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Introduction

Most models used in population and disease dynamics assume constant parameter values. This implies that the population, or disease, is time-homogeneous in its behaviour.

However, the fecundity, breeding and risk-of-death of an animal typically vary temporally, often corresponding to the seasonal conditions of their environment (41). Similarly, environmental conditions affecting pathogen survival ability outside of a host and immune functionality, and host characteristics such as density and social interaction patterns, may cause temporal variation in rates of disease transmission [START_REF] Grassly | Seasonality in infectious diseases[END_REF]. Numerous examples exist, see for example (8; 41; 2; 3; 18; 26; 44; 22). Thus, in order to truly understand these dynamics and to be able to establish accurate management policies, it is necessary to incorporate such periodic behaviour in models representing population and disease dynamics.

When time-inhomogeneous behaviour is incorporated in a discrete-state stochastic model it is typically studied via simulation. However, given a single simulation, it is not clear whether the observed dynamics are representative of average behaviour or merely a chance outlier due to a rare combination of events. Hence a large number of replicate simulations are required before confidence in results may be established.

Another approach appearing in the literature for dealing with phased behaviour is to use a discrete-time Markov chain, such that the transition probability matrix for the process is a product of the probability transition matrices for each phase, see for example [START_REF] Day | A stochastic metapopulation model with variability in patch size and position[END_REF]; the one-step probability transition matrix P might be the product of an extinction matrix E and a colonisation matrix C (i.e. P = E × C). Such models often provide a more efficient means of studying population and disease dynamics. However, the transition probability matrix used for each phase often assumes only one process (say colonisation only, or extinction only) may occur during that phase (19; 40; 13). Such an assumption is clearly not satisfied in many applications; in such situations the modeller is imposing an artificial ordering on the processes of extinction and colonisation (extinction and then colonisation, or vice-versa). Additionally, ideally one would prefer an underlying continuous-time model to reflect the true nature of the population, or disease, dynamics being studied; this becomes of critical importance when data are collected at unequally-spaced time points, something which a practitioner may wish to
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exploit to optimise data collection (see for example (11; 34)).

Here I consider continuous-time Markovian models that account for population phases, and present and investigate methods for their efficient and accurate numerical (computationally-exact) analysis. The term computationally-exact is used to distinguish the methodology from simulation: here we employ a computer to evaluate theoreticallyexact formulae, and thus errors in final results are only a consequence of rounding errors/computer precision. These results afford the opportunity to study accurately populations and diseases having periodic phases. The results will be illustrated with a study of a spatially-realistic metapopulation model based on the malleefowl (Leipoa ocellata) in which dispersion occurs for only 3 months of the year, and also with a study of disease invasion and persistence with temporal-forcing on disease transmission and aerosol importation.

The malleefowl metapopulation has a distinct breeding season, in which dispersal does not occur, and occupies a spatially-realistic network; our model is a continuoustime version of the model presented in [START_REF] Day | A stochastic metapopulation model with variability in patch size and position[END_REF], extended to incorporate temporally-realistic dispersal. The application of the methodology to this particular population highlights the advantages and disadvantages of the methodology we investigate, and additionally provides a more accurate model which may, in particular, be used to calibrate the model to data collected at unequally-spaced time points.

The application to disease invasion and persistence focuses upon captive-breeding populations, such as animals on farms, or endangered species in zoos. We take a particular example of porcine reproductive and respiratory syndrome virus (PRRSV) in pigs [START_REF] Nodelijk | Introduction, persistence and fadeout of porcine reproductive and respiratory syndrome virus in a Dutch breeding herd: a mathematical analysis[END_REF], extending a model used previously (32; 22) to incorporate temporal-forcing in the rate of within-herd transmission and also to incorporate aerosol import of infection, also at temporally-forced rate. Both of these features are known to be realistic aspects for this system (1), but believe they have not been investigated in detail before. We investigate possible implications of these realistic additions on current control policies (32; 22).
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Models & Methods

Background theory

The type of processes considered here are continuous-time Markov chains (4; 33; 23).

A time-homogeneous Markov chain (thus appropriate for populations without phases, or for within each phase), taking values in a finite set S (either an irreducible class, or an irreducible transient class C and an absorbing set A), is specified by a matrix Q = (q(i, j), i, j ∈ S), where q(i, j) is the rate of transition from state i to state j, for j = i, and q(i, i) = -q(i), such that q(i) := j =i q(i, j) (< ∞) is the total rate at which we move out of state i. Then, the probability distribution of the process at time t, p(t), is given by p(t) = p(0) exp(Qt), where p(0) is the initial distribution of the process, and exp is the matrix exponential (see, for example, (33; 23)).

