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The dependency game: multiperson reciprocal sharing leads to stable 

cooperation which can evolve into group formation 

Joost C.M. Uitdehaag 

Harnas 70, 5346WR Oss, the Netherlands,  

*Corresponding author: joostuitdehaag@zonnet.nl, tel. 0031412624825 

 

Abstract 

In the standard model for reciprocal collaboration, the repeated Prisoner’s Dilemma (PD), 

it has proved difficult to establish collaboration in larger groups, necessitating the 

introduction of additional mechanisms such as reputation or assortedness. The problem is 

corroborated because current multiperson PDs model simultaneous player action, known 

as a common goods situation, whereas multiperson collaboration could be easier to obtain 

in a PD with alternate player action, a private goods situation. Here we present such a 

game, called a dependency game, and show that stable collaboration can be obtained in a 

255-player simulation if only players are allowed to remember three previous 

benefactors, so they can play advanced tit-for-tat. Furthermore, we show that such a 

freely collaborating population is threathened by assorted strategies, which define groups 

that parasitize on independent tit-for-tat players. By excluding others, these groups 

engage in indirect reciprocal behaviour. Our model therefore combines many hitherto 

separate collaboration-enhancing concepts into one game, and suggests that group 

formation and collaboration are two separate social phenomena. 
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group, competition, size, cohesion, tit-for-tat, evolution, competition, alternate, tag 



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 
 3

Introduction 

Survival of organisms through cooperation represents an evolutionary paradox, 

because it is counterintuitive that selfish Darwinian organisms can be brought to 

sacrificing individual wealth for the good of others. However, past research has shown 

that cooperation is possible if organisms invest now in return for more payoff in the 

future, and such a system of so-called reciprocal altruism has neatly been captured in the 

classic repeated Prisoner’s Dilemma (PD) game (Trivers, 1971; Axelrod and Hamilton, 

1981). 

The repeated PD can lead to stable collaboration when population sizes are small 

(Boyd and Richerson, 1988). However, in larger group sizes, it has been more difficulty 

to establish collaboration, requiring the introduction of extra features such as altruistic 

punishment, reputation building or assortedness (collaboration with members of a similar 

group, also called clustering, Axelrod and Hamilton, 1981; Fehr and Fischbacher, 2003). 

In these mechanisms, collaboration goes further than direct interactions with a partner 

(direct reciprocity), hence they are called indirectly reciprocal (Nowak and Sigmund, 

2005). However, in all these mechanisms players personally profit from their strategies.  

In the classic interpretation of the PD, two players act simultaneously, after which a 

payoff follows, and this simultaneousness has been retained in multiperson PD games 

(Boyd and Richerson, 1988; Eriksson and Lindgren, 2005; and references therein). A 

good example of a simultaneous collaboration is a dyke building project, because all 

members make their contributions and harvest at the same time. This situation, in which a 

communal resource is exploited, is called a common goods situation (Taylor and Ward, 

1982). However, many collaborative interactions are not simultaneous, but alternate. A 
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good example of an alternate interaction is when a successful hunter shares meat with his 

unsuccessful group members. Another example is when a healthy group member cares 

for an ill or wounded group member (see Trivers, 1971; Frean, 1991; Nowak and 

Sigmund, 1994 for more examples of alternate interactions). In fact, it can be argued that 

every form of specialization of labour leads to situations of mutual dependency and to the 

alternate exchange of goods. Thereby alternate interactions form the basis of the 

mercantile economy. A distinguishing characteristic of the alternate game is that goods or 

care are exchanged between two individuals, rather than pooled into a common cause, 

and this is called a private goods situation (Taylor and Ward, 1982; Trivers, 2006). 

Because of the interest in alternate interactions, alternate forms of the PD game 

have been explored before for two players (Frean, 1991; Nowak and Sigmund, 1994), but 

never as a multiperson game. It could be that multiperson private goods collaboration is 

more stable than common goods collaboration, because the former does not depend on 

the simultaneous cooperation of n persons that can fall apart when even a single player 

defects (Boyd and Richerson, 1988; Trivers, 2006). In other words, the n-person alternate 

PD could be much better suited to generate large scale collaboration than the n-person 

simultaneous PD, and this is investigated in this work. 

In our multiperson alternate repeated PD, called the dependency game, a player can 

share a harvest with other players, or keep it to herself, at the expense of some 

degradation in value. After a theoretical characterization, we present a multiperson 

simulation and show that stable collaboration is supported, if only players are allowed to 

memorize a limited list of previous benefactors. To take our model further, we 

subsequently show that such a collaborative network can be invaded by assorted 
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strategies, which by definition form groups. Then, we show that such assorted groups are 

threatened in turn by assorted groups that are larger or more cohesive. 

