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Abstract 18 

Network epidemiology has mainly focused on large-scale complex networks. It is unclear 19 

whether findings of these investigations also apply to networks of small size. This 20 

knowledge gap is of relevance for many biological applications, including meta-21 

communities, plant-pollinator interactions and the spread of the oomycete pathogen 22 

Phytophthora ramorum in networks of plant nurseries. Moreover, many small-size biological 23 

networks are inherently asymmetrical and thus cannot be realistically modelled with 24 

undirected networks. We modelled disease spread and establishment in directed networks 25 

of 100 and 500 nodes at four levels of connectance in six network structures (local, small-26 

world, random, one-way, uncorrelated and two-way scale-free networks). The model was 27 

based on the probability of infection persistence in a node and of infection transmission 28 

between connected nodes. Regardless of the size of the network, the epidemic threshold 29 

did not depend on the starting node of infection but was negatively related to the 30 

correlation coefficient between in- and out-degree for all structures, unless networks were 31 

sparsely connected. In this case clustering played a significant role. For small-size scale-free 32 

directed networks to have a lower epidemic threshold than other network structures, there 33 

needs to be a positive correlation between number of links to and from nodes. When this 34 

correlation is negative (one-way scale-free networks), the epidemic threshold for small-size 35 

networks can be higher than in non scale-free networks. Clustering does not necessarily 36 

have an influence on the epidemic threshold if connectance is kept constant. Analyses of 37 

the influence of the clustering on the epidemic threshold in directed networks can also be 38 

spurious if they do not consider simultaneously the effect of the correlation coefficient 39 

between in- and out-degree. 40 

 41 

Keywords  42 

Commercial transport, disease management, food webs, initial conditions, spread of ideas, 43 

Susceptible-Infected-Susceptible (SIS) 44 
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Introduction 46 

Epidemic models assuming regularly or randomly connected individuals are now 47 

involving more complex networks (Keeling, 2005; May, 2006; Jeger et al., 2007). Compared 48 

to regular lattices, epidemics in small-world networks are facilitated by long-distance 49 

connections (Moore and Newman, 2000). In scale-free networks of infinite size, epidemics 50 

lack a threshold, which implies that even pathogens with a low probability of transmission 51 

will persist (Pastor-Satorras and Vespignani, 2001). Whether these findings also apply to 52 

complex networks of small size is still unclear. This is an important knowledge gap as 53 

small-size networks are relevant to many epidemics spreading within subgroups of 54 

individuals (Liu et al., 2004; Guimarães et al., 2007; Sun and Gao, 2007; Pellis et al., 2009).  55 

Networks are not only relevant for epidemiology but have found application in a variety of 56 

biological systems (Proulx et al., 2005; Bascompte, 2007; Jeger et al., 2007). Networks with 57 

size of the order of magnitude of hundreds of nodes, in turn, are relevant for many current 58 

issues in ecology. Examples include closely interacting primate groups (Dunbar, 1993), 59 

social networks of manakins (Ryder et al., 2008), cavity-nesting community webs (Blanc 60 

and Walters, 2007), diseases of bumble bee colonies (Otterstatter and Thomson, 2007) and 61 

vascular epiphytes on host tree species (Lobel et al., 2006; Burns, 2007). The importance of 62 

small-size networks in biology is further shown by plant-pollinator interactions (e.g. 63 

Olesen et al., 2006; Nielsen and Bascompte, 2007), mycorrhiza, rhizomorphs and plant 64 

pathosystems (Southworth et al., 2005; Lamour et al. 2007; Brooks et al., 2008), and food 65 

webs (e.g. Montoya and Solé, 2002; Neutel et al., 2007).  66 

Although networks of small size are relevant both for epidemiology and for ecology and 67 

evolution (e.g. Hanski and Ovaskainen, 2000; Brooks, 2006; Ings et al., 2009), there has been 68 

surprisingly little theoretical work investigating whether results obtained for large-size and 69 

infinite networks also apply to small-size networks. We know for example that 70 

heterogeneity in the contact structure can markedly lower invasion thresholds in networks 71 

of large size (Boguna et al., 2004; Colizza and Vespignani, 2007; Jeger et al., 2007), but there 72 

is still only patchy knowledge about the dynamics and properties of small-size networks of 73 

various structures. This is of concern, given the several applications of small-size networks 74 
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in natural systems and also given that the rapid globalization and structural changes of 75 

trade interactions are increasing the relevance of complex networks of small size for the 76 

invasion biology of exotic organisms (Jones and Baker, 2007; Dehnen-Schmutz et al., 2007; 77 

