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A Mechanism of Dynamical Interactions

for Two-Person Social Dilemmas

Krzysztof Mogielski and Tadeusz P�latkowski∗

Department of Mathematics, Informatics and Mechanics,

University of Warsaw, Banacha 2, 02-097 Warsaw, Poland

We propose a new mechanism of interactions between game - theoretical agents in
which the weights of the connections between interacting individuals are dynamical,
payoff - dependent variables. Their evolution depends on the difference between the
payoff of the agents from a given type of encounter and their average payoff. The
mechanism is studied in the frame of two models: agents distributed on a random
graph, and a mean field model. Symmetric and asymmetric connections between
the agents are introduced. Long time behavior of both systems is discussed for the
Prisoner’s Dilemma and the Snow Drift games.

PACS numbers: 89.75.-k, 89.20.-a

Keywords: social dilemmas, coevolution on networks, mean field model

I. INTRODUCTION

In mathematical modeling of human societies the evolution of behaviors (actions) of the

interacting individuals and of the structure of the mutual interactions should be taken

into account. In real world the acceptance and refusal of entering in interactions with

preferential partners is a common phenomenon. Real world networks change in time.

People may tend to regulate the interpersonal interactions, connections with the others,

on the basis of comparison between the results of the interactions and some averaged,

local or global patterns. The players can change their actions and optimize the strength

of relations with the others. In particular the players can change the structure of the links

with the other players, breaking links and creating the new ones.

The models of populations of agents with interactions described by social dilemma games

on spatial static regular lattices were introduced by Nowak and May (1992), and then

studied by many authors, and extended to general spatial networks and structured pop-

ulations. We refer to Szabo and Fath (2007), and Gross and Blasius (2008) for recent

reviews on evolutionary games on graphs, and on adaptive coevolutionary networks.

∗Electronic address: tplatk@mimuw.edu.pl
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The coevolution of network topology and strategy dynamics has been considered by many

authors. Various concepts of the coevolving network structure and strategy distribution

have been introduced, e.g. via assortative selection of interaction partners (cf. e.g. Ebel

and Bornholdt, 2002; Eguiluz et al. 2005; Zimmermann and Eguiluz, 2005; Poncela et

al., 2007; Ashlock et al., 1996, and references cited therein), volunteering participation

(cf. e.g. Hauert and Szabo, 2003, and references cited therein), via random or intentional

rewiring procedures (e.g. addition and/or removal of nodes, cf. e.g. Zimmermann et al.,

2004), via introduction of different behaviors towards the adverse ties (Van Segbroeck et

al., 2008, 2009), and by introducing active linking and agent - based linking dynamics

(Pachecho et al., 2006a, b; Traulsen et al., 2008). In particular Pachecho et al. (2006a,

b) considered a population model in which the agents seek new connections at different

rates, and allow the established connections to last for different amount of time. In the

limit in which the dynamics of the network is much faster than the evolution of strategies

the authors in particular show that the Prisoner’s Dilemma game can be transformed

to a coordination game - the transformation changes the rules of the game and explains

the emergence of cooperation in the considered model. Pachecho et al. (2008) studied

the systems with repeated interactions which last as long as the link between the play-

ers is present, and obtained analytical conditions for evolutionary stability under direct

reciprocity. In comparison with the similar model on static graph (Ohtsuki and Nowak,

2007), the cooperation is facilitated by the active linking dynamics (in both cases the

cooperation is promoted if the links last long enough, and the incentive to create new

links is not too high).

We propose an approach, based on another idea of changing the connectivity structure

in the system. We assume that the players dynamically change the connection weights,

using update rules which reflect the tendency to increase more profitable connections, and

to weaken the disadvantageous ones in a continuous way. The weights can be symmetric

or asymmetric. In the first case the value of the connection is the same for both players,

whereas in the second this value can be different for each of them.

We propose two types od models: finite population on a network, and continuous popu-

lation in the mean field approximation. In the model of agents on network the agents are

located on a random graph. Each agent is connected with some other agents (neighbors).

Each connection has a weight, which changes according to preferences of the agent. The

preferences of a player are measured by the difference between its payoff from the consid-
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ered connection and an averaged payoff. Evolution of the model occurs by a birth - death

mechanism. In the mean field model the weights of the connections are time - dependent

functions which evolve according to the rules of evolutionary game theory. Solutions of

the resulting systems of differential equations are discussed. The asymptotic equilibrium

states are investigated. For both models we study temporal evolution of the strategies and

the weights distribution for two types of 2-person games describing the standard social

dilemmas: the Prisoner’s Dilemma game and the Snow Drift game.

