance both within and among relatively small epidemics and illustrate how this 

depends on the size and variation of the pool of new infections. 

Our message is that significant variability among epidemiological surveys and 

within individual surveys is expected on stochastic grounds alone, and that caution 

should be used when interpreting short-term temporal trends. This intrinsic variability 

is only exposed by the study of stochastic models, which have a key role to play in 

aiding understanding of drug-resistance transmission. We suggest that when 

epidemics are relatively small, and/or drug treatment is introduced prior to an 

epidemic reaching equilibrium, stochastic implementations of deterministic models 

(e.g. Blower et al., 2000, 2001) should be used to aid interpretation of  transmitted 

drug-resistance prevalence trends in epidemiological surveys.Our study highlights the 

importance of stochasticity with respect to the transmission of drug-resistant HIV, but 
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its general conclusions are applicable to the transmission of new drug-resistant strains 

of any infectious organism.  

 

 Appendix 

The differential equations underlying the deterministic model are as follows: 

dt
dS  = B −μS − (λw + λr )S 

   
dt
dIw  =  −(μ+α+π)Iw + λwS + ω Tw + γ Ir 

  
dt
dIr  = −(μ+α+π+γ)Ir + λrS + ω Tr  

dt
dTw  = −(μ+αtw +ω + φ)Tw + π Iw  

   
dt
dTr  = −(μ+αtr +ω )Tr + π Ir  + φTw 

where the forces of infection are: 

λw = βw (Iw + ρwTw)/N 

λr =  βr (Ir + ρr Tr)/N 

Descriptions of the parameters and their values are given in Table 1. This 

deterministic model is similar to Blower’s (Blower et al., 2000, 2001), but the forces 

of infection in our model are simpler because patients in the `drug-resistant’ 

compartments (Ir, Tr) only transmit drug-resistant virus, whereas in Blower’s model 

they can transmit both drug-resistant and drug-sensitive virus. 

The stochastic model was implemented in Fortran using the Gillespie algorithm  

(Gillespie, 1976, 1977) devised for the study of chemical kinetics. Each compartment 

contains a discrete number of individuals, in contrast to the continuous differential 

equation model. The idea is that the probability of a specific process is proportional to 
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the corresponding rate term in the deterministic model. For example, the process of  

acquired drug-resistance  Tw → Tr has a probability proportional to φ Tw. To study the 

time evolution of the epidemic we need to know: 

• At what time will the next process occur? 

• Which of the possible processes will it be? 

These unknowns can be simulated by using computer-generated random numbers 

(‘Monte Carlo sampling’). A random number generator (Chandler and Northrop, 

1999) based on the Marsaglia-Zaman `subtract-with-borrow’ method (Marsaglia and 

Zaman, 1991) was used. The basic Gillespie algorithm is as follows: 

1. Calculate the rate term ai  for each process i in the model. For example, the process of  

acquired drug-resistance  Tw → Tr has a rate term equal to φ Tw, where Tw is the current 

number of individuals in compartment Tw .The probability for each process is given by 

ai / atot where  atot  is the sum of all the rate terms. 

2. Select two random numbers r1, r2 from a uniform distribution on the interval (0,1).    

Calculate the time interval � to the next event, given by � = –ln(r1)/atot.This 

corresponds to sampling from an exponential distribution of inter-event times, 

appropriate to a Poisson process.The single process that occurs in this time interval is 

then selected randomly with the appropriate probability, by imagining the interval 

(0,1) to be partitioned according to the relative size of each rate term, e.g. for a system 

with two processes, the first occupies the interval (0, a1/ (a1+ a2 )) and process 2 

occupies the  interval (a1/ (a1+ a2 ),1) which has length a2/ (a1+ a2 ). If  the random 

number r2 lies in the first interval, process 1 is chosen; otherwise process 2 is selected. 

3. Update the time by �, and update the number of individuals in each compartment 

according to the process that has occurred. e.g., for drug-failure, Tw → Tr , Tw is 

decreased by one and Tr is increased by one.  
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4. Repeat steps 1-3 many times, for a specified length of time.  
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Table 1   

MODELLING UNCERTAINTY IN 

 PARAMETER VALUES. 

MODELLING  INTRINSIC 

STOCHASTICITY. 
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Rate variables (model parameters) selected 

from a specified range using Monte Carlo 

(random number) sampling. e.g. Latin 

Hypercube Sampling (Blower and 

Dowlatabadi, 1994). 

Starting parameters identical.  

Model parameters treated as probabilities and 

events simulated using random numbers. 

e.g. Gillespie method (Gillespie, 1976, 1977). 

Model population is continuous. 

Model compartments may comprise 

fractional numbers of individuals. 

Model population is discrete (integer-based). 