Brenn et al., 2008). A real world application of directed networks of small size in epidemic 78 

controlling are trade movements of infected material amongst plant nurseries (e.g. 79 

Bandyopadhyay and Frederiksen, 1999; Anderson et al., 2004; Slippers et al., 2005). A 80 

recent example is given by the spread in regional networks of plant nurseries and garden 81 

centres of Phytophthora ramorum, the oomycete causing Sudden Oak Death in the West 82 

Coast of the USA and leaf blight and dieback in many ornamental shrubs both in America 83 

and Europe (Werres et al., 2001; Prospero et al., 2007; Xu et al., 2009). Given the wide range 84 

of species affected, movements of infected plant material in the horticultural trade have the 85 

potential to make this emerging plant disease outbreak even more widespread 86 

(Holdenrieder et al., 2004; Frankel, 2008; Grünwald et al., 2008). There is thus the necessity 87 

to control the network of plant nurseries and retail outlets trading ornamental species 88 

susceptible to P. ramorum in an effective and efficient way. 89 

In this study, we investigated whether heterogeneity in the contact structure and the 90 

presence of short-cuts as in small-world networks still make a difference to epidemic 91 

development in small-size, directed networks. Directed networks, given the more 92 

complicated adjacency matrices, have been used to model epidemics relatively rarely 93 

(Newman et al., 2001; Meyers et al., 2006; Park and Kim, 2006; Kenah and Robins, 2007), 94 

but are relevant to many real-world situations with asymmetries in contact structures, and 95 

deserve more study for various network sizes, structures and levels of connectance. We 96 

have shown elsewhere (Pautasso and Jeger, 2008) that heterogeneity in the contact 97 

structure still affects the epidemic threshold even in the case of networks of one hundred 98 

nodes, but inquire here whether variations in the epidemic threshold (the boundary 99 

between no epidemic and an epidemic) for different network structures and at different 100 

levels of connectance can be explained by the correlation coefficient between links to and 101 

from nodes and by the clustering coefficient of the network. Previous work in percolation 102 

theory suggests that the correlation coefficient between links to and from nodes is 103 

important in the case of heterogeneity in the contact structure (Schwartz et al., 2002; 104 
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6/19/2009  5 

Woolhouse et al., 2005; Kao et al., 2006), but it is unclear whether or not this importance is 105 

maintained for small-size networks with different (i) size, (ii) structure (local, random, 106 

small-world and scale-free), (iii) levels of connectance, and (iv) clustering. 107 

Materials and Methods  108 

We simulated disease spread and establishment in networks of 100 and 500 nodes. For both 109 

network sizes, we used six kinds of structure: (1) local (nearest-neighbour transmission), (2) 110 

random (nodes connected with probability p), (3) small-world (local networks rewired 111 

with short-cuts), and scale-free structure (see Jeger et al., 2007 for a visualization). For 112 

scale-free networks, we considered separately networks with in- and out-degree of nodes 113 

(4) positively, (5) not and (6) negatively correlated. The networks were directed, i.e. a link 114 

from node a to node b did not imply the reverse connection (as e.g. in Newman et al., 2001; 115 

Boguna and Serrano, 2005; Meyers et al., 2006; Park and Kim, 2006). Directed networks are 116 

realistic approximations of many real world systems; wherever a directed link does not 117 

entail the reverse connection (asymmetrical interactions), from food webs to plant-animal 118 

mutualistic networks, from infectious disease epidemiology to the spread of information 119 

(Bascompte et al., 2003; da Gama and Nunes, 2006; Bode et al., 2008; Thebault and 120 

Fontaine, 2008). 121 

For each network structure, 100 replicates were built in MATLAB at each level of 122 

connectance (for 100 nodes: 100, 200, 400, and 1000 links; for 500 nodes: 500, 2500, 5000, and 123 

10000 links; Table 1). Rather than keeping connectance constant between the two network 124 

sizes, we needed a lower level of connectance for 500 nodes (500 links, i.e. connectance = 125 

