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Abstract

A fundamental step in synthetic biology and systems biology is to derive appropriate mathematical models
for the purposes of analysis and design. For example, to synthesize a gene regulatory network, the derivation
of a mathematical model is important in order to carry out in silico investigations of the network dynamics
and to investigate parameter variations and robustness issues. Different mathematical frameworks have been
proposed to derive such models. In particular, the use of sets of nonlinear ordinary differential equations
(ODEs) has been proposed to model the dynamics of the concentrations of mRNAs and proteins. These
models are usually characterized by the presence of highly nonlinear Hill function terms. A typical simpli-
fication is to reduce the number of equations by means of a quasi-steady-state assumption on the mRNA
concentrations. This yields a class of simplified ODE models. A radically different approach is to replace the
Hill functions by piecewise-linear approximations [5]. A further modelling approach is the use of discrete-
time maps [7] where the evolution of the system is modelled in discrete, rather than continuous, time. The
aim of this paper is to discuss and compare these different modelling approaches, using a representative
gene regulatory network. We will show that different models often lead to conflicting conclusions concerning
the existence and stability of equilibria and stable oscillatory behaviours. Moreover, we shall discuss, where
possible, the viability of making certain modelling approximations (e.g. quasi-steady-state mRNA dynamics
or piecewise-linear approximations of Hill functions) and their effects on the overall system dynamics.

Key words: Transcription, Hill coefficient, Hopf bifurcation

1. Introduction

A number of gene regulatory networks has been proposed to perform certain desired functions. Examples
include genetic switches [18], robust genetic oscillators [16] and the many entries submitted every year to
the international IGEM competition on synthetic biology (see [49] for more details). A key step in the
design and analysis of synthetic biological networks is the possibility of in silico testing of their behaviour,
evaluation of the possible design options and validation of their performance and viability. The availability
of a realistic mathematical model of the network of interest is of the utmost importance to carry out such
testing.

The recent development of advanced experimental techniques in molecular biology has increased the
amount of available experimental data on gene regulation which has led to a rapidly growing interest in
mathematical modelling methods for the study and analysis of gene regulation [9, 15, 27, 29, 40, 47]. One of
the very first mathematical approaches is the framework of boolean networks [30, 32, 42, 46] which is based
on three assumptions: (i) the state of each gene can be either ON or OFF, (ii) the regulatory control of
gene expression can be approximated by Boolean logical rules and (iii) all genes update their ON and OFF
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state synchronously [40]. Some recent studies deal with the comparison of Boolean models with ordinary
differential equations models by considering specific biological networks [6, 8] . Specifically, in [8] they
demonstrate how a Boolean model can be derived in terms of a mathematically well defined coarse-grained
limit of an underlying ODE model.

Instead of taking a continuous deterministic approach, some authors have proposed using discrete stochas-
tic models of gene regulation. Two approaches widely used to model stochastic events in gene regulatory
networks are the chemical master equation and the stochastic simulation algorithm [2, 20, 21, 33, 38, 39].

This paper focuses on mathematical models based on ordinary differential equations (ODEs). This kind
of model is arguably the most widespread formalism for modelling gene regulatory networks. These models
are best analyzed using tools developed for nonlinear systems, in order to investigate bifurcation behaviour,
locate limit cycles or analyze network dynamics. In the extensive literature on different ODE modelling
approaches, several options are available, such as the number of equations to be used, the functional form of
the kinetic laws and parameter values. The aim of this paper is to focus attention on the importance of these
choices. The goal is to study and compare the different dynamics predicted by each model, emphasizing
advantages and disadvantages. We will see that the choice of modelling framework and the assumptions
made can determine the nature and quality of the expected behaviour during the in silico testing and
validation phases.

For the sake of clarity and simplicity, we will illustrate our findings by means of a widely used rep-
resentative example: a two-gene activator-inhibitor network (see Figure 4). Such an example, despite its
simplicity, is well suited to emphasize the major dynamic consequences of the various modelling options
being explored. It is worth mentioning here that different versions of the activator-inhibitor network have
been often studied in previous work, e.g. in [48] where no self-regulation is considered, and also in [11, 13, 26]
where self-regulation of one or both genes is considered. In our case we shall not consider any self-regulation.

Here, we use this network to explore the impact of some key assumptions commonly made when modelling
gene networks. Specifically, we study:

1. the effects of quasi-steady-state hypothesis for the mRNA dynamics;

2. the effects of variation of the Hill coefficients;

3. the effects of taking the limit of Hill coefficient to infinity, namely the approximation of Hill functions
with piecewise-linear (PWL) functions;

4. the effects of discretizing the continuous-time ODE models.

We study all of the above cases by expounding in a new framework some key results presented in the
literature and by extending and integrating them with novel analytical tools. We wish to emphasize that
the results presented in this paper can have implications when larger and more complex synthetic networks
are studied.

The outline of the paper is as follow. In Section 2 we briefly give an overview of gene regulatory
networks. In Section 3 we put the problem of modelling gene regulatory networks into the framework of
ordinary differential equations. We present the different ODE models studied in this paper. We also derive
a general discrete-time model, as a discretized version of the continuous time model. In Section 4, we
write down the explicit equations of each model, for the representative example of an activation-inhibition
network. Sections 5, 6 and 7 present the mathematical analysis of the various models. Specifically, in section
5 we perform stability and bifurcation analysis of the nonlinear models and reveals the effects of: (i) the
steady-state mRNA assumption, (ii) the selection of Hill coefficient values. Section 6 deals with the effects
of the piecewise linear approximation of the Hill function and section 7 shows the effects of the discretization
of the continuous-time models. In the final section we present our conclusions.

2. Gene regulatory networks: an overview

The central dogma defines the paradigm of molecular biology. Genes are perpetuated as sequences of
nucleic acid, but function by being expressed in the form of proteins [35]. Transcription and translation
are responsible for their conversion from one form to the other. Transcription generates a messenger RNA
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Table 1: Notation

a, b : genes
Ra, Rb : transcribed mRNAs, ra, rb : concentration of transcribed mRNAs,
Pa, Pb : translated proteins, pa, pb : concentration of translated proteins,
ma, mb : maximal transcription rates, γa, γb : mRNA degradation rates,
ka, kb : translation rates, δa, δb : protein degradation rates,
θa, θb : expression thresholds, na, nb : Hill coefficients,
h+(·) : Hill function for activation, h−(·) : Hill function for inhibition,
s+(·) : PWL function for activation, s−(·) : PWL function for inhibition.

(mRNA) which provides an intermediate that carries the copy of a DNA sequence that represents a protein.
It is a single-stranded RNA identical in sequence with one of the strands of the duplex DNA. In protein-
coding genes, translation will convert the nucleotide sequence of mRNA into the sequence of amino acids
comprising a protein [35]. This two-stage process is called gene expression.

Each protein produced by the genes, has its own role in the cell. Some proteins are structural and will
accumulate at the cell-wall or within the cell to give it particular properties. Other proteins can be enzymes
that catalyse certain reactions. A large group of proteins have an important role in the regulation of the
genes, known as transcription factors. Gene regulation by transcription factors can be negative or positive.
In negative regulation, an inhibitor protein binds the operator to prevent a gene from being expressed.
In positive regulation, a transcription factor is required to bind at the promoter in order to enable RNA
polymerase to initiate transcription [35].

Several other steps in the gene expression process may be modulated [35]. Apart from DNA transcription
regulation, the expression of a gene may be controlled during RNA processing and transport (in eukaryotes),
RNA translation, and the post-translational modification of proteins [9]. The degradation of gene products
can also be regulated in the cell. Hence, a gene regulatory network is a collection of DNA, RNA, proteins,
and other molecules which interact with each other. These interactions control the rates at which genes in
the network are transcribed into mRNA, the rates at which the mRNA are translated into proteins and in
general control the cell behavior. Gene regulation gives the cell control over its structure and function, like
the response of cells to environmental signals, the differentiation of cells and groups of cells in the unfolding
of developmental programs, and the replication of the genome preceding cell division [9].

