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Abstract

We analyze here the evolutionary consequences of selection with delay in a population genetics context. In the
classical works on evolutionary dynamics, an individual produces off-springs in direct proportion to its fitness, a pro-
cess in which mutations may occur. In the present scenario of delayed selection, individuals that acquire deleterious
mutations can still reproduce unharmed for several generations. During this time delay, the damage passed on to
off-springs can potentially be repaired by subsequent compensatory mutations. In the absence of such a repair, the
individual becomes sterile. Here we study the population-genetic effects of such a time delay by means of both nu-
merical simulations and theoretical modeling. The results show that delayed selection lowers the extinction threshold,
endangering the survival of the population. Surprisingly, however, no traces of this delay effect are encountered in
the sequence diversity of the population. These conclusions suggest that delayed selection is hard to detect in genetic
data and thus could be a wide-spread but rarely detected phenomenon.

Key words: Evolution, neutral networks, fitness, extinction, telomere

1. Introduction

Darwinian evolution is the interplay of the produc-
tion of variation and subsequent selection. Due to the
complexity of biological organism, selection tends to
act at all times, punishing or rewarding small differ-
ences among individuals. This is not necessarily the
case at the level of (small) genetic subsystems, how-
ever. The intuitive rationale for this claim is that an
“emergency subsystem”, for instance, may not need to
be activated for several generations. While unused and
inactive, it tends to escape the forces of selection and
conceivably, acquire damages. Once conditions change
and it is needed again, however, there are severe (fitness)
penalties if its functionality has not been maintained or
repaired. We expect such “delayed selection” to leave

∗Corresponding author at: Parc de Recerca Biomedica Barcelona
Dr Aiguader 88, E-08003 Barcelona, Spain

Email addresses: andreea.munteanu@upf.edu (Andreea
Munteanu), studla@bioinf.uni-leipzig.de (Peter F. Stadler)

detectable traces in the genome. Hence we study here
the dynamical implications of delayed selection in some
detail.

It may come as a surprise that the best studied exam-
ple is a generic component of the eukaryotic replication
machinery, namely the reconstruction of telomere ends.
Mice deficient for the mouse telomerase RNA (mTR-/-)
are fertile and show initially little if any pathologies.
However, they can breed only for about six generations
due to decreased male and female fertility and to an in-
creased embryonic lethality in later generations. Even
late generation (mTR-/-) mice are viable to adulthood,
only showing a decrease in viability in old age (Lee
et al., 1998; Herrera et al., 1999). These effects appear
to be linked to the shortening of the telomeres (Verdun
and Karlseder, 2007). Similar effects can be observed
in cell culture, again establishing a relationship between
viability and telomere length: Terc-deficient embryonic
stem cells show gradual reduction of growth rate after
about 300 divisions, and proliferation virtually stops af-
ter 450 generations (Niida et al., 1998). At the same
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time, telomerase RNA exhibits extremely high rates of
evolution (Xie et al., 2008). The speculation that de-
layed selection may be part of the explanation for the
unexpected evolutionary plasticity of telomerase RNA
motivated this work.

Delayed selection is also likely to occur in species
for which environmental conditions vary periodically
at timescales longer than generation time. A spectac-
ular example is the monarch butterfly (Danaus plex-
ippus) (Urquhart, 1960). The “migratory” generation
migrates from Eastern North America to overwintering
sites in Mexico. This long-lived generation is charac-
terized by reproductive diapause persisting until next
spring, when the butterflies reproduce and start the jour-
ney back north. Another two to three generations of
reproductively competent, short-lived “summer” butter-
flies follow the progressive, northward emergence of
milkweed. Significant differences in gene expression
between summer and migratory butterflies (Zhu et al.,
2008) suggest that some parts of the butterflies genetic
system may be unused over a few generations. Whether
this is indeed the case could be tested directly if charac-
teristic genomic fingerprints of delayed selection can be
detected.

A more subtle context in which delayed selection
may play a role is that of synthetically lethal genes.
A pair (or a larger set) of genes is called synthetically
lethal if knocking out the entire set is lethal, while the
knockout of all smaller subsets retains viability (Hart-
man IV et al., 2001; Kaelin Jr, 2005; Le Meur and Gen-
tleman, 2008). Note that synthetically lethal gene pairs
typically share their primary function but cannot be re-
dundant in all their functional aspects. The reason is
that exact redundancy is evolutionarily unstable: it is
quickly resolved by the loss of one copy (Force et al.,
1999). This type of genetic buffering may, however, de-
lay the detrimental effects of functional loss in one part-
ner until a rarely employed secondary function of the
affected gene is required. Again, a recognizable signal
in the genomic DNA would be of utmost interest.

The paper is organized as follows: in section §2
we introduce the methodology and the results of
the stochastic simulations for a population of RNA
molecules. In section §3, we confront these results with
a mean-field model that captures the evolution of the
population in a delayed-selection scenario. We quantify
the amount of diffusion in the sequence space for vari-
ous time delays in search of a signature on the evolution-
ary rates of such altered selection. Finally, we discuss
the findings, with special emphasis on the lack of such
an inequivocable signature, in the context of genomic
studies in section §4.

2. RNA-Based Simulations

2.1. A Simple Model of Telomere Damage
The simulation framework used in this contribution is

motivated by the telomerase RNA (TR) system briefly
discussed in the introduction. For simplicity we dis-
tinguished only between fitness-neutral and lethal mu-
tations. Each individual is characterized by its TR
gene and the length of its telomere. Off-springs with
intact TR have full-length telomeres, while telomeres
shrink by a constant amount with each replication step
in which the telomerase is inactive. Individuals whose
telomeres have shrunk to zero are sterile, i.e., their fit-
ness is set to 0.