 

The 3-player dependency game 

Imagine three players and a hare from which two persons can eat. The hare consists 

of two rations, each of value b (in line with earlier notation (Nowak and Sigmund, 

1994)). and can be caught by one of the three players, the harvesting player. Which 

player is determined by chance. For convencience only one hare can be caught each 

round, and every player has an average chance of 1/3 of becoming the harvesting (hare-

catching) player. We introduce a chance here to avoid artefactual strategies that could 

arise if we let players become active in turn.  

Whenever a player harvests, she first will keep one ration for herself. Then she can 

opt to give the remainder to another player (the recipient), or to keep the remaining 

ration, but it will deteriorate to a value of δ, so that a non-sharing harvesting player ends 

up with b+δ=a rations. When sharing, the harvester can single out specific players 

(“friends”) to preferentially give shares to, but she cannot share more or less than one 

ration, or divide her ration over several players. In this way there is always at least one 

player who does not get a ration.  

 

Relation to the Prisoner’s dilemma 

Although it might not be apparent from its description, the dependency game is 

related to the Prisoner’s Dilemma and its variations, such as the two person alternate PD 

(Nowak and Sigmund, 1994), the three person simultaneous PD (Eriksson and Lindgren, 
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2005), and the classic two person simultaneous PD (Axelrod and Hamilton, 1981). This 

can be shown by assessing the payoff structure. 

First suppose that V(D|k) is the expected payoff (value) for a player that would 

defect (play D) if she were harvesting, when k other coplayers would cooperate (play C) 

if they were harvesting. The defecting player has a probability of 1/3 to harvest a, but does 

not get anything if his coplayers are all defectors: 

V(D|0)= 1/3·a 

If one coplayer is cooperator, we can assume that the player under consideration has 

a 50% probability of getting a share when the cooperator becomes the active player. (for 

calculating these expected payoffs, we let the recipient make the assumption that a 

cooperating harvester has no preference for either player. This is a ‘best’ guess when 

there is no information to the contrary.) Thus, 

V(D|1)= 1/3·a + 1/3·0.5·b + 1/3·0 = 1/3·a + 1/6·b 

If both fellow players are cooperators: 

V(D|2)= 1/3·a + 1/3·0.5·b + 1/3·0.5·b = 1/3·a + 2/6·b 

Thus the general yield with k cooperators becomes, for k∈{0,1,2}: 

V(D|k)= 1/3·a + k/6·b = 1/3·(a + k/2·b) 

Now, suppose that V(C|k) is the expected payoff for a cooperating player with k other 

cooperators. Since a cooperator has a probability of 1/3 to become active with payoff b: 

V(C|0)= 1/3·b 

V(C|1)= 1/3·b + 1/3·0.5·b + 1/3·0 = 3/6·b 

V(C|2)= 1/3·b + 1/3·0.5·b + 1/3·0.5·b = 4/6·b 

Generally, V(C|k)= 1/3·(1+ k/2)·b 
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These expressions for V(C|k) and V(D|k) are similar to expressions for the 3-person 

simultaneous PD game (Eriksson and Lindgren, 2005), demonstrating the relatedness of 

both games.  

The dependency game is also related to a 2-person PD payoff matrix, which can be 

shown by simplifying it to a hypothetical game in which only two players can harvest, 

who can only share with each other. 

Vtwoperson(C|0) =1/2·b, Vtwoperson(C|1)= 1/2·b + 1/2·b =·b,  

therefore for k∈{0,1}: Vtwoperson(C|k)= 1/2·(1+ k/2)·b 

Vtwoperson(D|0) =1/2·a, Vtwoperson(D|1)= 1/2·a + 1/2·b,  

therefore for k∈{0,1}: Vtwoperson(D|k)= 1/2·(a + k/2·b) 

Comparing outcomes shows that Vtwoperson is always 3/2 of the outcome of the 

3-player game. This is because in both games, there are two rations to divide, but the 

three person game has 3/2 times more players. In earlier analyses, it was concluded that 

the final payoff matrix needs to be based on 2Vtwoperson, because a two person alternate 

game needs minimally two rounds for all players to participate (Nowak and Sigmund, 

1994). This payoff is identical to 3Vthreeperson, which makes sense since the three-person 

game needs three rounds for full participation. The final expected payoff matrix (Table 1) 

represents a true PD payoff (Axelrod and Hamilton, 1981), since it satisfies the 

requirements for the classic parameters T, R, P and S. Indeed, T>R>P>S because 

a+b>2b>a>b , and 2R>T+S because 4b > 2b+a (Table 1). 