The above (time-homogeneous) processes assume a fixed set of transition rates Q which govern the behaviour of the population for all time t. Many species, and more generally processes, have distinct phases. Here, for clarity of exposition, I focus on populations that have a breeding season in which both dispersal and local extinctions may occur, and a non-breeding season in which only local population extinctions may occur. I assume, without any loss of generality, that the breeding season signifies the start of a year and that only one breeding season occurs each year. Such populations have two distinct phases and two distinct sets of rates -one for the breeding season and one for the rest of the year. The results presented extend to Markov processes with more than two phases.

Transient behaviour

We now specify the two distinct sets of rates. Let Q 1 be the transition rates of the population during the breeding season, and Q 2 the transition rates during the nonbreeding season. The distribution of the population at time t ≤ 1 may now be evaluated as

p(t) = p(0) × ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ exp(Q 1 t) i f t ≤ α exp(Q 1 α) exp(Q 2 (t -α)) if α < t ≤ 1 ( 1 
)
where α is the duration of the first (breeding) phase. Once t = 1 we are back in phase 1; the above equation can then be used for 1 < t ≤ 2 by replacing t with
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t -1 on the right-hand side of (1) and replacing p(0) with p(1). The distribution for larger t follows from straightforward induction. Thus, equipped with a procedure for evaluating matrix exponentials, such as the expm function of Matlab, we may evaluate the (computationally-exact) distribution of our process for all t. Sparse matrix methods, as exemplified by the mexpv function of EXPOKIT [START_REF] Sidje | EXPOKIT. A software package for computing matrix exponentials[END_REF], may also be used to greatly improve efficiency in many applications.

If we are only interested in the distribution of the process at the start of each breeding season -in the present application this represents the distribution of the process at its (on average) lowest numbers -then we can use discrete-time Markov chain techniques:

p(s + 1) = p(s)P, ( 2 
)
where

P = exp(Q 1 α) exp(Q 2 (1 -α))
and s represents the time step (of one year).

It can be seen that this corresponds precisely to the continuous-time approach just outlined [START_REF] Albina | Epidemiology of porcine reproductive and respiratory syndrome (PRRS): An overview[END_REF], but evaluated at a fixed point in time; thus, once P is calculated we may determine the dynamics at multiples of this time-step via simple multiplication. The advantage of this approach over the discrete-time Markov chain approach outlined in the Introduction, is that more than one type of event may occur within each phase;

for example, the breeding phase incorporates the possibility of local extinctions. As reasoned in Day and Possingham (13) (pg. 336), if the dispersal phase (the only time dispersal can occur) is very short, then assuming extinction occurs only in the remaining time period will have minimal impact. However, the approach just outlined offers a more realistic model of population dynamics if extinctions are possible during the dispersal phase, and additionally allows for modelling dynamics of processes where, for example, dispersal occurs for a longer period of time in which case the assumption of only one event occurring is clearly not satisfied.

(Quasi-)stationary distribution

Often when modelling populations we are interested in the distribution of the process after it has been evolving for a long period of time (for processes without an absorbing state, so that an interesting equilibrium distribution exists), or conditional on nonextinction and after a long period of time (for processes with an absorbing state)the so-called stationary and quasi-stationary distributions of the process respectively.

Due to the process having (two) phases, a (quasi-)stationary distribution in the usual
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sense will not exist. However, the distribution of the process will settle down, such that the distribution at the same stage of a year will converge to a unique distribution as t becomes large -there will exist a unique periodic (quasi-)stationary distribution (obviously, if the process has an absorbing state(s) which is approached rapidly, then the quasi-stationary distribution is of little interest). Essentially we are interested in a distribution π s (for some time s) such that π s+N = π s (where π s and π s+N are conditional distributions in the case of a process with an absorbing state(s)).

We consider here (without loss of generality) this distribution at the start of the breeding season; as noted, in the present application this will be the distribution of the population at the end of the non-breeding season, and thus represents the distribution of the process at its (on average) lowest numbers. We define here (without loss of generality) the (quasi-)stationary distribution ((Q)SD) to be the (conditional) distribution of the process at the start of a breeding season, as t → ∞.

Obviously the distribution may be evaluated by repeated multiplication of matrices, as outlined above (equations ( 1) or ( 2)), until the distribution converges. Ideally a more direct approach would be available, for the same reasons as it is desired in the standard time-homogeneous case -efficiency and accuracy. We now seek such an approach.