In order to include a genetic component with a real-
istic genotype-phenotype map, we use RNA secondary
structures to represent phenotypes. In this approach,
each sequence s is folded into its minimum energy
secondary structure ϕ(s) and then fitness is evaluated
by comparing ϕ(s) with a target structure ϕ∗, (see e.g.
Fontana et al. 1989; Schuster et al. 1994; Huynen et al.
1996a). Here, we stipulate that only the target sec-
ondary structure is functional. The fitness f of an in-
dividual with genotype s and telomere length k is given
thus by

f (s, k) =

⎧⎪⎪⎨⎪⎪⎩
1 if ϕ(s) = ϕ∗ or k > 0

0 if ϕ(s) � ϕ∗ and k = 0
(1)

Since the computational effort for RNA folding com-
putations is cubic in sequence length, vertebrate TR
gene with 300-500nt are too long to practical for our
simulations. Instead of a real TR structures, we defined
an arbitrarily chosen target structure of length 100 to
represent the viable phenotype. RNA secondary struc-
ture predictions are performed using the Vienna RNA
Package (Hofacker et al., 1994).

We simulate a population of N individuals in a flow
reactor under stochastically controlled constant organi-
zation as described in e.g. Fontana et al. (1989). Indi-
viduals replicate proportional to their fitness. During
replication, each letter is mutated with a probability μ.
Then the structure ϕ(s′) of the offspring s′ is computed.
If ϕ(s′) = ϕ∗, we set k′ = K, otherwise k′ = k′−1, where
K is the number of generations for which a defective TR
is tolerated. In other words, if after K replications, such
an incorrect fold has not encountered the neutral net-
work, its fitness becomes 0 and thus loses the capacity
of replication.

In the following, we shall discuss the results of the
simulations. Based on these data, we introduce a the-
oretical model associated to the simulation framework,
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Figure 1: Top Time series of the mean fitness or fraction of reproducing individuals as a function of time in three stochastic runs with N = 1000,
μ = 0.005 and two different values of K. Below: Survival probability, time average and standard deviation over the time-series of the mean fitness
as a function of K and μ. Averages are taken over 10 independent simulations running for 100,000 mutations for each combination of parameters.
Average and standard deviation are normalized to their values at K = 2 and μ = 0.001 to facilitate comparison.

a model that provides a reasonably-good fit of the sim-
ulations results and also a tool to better understand the
implications of the delayed-selection effect.

2.2. Extinction Threshold
As a first observation, we notice that one of the con-

sequences of the delayed selection is a reduced criti-
cal value of the mutation rate at which the population
goes extinct. An erroneously replicating haploid popu-
lation shows the so-called error threshold phenomenon,
by which the population loses coherence and quickly
approaches a uniform distribution in sequence space as
soon as the mutation rate exceeds a critical value. Origi-
nally described on single-peak landscapes (Eigen, 1971;
Eigen et al., 1989), an analogous phenomenon can be
observed at the phenotypic level (Forst et al., 1995;
Huynen et al., 1996a; Wilke, 2001). With instantaneous
fitness effects, the critical value of μ can be estimated
from a μ-dependence of the equilibrium concentration
of the “poor” phenotypes.

Before we comment in detail the results obtained for
the current framework, we wish to discuss the distinc-
tion between error threshold and extinction threshold,

a distinction often disregarded in the literature. Ex-
tinction can be the consequence of a process such as
lethal mutagenesis (Bull et al., 2007), with the latter
being a demographic process occurring, for example,
in the context of within-host population of viruses that
become extinct with an elevated mutation rate. In this
case, the population is overwhelmed by deleterious mu-
tations and cannot sustain itself. Eigen’s error catas-
trophe or error threshold, although inspired by the idea
of lethal mutagenesis, is a distinct process. The error
threshold is defined as the mutation rate beyond which
the mean fitness of the population does not decrease ex-
ponentially with the mutation rate but remains constant,
as all genotypes are insensitive to mutations (the infor-
mation is lost from the population). Contrary to the in-
tuition, Eigen two-class fitness landscape (population of
only high- and low-fitness genotypes) actually retards
population extinction (Bull et al., 2007). In the light of
these comments, we witness in the current framework
the process of stochastic extinction rather than an error
threshold, and thus we refer to the mutation threshold as
extinction threshold.

The upper panels of Fig. 1 represent the mean fit-
3
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Figure 2: The time-series illustrating the dynamics of repairs in the population (N = 1000, μ = 0.005, K = 10). The different colors represent
waves of increasing number of repairs (up to 25 repairs) that sweep through the population as time increases. The dashed black line contains the
initial population with no repairs.

ness (i.e. the fraction of reproducing or fit individuals)
for several examples of simulations, showing that the
stochastic extinction of the population at finite times is
largely driven by an increase of the fluctuations. That
is, for a fixed mutation rate μ, the average fraction of
reproducing individuals is the same for various values
of K, but the standard deviation increasing with K. For
large K, due to these large excursions, the reproducing
population may reach a threshold value at which extinc-
tion occurs. The main effect of delayed selection is thus
a strong increase in fluctuations, that causes stochastic
extinction in finite populations at mutation rates signif-
icantly lower than the non-delayed selection (K = 1).
This can be seen in the lower panels of Fig. 1 where
the extinction threshold or survival probability (panel
b) is illustrated as resulting from the simulations. A
rough estimation of the survival probability was consid-
ered to be the fraction of the simulations that have not
gone extinct after a number M = 100000 of mutations.
From these simulations, we have also estimated the de-
pendency of the mean fitness (panel c) and its standard
deviation (panel d). It can be seen that the mean fit-
ness is not influenced by the telomere’s length, while
the fluctuations level (standard deviation) increases with
the telomere’s length. In §3 we shall pinpoint the causes
of this premature extinction by means of a deterministic
model.