II. MODEL ON GRAPH

The population consists of N agents, identified with the nodes of a random connected

graph with a degree of k. The edges are described by dynamically changing connection

weights: we denote ωij(t) - the connection weight between the node i and j at time t.

The connection weights can be symmetric: ωij(t) ≡ ωji(t), or asymmetric, when ωij(t)

and ωji(t) are in general different. The agents interact pairwise, playing a two - person

symmetric game with the payoff matrix

C D

C a b

D c d

(abbreviated in the description of figures by [a, b, c, d]) with their neighbors, using the

strategy C or D, and receive payoffs which are products of the payoffs from the above

payoff matrix, and the relevant connection weights. We shall refer to such products as to

the effective payoffs. In our paper C stands for cooperation and D for defection in the

considered below social dilemma games, although in general the proposed scheme is valid

for any 2-person game, and can be generalized for other types of the games.

Initially the agent’s strategies are allocated randomly. The initial connection weights are

allocated in such a way that the assumed order of the graph is obtained, and typically

are the same for all connected players.

The evolution of the network takes place in discrete time steps. At each time step first

the weights of all the connections are updated, then the strategy of one of the agents and

its weights are updated.

The updating rules will reflect the fact that each player tends to increase the intensity of

interactions (the connection weights in our model) with those opponents with whom the
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4

results of the interactions, i.e. the effective payoffs are higher than the average payoff from

all the interactions of the player. The increase is proportional to the difference between

both types of payoffs. The rules of the weights updating in the symmetric and asymmetric

model are respectively:

ωij(t + 1) = ωij(t) + ωij(t)(1− ωij(t))(Δij + Δji)/2M (1)

ωij(t + 1) = ωij(t) + ωij(t)(1− ωij(t))Δij/M (2)

where Δij is the difference between the effective payoff of the agent in the node i from the

interaction with that in j (given by the product of ωij and the relevant entry of the payoff

matrix introduced above), and the mean payoff of the agent in i over the neighborhood

of i. Formally Δij is defined as follows. Let dij denotes the payoff of the i player from

the interaction with the j player, calculated from the relevant entry of the initial payoff

matrix (1). Let Ni denotes the number of the i-th neighbors, i.e. the nodes connected

to i. Then Δij(t) = ωij(t)dij − 1
Ni

∑l=Ni

l=1 ωil(t)dil. M denotes the maximum of the payoff

matrix.

The product ωij(1 − ωij) in (1), (2) reduces the speed of the evolution of the relevant

weight when it approaches its extremal values (here normalized to zero and unity). In

other words, the ties which are close to their extremal values are harder to change.

Strategy updating for both the symmetric and antisymmetric weights models is based on

the BD (birth - death) method (Ohtsuki and Nowak, 2006). We consider two types of

updates, which we call no inheritance and inheritance updates. In the former we draw a

player (parent), with probability proportional to its total payoff. Then we draw randomly

one of its neighbors (descendant), and allocate to it the parent’s strategy. The weights of

the descendant with its neighbors are set to their initial values. In the latter the strategy

is inherited as above; the connection weights between the neighbors and the descendant

are calculated from the neighbor’s and the parent mean values. Each player can have

two, in general different, mean values of the connection weights: one calculated from the

interactions with partners who play C and one with those who play D. In the inheritance

symmetric model the weights neighbors-descendant are equal to the relevant mean values

of the parent. In the inheritance asymmetric model the weights descendant-neighbors are

equal to the mean values of the parent’s weights, the weights neighbors-descendant are

for each neighbor equal to the relevant mean values of the neighbor’s weights.
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5

The proposed model belongs to the class of the coevolutionary models with two char-

acteristic time scales: the first one characterizes the frequency of strategy updates, the

second one describes the frequency of changes of the weights. In many biological applica-

tions it has been assumed that the time scale of the interactions between the individuals

is much shorter that the time scale of the selection processes. The dependence of the

results, in particular of the maintenance of coordination in the long run, on the scaling

of these two processes, was studied by various authors. In particular Santos et al. (2006)

show that for a given average connectivity of the population, there is a critical value of

the ratio between the time scale associated with the evolution of strategies and of the

network connectivity structure, above which the cooperation is maintained in the system.