The distribution we are interested in, which we have specified as the (quasi-)stationary distribution, is the (conditional) distribution at fixed intervals (and after a sufficiently long period of time). Thus, as outlined above, we may consider a discrete-time Markov chain with fixed transition probability matrix

P = exp(Q 1 α) exp(Q 2 (1 -α)) so that
the distribution at the start of each breeding season s = {0, 1, 2, . . .} is given by p(s + 1) = p(s)P . The stationary distribution of the process is therefore the distribution π such that π = πP . From this we can see that the stationary distribution, and quasi-stationary distribution for processes with an absorbing state, may be recovered using standard discrete-time Markov chain techniques (33; 13; 36). The only drawback of this approach is that sparse techniques cannot be utilised as the full matrices (exp(Q 1 α)

and exp(Q 2 (1α)), and their product) need to be evaluated. It will often be the case that repeated multiplication of matrices exploiting sparse techniques (equation (1) with mexpv) will be more efficient (or even actually feasible) in comparison to this approach.

To avoid repeated multiplication, and to possibly exploit sparse techniques, we need a single matrix that we can operate on directly. That is, we ideally wish to find a
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matrix Q 12 such that exp(Q 12 ) = exp(αQ 1 ) exp((1α)Q 2 ). We can then apply (sparse) continuous-time Markov chain routines to the matrix Q 12 to efficiently evaluate the (Q)SD. If the matrices commute, so that

Q 1 Q 2 = Q 2 Q 1 , then Q 12 = αQ 1 + (1 -α)Q 2 .
However this will rarely (if ever) be the case in application. For general non-commuting Q 1 and Q 2 our hope rests with the Baker-Campbell-Hausdorff (BCH) series (9; 10; 17; 30).

The BCH series is the solution Z to Z = log(exp(X) exp(Y )) (i.e. precisely the desired Q 12 noted above) as a formal (infinite) series. The series may be presented in several ways (see for example [START_REF] Blanes | On the convergence and optimization of the Baker-Campbell-Hausdorff formula[END_REF]); for our purposes we will write (the explicit associative presentation):

Z = X + Y + |w|≥2 g w w (3)
so that Z is X + Y plus a linear combination extending over all words w in X and Y (e.g. w = w 1 w 2 . . . w n , each w i being X or Y , are the words of length n) having length |w| at least two, with rational number coefficients g w [START_REF] Newman | Numerical values of Goldberg's coefficients in the series for log(e x e y )[END_REF]. Goldberg (17) presented a recursive procedure for evaluating the coefficients g w , and Newman and Thompson have evaluated these coefficients as far as words of length twenty [START_REF] Newman | Numerical values of Goldberg's coefficients in the series for log(e x e y )[END_REF].

Two things must occur for the BCH series to be useful in applications: i) it must converge; and ii) it must converge sufficiently quickly that the number of terms required is small, so that the time taken to compute the matrix Z is small in comparison to the time taken to implement the approaches outlined earlier. Furthermore, to provide (most) benefit over the other approaches the resulting matrix Z will be ideally sparse. 7) presents this latter convergence domain for the case μ = 2, which will be typically the case in practice (occasionally μ will be less than 2). It should be noted that these domains are very restrictive, and is thus indicative of limited applicability of the BCH series in general.

Before proceeding, we note that these are only sufficient conditions for convergence.

We can assess convergence numerically, and if successive approximations via incorporating a higher order in the series truncation is converging, then that BCH formula may be used. I also note that the BCH series may be potentially extended to processes with an arbitrary number of phases via repeated application pairwise; additionally, computationally efficient methods exist for evaluating the coefficients (see e.g. ( 37)) and the minimum number of commutators required for approximating the series up to order six are presented in [START_REF] Blanes | On the convergence and optimization of the Baker-Campbell-Hausdorff formula[END_REF]. However, it is important to note that the BCH series will typically only converge for processes which have 'slow' dynamics with respect to the periodicity of the process; this has benefits in terms of computationally efficiency, as processes with such dynamics will typically take longer to converge, however for these processes the discrepancy between the approach presented here and the single-event-type processes as outlined in the Introduction will be typically small. For processes that do not satisfy the conditions for convergence of the BCH series, we must, to achieve computationally-exact results, use the approaches presented previously in the paper. A comparison of these approaches to computing the (marginal) quasistationary distribution, including a comparison of the computational overheads and sparseness of the resulting matrix Z, for a spatially-realistic metapopulation model is provided in the Examples section to follow.

Finally, we note that an advantage of the approaches presented herein is that the exact QSD corresponding to any stage of the year may be evaluated, as opposed to at yearly intervals only.

A c c e p t e d m a n u s c r i p t Expected time to extinction

For a time-homogeneous continuous-time Markov chain, the expected time to extinction from state i, E(T i ), may be evaluated via the integral

E(T i ) = ∞ 0 (1 -p i 0 (s))ds
where p i 0 (s) is the probability of extinction by time s starting in state i. This integral may be approximated, in the traditional way, by the sum

E(T i ) ≈ ∞ n=0 δt(1 -p i 0 (nδt)),
where δt is a (small) time-step.