2.3. Recoveries
The delayed selection has a direct effect on the ex-

tinction threshold in a negative way through the fluctua-
tions described above, and in a positive one through the
recoveries that might originate from damaged but still
fit individuals.

In Fig. 2 we illustrate this effect by plotting the frac-
tion of fit individuals characterized by a certain num-

ber of damage-and-repair cycles. It comes as a surprise
that already after a very short time there are no lineages
whose ancestry has had functional genes. The individu-
als without repairs (dotted black line) quickly disappear,
as the ones with one damage-repair cycle (thick black
line) appear, which in turn will be damaged and repaired
again, transforming into the individuals with two cycles
(red lines), and so on. We see that there is a character-
istic time scale by which individual lineages acquire a
damage and find their way back to the neutral network
through subsequent mutations that repair the damage.
That is, waves of repaired sequences swap the popula-
tion, with newly repaired sequences displacing the old
and less repaired sequences.

By comparing different simulations with identical
(N,K, μ) values, we noticed that the stochastic effects
dominate, i.e., there are dramatic fluctuations in the
times between subsequent damage/repair events entirely
due to stochasticity.

Through the simulations, we have measured the pa-
rameter R defined as the probability that a damaged
telomerase recovers, i.e., the fraction of the replications
occurring off the neutral network that give rise to an off-
spring on the neutral net through mutation/mutations.
We expect the recovery fraction R not to depend on the
length K − i of the telomere, where K − i also has the
meaning of number of replications off the neutral net.
From the stochastic simulations we see that this first ap-
proximation is acceptable, as it is illustrated in Fig. 3.
For three experiments of equal K and different values of
μ, we have recorded the number of recoveries and the
type of sequences the recovery occurred from. The type
of sequence refers to the length K − i of the telomere
and the number � of mutations occurring off the neu-
tral network. Naturally, at least two off-mutations are
needed, one originating the fall off the neutral network

4
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Figure 3: Distribution of recoveries Ri� measured as a function of the telomere length K − i and the number of off-network mutations �. Simulation
runs use N = 1000 and K = 10, and different mutation rates (a) μ = 0.001, (b) μ = 0.003, (c) μ = 0.005. The lower panels show Ri =

∑
� Ri�,

illustrating a reasonable independence on the telomere length, supporting the model from Fig. 5. Upper panels have been drawn using Dislin
Scientific Plotting Software.

(the damage), and the second providing the recovery.
In the lower panels we include the sum Ri =

∑
� Ri�,

measuring thus the dependence of the recovery fraction
on the telomere length alone, irrespective of the num-
ber of off-mutations needed. It can be seen that Ri ≡ R
is roughly independent on the telomere length (or num-
ber of replications occurring off the neutral networks),
as the recovery mutation can occur with equal probabil-
ity during the K − 1 replications prior to “death”. As
detailed in the next section, this observed independence
allows us to construct a model of K + 1 variables, thus
based only on the telomere length, without considering
the number of off-mutations.

Returning to the notation Ri�, we find that, contrary
to Ri, R� =

∑
i Ri� is not independent of the number of

mutations off the neutral network �, see Fig. 3. In fact,
the recovery probability rapidly drops with �. A more
realistic model would take into account the (K + 1)× M
variables, where M ≤ K is the maximal number of off-
mutations. Implicitly, such a model would need to in-
clude more details on the structure of the neutral net-
work and on the transition rates between neutral net-
works which could be borrowed from the presentation
of Reidys et al. (2001). Since the purpose of this pre-
sentation is to provide a qualitative understanding of the

consequences of delayed selection, we are content here
with the much simpler, analytically tractable, case. It
is worth noting in this context that the behavior of R is
not an idiosyncratic property of RNA folding but rather
a consequence of the generic properties of dense neutral
networks. These can be modelled as dense and con-
nected subgraphs of the sequence space (Reidys et al.,
1997, 2001), a fact that accounts for the multiple paths
of “repair” of structural damage, and hence relatively
large values of R1. Protein folding models (Babajide
et al., 1997, 2001; Bastolla et al., 1999) show the same
generic features.

From the stochastic simulations it can be seen that a
rough estimate of this recovery fraction is on the order
of 10% of the mutations occurring off the neutral net-
work (Fig. 3). The repair or recovery of damaged geno-
types by compensatory mutations thus has a dramatic
effect on the long-time behavior of the population. To
estimate the effect we shall introduce in §3 a model of
the population dynamics which makes use of this obser-
vation of equal recovery fraction.

In addition, since R is defined as a conditional prob-
ability, we also expect that it will not depend strongly
on the mutation rate μ for small values of μ. The pa-
rameter R will strongly depend on the size and structure

5
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of the neutral network, and on its embedding the hy-
percube. This is the behavior followed also by the neu-
trality ν referring to the increased buffering, due to neu-
tral networks, of the phenotype (the correct secondary
structure) with respect to genetic mutations (nucleotide
mutations) (Huynen et al., 1996b; Stadler et al., 2001).
The strongest influence on the probability of recovery
R is exerted by the distance of the mutant individual
from the neutral network. As we shall see also in the
modeling approach, an appropriate measure of the re-
covery rate or probability is defined through λ = pR,
with p from eq. (4). This rate defines the probability
that a replication leads to recovery. Considering a wide
interval of μ-values, we expect λ(μ) to have an optimum
for a certain value of μc ≡ μ. For μ � μc, the recovery
probability is low as, once off the network, a new muta-
tion is improbable to occur (p is small) in the next K −1
replications. For μ � μc, once off the neutral net, sev-
eral nucleotides can mutate in a replication event, and
thus destroy the repair. In addition, this regime of rel-
atively large μ is limited by the extinction threshold, as
we have seen that large fluctuations can lead the system
into extinction.