The result of Table 1 can be obtained in a much more direct way by imagining two 

players who alternately harvest over two rounds, who ignore the third player, but not each 

other. The two round payoffs are then identical to those of Table 1, as shown earlier 
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(Nowak and Sigmund, 1994). Both calculations demonstrate that the dependency game is 

an extended variant of the 2-person simultaneous PD game.  

 

Nash equilibria in the dependency game 

Even though the expected payoff matrix in the dependency game can be simplified 

to a classic PD payoff (if we assume cooperators distributing randomly), the true payoff 

matrix becomes much more complex when all strategic options of all players are 

incorporated (Table 2). To do this, we need to extend our nomenclature. Imagine the 

players are in a circle. Every harvesting player then has a choice between defecting (D), 

sharing with the player on her left hand (CL), or on her right hand (CR). This is in 

contrast to other (multiperson) PDs, which only have options C or D (Eriksson and 

Lindgren, 2005). In the 3-person dependency game, this results in 27 different possible 

outcomes ((X|Y|Z), with X,Y,Z ∈{D,CL,CR}) (Table 2). For each interaction, an 

expected payoff can be defined as V(X|Y,Z), which is the expected value for player 1 if 

she would opt X if she would harvest, and if players 2 and 3 would opt for Y and Z 

respectively if they would harvest.  

The expected payoffs for all individual interactions (Table 2) reveal that there is 

only one Nash equilibrium, which is when nobody shares (D|D|D). This parallels the PD 

game, where all-defect is also the only Nash equilibrium (Gintis, 2000). However, two 

types of interaction pareto-dominate the Nash equilibrium payoff, which we call couple 

and team patterns (see below). When our game is played in repeated fashion, any 

combination of these interaction patterns is also a Nash equilibrium, as follows from the 
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folk theorem (Gintis, 2000). In conclusion, there are three interaction patterns that are 

relevant in the repeated dependency game: 

1. No sharing: none of the players, when active, ever shares. The expected value for any 

player in this pattern is V(D|D,D)= Vsolo= 1/3·a. This is equal to the payoff V(D|0) as 

defined above. 

2. Couple pattern: if two players mutually share, and leave one player out, the expected 

yield of a member of the couple is V(CL|D,CR)= V(CR|CL,D)=Vcouple= 1/3·b + 1/3·b = 

2/3·b. The expected yield of the left-out player is V(D|CR,CL)=Vsolo. Note that these 

yields are not equal to V(C|1) or V(D|2) as defined above, which is because the 

players don’t share randomly but specifically target a partner for sharing. As it is a 

matter of chance who end up forming a couple, and who ends up as bystander, the 

average payoff for any random player in a situation with a couple is <Vcouple>=Vcouple= 

2/3·Vcouple +1/3·Vsolo=4/9·b + 1/9·a=1/9·(4b+a). The defining feature of this pattern is that 

two players mutually share and one defects. 

3. Team pattern: when players all help their left or right neighbour, the payoff is 

Vteam=V(CL|CL,CL)=V(CR|CR,CR)= 1/3·b+ 1/3·b =·2/3 b. If played in a repeated 

fashion, this is a pattern of indirect reciprocity, because players share with partners 

that do not share with them (Fehr and Fischbacher, 2002). However, if all players 

choose alternately CL and CR, then the resulting interaction after many rounds is a 

succession of (CL,CL,CL) and (CR,CR,CR), again with payoff Vteam, but this time in 

a pattern of direct reciprocity. The payoff for all players is identical, so the average 

payoff <Vteam>=Vteam, which is higher than <Vcouple>. The defining feature of this 

pattern is that all players choose to share. 
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The tit for tat strategy and the requirement for memory  

In order to maximize payoff for all players in the dependency game, an all-sharing 

team pattern would be optimal. However simply playing all-cooperate makes players 

vulnerable to all-defecting players that will realize even higher payoff (Table 2). In 

repeated PD games, this free-rider problem is most efficiently countered by the tit-for-tat 

(TFT) strategy (Axelrod and Hamilton, 1981; Nowak and Sigmund, 1994), in which a 

player starts with cooperation, but defects as soon as the other defects. This strategy 

minimizes chances of being exploited as a sucker (sharing, but never receiving a share), 

but still benefits from repeated collaborations.  

Because the repeated dependency game bears similarities to the repeated PD, it is 

expected that TFT is also an important strategy in our game. It can easily be seen how 

this will work: if a player remembers receiving a share from a player (a ‘friend’) during 

her harvest, she could share preferentially with this friend. On the other hand, if a player 

was passed-over during another player’s harvest, she could retaliate by declining to share 

with this player. The only thing that is needed to play TFT, is that each player remembers 

who her friends are. 