Model compartments comprise whole numbers 

of individuals. 

For each set of starting parameters, 

solve the model differential equations.  

Each outcome is deterministic and 

represents the mean behaviour of many 

epidemics; differences arise due to different 

starting parameters only. 

 

 Use Monte Carlo sampling to simulate the 

probability of an event (e.g. infection), and the 

time at which it occurs. Generate random 

numbers repeatedly to simulate random events 

during the course of an epidemic.  

Each stochastic simulation represents an 

individual epidemic.  

Generate an ensemble of deterministic 

simulations, each with randomly selected 

starting parameters, and analyse the  

variability among epidemics. This will 

depend on the selected parameter range and 

is independent of the size of the modelled 

infectious population. 

Generate an ensemble of stochastic simulations 

and analyse the variability within individual 

epidemics and among epidemics. Modelled 

variability is inherent and is larger for small 

infectious populations because the impact of 

chance events is greater. 

Ensemble mean is often similar to the 

corresponding deterministic simulation. 

 

 

 

 

 

Table 1. A Comparison of Two Types of Randomness or Stochasticity and Their 

Simulation. 
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Monte Carlo methods, or `games of chance’ involve the generation of random 

numbers to simulate processes in which there are aspects of uncertainty.  

These can be used in different ways to explore the variability in epidemic outcomes 

due to (a) randomness or uncertainty in biological and clinical input parameters (b) 

intrinsic stochasticity arising due to chance events.  
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Table 2. 

Description of the Model Parameters and their Values. Parameter values are based on those used in 

previous HIV modelling studies (Blower et al., 2000, 2001; Sánchez et al., 2005, 2006). Detailed 

source references are given in the Table. All rates have units of  y-1. 

Parameter Value  Description 

B 1000 Rate at which susceptible individuals 

join the population. B=μN in absence of disease. 

μ 0.02 per capita removal rate (Sánchez et al., 2005). 

βw , βr 0.4,0.2 Virus transmission rates  (sexual contact rate x probability of 

transmission); w = drug-sensitive strain; r =drug-resistant 

strain (Grant et al., 1987; Turner et al., 2004). 

ρw, ρr 0.02,0.5 Relative transmissibility under treatment (0 < ρi < 1) (Tang 

and Pillay, 2004). 

α 0.1 Disease-induced death rate (Babiker et al., 2000). 

αtw ,αtr 0.05,0.07 Disease-induced death rate under treatment. tw = drug-

sensitive strain; tr =drug-resistant strain (Porter et al., 2003). 

φ 0.1 Treatment failure rate (leading to acquired drug resistance) 

(Blackham et al., 2005). 

ω 0.1 Rate of ceasing therapy (Monforte et al., 2000). 

π 0.4 Rate of commencing therapy (Stall et al., 2001). 

γ 1.0  Rate of reversion (Brenner et al., 2001; Pao et al., 2004), or 

‘growing out’ (Brenner et al., 2001; Deeks et al., 2001) to 

wild-type virus in untreated individuals. 

N 50001 

initially. 

Total population size = S + Iw + Ir + Tw + Tr 

Iw =1; S= 50000 initially. 
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Figure Legends. 

 

Figure 1. Flow Diagram Illustrating the Different Compartments Described in the 

Model of Homosexual HIV Transmission Dynamics. 

The five compartments are: susceptible (S); untreated and infected with wild-type 

(drug-sensitive) virus (Iww));;  untreated and infected with pure resistant (r) or mixed 

(w,r) viral strains (Ir); treated and infected with either drug-sensitive (Tw) or drug-

resistant (Tr) viral strains.  The model parameters are given in Table 2. The forces of 

infection are λw = βw (Iw + ρwTw)/N and λr =  βr (Ir + ρr Tr)/N. 1/φ = average time for 

acquired drug resistance to develop;1/γ = average time for  a drug-resistant infection 

to revert to a drug-sensitive infection in an untreated individual;  π= treatment uptake 

rate;  ω= rate of ceasing therapy; α = average disease-induced death rate in absence of 

therapy; αtw ,αtr =  disease-induced death rates for drug-sensitive and drug-resistant 

treated individuals respectively; 1/μ =  average time for which an individual remains 

in the sexually active population; B= rate at which individuals join the susceptible 

(sexually active) community. 

 

Figure 2(a). Epidemiological Time Series Showing the Prevalence of Transmitted 

Drug-resistant HIV. 

Examples of observed epidemiological time series measuring the prevalence of drug 

resistance mutations in newly-diagnosed HIV-1 infections in countries where 

HAART is used (taken from Table 1 of  Tang and Pillay, 2004). In some surveys, 

annual variations in primary HIV drug-resistance prevalence were recorded, but in 

others the data are “lumped” and the latter are indicated by horizontal lines.  