As established in the previous sections, we may evaluate the probability of extinction by time s, starting from a state i, for s of fixed multiples, say s = {0, 1, 2 . . .}. This serves to provide an upper and lower bound, E UB and E LB respectively, on the expected time to extinction, each evaluated as follows:

E UB (T i ) = ∞ n=0 δt(1 -p i 0 (nδt)), E LB (T i ) = ∞ n=1 δt(1 -p i 0 (nδt)),
and δt is the time-step (one year). It can be seen, with assuming the probability of extinction at time 0 is 0 (i.e. p 0 (0) = 0), that these bounds differ by δt (= 1). Thus, we are able to provide an interval (of unit length time) on the expected time to extinction for the phased process. We may evaluate the expected time to extinction for the discretetime Markov chain with transition matrix P (or using continuous-time Markov chain techniques on Q 12 (i.e. Z)), which will provide E UB (T i ), and then the true expected time to extinction of the process lies in the interval

[E UB (T i ) -1, E UB (T i )].
Finally, I note that this interval may be made successively smaller by evaluating the probability of extinction (i.e. the distribution of the process) at successively more times.

Examples Spatiotemporally realistic malleefowl dynamics

Here I investigate the results via example of a metapopulation with a distinct breeding season and occupying a spatially-realistic network; this is a continuous-time version of The metapopulation model we investigate here models the presence or absence of a species from each patch in a metapopulation. It allows for patch specific extinction rates (say corresponding to patch area), and individual between patch (directional) colonisation rates (say dependent upon the distance, elevation and terrain between patches).

Consequently, the process has 2 N states where N is the number of patches. The specific model considered follows the application used by Day and Possingham (13) -the malleefowl in the Bakara region of South Australia.

Malleefowl are ground-dwelling birds that spend approximately 9 months of the year constructing and maintaining a nesting mound; the only time movement to other regions may occur is during the remaining period of the year. Thus this is an ideal example due to representing distinct phased behaviour. We analyse the malleefowl in the habitat patch network presented in [START_REF] Day | A stochastic metapopulation model with variability in patch size and position[END_REF], consisting of N = 8 patches with the areas and coordinates detailed in Table 1. We assume that a patch becomes locally extinct independently of other patches at rate 13/A i per year where A i is the area of patch i; thus local extinction rates are inversely proportional to patch area. Patch i is colonised by patch j at rate 0.02 exp(-d ij /5), where d ij is the distance between patch i and patch j; thus migration rates decrease with distance. These rates correspond to the probabilities used in

Patch Number Area (km
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Event Transition Rate

Colonisation

{n i = 0} → {n i = 1} q(n, n + e i ) = c(n, t)[1 -n i ] Local Extinction {n i = 1} → {n i = 0} q(n, n -e i ) = 13n i /A i where c(n, t) = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 0.02 j =i n j exp(-d ij /5) if t ∈ (0, 1/4) + N 0 i f t ∈ (1/4, 1) + N
Table 2: Malleefowl metapopulation model [START_REF] Day | A stochastic metapopulation model with variability in patch size and position[END_REF], with the base rate of colonisation increased to account for colonisation only occurring during a 3 month period instead of during the whole year. These rates are presented in Table 2, in which n = (n 1 , n 2 , . . . , n 8 ) is the vector of patch presences/absences and e i is the vector of length 8 with a 1 in the ith entry and a 0 in the jth entry for j = i.

Transient behaviour

Figure 1 demonstrates the transient behaviour of the population, starting from all patches occupied. The first subplot in the figure is the marginal distribution (corresponding to number of occupied patches) plotted at the end of each phase for the first 10 years; the methodology used corresponds to equation 1 (pg. 5) and use of EXPOKIT [START_REF] Sidje | EXPOKIT. A software package for computing matrix exponentials[END_REF]. The second subplot in Figure 1 is the same marginal distribution corresponding to number of occupied patches, but plotted at the end of each year (end of non-breeding season) over the same period of time; the methodology used corresponds to equation 2 (pg. 5) and MATLAB's expm function. It can be seen that the within-year variation due to the phased behaviour is smoothed out when considering the distribution at the end of each year only. The results from both methods correspond to high accuracy, demonstrating that either approach may be used reliably. We note that this distribution may be evaluated at whatever scale is desired via use of equation [START_REF] Albina | Epidemiology of porcine reproductive and respiratory syndrome (PRRS): An overview[END_REF].