3. Modelling gene regulatory networks

Gene regulatory networks can be modelled from first principles using Michaelis-Menten enzymatic ki-
netics, together with the usual rules of reaction kinetics [1]. The resulting models, when spatial effects are
neglected, are given in terms of ordinary differential equations describing the rate of change of the concen-
trations of gene products and proteins. A key component of all these models is the Hill function [28], used to
describe the transcription phase. The presence of this highly nonlinear function, whilst accurately modelling
the network, inevitably leads to restrictions on the analytical tools available to understand and predict the
dynamics. It was proposed that the resulting equations can be simplified by considering piecewise-linear
approximations of these Hill functions [5]. Another possibility [7] is to discretize the continuous-time ODEs
to obtain a discrete-time system. In what follows, we briefly outline the main features of each of these
modelling approaches.

3.1. Ordinary differential equations

When ordinary differential equations are used, the cellular concentration of proteins, mRNAs and other
molecules are represented by continuous time variables with the constraint that a concentration can not be
negative. For a typical transcription-translation process, the ODEs modelling approach associates two ODEs
with any given gene i; one modelling the rate of change of the concentration of the transcribed mRNA, say
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ri, and the other describing the rate of change of the concentration of its corresponding translated protein,
say pi. Thus for a network with N genes we have:

Transcription: dri

dt
= F (fR

i (p1), f
R
i (p2), ..., f

R
i (pn))− γiri, (1)

Translation: dpi

dt
= fP

i (ri)− δipi, (2)

where i = 1, . . . , N . The functions fR
i (pj) : R → R are usually nonlinear. They describe the dependence

of mRNA concentration on protein concentration pj . If protein pj has no effect on mRNA ri, then fR
i (pj)

is set to zero. The functional F (·) in (1) is typically defined in terms of sums and products of functions
fR

i . For example, if two proteins pl and pm are both needed to regulate mRNA ri, then a candidate
functional F might be F (fR

i (pl), f
R
i (pm)) = fR

i (pl)f
R
i (pm). Equation (1) states that the rate of change in

the concentration of mRNA ri is the difference between the synthesis term F (fR
i (p1), f

R
i (p2), ..., f

R
i (pn)) and

the degradation term γiri. Function fP
i (ri) in (2) describes the translation of the mRNA ri into a protein pi.

Parameters γi, δi (i = [1, .., N ]), represent the degradation parameters of the mRNAs and proteins produced
by gene i. As is common in many models, we shall assume that the degradation of proteins or mRNAs is
not regulated, namely that it does not depend on the concentrations of other molecules in the cell.

Transcription functions, fR
i (·), are derived from chemical first principles (e.g. the law of mass action)

or simple “second principles” (e.g. Michaelis-Menten enzymatic kinetics). Experimental evidence suggests
a monotonic sigmoidal-shaped function [50, 51] which increases when pi is an activator and decreases when
pi is an inhibitor. A useful function satisfying this property is the Hill function. The Hill function for
activation, h+(pi; θi, ni) : R≥0 × R

2
>0 → R≥0, is increasing and has two real parameters, θi and ni:

h+(pi; θi, ni) =
pni

i

pni

i + θni

i

. (3)

It describes a curve that rises from zero and approaches unity as shown in Figure 1(a). The parameter
θi is the expression threshold, and has units of concentration. It is the threshold of protein concentration,
pi, needed to produce a significant increase in the mRNA regulated by pi. The parameter ni is called Hill
coefficient (or cooperativity coefficient) and it controls the steepness of the Hill function. The larger ni,
the more step-like is the Hill function. Biologically, the Hill coefficient is related to the molecular binding
mechanism. In simple cases n is the number of protein monomers required for saturation of binding to the
DNA [48]. The Hill function for inhibition, h−(pi; θi, ni) : R≥0 × R

2
>0 → R≥0, is defined in a similar way

h+(pi ; θi , ni)

θi
0

1

pi

s+(pi ; θi)

(a) Activation function

h−(pi ; θi , ni )

θi
0

1

pi

s−(pi ; θi)

(b) Inhibition function

Figure 1: Transcription functions for activation and inhibition. Hill functions are plotted in red, PWL
functions in black.

(see Figure 1(b)). It is a decreasing function given by:

h−(pi; θi, ni) = 1− h+(pi; θi, ni) =
θni

i

pni

i + θni

i

. (4)
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Because of the nonlinearity of the Hill functions, the solutions of a system of ordinary differential equations
of a network of many genes cannot generally be determined by analytical means.

Several authors have proposed to approximate the Hill functions by piecewise-linear (PWL) functions
[5, 22, 23, 31, 44, 45]. This approximation is based on the switch-like character displayed by some genes
whose expression is regulated by steep sigmoid curves. Below (above) a certain concentration, the activator
(inhibitor) protein has little influence, whereas above (below) this concentration, the influence of the protein
rapidly reaches a maximum level (normalized to unity). From the mathematical point of view, a piecewise-
linear function can be seen as the limit of the Hill function as the Hill coefficient ni tends to infinity.

These piecewise-linear approximations are step functions, s−(pi; θi) and s+(pi; θi), given by:

s+(pi; θi) =

{
0, pi < θi,

1 pi > θi,
s−(pi; θi) = 1− s+(pi; θi). (5)

These are shown in Figures 1(a) and 1(b) in black. These functions are not defined for pi = θi. Later we
will show that this limitation has important consequences for this modelling approach.

To avoid this problem, one can include a third section between full activation (inhibition) and no ac-
tivation (inhibition), where the function increases (decreases) linearly with pi. In particular, in the work
originated by Plahte et al [36], and also in [3, 4, 19] the following PWL function for activation is used:

l+(pi; θ
1
i , θ

2
i ) =

⎧⎪⎨
⎪⎩

0, pi < θ1
i

μpi + ν, θ1
i < pi < θ2

i

1, pi > θ2
i

(6)

which uses two threshold parameters θ1
i , θ

2
i to define a saturation interval, and two real parameters, μ > 0

and ν < 0 which define the slope of the function between these two thresholds. Similarly the inhibition
function l−(pi; θ

1
i , θ

2
i ) = 1− l+(pi; θ

1
i , θ

2
i ).

0

1

l +(pi ;θi
 1, θi

 2)

pi
θi

1 θi
2

(a) Activation function

0

1

l −(pi ;θi
 1, θi

 2)

piθi
1 θi

2

(b) Inhibition function

Figure 2: PWL functions with saturation interval for activation and inhibition.

While these functions resolve the problem of discontinuity at the threshold, the extra linear region gives
rise to other problems, namely the need to identify the two threshold parameters θ1

i , θ
2
i . Also, these functions

become locally nonlinear if multiplication of transcription functions are allowed.
The translation phase is modelled by (2). The function fP

i (ri) is usually taken to be a linear term
proportional to the concentration of mRNA ri, resulting in a linear differential equation.

3.2. Assumption of quasi-steady-state mRNA concentrations

Many models in the literature make an important simplifying assumption that the control of gene ex-
pression resides in the regulation of gene transcription. This assumption is based on the fact that, in some
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gene regulatory networks, the mRNA dynamics are much faster than the protein dynamics, leading to the
mRNA concentrations reaching their equilibrium much faster than the protein concentrations.

From the mathematical point of view, this assumption is equivalent to taking ṙi ≈ 0 in (1) leading to
the static equation:

ri =
1

γi

F (fR
i (p1), f

R
i (p2), ..., f

R
i (pn)). (7)

Substituting this into (2) gives a reduced order model, involving only the protein concentrations of each
gene, of the form:

ṗi = fP
i (

1

γi

F (fR
i (p1), f

R
i (p2), ..., f

R
i (pn))) − δipi. (8)

This assumption is common in the literature, since many of the proposed models silently adopt this
simplification and use equations only for the protein concentrations. However, as we will see later, in some
cases this assumption can have effects on the predicted dynamics of a gene regulatory network.

3.3. Discrete-time modelling

As originally proposed by [23] and more recently in [7], discrete-time models can be used to study gene
regulatory networks. The idea is to derive a difference-equation model describing the change of the gene
product concentrations at discrete time intervals. It is suggested that this may be appropriate to (coarse-
grain) model gene regulation where local complex chemical reactions have to be integrated over short time
scales in order to produce interactions affecting expression levels on larger time scales [7]. The discrete-time
model in [7], is based on the quasi-steady-state mRNA assumption. Hence the model has a single state
variable (either mRNA or protein) for each gene. The protein concentrations evolve according to combined
interactions from other genes in the network. The interactions are given by step functions which assume that
a gene acts on another gene, or becomes inactive, only when its product concentration exceeds a threshold.
As will be shown later in this paper, it is possible to consider the model in [7] as a specific instance of a
wider class of models obtained by discretizing the ODE model of the network of interest. Whilst greatly
simplifying computations, we will show that spurious dynamics are introduced which can severely hinder
understanding of the network under consideration.