References to the original data sources as given in parentheses in the Figure key; total 
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sample sizes are given below in square brackets: (1)  UK HIV Drug Resistance 

Database, 2003, [n=2025]; (2) Yerly et al., 2001,[n= 197]; (3) Grant et al., 2002, [n= 

225]; (4) Simon et al., 2002, [n= 154]; (5) Bennett et al., 2003, [n = 1082]; (6) 

Wensing et al., 2003, [n= 1369]; (7) Little et al., 2002, [n = 377]; (8) Bezemer et al., 

2004, [n = 100]; (9) de Mendoza et al., 2005, [n = 57]. In some of the studies (Bennett 

et al., 2003; UK HIV Drug Resistance Database, 2003; Wensing et al., 2003), the 

newly diagnosed infections are not necessarily recent infections.  

 

Figure 2(b) Model Simulations Showing the Prevalence of Drug Resistance in Newly 

Infected Persons. 

Drug treatment commenced after 20 years. The deterministic result is shown, together 

with the individual stochastic simulations and the mean of  714 stochastic simulations. 

Errorbars indicate ±  one standard deviation from the mean.  

 

Figure 2(c) Model Simulations Showing the Prevalence of Drug Resistance in Newly 

Infected Persons. 

As Figure 2(b), but with drug treatment commencing after 30 years (706 stochastic 

simulations).  

 

Figure 3  Stochastic Predictions of Transmitted Drug-resistant HIV Prevalence for 

Differing Treatment Introduction Times (ti).   

 Nine stochastic simulations were randomly selected from Figure 2(b) (ti = 20 yr) and 

Figure 2(c) (ti = 30 yr) . Simulations are plotted over the time period 10-18 years after 

treatment begins, after the initial steep rise in transmitted drug-resistance prevalence.  
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(a) ti = 20 yr. The variability is comparable with that observed in epidemiological 

surveys (Figure 2(a)), despite the fact that each of these stochastic realizations is 

performed with identical parameter values. 

(b)  ti = 30 yr.  The temporal variability within individual epidemics is noticeably 

smaller than in Figure 3(a). 

 

Figure 4 Stochastic and Deterministic Simulations of New Drug-sensitive and Drug-

resistant Infections for Different Treatment Introduction Times (ti). 

 Individual stochastic simulations are based on results of Figure 2(b) (ti = 20 yr) and 

Figure 2(c) (ti = 30 yr), and illustrate the annual number of new infections. Also 

shown are the mean of the stochastic values and the deterministic outcomes.  

Errorbars indicate ±  one standard deviation from the mean.  

(a) ti = 20 yr. New drug-sensitive infections 

(b) ti = 20 yr. New drug-resistant infections. 

(c) ti = 30 yr. New drug-sensitive infections. 

(d) ti = 30 yr. New drug-resistant infections. 

Figure 5  Timing of First Emergence of Transmitted Drug-Resistance in Stochastic 

Simulations, for Different Treatment Introduction Times (ti). 

Figure 6 Stochastic Temporal Variability in Transmitted Drug-Resistance Prevalence 

Within Individual Epidemics, as a Function of the Mean Annual Number of New 

Infections.  

For each stochastic simulation a least-squares fit (using a quadratic function) was 

obtained over a 30 year time period (ti + 10, ti + 40) yr and the mean annual number 

of new infections was calculated over this time interval. The residual coefficient of 

variation gives an estimate of the temporal variability.   
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Figure 7 Stochastic Variability in Transmitted Drug-Resistance Prevalence 

among Epidemics.  

(a)     Comparison of Variability for Different Treatment Introduction Times (ti). 

The coefficient of variation  (CV = (standard deviation/mean)×100 %), in the 

transmitted drug-resistance prevalence is shown as a function of time for ti = 15, 20, 

30 and 40 yr.  

(b)  Variability among epidemics 10 years after treatment introduction, as a function 

of the annual number of New Drug-Resistant Infections.  

The variability (CV) is shown for treatment introduction prior to equilibrium (ti = 30 

yr) and after equilibrium (ti =150 yr). Also shown is a scatter plot illustrating the 

typical temporal variability within epidemics as a function of the mean annual number 

of new drug resistant infections.  

 



Acc
ep

te
d m

an
usc

rip
t 

 48

Supplementary Material. 

Figure S1. The effect of different model parameters on the stochastic variability in 

transmitted drug-resistance prevalence within individual epidemics. 

Figure S2.  Variability among epidemics when they are all of equal size at the time of  

treatment introduction – a comparison with fully stochastic results. 

Figure S3. The effect of different model parameters on the stochastic variability in 

transmitted drug-resistance prevalence among epidemics. 
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