In the context of these considerations, we have mea-
sured the recovery rate from the simulations. Based
on the definitions introduced above, we monitored the
temporal evolution of the number of repairs and that of
replications with mutations occurring for sequences that
are off the neutral network. The parameterR, the ratio of
these two quantities, stabilizes after a transient period.
We show these post-transient values from simulations
for various μ and K in the upper panel of Fig. 4. Due
to stochasticity, simulations of identical (N,K, μ) may
lead to slightly different values of R. The dependence
on μ is evident, as well as on K, with the former being
more pronounced than the latter. in the lower panel, as
commented above, an optimum value μc is apparent for
which λ, the recovery probability, has a maximum. It
is interesting though that lower K implies higher recov-
ery probability. This can be explained by the structure
of the neutral networks of RNA secondary structures.
These are dense and fairly homogeneous only within
the set of sequences that are compatible with the tar-
get structure (Schuster et al., 1994; Gruener et al., 1996;
Sumedha et al., 2007; Jorg et al., 2008). Mutations that
destroy compatibility (i.e., those that violate the base
pairing rule), however, may lead away from the neu-
tral network of the functional structure. Two or more
incompatible substitutions therefore lead to regions in
sequence space from where recovery in a single step is
impossible.

0.005

0.010

R

0 0.001 0.002 0.003 0.004
μ

0.0005

0.0010

0.0015

pR

K

K

Figure 4: The recovery fraction R (a) and recovery rate λ ≡ pR (b) as
they result from 5 simulation runs of identical parameters. It illustrates
their dependence on the mutation rate μ and K: K = 10, black circles;
K = 9, red triangles; K = 8, green squares; K = 7, blue diamonds.
The dependence on K becomes more pronounced at higher μ.

3. Deterministic Model

3.1. Replication Kinetics

Since we are interested in the basic effects of delayed
selection, we neglect the influence of complex genetics
and restrict ourselves to the simplest case of a popula-
tion of haploid individuals. Naturally, this leads us to
a variant of Eigen’s Quasispecies Model (Eigen, 1971;
Eigen et al., 1989). While certain issues, such as the
influence of delay on the Extinction Threshold, could
be studied in an even simpler setting, we explicitly in-
clude the redundancy of the genotype-phenotype map-
ping (Schuster et al., 1994). For simplicity, we only
model the loss of fertility of individuals whose telom-
eres have disappeared. The population is structured into
K + 1 distinct groups of sequences characterized by a
certain telomere length between 0 and K (Fig.5). We
index these classes by the amount of telomere loss, so
that x0 denotes the fraction of all sequences that fold
into the correct secondary structure, while xK is the frac-
tion of sterile individuals. With each replication event,
the telomere length decreases by 1 if the telomerase is
not functional.

With sequence length L, per-nucleotide mutation rate
μ and a probability ν that an offspring retains a func-
tional telomerase (the density of the neutral network
(Huynen et al., 1996a; Ofria and Adami, 1999; Wilke,
2001; Reidys and Stadler, 2001)), the probability with
which a viable sequence gives birth to an offspring that
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also resides on the neutral network is

Q = [1 − μ(1 − ν)]L ≈ exp−Lμ(1−ν) (2)

Once outside the neutral network, when a sequence
Xi, i ∈ [1,K−1] replicates, it can either become a mem-
ber of xi+1 if it does not recover the correct fold, or be-
come a member of x0, if it does. More precisely, the
replication occurs through (see also Fig. 5)

X0
Q−→ X0 (3a)

X0
1−Q−−−→ X1 (3b)

Xi
1−p−−−→ Xi+1, i ∈ [1,K − 1] (3c)

Xi
p(1−R)−−−−−→ Xi+1, i ∈ [1,K − 1] (3d)

Xi
pR−−→ X0, , i ∈ [1,K − 1] (3e)

with the eqs. (3c) and (3d) distinguishing between
replicationwith or without mutation. Here p is the prob-
ability of replication with mutation and is defined as

p = 1 − (1 − μ)L. (4)

Notice that we have considered the approximation
discussed in the previous section for which R is indepen-
dent on the telomere length of the sequence, as Fig. 3
justifies. Under the assumptions detailed above, it is
now straightforward to derive the temporal evolution of
xi:

ẋ0 = pR
K−1∑
i=1

xi + Qx0 − Φx0

ẋ1 = (1 − Q)x0 −Φx1
ẋi = (1 − pR)xi−1 − Φxi, i ∈ [2,K],

where Φ is a dilution flux that keeps the sum of relative
frequencies constant,

∑
i xi = 1. As usual, Φ equals the

net production of off-springs. Since the fitness is 1 by
definition for all reproducing phenotypes and 0 for the
sterile ones, we observe that

Φ =

K−1∑
i=0

xi = 1 − xK

Figure 5: The schematic representation of the model, with λ ≡ pR
in the equations below. The constant population N =

∑K
i=0 Ni, and

xi ≡ Ni/N characterized by a telomerase length of (K − i).