0.002) to obtain results similar to the lower level of connectance for 100 nodes (100 links, i.e. 126 

connectance = 0.01). To obtain a disappearance of a significant correlation between 127 

epidemic threshold and correlation links in and out for the larger network size (500 nodes), 128 

it was necessary to use a lower connectance level that at network size equal 100 nodes. We 129 

also left out results from the highest level of connectance for 500 nodes (25000 links, i.e. 130 

connectance = 0.1) as in this case networks were overly connected so that differences 131 

between network structures were likely to be small. Local networks were built starting 132 

from a regular ring with 100 (for 100 nodes) and 500 (for 500 nodes) links more than the 133 
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6/19/2009  6 

target number of links and by randomly generating 100 or 500 gaps, respectively. Random 134 

digraphs were generated using the G(N,M) model where M directed links are placed 135 

randomly and independently between the N nodes of the graph. Small-world networks 136 

were built with the Watts and Strogatz (1998) algorithm and a rewiring coefficient of 0.25. 137 

This rewiring coefficient allowed the construction of small-world networks with clustering 138 

intermediate between those of random and of local networks. Small-world networks are 139 

networks with high clustering compared to random networks and small shortest path 140 

length compared to local networks, and these conditions were respected in our case. Scale-141 

free networks were built with a preferential attachment algorithm, starting with a seed 142 

network and based on five parameters adding nodes and/or links depending on the in-, 143 

out-, and total degree of existing nodes:  144 

1) The parameter a added both a node i and an arrow (i,j) according to the in-degree of 145 

an existing node j. This step was repeated a-times. 146 

2) The parameter b added both a node i and an arrow (j,i) according to the out-degree 147 

of an existing node j. This step was repeated b-times. 148 

3) The parameter c added both a node i and an arrow (i,j) or (j,i) according to the total 149 

degree of an existing node j. The choice of the direction of each arrow added, i.e. (i,j) 150 

or (j,i), was equally probable. This step was repeated c-times. 151 

4) The parameter d only added an arrow (i,j) and not a node according to the out-152 

degree of an existing node i and to the in-degree of an existing node j (i�j). This step 153 

was repeated d-times.  154 

5) The parameter e only added an arrow (i,j) and not a node according to the total 155 

degrees of existing nodes i and j (i�j). This step was repeated e-times. 156 

Epidemic development was deterministic, with discrete time-step and governed by the 157 

probabilities of infection transmission between nodes (pt) and of infection persistence in a 158 

node (pp). The transmission probability pt was either zero (unconnected nodes) or a value 159 

constant for different links in a network but variable amongst network replicates (in order 160 

to work at the threshold conditions in each replicate; see Pautasso and Jeger, 2008). The 161 
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6/19/2009  7 

persistence probability pp combined in one single parameter the length of infectiousness, 162 

detection and control measures. We also set pp to be the same for all nodes. Both pt and pp 163 

are real variables, going from 0 to 1. This can be a realistic assumption for many ecological 164 

networks, wherever persistence and transmission are not either switched on or off, but can 165 

assume any value between these two extremes. We assumed all nodes to be of equal 166 

capacity and kind (differences between nodes are thus entirely due to their in- and out-167 

degree). At each iteration, the contact structure of the network realization was maintained 168 

exactly the same. Networks were not necessarily fully connected, so it is possible that at the 169 

lower levels of connectance not all nodes could be reached from all nodes. 170 

For each iteration, we obtained the infection status of a given node Pi (x) in the following 171 

way: 172 

Pi (x) = Σ pt (x,y) Pi (y) 173 

for y going from 1 to 100, where pt refers to the connection of the node x from a node y, and 174 

Pi (y) is the infection status of the node y at the previous iteration. At the beginning of the 175 

epidemic Pi (x) was set to zero for all nodes except for the starting node of the epidemic, 176 

with P(i) = 1. For the connection of a node with itself, pp was used instead of pt. The 177 

biological motivation for self-loops is that nodes which have become infected by a 178 

pathogen have a certain probability to remain infected due to the persistence of inoculum 179 

through time. The model was thus a SIS (Susceptible-Infected-Susceptible) model. This can 180 

be a realistic assumption for many epidemiological systems, wherever nodes are still at risk 181 

even after eradication of a disease outbreak if complete immunization is not possible and if 182 

there is a continuing trade or contact with susceptible material or inoculum (Jeger et al., 183 