The requirement of memory to play TFT is not unique to our game. A one-round 

memory is also required in the alternate PD game (Nowak and Sigmund, 1994), and the 

name tit-for-tat in itself suggests that the previous move of the partner is remembered 

(Axelrod and Hamilton, 1981). Moreover, in all multiperson PD games, additional 

memory mechanisms are needed to sustain collaboration, in the form of remembering 

players reputations, or remembering who deserves altruistic punishment (Fowler, 2005). 
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In our game, better memory will allow more complex collaborative patterns to be 

established: for a simple couple pattern, only one friend needs to be remembered, but for 

a team pattern the responses of two partners have to be remembered over two rounds. In 

fact, memorizing friends in our game can be viewed as a simple and natural way of 

keeping track of player’s reputations.  

 

Simulation of an n-player dependency game 

To assess the viability of TFT and other strategies in the dependency game, we built 

a 255-player simulation in Excel. Each round, a random fraction of players receives a 

harvest, which they can keep or share. Keeping results in a score of a, sharing in a score 

of b for both the harvester and the receiver. 

For sharing, players can keep an individual memory of ‘friends’, who are defined as 

players from whom shares were received. The size of memory can vary from 1 to 5 and is 

a parameter that is constant for all players throughout the game. If strategy allows sharing 

to friends, the most recent friend is picked from the memory table, who is defined as the 

player from whom most recently a share was received, and this player is given a share. If 

strategy dictates sharing to a random friend, a player is picked from a worksheet with 

precalculated random player numbers. 

Once sharing is sorted out, the player score is calculated. If players get more than 1 

share, the share from the lowest player number is accepted. On the rare occasion that 

players share to themselves, their score is reset to a. The sharing score is added to the 

harvesting score and the previous-round score to result in a new total player score. 
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Each round, a fixed number of players with the lowest total scores are allowed to 

switch strategy, and their new strategies are randomly picked from a (different) fraction 

of strategies with the highest total score, again making use of a precalculated random 

number table. In our model, the function that picks new strategies from the set of 

successful strategies sometimes returns an error (4% of all picks), and in this case a 

strategy is picked randomly from all available strategies, which allows continuous 

seeding of low-frequency or extinct strategies into the game and thereby proper 

assessesing of stability against all strategies present in the simulation. 

Single standard simulations were run in Microsoft Excel 2003 (version 11.65) with 

255 participants over 10,000 iterations, with 2-6 competing strategies. Unless otherwise 

stated, standard parameters are: a=1.1, b=1.0, memory=3, 1/3 of players harvests, 25 

players switch strategy (refresh rate=25), 25 strategies reproduce. Unless otherwise 

indicated, initial strategies are randomly and evenly allocated among players, and the 

starting memory is seeded with one round of random friends.  

 

In the dependency game, collaborative strategies are dominant 

First we benchmarked our game by running an all-sharing and all-defecting strategy 

against each other. 

1: always share with a random player 

2: never share 

As expected, strategy 2 quickly dominates because it exploits the collaborative strategy 1 

(Axelrod and Hamilton, 1981) (not shown). Next we introduced two more strategies: 



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 
 13

3: share with a ‘friend’, but if no friend can be remembered share with a random 

player 

4: share with a friend, but if no friend can be remembered, do not share. 

The collaborative strategies 3 and 4 both work with the concept of friends and are 

therefore capable of tit-for-tat (see above). Strategy 3 aims at establishing the team 

pattern, as it always collaborates, whereas strategy 4 aims at establishing the couple 

pattern, as it shares limitedly and excludes others. 

First, strategy 3 was pitted against a pure population of strategy 2 players, and this 

clearly shows that strategy 3 can dominate ‘2’ (Fig. 1). Additional simulations show that 

strategy 3 can dominate even from a small initial population. The minimum size of this 

initial population depends on the excess payoff for defecting. For a=1.1, a starting 

population of 11% (28 out of 255, using memory=5) is sufficient to dominate the field 

(Fig. 1). For a=1.05, this fraction goes down to 5.1% (13 out of 255), and for a=1.01, 

1.6% (4 out of 255) can grow out, but in this case the stability limit of the simulation is 

reached. These examples illustrate the general pattern that the initial fraction of ‘3’ 

players (defined as w) needs to be larger than the amount a-b, thus w ≥ (a-b). 

The required initial population of ‘3’ is related to a-b because of statistics. If players 

of ‘3’ need to share with a random player, they will only be rewarded if the random 

player follows strategy 3. If the chance of such an encounter lessens, the rewards have to 

increase to keep the strategy viable. In the past, it was derived that for stable 

collaboration in the 2-person repeated PD, the probability of continued interaction w’ 

needs to satisfy w’ ≥ (T-R)/(T-P), and w’ ≥ (T-R)/(T-P) (Axelrod and Hamilton, 1981). 