3.4. A summarizing scheme

The models under investigation in this paper are summarized in Figure 3. The complete nonlinear
model (CNM) considers different variables for the concentrations of mRNAs and proteins. Transcription is
modelled by a nonlinear Hill function and the translation of mRNAs to proteins is modelled by simple linear
functions.

If we replace the Hill functions in the CNM by step functions s−(pi; θi) and s+(pi; θi), we have the
complete piecewise linear model (CPWLM). This model retains different variables for the concentrations
of mRNAs and proteins. If we make the quasi-steady-state mRNA assumption, then from the complete
nonlinear model (CNM), we derive the simplified nonlinear model, (SNM). If we replace the Hill functions in
the SNM by step functions s−(pi; θi) and s+(pi; θi), we have the simplified piecewise linear model (SPWLM).
Later we will show a connection between the SPWLM and the discrete-time model proposed by [7]. (A
higher-dimensional discrete-time model could also be obtained by discretizing the CPWLM but this would
present the same problems discussed later as the one derived from the SPWLM. For the sake of brevity, this
model was therefore left out from this paper.)

4. A representative example

To illustrate the advantages and disadvantages of the various models, we use the activation-inhibition

two-gene network as a representative example (see Figure 4). In doing so, we will integrate and expand
analysis presented in [48] for a class of two-gene networks.

In our network, the DNA is assumed to carry two genes, gene a and gene b. Gene a has a binding site in
the promoter region for an activator (protein Pb) and gene b has a binding site for an inhibitor (protein Pa).

6
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Biological System

Complete PWL modelComplete Nonlinear model Complete Discrete-time model

Simplified Nonlinear model Simplified PWL model Simplified Discrete-time model

Assumption:
PWL function

for transcription

Assumption:
PWL function

for transcription

Assumption:
quasi-steady-state

mRNAs

Assumption:
quasi-steady-state

mRNAs

Figure 3: The relationships between the biological system and its mathematical models.

Binding of the proteins is assumed to occur fast compared to transcription and translation, and accordingly
the equilibrium assumption is valid [48]. We shall not consider self-regulation; the protein produced by a
gene does not affect the expression of the gene itself. The notation pi → rj means that, protein pi activates

Figure 4: An example of a genetic regulatory network consisting of two genes a and b. It consists of
four molecular species; proteins Pa, Pb and mRNAs Ra, Rb. Their concentrations are represented by the
continuous variables pa, pb, ra, rb respectively. Protein Pb acts as an activator on gene a; it increases the
production of mRNA Ra. Protein Pa acts as an inhibitor on gene b, reducing the production of mRNA Rb.

gene j, resulting in maximum transcription of mRNA rj ; whereas pi � rj means that protein pi inhibits the
gene expression of gene i.

4.1. The complete nonlinear model (CNM)

We start with the complete nonlinear model (CNM) of the network of two genes shown in Figure 4. Such
a model uses four state variables. The concentration of mRNA produced by gene i is denoted by ri while
the corresponding protein concentration is denoted by pi, for i = a, b. The activation of gene a by protein
Pb is modelled by the Hill function for activation h+(pb; θb, nb). The inhibition of gene b by protein Pa is
modelled by the Hill function for inhibition, h−(pa; θa, na). The translation of mRNA and the degradation
of mRNA and protein are all modelled by linear functions. Based on the above, the ordinary differential
equations describing the reaction kinetics are:

ṙa = mah+(pb; θb, nb)− γara,

ṙb = mbh
−(pa; θa, na)− γbrb,

(9)

7
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ṗa = kara − δapa,

ṗb = kbrb − δbpb.
(10)

Other quantities in (9), (10) are defined in Table 1.

4.2. The simplified nonlinear model (SNM)

An alternative model can be obtained by assuming that the mRNA dynamics are extremely fast when
compared to the protein dynamics and hence reach their equilibrium instantly. Assuming quasi-steady-state
mRNA concentrations for the activation-inhibition network of Figure 4, the dynamics can be described by
just two variables, say pa and pb. Figure 5 shows the network corresponding to the simplified nonlinear
model (SNM). More precisely, if we assume that ṙa ≈ 0 and ṙb ≈ 0 then (9) yields:

Figure 5: The network for the simplified nonlinear model.

ra =
ma

γa

h+(pb; θb, nb),

rb =
mb

γb

h−(pa; θa, na).
(11)

Substituting (11) into (10), the equations for the protein concentrations pa and pb become:

ṗa = k
′

ah+(pb; θb, nb)− δapa,

ṗb = k
′

bh
−(pa; θa, na)− δbpb;

(12)

where:
k
′

a =
ma

γa

ka , k
′

b =
mb

γb

kb. (13)

4.3. The complete piecewise linear model (CPWLM) and the simplified piecewise linear model (SPWLM)

If we approximate the transcription stages of the CNM with the PWL functions s+(pi; θi) and s−(pi; θi)
as proposed in [5], then we obtain the equations of the complete piecewise linear model (CPWLM), as follows:

ṙa = mas+(pb; θb)− γara

ṙb = mbs
−(pa; θa)− γbrb

ṗa = kara − δapa

ṗb = kbrb − δbpb

(14)

To further simplify the CPWLM, we can make the quasi-steady-state mRNA assumption to give the sim-
plified piecewise linear model (SPWLM):

ṗa = k
′

as+(pb; θb)− δapa

ṗb = k
′

bs
−(pa; θa)− δbpb

(15)

where k
′

a, k
′

b are given in (13).
8
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4.4. Discrete-time model

A different way to model the network is to discretize its dynamics. We show below that the model
presented in [7] can be obtained by appropriately sampling the state of the SPWLM presented earlier.
Equations (15) can be recast in matrix form as:

ṗ = Ap + Bu, (16)

where

p =

(
pa

pb

)
, A =

(
−δa 0
0 −δb

)
, B =

(
k
′

a 0

0 k
′

b

)
, u =

(
s+(pb; θb)
s−(pa; θa)

)
. (17)

Integrating (16), we have:

p(t) = eAtp0 +
(
eAt − I

)
A−1Bu, (18)

where (
pa(0)
pb(0)

)
=

(
pa0

pb0

)
. (19)

Over a sufficiently small time step T we have:

p(t + T ) =

(
e−δa(t+T ) 0

0 e−δb(t+T )

)(
pa0

pb0

)
+

⎛
⎝−k

′

a

δa

(e−δa(t+T ) − 1) 0

0 −
k
′

b

δb

(e−δb(t+T ) − 1)

⎞
⎠(s+(pb0 ; θb)

s−(pa0
; θa)

)
.

(20)
Note that T must be chosen small enough so that the discretized dynamics approximate the continuous

dynamics. Typically T must be significantly smaller than the time constants associated to the linear part
of the continuous-time model. Hence we take:

T =
1

10
max{

1

δa

,
1

δb

}. (21)

Then for t = 0, we have

pa(T ) = e−δaT pa0
+

k
′

a

δa

(
1− e−δaT

)
s+(pb0 ; θb),

pb(T ) = e−δbT pb0 +
k
′

b

δb

(
1− e−δbT

)
s−(pa0

; θa).

(22)

Let us now rescale time such that T = 1. Then if we set pa0
= pa(n) and pa(T ) = pa(n + 1) (similarly

pb0 = pb(n) and pb(T ) = pb(n + 1)), then we have the discretized form of equations (15):

pa(n + 1) = e−δapa(n) +
k
′

a

δa

(
1− e−δa

)
s+(pb(n); θb),

pb(n + 1) = e−δbpb(n) +
k
′

b

δb

(
1− e−δb

)
s−(pa(n); θa).