The problem of time scales for different processes in the coevolutionary models was also

considered e.g. by Pachecho et al. (2006a, b), and Roca et al. (2006). Our analysis is

restricted to the situations in which the characteristic time scale of the strategy updating

is much bigger then that of the connection updating.

III. MEAN FIELD MODEL

We assume the evolutionary scenario in which each agent interacts with the other agents

through a random pairwise matching, playing at each instant of time a 2- person sym-

metric game with the payoff matrix
[

a b
c d

]
.

Let μ = μ(t) denotes frequency of agents playing C in the whole population. We introduce

ωFS ≡ ωFS(t) - the weight of the connection between the agent playing strategy F and

that playing S, and denote: UFS - the effective payoff of the F - agent from the interaction

with the S - agent, F, S ∈ {C, D}:

UCC = aωCC , UCD = bωCD, UDC = cωDC , UDD = dωDD, (3)

UC , UD - the effective payoffs of respectively C and D - agents:

UC = μUCC + (1− μ)UCD, UD = μUDC + (1− μ)UDD, (4)

and U - the effective payoff of an agent in the population:

U = μUC + (1− μ)UD. (5)

In general the effective payoff matrix, with the entries defined by (3), evolves in time, and

its time asymptotic form is different from the initial one, as will be discussed below.
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6

The change of the frequency μ of the strategy C in the population is assumed to be

governed by the evolution equation

μ̇ = μ(UC − U) (6)

In the symmetric weights model we assume that ωCD = ωDC , and that the weights

ωij, i, j ∈ {C, D} evolve according to the equations

ω̇ij = f(ωij)
(Uij − Ui) + (Uji − Uj)

2
(7)

where f(x) = x(1− x), x ∈ (0, 1).

With notation x = ωCC , y = ωCD = ωDC , z = ωDD we rewrite (6), (7) as

ẋ = x(1− x)(1− μ)(ax− by) (8)

ẏ = y(1− y)[μ(by − ax) + (1− μ)(cy − dz)]/2 (9)

ż = z(1− z)μ(dz − cy) (10)

μ̇ = μ(1− μ) {μ(ax− cy) + (1− μ)(by − dz)} (11)

with a variety of the stationary points, cf. section V.

In the asymmetric weights model in general ωCD �= ωDC . We assume that the evolution

of ωij is governed by

ω̇ij = f(ωij)(Uij − Ui), i �= j, i, j ∈ {C, D}, (12)

whereas μ evolves according to (6). The resulting system of equations is five dimensional.

IV. RESULTS: MODEL ON GRAPH

We performed extensive simulations for different system sizes, graph degrees and payoff

matrices. Below report results for the system size N = 500, the graph degree k = 10 or

k = N for the Prisoner’s Dilemma PD game
[

3 1
5 2

]
, and the Snow Drift SD game

[
4 3
5 1

]
.

More detailed study of other games, comparison of different models and results for other

ratios of the characteristic time scales will be presented elsewhere.

In order to assure possibility of the temporal evolution of all the connections (i.e. to assure

that the players can change the values of all the connection weights) it is assumed that

all the entries of the initial payoff matrices are positive. Otherwise, an entry zero in the

payoff matrix would result in zero value of the relevant effective payoff, independently of
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7

the current value of the weight associated with the entry. Thus, even thought the weight

would evolve in time, the effective payoff associated to this weight would not change.

We denote μ0 - the initial, and μ∞ - the time asymptotic value of μ. All the initial weights

are set equal to ω0. Results are averaged over 50 runs.

For the symmetric weights we obtain for the PD game the coexistence or dominance of

the cooperators: for the no inheritance update rule and k = 10 there are two asymptotic

frequencies of C-players: μ∞ ≈ 2
5

and μ∞ = 1, cf. Fig. 1a. Increasing degree of the graph

FIG. 1: N = 500, k = 10, ω0 = 1
2 , symmetric weights; a: no inheritance, b: inheritance update,

PD game

promotes C-players. In particular, for k = N we obtain μ∞ = 1 (not shown). For the

inheritance update rule μ∞ ≈ 1
3

and μ∞ = 1, cf. Fig. 1b.

For the PD game with the asymmetric weights we obtain μ∞ = 0, i.e. the defectors always

win for both update rules (not shown). ωDC grows faster then ωCC , therefore in short

time the defectors receive the payoffs high enough to take over the whole population.