Using the definitions in Table 1, these equations in our nomenclature merge to w’ ≥ 
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(a-b)/b, which in our case for b=1 becomes w’ ≥ (a-b). In our game the probability of 

continued interaction for a player of ‘3’ can be defined as picking a player of ‘3’ when it 

comes to random pick (which is inevitable for all players once so often). This chance is 

equivalent to the fraction of players of strategy 3, so w = w’. In this way, the original 

equation w’ ≥ (a-b) for stability (Axelrod and Hamilton, 1981) also holds in in our game. 

In the extreme case of w=1, when all players follow strategy 3, collaboration would only 

collapse if (a-b) > 1, at which point the game is not a prisoner’s dilemma anymore (Table 

1). So, when w’ ≥ (a-b) is satisfied, strategy 3 can both dominate strategy 2 and form a 

stable population.  

 

Generously sharing strategy 3 wins from the strict strategy 4 

To test strategy 4, we pitted it against a pure population of strategy 2 players. In all 

cases strategy 4 survives against strategy 2 (not shown). However, no collaboration is 

established as strategy 4 is always quickly led into continuous defection. In its all-

defection mode, strategy 4 is identical to strategy 2. Strategy 4 is led to defection because 

it starts sharing with its initially chosen random friends, but not all of these friends play 

strategies that return shares. Even if we pre-align collaborations before starting the game, 

strategy 4 is eventually led into defection, as its original friends sometimes switch 

strategy and then do not share anymore. In general, the problem of strategy 4 is that it can 

only destroy partnerships, not form new ones. 

Next, we ran a simulation of all competing four strategies, which shows that 

strategy 3 is the most viable (Fig. 2A). Strategy 3 dominates 2 because in its 

collaborations, it creates more value. At the same time, it is never exploited by strategy 2 



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 
 15

because players of ‘2’ are never recognized as friends. Strategy 3 dominates 4 because on 

average throughout the game, ‘3’ makes more collaborative interactions. Thus, strategy 3 

is more successful for the same reasons as <Vteam> is higher than <Vcouple> or Vsolo. 

Strategy 3 obtains more collaboration because it makes more new friends by 

occasionally sharing with non-friends. In this behaviour, strategy 3 resembles the 

‘generous’ TFT strategy, which makes occasional openings to prevent quick decline into 

mutual defection (Nowak and Sigmund, 2005). Strategy 4, by never taking the initiative 

for collaboration, resembles the strict TFT strategy. In other multiperson PD games, 

generous TFT also wins from TFT (Nowak and Sigmund, 2005), and here our game 

shows again that, in a TFT setting, making openings to new players is essential for 

survival.  

 

Collaboration only arises with sufficient memory 

In order to test the importance of memory, we varied this parameter in our 

4-strategy simulations. (Fig. 2). As long as memory is ≥ 3, then strategy 3 remains 

dominant (Fig. 2A). However, if memory is ≤ 2, then selfish strategy 2 wins (Fig. 2B). If 

we switch to other values for a and b collaboration can be induced with other values for 

memory (as long as we ensure (a-b) ≤ 0.25 as we let all strategies start with a population 

fraction of 0.25). Thus indeed, player memory is an important condition for cooperation 

(Axelrod and Hamilton, 1981). In effect, memory increases the probability of a 

productive encounter. 

In the same simulations, we also assessed the dynamics of the collaborative 

networks. It appears that strategies 3 and 4 form networks of reciprocity which are 
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similar to the team and couple networks discussed above. The participants in these 

networks change with a frequency depending on the rarity of the harvests. This is because 

in our simulation players respond to their latest friend, and if harvests are frequent there 

are relatively many new openings from new friends. However, if harvests are rare, 

sufficient memory is needed to remember a friend from many rounds ago, else 

collaboration breaks up. Collaborative networks are therefore most stable in our model 

when harvests are rare and memory is long. 

 

The dependency game is a strong model for multiplayer collaboration 

In Figs. 1 and 2A, collaboration emerges as the dominant strategy. In the past, 

simple collaborative strategies were shown to be only evolutionary stable in small groups 

(Boyd and Richerson, 1988), whereas in larger groups mechanisms such as reputation 

building or altruistic punishment were needed for sustained collaboration (Fehr and 

Fischbacher; 2003). However, there is no theoretical reason why large groups cannot 

collaborate in a PD game (Trivers, 2006). In the dependency game, we observe for the 

first time that collaboration in a larger PD-playing population can emerge by nothing 

more complex than allowing strategies that maintain a memory of previous benefactors. 