(23)

For the case δa = k
′

a = δb = k
′

b, equations (23) become

pa(n + 1) = αpa(n) + (1− α)s+(pb(n); θb),

pb(n + 1) = αpb(n) + (1 − α)s−(pa(n); θa),
(24)

where
α = e−δa = e−δb . (25)

This corresponds to the model given by Coutinho et al. in [7]. Parameter α represents the degradation of
the gene and is always between [0, 1].

We move now to the analysis of the dynamics predicted by each model.
9
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5. Analysis

We will now present a systematic analysis of the models described in the previous section. After deriving
the equilibria of both the CNM and SNM, we discuss their stability. We look for the presence of persistent
oscillations (limit cycles) by studying the occurrence of Hopf bifurcations. We will show that the presence
of this bifurcation phenomenon is dependent on the modelling. We also investigate the effect of varying the
Hill coefficients, confirming and extending the results of [48]. Finally we show the effects of taking PWL
approximations of the nonlinear Hill kinetics and discuss how discretization introduces spurious dynamics
that can lead to incorrect predictions. In what follows, for the sake of simplicity, we assume (with a slight
abuse of notation) that θa ≡ θna

a and θb ≡ θnb

b .

5.1. Existence of equilibria

We start with the equilibria of the CNM and SNM. We set:

ṙa = ṙb = ṗa = ṗb = 0, (26)

in (9) and (10). We will label r̃a, r̃b, p̃a, p̃b as the steady-state values of mRNA and protein concentrations
respectively. Note that from (10) we have that:

r̃a =
δa

ka

p̃a, r̃b =
δb

kb

p̃b. (27)

After some algebraic manipulation, we find that (p̃a, p̃b) are given by:

θb

( nb∑
k=0

p̃na(nb−k)+1
a

(
nb

k

)
θk

a

)
+ (p̃a − φa)(φbθa)nb = 0, (28)

p̃b =
φbθa

θa + p̃na

a
, (29)

where

φa =
maka

γaδa

, φb =
mbkb

γbδb

. (30)

Solutions of equation (28) are possible equilibrium concentrations p̃a (equilibrium concentrations p̃b, r̃a,
r̃b are then easily obtained, using (26), (29)). Equation (28) is a polynomial of degree nanb + 1. Hence,
for large Hill coefficients na and nb, it is difficult (or even impossible) to obtain analytical forms of all the
allowed equilibrium concentrations.

Recall that the equations for the SNM were derived using the steady-state mRNA assumption, (ṙa =
ṙb = 0). Therefore, the protein equilibrium concentrations for the SNM will also be given by equation (28).
In Figure 6 we can see that for a given parameter region both models eventually approach the same fixed
point. However trajectories of the SNM approach equilibrium much faster and in a less oscillatory manner
than those of the CNM.

5.2. Stability and bifurcations

We now study the stability of the predicted equilibria of the CNM and the SNM. Let ACNM be the
Jacobian of equations (9), (10) of the CNM. For the vector x = (x1, x2, x3, x4)

T = (ra, rb, pa, pb)
T , we have

ACNM =
{
aij =

∂ẋi

∂xj

}
=

⎛
⎜⎜⎜⎝
−γa 0 0 ma

∂h+(pb;θb,nb)
∂pb

0 −γb mb
∂h−(pa;θa,na)

∂pa

0

ka 0 −δa 0
0 kb 0 −δb

⎞
⎟⎟⎟⎠ (31)

10
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Figure 6: (a) Projection of trajectories in the protein subspace (pa,pb) of the CNM (blue) and SNM (red)
for the same parameters and initial conditions; ma = mb = 1.8, θa = θb = 0.28, and ka = kb = γa = γb =
δa = δb = 1. (b) Time evolution of the protein concentrations pa and pb. Blue corresponds to the CNM and
red corresponds to the SNM.

The characteristic equation is then [48]

(λ + γa)(λ + γb)(λ + δa)(λ + δb) + DCNM = 0 (32)

where

DCNM = mambkakbθaθb

nanbp̃
(na−1)
a p̃

(nb−1)
b

(θa + p̃na

a )2(θb + p̃nb

b )2
. (33)

Solving the characteristic equation (32) for different values of DCNM , we find the different possible dynamical
behaviours of our system. Figure 7(a) depicts the four eigenvalues of equation (32) as a function of DCNM .
Note that DCNM is always positive (for the sake of completeness, we plot the eigenvalues also for DCNM < 0).
For a certain value of DCNM = DHopf , the real part of one of the eigenvalues crosses zero, indicating a loss
of stability through a Hopf bifurcation. Widder et al. [48] calculated this value explicitly as:

DHopf =
(γa + γb)(γa + δa)(γa + δb)(γb + δa)(γb + δb)(δa + δb)

(γa + γb + δa + δb)2
(34)

for the case when the Hill coefficients na, nb are equal and greater than two1. An example of oscillatory
behaviour predicted by CNM is shown in Figures 8(a) and 8(b).

We shall now show that, under the mRNA quasi-steady-state assumption, such limit cycles are not
possible in the SNM. The corresponding Jacobian matrix ASNM of SNM given by equations (12) is:

ASNM =

(
−δa k′a

∂h+(pb;θb,nb)
∂pb

k′b
∂h−(pa;θa,na)

∂pa

−δb

)
(35)

and the characteristic equation is then

(δa + λ)(δb + λ) + DSNM = 0, (36)

where

DSNM =
DCNM

γaγb

. (37)

1The proof is based on the criterion by Lienard-Chipart (see [17], p.221)
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Equation (36) is quadratic and so the two eigenvalues λ1,2 are given by

λ1,2 =
−(δa + δb)±

√
(δa + δb)2 − 4DSNM

2
. (38)

So for λ1,2 complex, their real part will be always equal to − 1
2 (δa + δb). Since the protein degradation rates

δa, δb are biologically meaningful only when they are positive, a Hopf bifurcation will never be possible in
the SNM. In Figure 7(b), λ1,2 are plotted as a function of DSNM . We can see that the real part of the

−0.1 0 0.1 0.2 0.3

−1.2

−1

−0.8
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(a)

0 0.2 0.4 0.6 0.8
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−0.4

−0.2

0

DSNM

λ 1,λ
2

(b)

Figure 7: Eigenvalues of the Jacobian matrices of the CNM and the SNM, plotted as functions of DCNM

or DSNM . Real eigenvalues are drawn in black and the real parts of complex conjugate pairs of eigenvalues
are drawn in red.

complex eigenvalues remains constant and negative as a function of DSNM .
Figures 7(a) and 7(b) illustrate an important qualitative difference between the two nonlinear models.

The equilibria predicted by the SNM are always stable whereas the same equilibria predicted by the CNM
are liable to lose their stability under parameter variation. The mRNA quasi-steady-state assumption results
in an over-simplification of the dynamics, with the loss of the Hopf bifurcation. For example, Figures 8(c)
and 8(d) for the SNM, with the same parameters as Figures 8(a) and 8(b) for the CNM, have only stable
equilibria.

5.3. The quasi-steady-state mRNA assumption

If the mRNA concentrations reach their steady state values on a time scale much quicker than the
concentrations of the proteins, then we are able to make the quasi-steady-state mRNA assumption. For the
system to behave in this way, any transients in the mRNA concentrations have to be damped out quickly.
In other words, the two eigenvalues associated with the mRNA subspace of the four dimensional CNM state
space have to be in the left-hand side of the complex plane and have much larger real parts in modulus than
the two eigenvalues associated with protein subspace.

The four eigenvalues of the CNM state space are given by the roots of equation (32). Whilst an exact
solution of this equation is unwieldy, we can see that in the case of DCNM = 0, the four eigenvalues are
given exactly by λ1,2,3,4 = −γa,−γb,−δa,−δb. Similarly for DCNM small, these values are approximately
correct. So it is natural to think of γ−1

a , γ−1
b as time scales for the mRNA subspace and δ−1

a , δ−1
b as time

scales for the protein subspace. Now let γa/δa and γb/δb be the ratios of the time scales between the mRNA
and protein dynamics for gene a and b respectively.

In order to make the quasi-steady-state mRNA assumption, we need to take both ratios large. This is
in line with our intuition since in this case the damping (γa,b) associated with the mRNA dynamics is much
greater than the damping (δa,b) associated with the protein dynamics, which in turn means that the mRNA
transients die out more quickly.