Figure 6: The schematic representation of F(y) defined in eq. (9), with
y ≡ 1 − x̄K . This function is defined only for y ∈ [a, 1], as it results
from the condition x̄K ≥ 0 in eq. (7). The representation also indicates
y1 to be a fixed point. See below the discussion on y2. Remember that
y = 0 implies extinction.

directly measures the fraction of reproducing individ-
uals in the population. Employing the shorthand q ≡
1 − Q, the final form of the equations describing the
evolution of the population is thus

ẋ0 = pR(1 − xK) − x0(q + pR − xK) (5a)

ẋ1 = qx0 − (1 − xK)x1 (5b)

ẋi = (1 − pR)xi−1 − (1 − xK)xi, i ∈ [2,K] (5c)

3.2. Equilibria
The fixed points x̄i can be expressed in terms of the

relative frequency of the x̄K of the sterile individuals.
We have either the trivial solution (x̄K = 1; x̄i = 0,
i < K), or we obtain, for (x̄i > 0, i ≤ K),

x̄0 =
pR(1 − x̄K)

q + pR − x̄K
(6a)

x̄1 =
q

1 − x̄K
x̄0 (6b)

x̄i =
1 − pR
1 − x̄K

x̄i−1, i ∈ [2,K], (6c)

with the last equation providing the condition

x̄K =
qpR

q + pR − x̄K

(
1 − pR
1 − x̄K

)K−1
(7)

This can be rearranged as

x̄K[q + pR − x̄K](1 − x̄K)K−1 = qpR(1 − pR)K−1 (8)

Since the r.h.s. is positive for μ > 0, we can immediately
conclude that x̄K � 0. Moreover, in order to clarify
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0.008

F

μ = 0.003

K = 10

μ

K

Q

Figure 7: The function F(y) from eq.(9) evaluated using the average
values of the recovery fraction R from Fig. 4a. (Upper panel) A fixed
value of μ = 0.003 has been chosen, and the function F drawn for
K ∈ {7, 8, 9, 10}. (Lower panel) A fixed value of K = 10, was chosen,
and the function was calculated for 10 values in μ ∈ [0.0005 : 0.005].
As expected, the root y1 of F is more sensitive to μ than to K.

the solutions of this equation, we shall rewrite it in the
variable y ≡ 1 − x̄K :

F(y) = −yK+1 + (1 + a)yK − ayK−1 − b = 0, (9)

with new parameters a ≡ 1−q−pR > 0 (as it is expected
that Q > pR) and b ≡ qpR(1 − pR)K−1 > 0. The behav-
ior of this function is sketched in Fig. 6. Notice that
the function F, as the system from eq. (5), is valid for
K ≥ 2. For the classical case of non-delayed selection,
K = 1, the two fixed points are the trivial one (or extinc-
tion), (x̄0, x̄1) = (0, 1), and the coexistence fixed point,
(x̄0, x̄1) = (Q, 1−Q), with the former being unstable, and
the latter being stable (for μ lower than the extinction
threshold). In this K = 1 case, the above notation gives
the stable fixed point as y = Q. Returning to the gen-
eral case of K > 1, the stable fixed point remains in the
neighborhood of y1 ≈ Q, with y1 from Fig. 6. Due to the
existence of recoveries, one has y1 � Q. For example,
for K = 2, one has y1 = 0.5[Q +

√
Q2 + 4pR(1 − Q)].

The second root, y2 from Fig. 6 does not satisfy the
simplex conditions,

∑
x̄i = 1, and it is thus not a fixed

point of the system in eqs. (5). More precisely, consid-
ering x̄K = 1 − y2 ≈ 0, together with the approximation
1 − pR ≈ 1, one has

∑
x̄i = pR(1 + Kq)/(q + pR) < 1.

A numerical verification has been performed too using
the values from Fig. 4. For completeness, we remark
that for the even-K cases, the function F(y) has another
root in the negative quadrant, y < 0, which again is not

0 0.002 0.004 0.006 0.008 0.01
μ

0.4

0.5

1.0

0.5

0.7
x0

exp
 -Lμ(1-ν)

 =  exp
-101 μ(1-0.306)

Figure 8: Decay of the steady state concentration, x̄0, as a function of
μ for K = 1, and the fit to estimate the neutrality ν.

a physically accessible fixed point for our system, as it
does not satisfy x̄i ≥ 0 for all i ∈ [0,K].
In addition, using estimates of the recovery fraction

R from simulations with various parameter settings, we
have calculated F numerically. The position of y1 � Q
is nearly independent of K (Fig. 7a), with a pronounced
dependence on μ (Fig. 7b). Analytically, for small μ, the
Taylor expansion leads to q ∼ Lμ(1−ν) (from eq. 2) and
p ∼ Lμ (from eq. 4), implying x̄K ∝ Lμ. By setting x̄k =

ξμ +O(μ2) and expanding all quantities in eq.(8) to first
order in μ, one gets the following quadratic equation for
ξ which indeed does not depend on K:

ξ[(1 − ν + R)L − ξ] = (1 − ν)L2R, (10)

The roots of eq. (10) are ξ1 = L(1 − ν) and ξ2 = LR. It
can be seen that ξ1 can be recovered also from the case
K = 1 for which x̄1 = q ≈ L(1−ν)μ (from eq. 2). For the
reproductive but damaged species we observe, by the
same arguments employed above, that their dependence
on μ, for small μ, also follows x̄i ∝ μ for all i, again
independent of K.
In order to compute F(y) in Fig. 7, the knowledge of

Q was required from eq. (2), which in turn relies on an
estimate for the neutrality ν. The latter can be deter-
mined from the case K = 1, considering the approxima-
tion x̄0 = Q ∼ exp[−Lμ(1 − ν)] (Wilke, 2001) (Fig. 8).