2007).  184 

The development of the epidemic was assessed on the basis of the sum of Pi (x) across all 185 

nodes and on the basis of the number of nodes with Pi (x) higher than an arbitrary value 186 

(0.01). The epidemic was started with a single infection of a single node, as the threshold 187 

conditions were not affected by whether epidemics are started with a single or with 188 

multiple infections (unpublished observations). Also, results were consistent using a 189 

different starting probability of infection. Although the starting node had a marked 190 
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6/19/2009  8 

influence on the epidemic size at equilibrium (Pautasso and Jeger, 2008), making the 191 

epidemic start from different nodes did not affect the threshold conditions (p*p and p*t) 192 

which define a boundary between no epidemic and an epidemic. Given that there is a 193 

linear threshold in a graph of p*p as a function of p*t (Pautasso and Jeger, 2008), we worked 194 

at p*p = 0 and assessed the threshold only in terms of p*t. 195 

The clustering coefficient Ci of a node i which is part of a digraph characterizes the extent 196 

to which nodes adjacent to any node i are adjacent to each other. More precisely, 197 

   198 

where Card (X) symbolyses the cardinality of the set X, i.e. the number of elements of X. 199 

The neighbourhood �i of a vertex i is the digraph that consists solely of the set V�i of 200 

vertices connected from and/or to i (not including i itself) and of the set E�i of all arrows 201 

connecting such vertices. The average clustering C of a digraph is the average of the 202 

clustering of each node of this digraph.  203 

Analysis of variance (ANOVA) of the epidemic threshold and of the correlation coefficient 204 

between in- and out-degree of the 100 nodes of the network replicates for the different 205 

levels of connectance (within a network structure) and for the different types of network 206 

structure (at a given level of connectance) was carried out in SAS 9.1 (proc ANOVA). The 207 

same package (proc GLM) was used for multi-variate regressions of the threshold p*t 208 

against the correlation coefficient between in- and out-degree and the average clustering 209 

coefficient of the 100/500 nodes of the network replicate for a given network structure and 210 

level of connectance. 211 

Results 212 

The threshold p*t significantly decreased with increasing connectance for all structures and 213 

with both network sizes (Fig. 1a, b). With the exception of the lowest connectance level for 214 

both network sizes, two-way scale-free networks showed a significantly lower and one-215 

way scale-free networks a significantly higher threshold than all other structures (Fig. 1c, 216 
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6/19/2009  9 

d). For network size of 100 nodes, random networks showed a significantly lower 217 

threshold than local networks, but not at the highest connectance (Fig 1c). This result was 218 

not confirmed at the larger network size, where random networks had an epidemic 219 

threshold not significantly different than the one of local networks (Fig. 1d). Small-world 220 

networks showed a threshold not significantly different from random networks (except at 221 

the lowest connectance for both network sizes). The threshold of uncorrelated scale-free 222 

networks, at all connectance levels and for both network sizes, lay between those for two-223 

way and one-way scale-free networks (Fig. 1c, d). 224 

The correlation coefficient between in- and out-degree of the nodes of the networks was, by 225 

definition, positive for two-way scale-free networks, not significantly different from zero 226 

for uncorrelated scale-free networks (except, by chance, at some levels of connectance; Fig. 227 

1e, f), and negative for one-way scale-free networks. This coefficient was also clustered 228 

around zero for local, small-world and random networks. There was a significant increase 229 

in the correlation coefficient between in- and out-degree for two-way scale-free networks 230 

with increasing connectance for both network sizes (Fig. 1g, h). 231 

With the exception of the lowest connectance, there were generally significantly negative 232 

relationships between threshold p*t and the correlation coefficient between in- and out-233 

degree for all structures and with both network sizes (Fig. 2; Tables 2, 3). At the lowest 234 

level of connectance, these relationships were significant only for small-world and two-235 

way scale-free networks for the network size of 100 nodes. The proportion of variance in 236 

threshold p*t explained by the correlation between the in- and the out-degree increased 237 

with connectance for all structures and for both network sizes, but with exception of two-238 

way scale-free networks. Apart from one-way scale-free networks for 500 nodes and two-239 

way scale-free networks for both network sizes, at the highest connectance these 240 

proportions of variance were substantial (between 0.84 and 0.93 for 100 nodes, and 241 

between 0.56 and 0.95 for 500 nodes). However, apart from one-way scale-free networks at 242 