12
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Figure 8: Plots for the CNM and SNM of the network of activation-inhibition of Figure 4. For both models,
the corresponding parameters have the same values; ma = mb = 2.35, θa = θb = 0.21, na = nb = 3 and
ka = kb = δa = δb = γa = γb = 1. For the left hand pictures, the projection of the trajectory onto the
mRNA subspace, (ra(t), rb(t)), is shown in black and the projection onto the protein subspace, (pa(t), pb(t))
in blue. For the right hand pictures, black denotes ra(t), red rb(t), blue pa(t) and turquoise pb(t).

To gain a deeper insight, following [11], we now consider the CNM equations in the form:

ṙa = mah+(pb; θb, nb)−
γa

ε
ra,

ṙb = mbh
−(pa; θa, na)−

γb

ε
rb,

ṗa =
ka

ε
ra − δapa,

ṗb =
kb

ε
rb − δbpb.

(39)

For ε = 1, equations (39) are the exact equations of the CNM. Looking at the above equations, we can see
that the time constants for the mRNA concentrations ra, rb are τra

= ε
γa

, τrb
= ε

γb

respectively. Also, for

the protein dynamics of pa, pb the time constants are τpa
= 1/δa, τpb

= 1/δb. Therefore, the ratio between
the time scales of mRNA dynamics and protein dynamics will be given by (for example for gene a):

τra

τpa

= ε
δa

γa

. (40)

As depicted in Figure 9, the predictions of the SNM and the CNM become significantly different as the
time scales between the mRNA and protein dynamics are varied. Specifically, when the two time scales
are comparable, the SNM just predicts the average concentrations of the oscillations given by the CNM.
However, as the separation of time scales between mRNAs and proteins becomes larger (ε large), then

13
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the amplitude of the oscillations predicted by the CNM gets smaller and smaller. In that case although
qualitatively the SNM still predicts a stable equilibrium, quantitatively it will be very close to the predictions
of the CNM. For example, Figure 9c shows that if the mRNA degradation rate is 50 times faster than the
degradation rate of the proteins, then the SNM will be able to give very similar quantitative predictions to
the CNM.
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Figure 9: Effects of the different time scales between the mRNA dynamics and protein dynamics. Parameter
ε regulates this time scales ratio. CNM predictions are plotted in blue colour and SNM predictions in red.
Parameter values are: γa = γb = δa = δb = ka = kb = 1, θa = 0.21, θb = 0.21, ma = 2.35, mb = 2.35,
na = nb = 4.

To show that the Hopf bifurcation disappears in the SNM, we now recast system (39) as a slow-fast
system by setting r̃a,b = ra,b/ε. Dropping the tildes, we have

1

ε
ṙa = mah+(pb; θb, nb)− γara,

1

ε
ṙb = mbh

−(pa; θa, na)− γbrb,

ṗa = kara − δapa,

ṗb = kbrb − δbpb.

(41)

For ε = 1, equations (41) are equations (9), (10) for the CNM. The limiting case ε →∞ corresponds to the
quasi steady-state mRNA assumption, since:

lim
ε→∞

1

ε
ṙa = lim

ε→∞

1

ε
ṙb = 0. (42)

We want to study how the stability of equilibrium solutions to equations (41) varies in the limit ε →∞.
The Jacobian, ASF (ε), derived from the slow-fast model (41) is:

ASF (ε) =

⎛
⎜⎜⎜⎝
−εγa 0 0 εma∂h+(pb;θb,nb)

∂pb

0 −εγb εmb∂h−(pa;θa,na)
∂pa

0

ka 0 −δa 0
0 kb 0 −δb

⎞
⎟⎟⎟⎠ . (43)

and the characteristic equation is

(λ + εγa)(λ + εγb)(λ + δa)(λ + δb) + DSF (ε) = 0 (44)

where
DSF (ε) = ε2DCNM = ε2γaγbDSNM (45)

with DCNM being given by (33) and having used equation (37).
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Dividing (44) throughout by ε2 gives

(
λ

ε
+ γa)(

λ

ε
+ γb)(λ + δa)(λ + δb) + γaγbDSNM = 0. (46)

In the limit ε→∞, equation (46) becomes

(λ + δa)(λ + δb) + DSNM = 0, (47)

which is precisely the characteristic equation (36) of the SNM.
We can find the analytical form of DHopf (ε) as a function of ε, where DHopf (ε) is the value of DSF (ε)

at which the system (41) can undergo a Hopf bifurcation. After a lengthy calculation, we find

DHopf (ε) =
(εγa + εγb)(εγa + δa)(εγa + δb)(εγb + δa)(εγb + δb)(δa + δb)

(εγa + εγb + δa + δb)2
. (48)

In the limit as ε→∞, we have

lim
ε→∞

DHopf (ε) = lim
ε→∞

ε3γ2
aγ2

b (δa + δb)

(γa + γb)
= ∞. (49)

Hence we can see that the SNM never undergoes a Hopf bifurcation and so will be unable to sustain any
form of limit cycle.
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Figure 10: Eigenvalues of the Jacobian for the slow-fast model (41), plotted as functions of DCNM for
various values of ε. Real eigenvalues are shown in black and the real parts of complex conjugate pairs of
eigenvalues in red.

In Figure 10, we plot the eigenvalues of the slow-fast system (41) as a function of ε. We note that as
ε increases, two of the eigenvalues become large and negative, indicating that their transients quickly die
away and so justifying the quasi-steady-state mRNA assumption. Note that for ε=30000, we are only able
to plot two of the four eigenvalues, since the other two have extremely large and negative values.

5.4. Variation of the Hill coefficients

As we saw in the previous section, the SNM can never support a limit cycle for the activation-inhibition
network, no matter what the value of the Hill coefficients, na and nb. However, for the CNM, a Hopf
bifurcation is possible depending on the value of the system parameters. Widder et al. [48] have shown that
if the two Hill coefficients are equal, namely na = nb = n, then the two-node activation-inhibition network
can undergo a Hopf bifurcation for n > 2. In this section, we will extend this result to the case when na �= nb

for the activation-inhibition network, a general situation closer to biological applications. Additionally, we
will consider non-integer values for the Hill coefficients since this reflects the fact that such a function might
fit well the experimental data [28].
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Figure 11: Limit cycles of the CNM for different pairs of Hill coefficients (na, nb). The other parameters
of the system are ma = mb = x, θa = θb = θ, where θ = 0.1786 in plot a) and θ = 0.1282 in plot b),
ka = kb = δa = δb = γa = γb = 1. The projection of the trajectory onto the mRNA subspace, (ra(t), rb(t)),
is shown in black and onto the protein subspace, (pa(t), pb(t)), in blue.

Following Widder et al [48], we consider a Hopf bifurcation along the one-dimensional manifold defined
by

ma = χas , mb = χbs , θa =
λa

s
, θb =

λb

s
. (50)

From equations (50) and (30) it follows that φi = vis, for i = a, b where

va =
ka

γaδa

χa , vb =
kb

γbδb

χb. (51)

Substituting equations (50) into (28) and expanding we have

λb

(
p̃nanb+1

a + nb

λa

s
p̃na(nb−1)+1

a + ... + nb

(λa

s

)nb−1

p̃na+1
a +

(λa

s

)nb

p̃a

)
+ (p̃a − vas)(vbλa)nbs = 0 (52)

We want to take the limit of this expression when the auxiliary variable s � 1. So we consider the equilibrium
point p̃a to be of the form

p̃a = a1s
m + O(sm−1). (53)

Substituting (53) into equation (52) and neglecting high-order terms O(sm−1), it can be shown that, for
very large s,

λbp̃
nanb+1
a snb − va(vbλa)nbsnb+2 = 0 (54)

and hence
p̃a = a1s

2
nan

b
+1 , (55)

where

a1 =
(va(vbλa)nb

λb

) 1
nan

b
+1

. (56)

We find p̃b from equation (29):

p̃b = a2s
−

2na

nan
b
+1 , (57)

where

a2 =
(λb(vbλa)

1
na

va

) na

nan
b
+1

. (58)
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We now substitute the expressions for p̃a and p̃b, given by (55) and (57) respectively, into equation (33) in
order to obtain Dlim, the limit of DCNM for s very large, to find

Dlim = nanbγaγbδaδb. (59)

This must be compared with the value DHopf which is required for a Hopf bifurcation. As in [48], we
consider the function:

H(γa, γb, δa, δb, na, nb) =
Dlim

DHopf

=
nanbγaγbδaδb(γa + γb + δa + δb)

2

(γa + γb)(γa + δa)(γa + δb)(γb + δa)(γb + δb)(δa + δb)

(60)

A value of H > 1 indicates that a limit cycle exists for sufficiently large values of s, for the activation-
inhibition network. The maximum of H is computed by partial differentiation with respect to the degradation
rate constants γa, γb, δa, δb. Because (60) is symmetric with respect to all four degradation parameters, all
four partial derivatives will have identical analytical expressions. For example ([48]):

( ∂H

∂γa

)
= 0 ⇒

(γa)3(γb + δa + δb) + (γa)2
(
(γb)

2 + (δa)2 + (δb)
2
)
− 3γa(γbδaδb)− γbδaδb(γb + δa + δb) = 0.