This memory is merely the extension of a feature that already exists for one round in 

normal tit-for-tat strategies, as discussed above. Therefore, the dependency game is a 

particularly strong model for collaboration in n-player groups. 

The reason why multiperson collaboration usually breaks down is ‘second order 

free riding’(Fowler, 2005), meaning that selfish players can exploit collaborators by 

participating in benefits, while they never contribute to the group. This problem is tackled 
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in two ways by our model. First, the list of friends is an implicit mechanism for 

reputation building, which can induce collaboration despite free riding (for a review see 

Fehr and Fischbacher, 2003). Second, the game is a model of private goods, not public 

goods. 

In a public goods game, collaboration requires a one-round coordinated action of all 

group members, and it is statistically challenging to defend against defectors for that one 

round (Boyd and Richerson, 1988). It has been argued that collaboration is probably 

better described as a collection of dyadic interactions (private goods), as in our game 

(Trivers, 2006). In the dependency game, an ensemble of private interactions occurs that, 

when added up over multiple rounds, becomes equivalent to group collaboration (above 

we discussed a 2-round summation). In such a summation, the game is undistinguishable 

from a public goods game in terms of player’s cost and value, but the core interaction 

remains dyadic which is a more robust basis (Trivers, 2006). In essence, the private game 

divides its net collaborative effect over more rounds, giving TFT more opportunity to 

expel defectors. 

Despite its defenses, our game is not unexploitable. When players could mimic 

being a friend without sharing first, they could exploit strategy 3. Such exploitation 

would be exactly similar to the exploitation of all-C strategy 1 by all-D strategy 2 (see 

above). In answer, strategy 3 players need to evolve sophisticated mechanisms to make 

sure they can maximally detect false impersonations. Indeed, the human capacity for 

recognition of other humans seems extremely well developed (Bruce and Young, 2000). 
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Assortedness can break up free collaboration 

Given the parameter set under which strategy 3 is dominant, we next investigated 

which strategy is able to replace 3, to get more insight into the vulnerabilities of 

collaborative networks and thereby into the evolution of socialization. First we tried 

‘jealous’ strategies, which never share with successful players, but those lost out. Next 

we tried assorted strategies, which preferentially share with players that adhere to the 

same strategy. It is known that assortedness is a strong mechanism to induce 

collaboration (Boyd and Richerson, 1988; Riolo, 2001), and here we wanted to see if it 

can threaten non-assorted collaboration. We defined the following strategies: 

 5: pick a partner in the same way as strategy 3, but if this partner does not follow 

strategy 5, pick a random partner. 

 6: pick a partner in the same way as strategy 3, but if this partner does not follow 

strategy 6, do not share. 

Because strategy 5 still shares with ‘strangers’, it is less assorted than strategy 6, which 

exclusively shares with itself. In Fig. 3A it can be seen that strategy 5 dominates 

strategies 1-4, including 3. In Fig. 3B, it can be seen that in turn, strategy 6 dominates 

strategies 1-5. Additional calculations show that strategy 6 can overwhelm the others 

from a very small starting population (4 out of 255, 1.6%). The reason for the success of 

the assorted strategies is that they systematically exploit the others by accepting their 

openings but never return anything. Thus, a population of freely collaborating GTFT 

players is vulnerable to a population of assorted GTFT players, and less assorted 

strategies are vulnerable to more assorted strategies. 
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Assortedness leads to formation of groups 

Assorted strategies are interesting in our game because they define groups, which 

is an essential concept in collaboration research and human society (Fehr and 

Fischbacher, 2003). Our initial winning strategy 3 does not form a group, it represents a 

collection of individuals who freely share with whomever they trust. In contrast, the 

assorted strategies 5 and 6 recognize each other, and thus they must have an identification 

tag and therefore they are by definition a group. Such a tag is not similar to the ‘green 

beard’ mechanism (Dawkins, 1976; Jansen and van Baalen, 2006), in which a tag is 

associated with a gene with favourable survival characteristics. Assorted strategies only 

need an arbitrary tag, no further genetic associations (Riolo, 2001). Our data for the first 

time show that group formation is not necessary for collaboration, but that it has more 

evolutionary fitness than free collaboration. 

Although assortedness is generally associated with collaboration (Riolo, 2001; 

Fehr and Fischbacher, 2003), the opposite appears from the dependency game. In our 

game, assortedness is anti-collaborative because it restricts interactions, and breaks down 

the stable collaboration shown in Figs. 1 and 2. If all other strategies have disappeared, 

the total average yield, and number of collaborative interactions, are similar between 

assorted strategy 6 and collaborative strategy 3. Thus, the survival benefit of being part of 

an assorted group is very complex; it mostly allows players to prey on other non-assorted 

players. Our model therefore states that the main reason for group membership is to 

exploit other groups, membership is a matter of eat or be eaten. To quote an example: in 

the case of two large armies making war (Fehr, 2004), assortedness is not needed to 
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explain the collaboration in both armies, but the fact that both armies don’t manage to 

collaborate.  