the network size of 100 nodes, the slopes of these relationships tended to become flatter 243 

with increasing connectance (Tables 2, 3). This is a consequence of the overall lower 244 

threshold p*t at higher connectance (Fig. 2). 245 
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Including the clustering as an additional explaining factor in the regression of the 246 

threshold p*t against the correlation coefficient between links to and from nodes did not 247 

affect the previous results. The clustering increased with increasing level of connectance for 248 

all structures and for both network sizes (Figs. 3, 4). By definition, at a given connectance, 249 

the clustering was higher in local than in small-world networks, and in small-world 250 

compared to random networks (Figs. 3, 4). The clustering also decreased from two-way to 251 

uncorrelated and to one-way scale-free networks (Figs. 3, 4). For both network sizes, the 252 

clustering was significantly negatively related to the threshold pt at the lowest level of 253 

connectance for local and small-world networks, and at all levels of connectance for two 254 

way scale-free networks (Fig. 3; Tables 2, 3). 255 

For both network sizes, the relationship of the correlation coefficient between links to and 256 

from nodes with the clustering was significantly positive for all scale-free networks (except 257 

at the lowest level of connectance; Fig. 4; Tables 4, 5). However, the proportion of variance 258 

in the correlation coefficient between in- and out-degree explained by the clustering was 259 

substantial for uncorrelated and one-way, but not for two-way scale-free networks. For 260 

both network sizes, there was also a significantly positive correlation between these two 261 

variables for random networks at the two highest connectance levels (Tables 4, 5). 262 

Discussion 263 

Networks of small size have biological significance in a variety of ecological fields. 264 

Examples include meta-populations, mutualistic and antagonistic interactions (Dunne et 265 

al., 2002; Lundgren and Olesen, 2005; Brooks, 2006; Pautasso et al., 2008; Thebault and 266 

Fontaine, 2008). In spite of the relevance of small-size networks for many issues in natural 267 

sciences, it is not clear whether theoretical results derived from analyses of large-scale 268 

complex networks apply also to small-size networks (Guimarães et al., 2007). Moreover, 269 

much work in network epidemiology has focused on undirected networks (e.g. Keeling, 270 

2005; Shirley and Rushton, 2005; May, 2006), whereas many of the biological networks 271 

mentioned in the Introduction are inherently asymmetrical and thus can only be 272 

realistically modelled with directed networks. 273 
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6/19/2009  11 

Our analysis shows that in SIS models of epidemics in directed networks of small size, the 274 

threshold is lower for scale-free network structures only if there is a positive correlation 275 

between in- and out-degree of nodes (Fig. 2). This finding is in good agreement with results 276 

obtained in percolation theory for large-size networks (Schwartz et al., 2002). Our work 277 

further shows that when this correlation between in- and out-degree of nodes is negative 278 

(one-way scale-free networks), for small-size networks the epidemic threshold is higher 279 

than in non scale-free networks. This result is broadly independent of the connectance level 280 

and of the network size, although it breaks down in case of sparsely connected networks. 281 

For sparsely connected networks, differences in clustering amongst networks can become 282 

important.  283 

Clustering has been shown to be a network feature relevant to the development and 284 

control of epidemics (e.g. Eames and Keeling, 2003; Keeling, 2005; Kiss et al., 2005; 285 

Hartivgsen et al., 2007; Turner et al., 2008; Miller, 2009). More clustered networks are 286 

believed to be less prone to invasion by a pathogen, as this will be likely to become 287 

confined inside clusters of connected nodes (Keeling, 2005; Naug, 2008). Clusters can also 288 

slow down epidemic development in the first phases of epidemics (e.g. Szendroi and 289 

Csanyi, 2004). In scale-free networks of infinite size, the presence of high local clustering 290 

has been shown to make it possible for a non-null epidemic threshold to be present 291 

(Eguiluz and Klemm, 2002; but see Serrano and Boguna, 2006). Clustering in large-scale 292 

scale-free networks has been shown to decrease the size of epidemics, but also to decrease 293 

their threshold (Newman, 2003). 294 

In the case of our small-size networks, the influence of clustering on the epidemic 295 

threshold is dwarfed by the one of the correlation coefficient between in- and out-degree. 296 