(61)

If we consider γb = δa = δb = γ then it can be shown that equation (61) will give γa = γ [48] . Hence, from
(60) we have that:

H(γ, γ, γ, γ, na, nb) =
nanb

4
. (62)

Through numerical simulations it was observed that other values of the degradation parameters lead to
smaller values of the maximum of the function as observed in [48] for na = nb. Hence systems with nanb > 4
can exhibit oscillatory behaviour in certain regions of parameter space. In Figure 12 we plot regions in
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Figure 12: Each blue line represents critical pairs of Hill coefficients (na, nb) for which a Hopf bifurcation
can occur for a certain value of the auxiliary variable s. Each of these lines was obtained using numerical
continuation. The red line is the hyperbola nanb = 4. Parameter values: ma = mb = s, θna

a = θnb

b = 1
s
, ka =

kb = γa = γb = δa = δb = 1.

parameter space (na, nb) which have oscillatory behaviour.
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6. Approximating the transcription Hill function

6.1. From the CPWLM to the SPWLM

When the Hill function of transcription in the CNM is approximated by means of piecewise linear
(PWL) functions, we obtain the CPWLM. An important issue is to establish how this can be simplified,
by means of the quasi-steady-state mRNA assumption, to give the SPWLM. To understand the advantages
and limitations of this approach, let us rewrite equations (14) of the CPWLM in matrix form:

ẋ = Rx + Su (63)

where

x =

⎛
⎜⎜⎝

ra

rb

pa

pb

⎞
⎟⎟⎠ , R =

⎛
⎜⎜⎝
−γa 0 0 0
0 −γb 0 0
ka 0 −δa 0
0 kb 0 −δb

⎞
⎟⎟⎠ , S =

⎛
⎜⎜⎝

ma 0 0 0
0 mb 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , u =

⎛
⎜⎜⎝

s+(pb; θb)
s−(pa; θa)

0
0

⎞
⎟⎟⎠ . (64)

Matrix R is lower-triangular and so its eigenvalues lie along the diagonal:

λ1 = −γa , λ2 = −γb , λ3 = −δa , λ4 = −δb. (65)

The eigenvalues corresponding to gene a are λ1 and λ3. The SPWLM will be biologically valid if the ratio
of the two eigenvalues, say ρa = λ1

λ3
= γa

δb

is large enough.

Hence, if the degradation of mRNA is sufficiently faster (say, at least ten times) than the degradation
of the corresponding protein, then the stationarity approximation is biologically justified. Note that, under
certain conditions, it can be assumed that the stationarity approximation is only valid for some genes of
the network. In that case, only those genes for which the assumption is valid can be modelled by a single
equation for the protein concentration, while the rest will be associated to two equations, one for the mRNA
and one for protein concentration.

6.2. Dynamics of the SPWLM

We have already seen that the SNM has qualitatively different dynamics from the CNM. It is therefore
reasonable to expect that the use of the PWL approximation does not change this conclusion.

In [36] Plahte et al described two problems when the PWL step function are being used to model gene
regulatory networks. One problem is to define a continuous solution across the threshold hyperplanes when
the model includes self-regulation. The second is to prove that the solution of equations with step functions
is close to the solution of the same equations with steep (large Hill coefficients) sigmoid functions.

As shown in [25] and [14] , under certain conditions the SPWLM cannot predict the existence of limit
cycles contained in the CNM. 2

The equations of the SPWLM are given in (15) 3. These equations split the (pa, pb) state space into four
subregions, given by

1. 0 < pa < θa and pb > θb (subregion I)

2. pa > θa and pb > θb (subregion II)

3. pa > θa and 0 < pb < θb (subregion III)

4. 0 < pa < θa and 0 < pb < θb (subregion IV)

(66)

2In [25], it was shown that the simplified PWL model of the activation-inhibition network converges toward a unique stable
equilibrium point. In the case of networks with three genes or more with a negative feedback loop, it was shown that the
SPWLM predicts a unique stable periodic orbit [25]). Their proof is an extension of a theorem presented by Snoussi et al in
[41].

3For convenience in this section, we set k
′

a = ka and k
′

b
= kb
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Figure 13: The two PWL models of the activation-inhibition network of Figure 4. For all the plots, the
parameters have the same values as in Figure 8. For the left hand plots, the projection of the trajectory
onto the mRNA subspace, (ra(t), rb(t)), is shown in blue and onto the protein subspace, (pa(t), pb(t)), in
turqoise. For the right hand plots, blue refers to ra(t), red to rb(t), turquoise to pa(t) and yellow to pb(t).

Each subregion has different governing equations and hence different equilibria. The value of the equilibria
(p̃a, p̃b) in each subregion is given by

I: (
ka

δa

,
kb

δb

)

II: (
ka

δa

, 0)

III: (0, 0)

IV: (0,
kb

δb

)

(67)

Immediately it can be seen that the equilibria for subregions II and III do not lie in their respective sub-
regions. They are inaccessible from those subregions. Other equilibria will be accessible or inaccessible,
depending on parameter values.

The key to understanding the dynamics of the SPWLM is that, depending on system parameters, at most
one subregion equilibrium is accessible. In these cases the system tends to this equilibrium and no limit cycle
is possible. But, in certain regions of parameter space, all four subregion equilibria are inaccessible. However,
a limit cycle is not possible in this case either ([14, 25]) and the system tends to a pseudo-equilibrium, a
point that is not an equilibrium of any subregion.

A simple analysis shows that, depending on the parameters ka, kb, δa, and δb, we have four different cases
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to consider, namely

1.
ka

δa

> θa and
kb

δb

< θb,

2.
ka

δa

< θa and
kb

δb

> θb,

3.
ka

δa

< θa and
kb

δb

< θb,

4.
ka

δa

> θa and
kb

δb

> θb.

(68)

The first three cases, shown in Figure 14, are very similar. No matter what set of initial conditions are
chosen, the solution trajectory always arrives at the accessible equilibrium (the arrows in each of these
Figures denote sample trajectories). All four subregion equilibria are shown in each Figure, with open
circles denoting inaccessible equilibria and closed circles accessible equilibria. In Figures 14(a) and 14(c),

(a) ka

δa
> θa and kb

δb

< θb (b) ka

δa
< θa and kb

δb

> θb

(c) ka

δa
< θa and kb

δb

< θb (d) ka

δa
> θa and kb

δb

> θb

Figure 14: Vector fields for each of the different cases described in (68). The arrows in each of these subfigures
denote sample trajectories. In each figure, the equilibrium of each of the four subregions is denoted by the
number of that region inside a circle. Open circles denote inaccessible equilibria and closed circles accessible
equilibria. FP stands for focus point

.

the accessible equilibrium is (0, kb

δb

) and in Figure 14(b) it is (ka

δa
, kb

δb

). The fourth case is shown in Figure

14(d), together with a possible limit cycle. This limit cycle can only trivially exist. Namely, the only
possible periodic solution are the trivial pa = θa, pb = θb, what we call a focus-like point. Starting from any
initial condition, the system eventually converges to this point. Due to the nature of the vector field, all
trajectories are forced to follow the sequence of switching regions, I → II → III → IV → I, which finally
leads the trajectories to the intersection of the two thresholds θa, θb. For example, for the parameter values
considered in Figure 13(d) we have ka

δa
= kb

δb

= 2.35 and θa = θb = 0.21, which is case 3 in 68 illustrated in

Figure 14(d). As shown in Figure 13(d), the system eventually approaches the focus-like point (θa, θb). The
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stability of equilibria in switching domains, was presented in [5], where the work of Gouze et al [24] and de
Jong et al [10] was extended using the framework of differential inclusions and Filippov solutions.