 

Assortedness introduces indirect reciprocity 

Another feature of assorted strategies is that they are indirectly reciprocal (for 

indirect reciprocity see Nowak and Sigmund, 2005). Whenever a player X of strategy 6 

encounters a player of strategy 3, she has to decline sharing, which is not in her direct 

interest since it robs her of a chance to make friends. So in fact player X engages in 

altruistic punishment. However, she also participates in the group exploitation of the 

freely collaborating strategies, which can be seen as a communal benefit, since engaging 

by herself in such exploitation would be unfruitful (as shown by the decline of all-D 

strategy 2). By belonging to an assorted group, the individual player can have it both 

ways: profit from reciprocal interactions and exploit others. Introduction of assortedness 

therefore automatically introduces indirectly reciprocal features in our directly reciprocal 

game, and the success of assortedness shows that indirect reciprocity can have a sound 

evolutionary benefit over direct reciprocity, which might explain part of why indirect 

reciprocity is so widespread in human society (Nowak and Sigmund, 2005). 

 

When equally assorted groups compete, the largest wins 

Taking into account that assorted strategies are successful because they prey on 

non-assorted (freely collaborating) strategies, we next investigated assortedness in the 

absence of free collaborators. For this, we simulated a combination of strategies 1-4 and 

two competing assorted strategies (Fig. 4): 
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 6: pick a partner as strategy 3, but if this partner does not follow strategy 6, do not 

share. 

 7: pick a partner as strategy 3, but if this partner does not follow strategy 7, do not 

share. 

As expected, strategies 1-4 are quickly reduced to insignificance until only 6 and 7 

are left (Fig. 4). After that, dynamics are dependent on the starting population. If 

strategies 6 and 7 have about equal starting populations, both evolve to a final population 

of exactly 50% strategy 6 and 50% strategy 7 (Fig. 4A). The reason for this is that a 

group grows by addition of players with lower scores, so the smaller group has a relative 

overrepresentation of high-score players, and therefore grows relatively quicker as long 

as it is smaller. This leads to a final 50:50 balance in group size. However, if one strategy 

has substantial more starters than the other, this strategy will end up dominating (Fig. 

4B). Also if the game is restricted from the start to strategies 6 and 7, the one with the 

largest initial group size wins (not shown). The reason for this ‘large group dominance’ is 

that a larger group can make more successful internal networks, so less often has to make 

the costly move of not-sharing.  

 

Other threats to groups 

As shown above, an assorted strategy can be outcompeted by another assorted 

strategy, if the latter forms a larger group. Furthermore, more assorted strategies such as 

6 can dominate less assorted ones such as 5. This leads to two general tactics in group 

competition: 1. aim to have the largest size, 2. aim to have the highest group cohesion. As 

the first tactic needs to convert other players, and the second needs to exclude others 
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more vehemently, both tactics are essentially contradictory. Therefore small well-bonded 

groups can co-exist with larger more loosely associated groups. In addition, tightening 

group cohesion might be an effective tactic when faced with a larger group. Superficially 

regarded, size and cohesiveness indeed seem essential survival strategies for human 

groups, as seen in religions and local cultures, but more investigation would be needed to 

confirm that these are indeed the dominant mechanisms. 

Groups can also be threatened by exploitation of the group tag. For example 

players could be successful that mimic group membership but themselves share with any 

candidate. Another way of seeing those mimics is that they try to avoid the cost of 

altruistic punishment that is involved in refusing other groups. These hypothetical players 

can be called traitors (although they are in fact more collaborative – appeasers would be a 

more apt name) and are a serious threat to group cohesion. Indeed, human groups have a 

particular aversion for traitors, even more than for members of other groups, as witnessed 

by the more fanatic condemnation of heretics compared to heathen in religious history, 

and the fact that in old justice systems, treason rather than murder deserved the highest 

punishment (United Kingdom Treason Act, 1814). 