Quasi-stationary distribution

We next consider the approaches discussed earlier for evaluating the quasi-stationary distribution of phased processes; namely: i) discrete-time Markov chain multiplication and ||(1α)Q 2 || < 1. When using the brute-force approach of discrete-time Markov matrix multiplication we find that the process has to be evolved for approximately 900 years (i.e. 900 matrix multiplications and conditionings) before the quasi-stationary distribution converges satisfactorily (assessed as the quasi-stationary distribution being invariant under additional matrix multiplications); this took 35.59 seconds. Table 2 shows the massive increase in computational efficiency gained by use of the Baker-Campbell-

Hausdorff series in conjunction with MATLAB's eigs routine. Using a BCH series of order 3, which took 0.18 seconds (i.e. 1/197th of the time), produces the exact quasistationary distribution (to computational accuracy). It can be seen that a BCH series up to and including order 8 provides computational advantage over the matrix multiplication approach in this case, and a maximum error of less than 10 -4 still remains in the matrix multiplication approach distribution. The discrete-time Markov chain eigenvector approach took 0.25 seconds (i.e. 1/142th of the time), being significantly quicker than the multiplication approach, but slightly longer than the BCH series of order 3 which took 0.18 seconds (i.e. 1.39 times as long). It can be seen that the sparseness ( = 1density; density is the proportion of non-zero entries in the matrix) of the BCH matrix reduces with increasing order; this explains some of the advantage of the BCH series approach at small orders, and explains some of the increase in the computing time with higher order -however, it can be seen from the high density of the discrete-time Markov chain with use of expm, that the clear majority of the computing time is due to the evaluation of the matrix Q 12 .

Finally, we compare the QSD computed using the techniques presented in this paper to that computed using commonly-used methodology in which extinction is assumed to not occur during the colonisation phase. It is found that there exists very small errors only when calculating the QSD using 'old' methodology for this particular application.

As already discussed, this is to be expected as the population moves relatively slowly with respect to the periodicity of the process. However, an obvious advantage of the approach presented here, also stated earlier, is the ability to evaluate the QSD at any stage of the year. 

A c c e p t e d m a n u s c r i p t

A c c e p t e d m a n u s c r i p t Termporal-forcing and aerosol importation

The dynamics of many diseases adhere to the SIRS (susceptible-infectious-recoveredsusceptible) framework of dynamics, in which susceptible individuals may be infected and then, after some period of infection, recover to acquire transient immunity, with the immunity fading resulting in the individual being fully susceptible to re-infection.

It is an important and common form of general natural-enemy (predator-prey) interactions. Various modifications have been made to the basic model to increase its realism -these have included incorporation of exposed and latent classes, in which individuals are infected but not yet infectious or infectious but not symptomatic, incorporation of more realistic (gamma) infectious period distributions, population age-structure, and seasonal/term-time forcing [START_REF] Keeling | Modeling infectious diseases in humans and animals[END_REF]. It is this latter feature of temporally-forced transmission, in conjunction with waning immunity and temporally-forced aerosol importation, upon which we focus here.

The specific model we consider has the following events and rates corresponding to changes in the numbers of susceptibles s and infecteds i:

Event Transition Rate Infection (s, i) → (s -1, i + 1) q((s, i), (s -1, i + 1)) = β(t)si/N + ι(t)s/N Recovery (s, i) → (s, i -1) q((s, i), (s, i -1)) = γi Resusceptibility (s, i) → (s + 1, i) q((s, i), (s + 1, i)) = μ(N -s -i) Replacement of infected (s, i) → (s + 1, i -1) q((s, i), (s + 1, i -1)) = di Replacement of immune (s, i) → (s + 1, i) q((s, i), (s + 1, i)) = d(N -s -i)
where β(t) is the transmission rate at time t, ι(t) is the rate of aerosol import of infection at time t, γ is the rate of recovery (hence 1/γ is the average infectious period), μ is the rate at which immunity wanes, d is the death/release/translocation (subsequently
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termed replacement) rate, and N is the total (fixed) population size; it is assumed in this model that the population size is held constant. This model is identical to that used for modelling porcine reproductive and respiratory syndrome virus (PRRSV) in a Dutch breeding herd, with the exceptions of temporal-forcing on the rate of disease transmission and aerosol import of infection (also at temporally-forced rate) [START_REF] Nodelijk | Introduction, persistence and fadeout of porcine reproductive and respiratory syndrome virus in a Dutch breeding herd: a mathematical analysis[END_REF]. PRRSV is a viral disease of pigs (1; 51), with widespread economic and welfare impacts. The effect of herd size on the epidemic dynamics has been studied (32; 22), showing that the average duration of an outbreak increases rapidly with the herd size. This finding has implications for controlling PRRSV: large farms form the basis of control, as small farms are unlikely to permit persistence of the virus over any reasonable time-scale (22; 15).