Similarly to the SNM, the SPWLM does not predict oscillations for the activation-inhibition network.
Therefore, the mRNA quasi-steady-state assumption has also important effects when the SPWLM is derived
from the CPWLM. Additionally, comparing the two simplified models, namely SNM and SPWLM, we see
a consistent difference caused by the approximation of the continuous Hill functions by the step functions.
In particular, the SPWLM for some range of parameters, predicts a focus-like equilibrium point which
corresponds to trajectories not always close to those of the SNM.
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Figure 15: Effects of taking the limit of the Hill coefficients na, nb to infinity. Other parameter values are:
γa = γb = δa = δb = ka = kb = 1, θa = 0.21, θb = 0.21, ma = 2.35, mb = 2.35. Protein pa(t) is shown in
red and protein pb(t) in blue. We can see that the SNM with very large Hill coefficients na = nb = 100
(c,d), behaves similarly with the SPWLM (e,f). However, the difference between the predictions of SNM
with small Hill coefficients na = nb = 3 (a,b), is different than the predictions of SPWLM (e,f).

As shown in Figure 15, the behaviour of the SPWLM and the SNM converge in the limit of large Hill
coefficients. It is only when such coefficients are sufficiently high that the SNM solutions behave as the focus-
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like equilibrium point in the SPWLM. For example, for na = nb = 100 (Figure 15c,d), the predictions of the
SNM are extremely close to those of the SPWLM (Figure 15e,f) yet they differ when na = nb = 3 (Figure
15a,b). Specifically, Figures 15a,b and Figures 15e,f, show that the SNM for Hill coefficients na = nb = 3
predicts protein equilibrium values with protein pa up to 5 times larger than protein pb while, in the SPWLM,
they both converge towards the same value at the expression thresholds θa, θb. Hence, the PWL models
will give sufficient quantitative predictions when compared to the nonlinear models only if the Hill function
describing the transcription has large Hill coefficients.

To quantify the mismatch between the predictions of the two models, we plot in Figure 16, the trajectories
of the SNM and those of the SPWLM as the Hill coefficients increase and the relative percentage differences
between their predicted values. In Figure 16a,b, we see that, for some parameter values, the predictions of
the SPWLM are close to those of the SNM when the Hill coefficients na = nb = ñ > 20. For different sets
of parameters, the threshold can become significantly lower as shown in Figure 16c,d, where ñ ≈ 6.
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Figure 16: Comparing the predictions of the SPWLM with the predictions of the SNM as the Hill coefficients
increase. The left plots show the equilibrium protein concentrations p̃a (red) and p̃b (blue) for both models
(SPWLM predictions as dotted lines and SNM predictions as solid lines). The right plots give the relative
error between the two models. a,b) Other parameter values are: γa = γb = δa = δb = ka = kb = 1,
θa = 2.3, θb = 3.8, ma = 2.35, mb = 4. c,d) Other parameter values are: γa = γb = δa = δb = ka = kb = 1,
θa = 1, θb = 2, ma = 1.5, mb = 1.5.

Finally, notice that quantitative differences also occur between the CNM and the CPWLM. An additional
difference here, is that for some parameter regions, we have also qualitative differences. There are regions of
parameter space where the CNM predicts a stable equilibrium, whereas the CPWLM predicts oscillations.
This is expected, because as we showed in section 5.4, a Hopf bifurcation is possible for our network if
na · nb ≥ 4 (a condition which is effectively always satisfied by the CPWLM). The difference between CNM
and CPWLM is illustrated in Figure 17.

Also, in contrast with the CNM and SNM, the predictions of the CPWLM do not approach the SPWLM
as the separation of time scales between the mRNA dynamics and protein dynamics becomes larger (ε
large). In Figure 18, we plot numerical simulations of the CPWLM and CNM for ε = 10 together with
numerical simulations of the SPWLM. The other parameters are the same for all the three models. One
can see the significant qualitative difference between the CPWLM and the other two models. The reason is
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the occurrence of sliding motion 4. Figure 18(b) illustrates how sliding motion is present in the CPWLM.
Namely the mRNA concentrations ra(t), rb(t) are sliding. The CPWLM predicts oscillations where the CNM
and SPWLM both predict a stable equilibrium (with the difference that the SPWLM predicts the focus-like
equilibrium)).

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
(p

a
(t),p

b
(t))

(r
a
(t),r

b
(t))

(a) CNM

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4
(p

a
(t),p

b
(t))

(r
a
(t),r

b
(t))

(b) CPWLM

Figure 17: Comparison between the complete models with Hill function or PWL function for the transcrip-
tion. The projection of the trajectories in the mRNA subspace (ra(t), rb(t)) are shown in black and the
projection of the trajectories onto the protein subspace are shown in turqoise. Other parameter values are:
γa = γb = δa = δb = ka = kb = 1, θa = 0.21, θb = 0.21, ma = 2.35, mb = 2.35, na = nb = 2.
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Figure 18: Numerical simulations of the time evolution of the CNM (with ε = 10), CPWLM(with ε = 10)
and SPWLM. ra(t)(black), rb(t)(red), pa(t)(blue), pb(t) (turqoise). Other parameter values are: γa = γb =
δa = δb = ka = kb = 1, θa = 0.21, θb = 0.21, ma = 2.35, mb = 2.35.

7. Effects of the discretization

To investigate the dynamics of the discrete-time model in (24) obtained by discretizing the SPWLM,
we compute the value of the parameter α corresponding to the value of δa and δb used to obtain Figure
13. Specifically, we set α = 0.9048. Figure 19, shows the evolution of the network predicted by this model.
We observe a periodic solution which does not match the evolution predicted either by the CPWLM or the
SPWLM (see Figure 13).

Moreover, when the model parameters are varied, we observe the onset of more complex behaviour as
summarized in Figure 20 where a bifurcation diagram is shown, obtained by varying the parameters α and θ.
Each colour corresponds to a different periodic solution that exists for a pair of values of the parameters α, θ.
As it is apparent from the figure, the discrete-time model exhibits a large variety of periodic solutions with

4In the context of piecewise-smooth systems, sliding refers to the high-frequency (theoretically infinite) switching of the
model between its possible configurations. For more details about sliding motion in piecewise linear systems see [12].
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Figure 19: a-b) Simulation of the discrete-time model with the corresponding parameters values the same
as in Figures 8 and 13. a)The projection of the trajectory onto the protein subspace, (ra(t), rb(t)). b) The
concentrations ra(t) and rb(t) plotted against the time t. Blue colour refers to ra(t), and red to rb(t).

different periodicity that are not necessarily associated to realistic dynamics of the gene network. Some
of these periodic orbits, were also confirmed analytically as shown in Appendix B and independently in
[7]. The important difference between the discretized model with the continuous time models, is that it
predicts only oscillatory behavior. Namely, for any range of parameters the discrete model always predicts
oscillations of the protein concentrations, in contradiction with all the continuous models, where we saw
that oscillations exist only in some parameter regions (CNM, CPWLM) or they are totally absent (SNM,
SPWLM). Finally, note that the predictions of the discretized model are highly affected by the time-step
chosen and the parameter values being set. Therefore, our analysis indicates that such an approach can be
unviable to capture experimentally observed behaviour.
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Figure 20: This picture shows the regions of existence of different periodic solutions of the two-gene network.
Different colour implies different periodicity of the network.
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8. Discussion

The results presented in the paper suggest that while some qualitative behaviour is preserved when
making different assumptions, the quantitative predictions of different models can be surprisingly different.
We expect this to be more the case when larger networks are considered.

An important issue is then whether qualitative or quantitative predictions are needed. In some cases,
using more abstract models than PWL models can be an acceptable option. For example, in [8] and [6]
Boolean network models are used to describe the yeast cell-cycle control network and the Drosophila pat-
terning network respectively. It is shown that, under certain circumstances, the predicted behaviour is
qualitatively similar to that obtained by using an ODE model of the network. The problem is when quan-
titative predictions are needed. For instance, Mochizuki [34] shows that the predictions of Boolean models
can become unrealistic or too complex for larger networks when compared to those of the corresponding
ODE models.