The negative correlation between epidemic threshold and clustering for uncorrelated and 297 

one-way scale-free networks at the highest levels of connectance (Fig. 3) can be explained 298 

by the positive correlation of the correlation coefficient between in- and out-degree with 299 

the clustering in the same networks (Fig. 4). Unlike Eames (2008) for undirected networks, 300 

we do not observe any differences in the influence of clustering on epidemic development 301 

depending on whether contacts are regular or random. In our small-size, directed 302 
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6/19/2009  12 

networks, with the exception of sparsely connected local networks, clustering has no 303 

influence on the epidemic threshold within both local and random networks (Fig. 3). 304 

Our main conclusion is that, in directed networks, analyses of the influence of clustering on 305 

the epidemic threshold can be spurious if they do not consider simultaneously the effect of 306 

the correlation coefficient between in-and out-degree. In some cases (sparsely connected 307 

local, small-world and two-way scale free networks), we observe a negative correlation 308 

between epidemic threshold and clustering and no significant effect of the correlation 309 

coefficient between in- and out- degree on the threshold, suggesting that in extreme 310 

situations the correlation coefficient between in- and out-degree may not play the same 311 

role as for large-scale networks. We also point out that analyses which show that clustering 312 

is negatively related to the epidemic threshold (e.g. Britton et al., 2008) need to take the 313 

connectance level into account, as (i) the clustering increases with increasing connectance, 314 

(ii) the epidemic threshold decreases with increasing connectance, so that (iii) if 315 

connectance increases the epidemic threshold is bound to be negatively correlated with the 316 

clustering. Our results show, however, that, when keeping connectance constant, clustering 317 

and epidemic threshold are not necessarily related. 318 

Epidemics in scale-free networks are now commonly investigated (e.g. Boccaletti et al., 319 

2006; Masuda and Konno, 2006; Colizza and Vespignani, 2008), but there has been less 320 

attention to directed scale-free networks. In this analysis, we confirm the importance of the 321 

correlation coefficient between in- and out-degree for epidemics in directed scale-free 322 

networks (Woolhouse et al., 2005). We also provide evidence for a different behaviour of 323 

the clustering in directed scale-free networks where there are different correlation 324 

coefficients between in- and out-degree. Although there is a positive correlation of the 325 

clustering with the correlation coefficient between in-and out-degree for all scale-free 326 

network types (except at the lowest connectance level), only for uncorrelated and one-way 327 

scale-free networks has this correlation a substantial r2 (for 500 nodes: between 0.54 and 328 

0.79, Table 5). For two-way scale-free networks, the correlation between clustering and 329 

correlation coefficient between links in and out of nodes is significant but negligible (again 330 

for 500 nodes, r2 values are between 0.01 and 0.08, Table 5). Further work is needed to 331 
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investigate whether results obtained for undirected scale-free networks apply to all types 332 

of directed scale-free networks. 333 

Our results are essentially independent of the network size used (100 and 500 nodes). We 334 

have avoided using a lower number of nodes than 100 as it is likely that differences 335 

between network structures will tend to become blurred for even smaller networks. 336 

However, an interesting question would be at which small size heterogeneity in the contact 337 

structure stops having a significant influence on network properties and epidemic 338 

processes. A remarkable result is also that network breakdown at the lowest connectance 339 

level (which causes for example the disappearance of a significant relationship between 340 

epidemic threshold and correlation coefficient between in- and out-degree) happens at two 341 

different connectance levels (0.01 for 100 nodes and 0.002 for 500 nodes, Table 1) for the 342 

two network sizes. More research is needed to assess which other processes are not 343 

independent of the interaction between network size and connectance. 344 

In conclusion, our study confirms the result obtained for large-size networks that 345 

regardless of the size of the network, the epidemic threshold is negatively related to the 346 

correlation coefficient between in- and out-degree for all structures. However, this does not 347 

hold if small-size networks are sparsely connected. In this case, clustering plays a 348 

significant role (Table 2). In small-size networks, when the correlation between links in and 349 

out is negative (one-way scale-free networks), the epidemic threshold can be higher than in 350 

non scale-free networks. Contrary to what is found in analyses of large-size networks, 351 

clustering does not necessarily have an influence on the epidemic threshold of small-size 352 

networks if connectance is kept constant. Analyses of the influence of the clustering on the 353 

epidemic threshold in directed networks can also be spurious if the effect of the correlation 354 

coefficient between in- and out-degree is disregarded. 355 
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Table 1. Number of links (L) and connectance (C = L/N2) for the two network sizes studied 505 