The value of x̄K can be computed numerically using
a simple root-finder to solve eq. (9). The values of x̄i,
i � K are then obtained by rewriting eqs. (6b-6c) as

x̄i =

(
1 − x̄K

1 − pR

)K−i

x̄K , i ∈ [K − 1, 1] (11a)

x̄0 =

(
1 − x̄K

1 − pR

)K−1 x̄K(1 − x̄K)
q

(11b)

This shows that, even though x̄K is approximately K-
independent, as discussed above (Fig. 7 and Fig. 9), the
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Figure 10: The model from Fig. 5 and the associated eqs. (5) have been superposed on the stochastic experiments. More precisely, (upper left panel)
the recovery rate R is estimated from this simulation (N = 1000, K = 10, μ = 0.005) as the ratio of the number of recoveries per mutations off the
neutral network (replications with mutation for individuals from xi with i ∈ [1, K − 1]): R = 0.002359. Subsequently, the root y1 = 0.7549543
of the function F(y) from eq. (9) is obtained, having calculated a = 0.754369 and b = 0.00019. In this way, the values of x̄i are found through
eqs. (11).

9



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

0 0.005 0.01 0.015 0.02 0.025
μ

0.3

0.5

0.7

1

1 
- 

x K

0 0.001 0.002 0.003 0.004 0.005
μ

0.1

1

x 0 K

Figure 9: (Upper panel) The average fitness or fraction Φ = 1 − xK of
reproducing sequences in the population is shown for K ∈ {2, 4, 6, 8}.
It illustrates that x̄K is independent of K in very good approximation.
(Lower panel) The value of x̄0 estimated through eqs. (11) and based
on the recovery probabilities from Fig. 4 with the symbols referring
to different values of K ∈ [4, 10]. The straight line results from Fig. 8.

spread of population in the K reproducing-groups is K-
dependent. In other words, the unfit (x̄K) and conse-
quently, the fit (

∑K−1
i=0 x̄i = 1 − x̄K) levels are indepen-

dent on K. But the longer the telomere (i.e., the larger
the value of K), the wider is the spread or the dilution
of the population within the fit individuals, owing to the
(K − i) exponent. As K increases, x̄0 may reach val-
ues dangerously close to 0. We have used the data from
Fig. 4 to evaluate x̄0 according to eq. (11b), and in so do-
ing, illustrate the dependence x̄0(K, μ). The results are
included in the lower panel of Fig. 9. The decrease of
x̄0 with K implies that the survival of the species counts
exclusively on the probability of recovery. This dilution
thus drives extinction at large delays (large K) in a finite
population. In other words, in a finite population, de-
layed selection has the effect of lowering the extinction
threshold.

An example of simulation and comparison with the
model appears in Fig. 10. Following the reasoning dis-
cussed above, the associated values x̄i from eqs. (11)
have been calculated and are shown in Fig. 10 as con-
tinuous lines. It can be seen that the mean-field model
provides a good fit to the simulations.

3.3. Genetic diversity
It is plausible to assume that lineages with many re-

coveries in their history and/or recently recovered indi-
viduals will preferentially be located at the fringes of
the population. Thus they should have a large influence
on the sequence evolution. Since the damage/recovery
mechanism is capable of bridging gaps in the neutral
network, it is tempting to conjecture that this mecha-
nism will also lead to an increased speed of evolution,
i.e., an increase in the substitution rate given the same
underlying mutation rate μ.

In order to address this issue, we follow the ideas of
Huynen et al. (1996b) and investigate the Hamming dis-
tance distribution in the population. For each sequence
s ∈ P, let s j the nucleotide at position j. For each nu-
cleotide α ∈ {A,U,G,C} and j ∈ [1, L] we consider the
fraction

π j(α) =
1
N

∑
s∈P
δs j,α (12)

of sequences in the population P that have nucleotide
α at position j. The profile, or center of mass, of
the population is the 4 × L dimensional vector 
π =(
(π j(α))α∈{A,U,G,C}

)L

j=1
. The diversity of the population

is conveniently measured by the distribution of pairwise
Hamming distances dH(s′, s′′), or the distances of the
individual sequences to the center of mass. A conve-
nient distance measure is given by the difference be-
tween the centroids of the two populations (Derrida and
Peliti, 1991; Huynen et al., 1996a; Barnett, 1998). In
terms of the profiles, it can be expressed as

Δ2(
π′, 
π′′) =
L∑

j=1

∑
α∈{A,U,G,C}

(
π′j(α) − π′′j (α)

)2
(13)

Δ2 therefore directly measures the divergence of the
populations. Note any individual sequence s can also be
represented by a profile vector 
πs with entries π j(α) =
δs j,α. In particular, we have

Δ2(
πs′ , 
πs′′) = 2dH(s′, s′′) (14)

as shown in the appendix. The profile distance, eq.(13)
thus can also be seen as a straightforward generalization
of the Hamming distance.

The speed of evolution can be measured in terms of
the mean square displacement of the population over
time. More precisely, the motion of the center of mass
is captured by the diffusion constant

D = lim
δτ→0

1
τ

〈
Δ2

(

π(t + τ), 
π(t)

)〉
t

(15)
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Figure 11: Measuring diffusion through D̃ (see appendix). Ten exper-
iments have been performed for each (N, K) case, and two values of
μ = 10−5 (circles) and μ = 3 × 10−5 (squares). Two tank capacities
are used for verification: N = 100 (upper panel) and N = 500 (lower

panel). The diffusion was measured as D̃ = 〈D〉±
√

1
n

∑
(Di−〈D〉)2

n−1 , with

Di, the mean value of the i th experiment.

where 〈 . 〉t denotes the average over time t and simula-
tion runs. The diffusion constant D is a convenient way
of estimating the substitution rate directly from simu-
lated populations (Huynen et al., 1996a; Stadler, 2002;
Stephan-Otto Attolini and Stadler, 2006), which is inde-
pendent of the particular rules of the selection/mutation
process. It corresponds to the substitution rate used in
phylogenetic analysis.