As the cost of this control measure is directly linked to the number of farms requiring surveillance and routine testing, being able to accurately identify a target-farm-size threshold is important; the identification of such a threshold will be greatly assisted by incorporating the seasonal aspects of disease transmission (52). Additionally, such considerations may lead to further targetting of surveillance by time of year. The aerosol transmission of PRRSV is known to be higher in Winter (1), and whilst seasonality in herd incidence has not been studied in detail, the transmission routes of infection indicate that herd density, and thus farming practices which change with season, are believed to influence disease transmission [START_REF] Albina | Epidemiology of porcine reproductive and respiratory syndrome (PRRS): An overview[END_REF].

We also believe the above model and considerations have application to modelling other diseases within farms and closed communities, including for disease invasion in conservation-based captive-breeding programs (47; 6; 27; 29; 43; 12; 16; 5; 50). There exists many obstacles to the successful implementation of captive breeding programs, and one of the largest inhibitors is that of disease invasion [START_REF] Snyder | Limitations of captive breeding in endangered species recovery[END_REF]. Whilst mechanisms are continuously being formulated to collect data of disease outbreaks in such captive populations [START_REF] Munson | Monitoring, investigation, and surveillance of diseases in captive wildlife[END_REF], the interaction of disease and population dynamics in captive breeding populations, and the additional impact of seasonality, is generally poorly understood (6); hence mathematical models have an important role to play in informing management and designing captive breeding programs [START_REF] Ballou | Assessing the risks of infectious diseases in captive breeding and reintroduction programs[END_REF].

The transmission rate parameter β(t), and rate of import parameter ι(t), we consider
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have the form

β(t) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ β/A Summer if t ∈ (0, 1/4) + N β/A Autumn if t ∈ (1/4, 1/2) + N β/A W inter if t ∈ (1/2, 3/4) + N β/A Spring if t ∈ (3/4, 1) + N and 
ι(t) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ι Summer if t ∈ (0, 1/4) + N ι Autumn if t ∈ (1/4, 1/2) + N ι W inter if t ∈ (1/2, 3/4) + N ι Spring if t ∈ (3/4, 1) + N
so that transmissibility changes with season, inversely proportional to the area the herd is restricted to occupy, and import rate varies with each season; each season is assumed to be of equal duration.

As an aside, it is interesting to note that the model has similarities with a 'basic' model used for measles dynamics (20; 21). In that case the transmission rate β(t)

varies between two values: β 0 + β 1 , corresponding to school term time, and β 0β 1 corresponding to school holidays, where β 0 and β 1 are constants.

We assume the parameter values (all in years -1 ): recovery rate γ = 6.5, waning immunity rate μ = 0.26, and replacement rate d = 0.63; these rates are as estimated previously [START_REF] Nodelijk | Introduction, persistence and fadeout of porcine reproductive and respiratory syndrome virus in a Dutch breeding herd: a mathematical analysis[END_REF] and subsequently employed in [START_REF] Keeling | Modeling infectious diseases in humans and animals[END_REF]. With respect to seasonality, we We note here that with respect to evaluating stationary behaviour, the BCH series does not converge using either formula discussed previously, and (3) fails to converge numerically, and thus stationary behaviour is evaluated using the discrete-time Markov chain in concert with expm to evaluate matrix exponentials and eigs to evaluate eigenvector.

Transient dynamics & probability of fade-out

We plot in Figure 2 the transient dynamics of the process over the time period [START_REF] Campbell | On a law of combination of operators bearing on the theory of continuous transformation groups II[END_REF][START_REF] Cunningham | Disease risks in wildlife translocations[END_REF], by which time a large proportion of the dependence on initial conditions has evanesced and hence the dynamics predominately correspond to (periodic-)stationarity.

It can be seen that the seasonality in transmission and importation of infection creates oscillations/waves in the number of susceptibles and infectives with a yearly cycle.

Figure 3 presents the expected number of infectious animals in (periodic-)stationarity assuming a herd size N = 50. It can be seen that the model with temporally-forced rates produces an essentially equivalent average level of infection in stationarity to that of the original model with constant rates. It can also be seen that there is significant variability in the prevalence of infection when seasonality is incorporated in the model. This has implications for surveillance, with disease most easily detected at the end of Winter, or alternatively, a higher proportion of the herd requiring testing during Summer, some of Autumn and later parts of Spring, in comparison to Winter.