(number of nodes = N). 506 

N 100    

L 100 200 400 1000

C 0.01 0.02 0.04 0.1

N 500    

L 500 2500 5000 10000

C 0.002 0.01 0.02 0.04

 507 

508 
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Table 2. Proportion of variance explained, slope and associated p value of the regression of 508 

threshold probability of transmission as a function of (a) the correlation coefficient between 509 

in- and out-degree and (b) the clustering for the 100 replicates of the six network structures 510 

(local, random, small-world, two-way, uncorrelated, and one-way scale-free) at four levels 511 

of connectance (100, 200, 400 and 1000 links; network size = 100 nodes). 512 

   100     200     400     1000   

 r2   a b r2   a b r2   a b r2   a b 

l 0.17 +0.05 -5.45 0.33 -0.06 +0.09 0.58 -0.01 +0.03 0.85 -0.001 +0.000 

 p 0.30 0.001  0.001 0.15  0.001 0.03  0.001 0.98 

r 0.02 -0.07 -0.76 0.54 -0.25 +0.04 0.74 -0.06 +0.02 0.86 -0.009 -0.003 

 p 0.23 0.41  0.001 0.89  0.001 0.79  0.001 0.86 

sw 0.22 -0.16 -4.63 0.27 -0.11 -0.02 0.62 -0.02 -0.00 0.84 -0.002 +0.001 

 p 0.003 0.001  0.001 0.86  0.001 0.82  0.001 0.45 

sf2 0.11 -0.17 -3.24 0.55 -0.23 -0.30 0.34 -0.09 -0.02 0.25 -0.04 -0.01 

 p 0.008 0.04  0.001 0.001  0.001 0.05  0.001 0.001 

sf0 0.01 -0.04 -0.90 0.28 -0.59 -0.27 0.59 -0.69 +0.28 0.93 -0.27 +0.02 

 p 0.49 0.48  0.001 0.61  0.001 0.33  0.001 0.45 

sf1 0.04 +0.12 -1.52 0.03 -0.86 +1.66 0.23 -3.31 +4.09 0.87 -0.92 +0.09 

 p 0.27 0.15  0.12 0.24  0.001 0.005  0.001 0.35 

 513 
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Table 3. Proportion of variance explained, slope and associated p value of the regression of 514 

threshold probability of transmission as a function of (a) the correlation coefficient between 515 

in- and out-degree and (b) the clustering for the 100 replicates of the six network structures 516 

(local, random, small-world, two-way, uncorrelated, and one-way scale-free) at four levels 517 

of connectance (500, 2500, 5000 and 10,000 links; network size = 500 nodes). 518 

   500     2500     5000     10000   

 r2   a b r2   a b r2   a b r2   a b 

l 0.15 +0.00 -32.7 0.66 -0.01 -0.00 0.48 -0.001 -0.001 0.56 -0.0001 -0.0001 

 p 0.97 0.001  0.001 0.63  0.001 0.68  0.001 0.25 

r 0.02 -0.21 +3.43 0.77 -0.04 -0.02 0.87 -0.01 -0.03 0.94 -0.002 -0.003 

 p 0.21 0.50  0.001 0.89  0.001 0.31  0.001 0.66 

sw 0.24 -0.13 -26.7 0.66 -0.01 +0.00 0.68 -0.002 -0.003 0.87 -0.0004 -0.0001 

 p 0.20 0.001  0.001 0.85  0.001 0.15  0.001 0.76 

sf2 0.08 -0.20 -18.1 0.50 -0.06 -0.09 0.60 -0.03 -0.02 0.38 -0.04 -0.004 

 p 0.06 0.03  0.001 0.001  0.02 0.001  0.001 0.001 

sf0 0.01 -0.12 -6.20 0.41 -3.66 +5.74 0.83 -0.64 +0.44 0.95 -0.16 +0.07 

 p 0.48 0.44  0.001 0.01  0.001 0.001  0.001 0.001 

sf1 0.01 -0.12 -5.11 0.15 -4.16 +2.59 0.55 -2.28 +0.75 0.40 -0.63 +0.11 

 p 0.38 0.49  0.001 0.33  0.001 0.07  0.001 0.07 

 519 

 520 

521 
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Table 4. Proportion of variance explained, slope and associated p value of the regression of 521 

the correlation coefficient between in- and out-degree as a function of the clustering for the 522 