Note that the definitions of D above depends on the
ability to explicitly compute the center of mass 
π of a
population P. Conceptually this means that we need to
be able to treat the individual members s ∈ P as vectors.
This is straightforward in the absence of insertions and
deletions because the Hamming distance already is of
the appropriate form, see eq.(14). In the presence of in-
sertions and deletions, however, it seems non-trivial to
find a vector-space representation for the Levenshtein
distance. An alternative vector-based distance measure
could be obtained by first constructing an alignment of
all sequences in the two populations and then treating
gaps as an additional letter in eq.(12). The need to com-
pare populations at different times in eq.(15) compli-
cates the issue, requiring at least alignments of pairs of
populations. In contrast, a distance measure between
the individuals of the population is sufficient to quantify
e.g. the diversity in the population. This begs the ques-
tion whether eq.(15) can be generalized to a more gen-
eral setting. In the appendix we show how this can be
achieved by introducing an equivalent measure of diffu-
sion through D̃.

Finally, to answer the question whether the delayed
selection could leave a fingerprint in the population di-
versity, we have measured the diffusion coefficient D̃ for
various cases of mutation rate. First, we do not expect
to see any consequence of the delayed selection when
the mutation rate is low enough to impede recoveries.
Without recoveries, the enrichment of the population
does not occur. We have verified this statement by per-
forming simulations for two values of mutation rate and
population number (Fig. 11). Formally, we expect the
recoveries to be R ∝ Kp2 ≈ KL2μ2, where the expo-
nent in the latter statement refers to the two mutations
needed to fall off and return to the neutral network, re-
spectively. For the μ values employed in the examples
from Fig. 11, recoveries are negligible and no differen-
tial diffusion is observed for different time delays. Just
for verification, the population number does not affect
the diffusion coefficient.
For mutation rates that allow a significant number of

recoveries, we expect to see that recoveries lead to a
higher evolutionary rate identified by a higher diversity,
and thus a higher diffusion coefficient. The diffusion co-
efficient D̃ was measured for: only the replicating (vi-
able) sequences (l.h.s panel of Fig. 12), and only the un-
damaged sequences (on the neutral network) (r.h.s panel
of Fig. 12). Even though no increased diffusion is ob-
served for the viable individuals, a slight effect can be
observed for the neutral network. It illustrates the ex-
pectation that, at significant mutation rates (high, but
not too high; see Fig. 4), a more efficient exploration
of the neutral network is provided by the delayed selec-
tion. When measured at the level of the entire viable
population (l.h.s panel), this slight increase is lost in the
accumulation of damaged individuals.

These results show that the delayed selection leaves
no unequivocal traces of its presence in terms of popula-
tion diversity. We conclude therefore that even massive
delays in the effect of selection do not appreciably affect
substitution rates.

4. Discussion

The scenario of classical Darwinian selection consid-
ers that selection instantaneously punishes or rewards
changes in fitness associated to the individual genomes.
This scenario is employed in the overwhelming major-
ity of studies regarding fitness-driven selection. Only a
few studies considered fitness effects that reach across
generations. For instance, Wilke (2002) considers a
model in which fitness is the product of a maternal con-
tribution and the offsprings own genotype. Still, se-
lection acts instantaneous to remove lethal genotypes
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Figure 12: Measuring diffusion through D̃. As in Fig.11, ten experiments have been performed for each K-case (here N = 1000), and two values of
μ = 10−3 (circles) and μ = 3 × 10−3 (squares). (l.h.s panel) The diffusion was measured only from the replicating (viable) sequences. (r.h.s panel)
From the same experiments in the lhs panel, only the sequences of maximum telomere length (sequences on the neutral network) were extracted
and used for measuring the diffusion.

from the population. In our model, which is inspired by
eukaryotic telomere damage, individuals carrying dys-
functional genomes are oblivious of this fact for sev-
eral generations. At least intuitively, this setup should
emphasize the effects of delayed selection as much as
possible compared to more realistic scenarios in which
genetic damage is associated also with some instanta-
neous fitness effects.
The model is investigated in two settings: stochas-

tic computer simulations based on neutral networks of
RNA secondary structures, and a deterministic infinite-
population-size model. The RNA-based simulations
show that damage-and-recovery is a frequent phe-
nomenon for a wide range of mutation rate values. In
particular, after a relatively short time, all individuals in
the population derive from ancestors that have sustained
damage and have subsequently recovered through com-
pensatory mutations. We have demonstrated, further-
more, that it is sufficient to estimate a few parameters,
namely the recovery rates R and the degree of neutrality
ν to parameterize the deterministic ODE model in such
a way that it reproduces the phenomena observed in the
stochastic simulation.

For simplicity, the deterministic system was set up as
a flow reactor under constant organization like Eigen’s
QuasispeciesModel. In this system, we observe a single
stable equilibrium in which x0, the fraction of undam-
aged individuals, and xK , the fraction of sterile mem-
bers, strike a balance that depends primarily on the mu-
tation rate μ. For large values of μ, x0 becomes very
small and thus fluctuations can easily wipe out the un-
damaged part of the population. This behavior roughly
corresponds to the extinction threshold. Therefore, the
main effect of delayed selection is to reduce the crit-
ical mutation rate. In other words, as one may have
expected, genetic components evolving under delayed

selection have an increased risk of being lost.

To our surprise, however, delayed selection does not
appear to have a measurable effect on the substitution
rates observed at population level. Delayed selection,
therefore does not easily reveal itself in genomic DNA
sequences. For one, this begs the question whether there
are more subtle effects on substitution rates. If they ex-
ist, they will presumably depend on the specifics of the
selection pressures of the particular protein or RNA in
question. On the other hand, the apparently small im-
pact of delayed selection at the sequence level could
hide that this is indeed a rather frequent phenomenon.
The well-known observation that deletion of a highly
conserved gene often has no appreciable phenotype at
least under laboratory conditions could be related to our
topic.