Unfortunately, there is not yet a unifying mathematical framework to decide what the best modeling
approach to use is and what assumptions can be safely made to simplify the network of interest. The big
challenge is how to keep the model simple, without risking missing important features of the real system.
This paper offers some guidelines, highlighting the unwanted effects of some of the most commonly made
assumptions when modeling biological networks.

We wish to emphasize that our findings apply to other network structures and larger networks. For
example, in large networks one can use the mRNA quasi-steady-state assumption in order to simplify the
model. As this paper showed, this assumption is only possible for those genes with significantly different time
scales for their corresponding mRNA and protein. Also, in the case of the PWL approximation, CPWLMs of
larger networks will be large-scale extended piecewise linear systems whose dynamics is bound to be affected
by the presence of sliding motion which can cause the predictions of the models to be further away from
realistic expectations. We believe that the PWL approximation can only be made in combination with the
mRNA quasi-steady-state assumption. In that case, if the transcription dynamics are step-like, then the
Hill function might be replaced by a PWL function.

A full understanding of the impact of various modelling assumptions on generic network structures is a
pressing open problem that remain to be addressed.

9. Conclusions

We discussed the modelling of gene regulatory networks using different approaches by means of a repre-
sentative two-gene network. We looked at the effects on the dynamics of some key assumptions often made
in the literature on modeling gene networks.

After deriving a complete nonlinear ODE model describing both mRNA and protein concentrations,
we considered a simplified model obtained by considering a quasi-steady-state assumption on the mRNA
dynamics. We then studied the existence and stability of equilibria in both the complete and simplified
nonlinear models. We proved that, while the complete nonlinear model shows the occurrence of a Hopf
bifurcation leading to persistent oscillatory behaviour, when the simplified nonlinear model is considered
this phenomenon disappears. We then investigated in greater detail the effect on the model behaviour of
taking the quasi-steady state assumption on the mRNAs. By considering an appropriate slow-fast model,
we showed that the predictions of the SNM and the CNM become significantly different as the time scales
of the mRNA and proteins are varied with the Hopf bifurcation point disappearing at infinity when the
quasi-steady-state approximation is made.

Another important issue we looked at is the choice of the Hill coefficients which has two important
consequences on the model framework used and its predictions. Specifically, we proved that, under certain
conditions, oscillatory behaviour is exhibited by the network model if the Hill coefficients are sufficiently
high. In particular, we found that in the CNM a Hopf bifurcation in only possible if the Hill coefficients
values are above a certain threshold (in our example nanb ≥ 4). Moreover, if the Hill coefficients are large
enough then it is possible to approximate Hill kinetics terms with step functions.
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This approximation gives rise to PWL models of the network that we further discussed and analyzed. In
particular, after presenting the complete PWL model of the network of interest, we discussed the ensuing
dynamics showing the presence of solutions such as a high-frequency switching behaviour which is not always
close to the predictions of the nonlinear models. Indeed, we found that the PWL and smooth models give
the same qualitative and quantitative predictions if the Hill coefficients are chosen to be above a certain
threshold value dependent on the parameter region of interest.

Finally, we investigated discrete-time models recently presented in the literature. We showed that such
models can be obtained by discretizing the continuous-time ones. The resulting model, though, were shown
to predict spurious dynamics, often unrealistic for the network of interest.

Our analysis suggests that particular care must be taken when modelling gebe regulatory networks. In
particular, special care must be taken in considering the assumptions discussed in this paper.
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A. A generalization in R
2

The lack of persistent oscillations in the SNM can be generalised to a wider class of two-gene networks. In
particular, we prove that any model of a two-gene network, under the steady-state mRNA assumption and
no self-regulation5, cannot exhibit a limit cycle associated with persistent oscillations of the gene products
and protein concentrations. The key is the so-called Bendixson criterion [43], for planar nonlinear systems
(see also [47] and [13] for a review of previous results).

Consider an ODE model of a two-gene network, with neither of the two genes being self-inhibited or
self-activated, of the form

ṗa = kafa(pb)− δapa,

ṗb = kbfb(pa)− δbpb.
(69)

In order to apply the Bendixson’s criterion, we must calculate the divergence of the vector field ṗ =
(ṗa, ṗb). Since gene a is not self-regulated, the function fa depends only upon pb, and not on pa. Hence
the partial derivative ∂fa(pb)/∂pa will be zero. The same applies to the partial derivative ∂fb(pa)/∂pb.
Therefore:

∇ · ṗ = −(δa + δb) (70)

Hence the divergence of ṗ is always negative. Immediate application of Bendixson’s criterion then shows
that no limit cycles are possible for systems of the type described by equations (69).

5There is no self-loop in the network; no proteins can regulate the gene that encoded them.
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B. Periodic orbits in the discrete-time model

To illustrate the analytical procedure needed to prove the existence of periodic solutions for the activation-
inhibition network, we look now at a representative periodic solution. We assume that θa = θb = θ and we
focus in the case of balanced periodic orbits, which are periodic orbits which have equal number of iterations
in each of the four regions determined by the inequalities (pa > θ) and (pb > θ), (pa > θ) and (pb < θ),
(pa < θ) and (pb > θ),(pa < θ) and (pb < θ). Specifically it is possible to prove the following statement
which was also independently presented in [7].

(a) n = 1 (b) n = 2 (c) n = 3

Figure 21: Shaded regions correspond to the regions of existence and stability of the balanced period-4n.

Proposition 1. For α ∈ (0, 1) and θ ∈ (0, 1), a balanced period 4n exists if and only if:

max
{ αn

1 + α2n
,
1− αn−1 + α2n

1 + α2n

}
≤ θ < min

{1− αn + α2n

1 + α2n
,

αn−1

1 + α2n

}
. (71)

Moreover, the periodic solution is always stable in its interval of existence.

Proof. Let p1, p2, ...pn, ..., p2n, ...p3n, ...p4n the iterates of the orbit of interest. Clearly this period 4n exists
if and only if there exists a fixed point sequence:

p1 < θ ,..., p2n < θ , p2n+1 ≥ θ , ... ,p2n ≥ θ (72)

of the map (24), where:

pj = αpj−1 for all 2 ≤ j ≤ n + 1 (73)

pi = αpi−1 + 1− α for all n + 2 ≤ i ≤ 3n + 1 (74)

pk = αpk−1 for all 3n + 2 ≤ k ≤ 4n (75)

p1 = αp4n. (76)

By back-and forward- substitution of equations (73), (74, (75, (76) we can find p1:

p1 =
αn

1 + α2n
. (77)

Because 0 ≤ α ≤ 1 equations (73) imply that p1 ≥ pj for all 2 ≤ j ≤ n + 1. Additionally, equations (74)
imply that p2n ≥ pi for all n + 2 ≤ i ≤ 2n− 1. In other words, if p1 ≤ θ and simultaneously p2n ≤ θ, then
pt ≤ θ for all 1 ≤ t ≤ 2n. Similarly, it can be shown that if p4n ≥ θ and simultaneously p2n+1 then pr ≥ θ
for all 2n + 1 ≤ r ≤ 4n. Hence, compatibility conditions will hold if and only if:

p1 ≤ θ and p2n ≤ θ, (78)

p2n+1 ≥ θ and p4n ≥ θ (79)
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From (77) we can easily derive the solution of each pi, ∀1 ≤ i ≤ 4n. Specifically, for p2n, p2n+1, p4n we
have:

p2n =
1− αn−1 + α2n

1 + α2n
, p2n+1 =

1− αn + α2n

1 + α2n
, p4n =

αn−1

1 + α2n
(80)

Let a1 the root of equation p4n− p2n = 0 or 1− 2αn−1 + α2n = 0. Then it can be shown that for α ≥ α1

there are real values of α that satisfy equation (71). Now let, a2 the root of equation 1−αn−1−αn +α2n = 0
(which is equivalent to both equations p2n − p1 = 0 and p4n − p2n+1). It can be easily shown that for
0 ≤ α ≤ α1 we have p2n ≥ p1 and p4n ≤ p2n+1 where for α ≥ α2 the opposite inequalities hold respectively.
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