Finally, in Figure 4, we plot the probability of disease fade-out versus time for different herd sizes, assuming no import of infection (as previously assumed in models), and starting with three initially infected animals (following the approach adopted previously ( 22)). In the top left subplot constant rates have been assumed, and it can be seen the probability of fade-out after one, two, or three years quickly drops, and the tail lengthens, with increasing herd size; this is in agreement with previous studies which demonstrated an exponential increase in the time to extinction via simulation experiments (32; 22). When seasonality in transmission is incorporated in the model,
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as a consequence of changing farming practices influencing the (average) herd density (and possibly other factors, such as those that account for higher aerosol importation in Winter), this dramatic increase is diminished; the strength of the decrease depends upon the timing of the initial import, with significantly higher probabilities of fade-out after only a couple of years when the initial import is at the start of Summer, and still increased, but not as dramatically, when the import is effected at the start of Winter or Autumn. This has implications for control: i) Firstly, whilst the probability of fadeout does (unsurprisingly) increase with herd size, the dramatic increase for herds above N = 50 is diminished, with dependence upon the timing of import of infection, meaning that the threshold herd-size should potentially be raised to larger herd sizes, creating economic savings, and consideration should be given to the timing of import of animals onto farms; ii) More targetting should be focused on aerosol importation, as this appears to be the predominant factor in creating longer-term prevalence of PRRSV, in particular temporal-targetting of aerosol transmission appears to have substantial benefits;

and iii) The results provide encouragement for the effectiveness of such a program, with reasonably high probabilities of fade-out after only a few years in the absence of aerosol importation (Figure 4). These findings motivate future modelling and control planning, indicating that consideration should be given to the spatial structure of farms via metapopulation or similarly-structured models; this is also suggested by other, applied, studies for this disease [START_REF] Evans | Porcine reproductive and respiratory syndrome virus (PRRSV) in GB pig herds: farm characteristics associated with heterogeneity in seroprevalence[END_REF].

Summary & Discussion

I have presented continuous-time Markovian models for processes possessing phases, and studied methods for their efficient and accurate study. The type of processes for which these methods apply, in principle, include populations and metapopulations with distinct breeding and dispersal phases, and diseases with seasonal & term-time forcing and transmission occurring on dynamic networks.

The application of the methodology to malleefowl in South Australia via use of a spatially-and temporally-realistic metapopulation model with two phases demonstrates the computational advantages that may be gained from the methods presented. However, they also demonstrated that in scenarios for which the BCH series can be used,
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be investigated in the future, along with diffusion approximations and moment closure methods for time-inhomogeneous processes. However, for those processes for which the methodology herein may be invoked (i.e. small systems) it often provides a gold-standard approach.

Finally, we note that we have considered only deterministic temporality of rate parameters in this study. Often, as a consequence of environmental stochasticity, the rate parameters will be also subject to random perturbations, and this stochasticity in parameters may also involve periodic/seasonal dependence. An obvious approach to incorporate this is to expand the dimension of the system being studied, so that the parameters are incorporated as part of the system. One major issue with such an approach is the rapid increase in size of the system, making such an approach, with current computational apparatus, infeasible. Another important avenue for future research is approximations for incorporating such behaviours. 
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 2 = (X, Y ) : μ||Y || < 2π μ||X|| 1 g(x) dx , and g(x) = 2 + x 2 1cot x 2 , wherein || • || and μ is a matrix norm and a number, respectively, such that ||XY -Y X|| ≤ μ||X||||Y || for all X and Y in the Lie algebra of interest. Figure 1 of (
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  the model presented in[START_REF] Day | A stochastic metapopulation model with variability in patch size and position[END_REF] extended to incorporate temporally-realistic dispersal.
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 t brute-force); ii) discrete-time Markov chain with use of expm to evaluate matrix exponentials and eigs to evaluate eigenvector; and, iii) BCH series with use of eigs to evaluate eigenvector. The BCH formula (3) converges for our matrices as ||αQ 1 || < 1

A c c e p t e d m a n u s c r i p t and a relativelyFigure 2 C

 2 Figure2C also). We note here that with respect to evaluating stationary behaviour, the

  J.A. Yorke, N. Nathanson, G. Pianigiani and J. Martin (1979) Seasonality and the requirements for perpetuation and eradication of viruses in populations. Am. J. Epid. 109, 103-123. stationary distribution, at end of year

Figure 1 :

 1 Figure 1: Marginal distribution of spatially-realistic metapopulation corresponding to probability of number of occupied patches plotted at various times: A) Using continuous-time Markov chain techniques (Equation 1, pg. 4) at end of each phase; B) Using discrete-time Markov chain techniques (Equation 2, pg. 4) at end of each year. C) The marginal quasistationary distribution at the end of each year.