100 replicates of the six network structures (local, random, small-world, two-way, 523 

uncorrelated, and one-way scale-free) at four levels of connectance (100, 200, 400 and 1000 524 

links; network size = 100 nodes). 525 

   100     200     400     1000   

 r2   slope p r2   slope p r2   slope p r2   slope p 

l 0.06 -7.40 0.01 0.00 -0.01 0.99 0.00 +0.26 0.85 0.00 -0.93 0.88 

r 0.00 -0.65 0.69 0.01 +0.14 0.37 0.07 +5.37 0.008 0.06 +10.1 0.01 

sw 0.00 -0.84 0.68 0.01 -0.49 0.41 0.03 +1.55 0.09 0.00 +0.33 0.83 

sf2 0.00 +1.46 0.56 0.18 +1.13 0.001 0.04 +0.16 0.04 0.06 +0.05 0.01 

sf0 0.00 -0.03 0.98 0.13 +1.81 0.001 0.65 +2.61 0.001 0.70 +1.83 0.001 

sf1 0.05 -2.02 0.03 0.08 +0.71 0.005 0.42 +1.50 0.001 0.69 +1.37 0.001 

 526 
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Table 5. Proportion of variance explained, slope and associated p value of the regression of 527 

the correlation coefficient between in- and out-degree as a function of the clustering for the 528 

100 replicates of the six network structures (local, random, small-world, two-way, 529 

uncorrelated, and one-way scale-free) at four levels of connectance (500, 2500, 5000 and 530 

10000 links; network size = 500 nodes). 531 

   500     2500     5000     10000   

 r2   slope p r2   slope p r2   slope p r2   slope p 

l 0.05 -45.5 0.03 0.00 +1.61 0.48 0.00 -3.40 0.46 0.00 -4.90 0.52 

r 0.01 +3.08 0.32 0.02 +7.42 0.21 0.09 +22.4 0.002 0.06 +25.0 0.01 

sw 0.00 +2.67 0.59 0.00 +0.05 0.96 0.00 +0.02 0.98 0.00 -0.84 0.60 

sf2 0.00 -0.37 0.96 0.08 +0.19 0.005 0.09 +0.04 0.002 0.01 +0.01 0.33 

sf0 0.00 +2.82 0.55 0.73 +3.33 0.001 0.79 +2.18 0.001 0.71 +1.71 0.001 

sf1 0.00 -1.63 0.75 0.54 +1.60 0.001 0.74 +1.10 0.001 0.55 +0.45 0.001 

 532 
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Figure legends 533 

Fig. 1: Threshold probability of transmission for the different (a, b) levels of connectance 534 

and (c, d) network structures, and correlation coefficient between in- and out-degree of the 535 

nodes of the 100 replicates for the different (e, f) levels of connectance and (g, h) network 536 

structures. Network size = 100 (a, c, e, g) and 500 (b, d, e, h) nodes. Error bars are standard 537 

deviations of 100 replicates. Different letters show significant differences (ANOVA, p < 538 

0.05) within (a, b, e, f) levels of connectance for a given network structure, and (c, d, g, h) 539 

network structures for a given level of connectance. 540 

Fig. 2: Threshold probability of transmission for the different network replicates as a 541 

function of the correlation coefficient between in- and out-degree of the nodes for the six 542 

network structures. Network size = 100 nodes (number of links = (a) 100, (b) 200, (c) 400, 543 

and (d) 1000) and 500 nodes (number of links = (e) 500, (f) 2500, (g) 5000, and (h) 10000). 544 

Fig. 3: Threshold probability of transmission for the different network replicates as a 545 

function of the average clustering coefficient of the nodes for the six network structures. 546 

Network size = 100 nodes (number of links = (a) 100, (b) 200, (c) 400, and (d) 1000) and 500 547 

nodes (number of links = (e) 500, (f) 2500, (g) 5000, and (h) 10000). 548 

Fig. 4: Correlation coefficient between in- and out-degree for the different network 549 

replicates as a function of the average clustering coefficient of the 100 nodes for the six 550 

network structures. Network size = 100 nodes (number of links = (a) 100, (b) 200, (c) 400, 551 

and (d) 1000) and 500 nodes (number of links = (e) 500, (f) 2500, (g) 5000, and (h) 10000). 552 
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