In order to avoid traitor strategies, impersonation of group membership should be 

made as difficult as possible, and there will be evolutionary pressure on making the group 

tag difficult to forge, leading to complex and dynamic traits as group tags (Riolo, 2002), 

which could be similar to the fashions we see in human society. These and other 

predictions show that the dependency game can yield useful hypotheses about 

collaboration and group culture which could be tested in more experimental settings.  
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Figure captions 

  

Table 1. Payoff matrix for a 2-person alternate PD game. The harvesting player can 

choose between cooperating (C), which involves giving shares to the recipient, or 

defecting (D) which involves not sharing. A: theoretical payoffs in the form of 

expressions for payoff in the 3-person game, in superscript the definitions of the classic 

PD payoff (Axelrod and Hamilton, 1981). B: payoff as derived from the expressions in 

panel A or by considering two rounds of a 2-person dependency game in which the 

players alternately harvest (as in Nowak and Sigmund, 1994). Notation example: 2:C 

indicates that player 2 cooperates. Note that the condition b<a<2b applies, because a is 

formed by 1 ration and a fraction of a ration.  

 

Table 2. Expected payoffs in the 3-person single-round dependency game as function of 

the strategic choices before harvesting. Within each panel, strategic choices of players 1 

and 2 are represented. With panels A, B, C the 3 strategic choices for player 3 are 

represented. Within one table cell, the top, middle and bottom payoffs are for players 1, 2 

and 3 respectively. To reduce complexity, all payoffs were multiplied by 3. The shaded 

payoff is the Nash equilibrium for a single round of play. Payoffs in bold boxes are 

higher than the Nash equilibria for all players and therefore Pareto-superior.  

 

Fig. 1 The cooperative strategy 3 can take over a population of strategy 2 players. The 

simulation was started with 28 strategy 3 players and 227 strategy 2 players.. For 

definition of strategies, see text. The number of rounds is plotted on the x-axis, and the 
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number of participants following a particular strategy on the y-axis. Parameters values 

were: a=1.1, b=1, refresh rate=25, memory=5, fraction harvesting players=1/3. 

 

Fig. 2. Cooperation depends on memory. In this simulation, strategies 1, 2, 3 and 4 (for 

definitions see text) compete. A: with a 3-round memory (memory=3), cooperative 

strategy 3 dominates the population. B: with a 2-round memory (memory=2), the all 

defecting strategy 2 dominates the population. In addition, the strategy 4 players that are 

left after 10,000 rounds in panel B, continuously play defection. Axis and strategy labels 

and other parameters as in Fig. 1. 

 

Fig. 3. Assorted strategies can dominate non-assorted strategies. A: simulation with 

strategies 1-5 present (for definitions see text), showing that the mildly assorted strategy 

5 dominates strategies 1-4. B: simulation with strategies 1-6 present, showing that the 

strictly assorted strategy 6 dominates strategies 1-5. Parameter memory=3. Axis and 

strategy labels and other parameters as in Fig. 1. For definitions of strategies, see text. 

 

Fig. 4. Strictly assorted strategies that compete either dominate or co-exist, depending on 

starting population. In these simulations, strategies 1-4, 6 and 7 were present. Parameter 

memory=3. Axis and strategy labels and other parameters as in Fig. 1. Panel A: Evenly 

distributed initial populations (42-43 players per strategy) lead to coexistence of 

strategies 6 and 7. B: A dominating initial population for one assorted strategy (strategies 

1-4: 42-43 players; strategy 6: 58 players; strategy 7: 28 players) leads to its final 

dominance. 
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Table 1 

 

A 2: C 2: D 

1: C 3V(C|2), 3V(C|2)(R,R) 3V(C|0), 3V(D|2)(S,T) 

1: D 3V(D|2), 3V(C|0)(T,S) 3V(D|0), 3V(D|0)(P,P) 

   

B 2: C 2: D 

1: C (2b, 2b) (b, a+b) 

1: D (a+b, b) (a, a) 
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Table 2 

 

A 

3:CL 2:CL 2:CR 2:D 

1:CL 2b 

2b 

2b 

b 

2b 

3b 

b 

b+a 

2b 

1:CR 

 

2b 

3b 

B 

b 

3b 

2b 

b 

2b+a 

b 

1:D b+a 

2b 

B 

a 

2b 

2b 

a 

a+b 

b 

 

B 

3:CR 2:CL 2:CR 2:D 

1:CL 3b 

b 

2b 

2b 

b 

3b 

2b 

a 

2b 

1:CR 

 

3b 

2b 

B 

2b 

2b 

2b 

2b 

b+a 

b 
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1:D 2b+a 

b 

b 

a+b 

b 

2b 

b+a 

a 

b 

 

C 

3:D 2:CL 2:CR 2:D 

1:CL 2b 

b 

b+a 

b 

b 

2b+a 

b 

a 

b+a 

1:CR 

 

2b 

2b 

A 

b 

2b 

b+a 

b 

b+a 

a 

1:D b+a 

b 

a 

a 

b 

b+a 

a 

a 

a 

 



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 
 30

Figure 1 

 

 

 

 

 

 

Figure 2 
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Figure 3 

 

 

 

Figure 4 

 

 