In conclusion, we have approached a question that
has not been addressed so far in neither modeling
nor simulating framework, by studying the scenario in
which the selection of the fittest is delayed for several
generations. Such a scenario occurs in very unrelated
topics, from telomere damage-repair system to plant
breeding. By this study we have thus laid the grounds
of further explorations of the consequences of such a
scenario.
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Appendix

Measuring Diffusion in Metric Spaces
Let A = {
x1, . . . , 
xnA } and B = {
y1, . . . , 
ynB} be

two finite sets of vectors in some vector space V.
As an example, in the present case, the sequence
AACGT can be written in the base {A,G,C, T } as
1000 1000 0010 0100 0001.

a vector in Our goal is to express the mean square
displacement

Δ2 = Δ2(A, B) =
⎛⎜⎜⎜⎜⎜⎝ 1
nA

∑
i∈A

xi − 1

nB

∑
i∈B

yi

⎞⎟⎟⎟⎟⎟⎠
2

(16)

of the centers of gravity of A and B in terms of distances
between their elements. In a Euclidean vector space, we
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have canonical distances given by d2
i j = (
xi − 
x j)2 for

i, j ∈ A, d2
i j = (
yi − 
y j)2 for i, j ∈ B, and d2

i j = (
xi − 
y j)2

for i ∈ A and j ∈ B. It is convenient to introduce the
following quantities, which can be computed in terms
of pairwise distances:

VA =
1

n2A

∑
i∈A

∑
j∈A

(
xi − 
x j)2 =
1

n2A

∑
i∈A

∑
j∈A

d2
i j

VB =
1

n2B

∑
i∈B

∑
j∈B

(
yi − 
y j)
2 =

1

n2B

∑
i∈B

∑
j∈B

d2
i j

W =
1

nAnB

∑
i∈A

∑
j∈B

(
xi − 
y j)2 =
1

nAnB

∑
i∈A

∑
j∈B

d2
i j

(17)

In the following we will prove the identity

Δ2 = W − VA/2 − VB/2 (18)

which shows that the mean square displacement can be
expressed in terms of pairwise distances.

First observe that
(∑

i∈A 
xi
)2
=

∑
i, j∈A 
xi 
x j and hence

n2
AVA = 2nA

∑
i∈A


xi
2 − 2

∑
i, j∈A


xi 
xj = 2nA

∑
i∈A


xi
2 − 2

⎛⎜⎜⎜⎜⎜⎝
∑
i∈A


xi

⎞⎟⎟⎟⎟⎟⎠
2

An analogous expression holds for VB. Next we rewrite
the definition of Δ2 in the form

Δ2 =
1

n2
An2

B

⎛⎜⎜⎜⎜⎜⎜⎝n2
B

⎛⎜⎜⎜⎜⎜⎝
∑
i∈A


xi

⎞⎟⎟⎟⎟⎟⎠
2

+ n2
A

⎛⎜⎜⎜⎜⎜⎝
∑
i∈B


yi

⎞⎟⎟⎟⎟⎟⎠
2

− 2nAnB

∑
i∈A

∑
j∈B


xi 
yj

⎞⎟⎟⎟⎟⎟⎟⎠
and use this expression to compute

n2
An2

BW − n2
An2

BΔ
2

= nAn2
B

∑
i∈A


xi
2
+ nBn2

A

∑
j∈B


yj
2 − n2

B

⎛⎜⎜⎜⎜⎜⎝
∑
i∈A


xi

⎞⎟⎟⎟⎟⎟⎠
2

− n2
A

⎛⎜⎜⎜⎜⎜⎝
∑
i∈B


yi

⎞⎟⎟⎟⎟⎟⎠
2

= n2
B

⎛⎜⎜⎜⎜⎜⎜⎝nA

∑
i∈A


xi
2 −

⎛⎜⎜⎜⎜⎜⎝
∑
i∈A


xi

⎞⎟⎟⎟⎟⎟⎠
2⎞⎟⎟⎟⎟⎟⎟⎠ + n2

A

⎛⎜⎜⎜⎜⎜⎜⎝nB

∑
j∈B


yj
2 −

⎛⎜⎜⎜⎜⎜⎝
∑
i∈B


yi

⎞⎟⎟⎟⎟⎟⎠
2⎞⎟⎟⎟⎟⎟⎟⎠

=
n2

B

2
n2

AVA +
n2

A

2
n2

BVB

Eq.(18) now follows immediately.
Returning to the definition of RNA sequences as vec-

tors, eq. (16) coincides with eq. (13) which employs a
different notation for the population profiles. And thus,
the distance between two vectors as included in eq. (17)
can be written as

d2(
x, 
y) =
n∑

j=1

∑
α∈{A,U,G,C}

(
x j,α − y j,α

)2

= 2 dH(
x, 
y)

where dH(
x, 
y) is the Hamming distance between the
two sequences.

The importance of eq.(18) is twofold. First, it implies
that the diffusion coefficient

D̃ ≡ lim
τ→0

Δ2(At+τ, At)
τ

(19)

is a metric quantity at heart that does not necessarily
require the explicit computation of the “centers of grav-
ity” of the populations at the different time points. Sec-
ondly, it suggests eq. (18) to be the definition of Δ2 in
situations where V is not given explicitly, or where we
only have a metric structure at our disposal. Eq.(18)
thus is of practical use, since pairwise distances of se-
quences in related populations can be computed ef-
ficiently, while the construction of good multiple se-
quence alignments may be quite tedious.
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