Figure 2 :Figure 3 :

 23 Figure 2: A) Number infected versus time (axes chosen to highlight changes) with N = 50; B) Number susceptible versus time (axes chosen to highlight changes) with N = 50.

Table 1 :

 1 Patch areas and positions for malleefowl habitat in Bakara region of South Australia.

	1	2700	6	17
	2	100	14	16
	3	750	18	14
	4	550	11	13
	5	100	19	10
	6	400	6	8
	7	1200	14	7
	8	400	3	5

2 ) x-coordinate (km) y-coordinate (km)

Table 3 :

 3 

	Method	Order	Time (seconds) Difference Density
	Discrete-time (DT) / Multiplication T = 900	35.59s	Reference	-
	DT / expm & eigs	N/A	0.25s	< 1 × 10 -4 * 0.9961
	BCH Series / eigs	1	0.09s	< 1 × 10 -2	0.0350
	BCH/eigs	2	0.10s	< 1 × 10 -4	0.0897
	BCH/eigs	3	0.18s	< 1 × 10 -4 * 0.2955
	BCH/eigs	4	0.25s	< 1 × 10 -4 * 0.4553
	BCH/eigs	5	1s	< 1 × 10 -4 * 0.7820
	BCH/eigs	6	2s	< 1 × 10 -4 * 0.9066
	BCH/eigs	7	7.7s	< 1 × 10 -4 * 0.9831
	BCH/eigs	8	15.3s	< 1 × 10 -4 * 0.9939
	BCH/eigs	9	43.8s	< 1 × 10 -4 * 0.9958

Comparison of: discrete-time matrix multiplication approach, to discrete-time with use of expm and eigs routines, and to BCH series of various order. Time in seconds to run & maximum difference between discrete-time and other approaches calculated quasi-stationary distributions. Asterisks (*) represents converged difference meaning that the computationallyexact quasi-stationary distribution is produced, and the error represents the error remaining in the discrete-time multiplication approach distribution (the discrete-time matrix multiplication approach is only accurate to 10 -4 in this application). Density is the proportion of non-zero entries in the matrix used in conjunction with eigs to determine the QSD.

Acknowledgments

I thank the referees, Matt Keeling, Phil Pollett and David Sirl for their comments, and King's College Cambridge for financial support (Zukerman Research Fellowship).

A c c e p t e d m a n u s c r i p t

the incorporation of periodic dynamics will typically have minimal impact on findings.

From an applied perspective, the study highlighted the importance of maintaining large patches of habitat for assisting persistence of the malleefowl.

Consideration of a model for disease in captive-breeding populations, and in particular the parameterisation of this model appropriate for studying PRRSV in pigs, demonstrated the importance of incorporating temporally-forced dynamics for prediction, and more poignantely for control. The implications for control consist of an increase in the threshold herd-size for surveillance, temporally-refined testing regimes and consideration to timing of import of animals to farms, and focus on limiting aerosol importation. The findings also provided encouragement for the effectiveness of control via limitation of aerosol importation, with reasonably high probabilities of fade-out even for reasonably-large herds. Finally, the additional implications of this is that future modelling for determining control programs should consider spatial structure of farms, for example via metapopulation or similarly structured models for spatial disease spread;

this is in agreement with other, applied, studies for this disease [START_REF] Evans | Porcine reproductive and respiratory syndrome virus (PRRSV) in GB pig herds: farm characteristics associated with heterogeneity in seroprevalence[END_REF]. All of these findings, however, are based upon a re-parameterisation of the model with seasonal forcing to closely match the parameterisation with constant rates and no aerosol import; whilst this provide a model that reflects qualitatively the features and hence implications discussed, this should be verified by calibrating the model directly to data for the particular population of interest. Such parameterisation may be effected via use of equation [START_REF] Albina | Epidemiology of porcine reproductive and respiratory syndrome (PRRS): An overview[END_REF] following directly from parameterisation for time-homogeneous processes (38; 39). It is also important to note that when seasonality is a feature of a system the timing of observations will potentially have a large impact on the estimated parameter values (see for example Figure 3).

All of the methods presented will become computationally infeasible for processes with large state spaces. Obviously simulation is an option for investigating the processes in such a scenario but, as stated previously, a large number of realisations are often required before accuracy of results may be established. The development of approximation methods, in particular those having a rigorous basis or quantifiable error probabilities, for dealing with processes having phases, and time-inhomogeneous behaviour in general, is thus a useful and necessary avenue for future research; combination of the results discussed here with recent computational techniques in Keeling and Ross [START_REF] Keeling | Efficient methods for studying stochastic disease and population dynamics[END_REF] will