For the SD game we present the diagram for the symmetric weights and the inheritance

update. We obtain μ∞ ≈ 0.35 and μ∞ = 1, cf. Fig. 2. For the asymmetric weights

with no inheritance update μ∞ ≈ 0.3, whereas with the inheritance update μ∞ ≈ 0.7, i.e.

higher than the fraction of cooperators in the mixed Nash equilibrium μ∞ = 2
3

for this

game.
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FIG. 2: N = 500, k = 10, ω0 = 1
2 , symmetric weights, inheritance update, SD game

V. RESULTS: MEAN FIELD MODEL

We calculated analytically the stationary points of the systems (8)-(11), and (6), (8),(10),

(12). For example, for the PD matrix
[

3 1
5 2

]
used in the simulations, for the symmetric

model the stationary point (ωCC , ωCD, ωDD, μ) = (1, 1, 0, 1
3
) is stable, and corresponds to

the mixed equilibrium (i.e. with the fraction of cooperators μ∞ ∈ (0, 1)). There are also

two other stable equilibria, for which μ∞ = 0, and μ∞ = 1. For the asymmetric model the

unique stable stationary point, corresponding to the mixed equilibrium of the considered

PD game is (ωCC , ωCD, ωDC, ωDD, μ∞) = (0, 1, 1, 0, 1
6
). The two other stable equilibria

correspond to μ∞ = 0, μ∞ = 1. For the SD game
[

3 2
5 1

]
with symmetric weights, the

locally stable equilibrium points have the μ∞ coordinate 1
2
, 2

7
or 1. More systematic study

of the solutions of the proposed model for different games, and analytical properties of

the relevant equilibrium states will be presented elswhere.

We solved numerically the above systems of equations for different payoff matrices. In

Fig. 3 we present an example of time evolution of ωij(t) and μ(t) for symmetric weights

for the PD game
[

3 1
5 2

]
with ω0 = 0.75, μ0 = 0.9. The change of the fraction of cooperators

is correlated with the evolution of the connection weights ωCD(t), ωDD(t) and ωCC(t).

Let us now define the effective payoff matrix at time t, in agreement with the notation

introduced in (3), as Pt =
[ aωCC(t) bωCD(t)

cωDC(t) dωDD(t)

]
. In stationary states the weights do not

change, and the agents play a 2-person game defined by the effective payoff matrix P∞ =

limt→∞Pt, which in general is different from the initial one.

In Figs. 4, 5 we present the transition diagrams, which show how the type of the asymp-

totic effective payoff matrix P∞ depends on the initial data (ω0, μ0) and on the type of



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

9

the initial payoff matrix. The initial matrices belong to the one - parameter family of the

matrices
[

3 1+α
5 2−α

]
, α ∈ [0, 2); in patricular α ∈ [0, 1

2
) correspond the PD games, α = 1

2

defines the ’intermediate’ Weak PD game, α ∈ (1
2
, 2) describe the SD games.

In Figs. 4, 5 each point (ω0, μ0) of the squares [0,1]x[0,1] belongs to one of the domains

defined below. Different domains characterize the type of the final effective payoff matrix

obtained from the initial PD or SD game with the initial data (ω0, μ0). For example, for

the initial matrix
[

3 2
5 1

]
, P∞ is of the SD type:

[
b−c/2 b−c

b 0

]
with b = 5 and c = 4. It

represents the social dilemma in which cooperation implies a benefit b to the cooperator

and to the opponent, and incurs a cost c if the opponent defects, or c
2

if she cooperates,

with the mixed strategy Nash equilibrium μ = 2(b−c)
2b−c

.

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

FIG. 3: μ(t) and ωFS(t) for PD game [3,1,5,2], μ0 = 0.9, ω0 = 0.75. Lines: continuous: μ, dotted:

ωCC , dashed: ωDD, dotted-dashed: ωCD

.

The domain C describes the systems for which P∞ =
[

K 0
0 2−α

]
, K ∈ (0, 3), and μ∞ = 1

for all initial data (coordination game), PD - the systems for which P∞ =
[

3 1+α
5 L

]
, L ∈

(1 + α, 3), and μ∞ = 0 for all initial data (prisoner’s dilemma game), SD - the systems

for which P∞ =
[

3 1+α
5 0

]
(snow drift game), and AC - the systems for which P∞ =

[
0 1+α
5 0

]
, α ∈ (0, 2) (anti-coordination game). The asymptotic frequency of cooperators

μ∞ in the domains SD and AC are equal to the relevant mixed Nash equilibrium values,

see below.

For the initial PD matrix
[

3 1
5 2

]
(i.e. α = 0) there are three types of final payoff matrices,

cf. Fig. 4a, in which in the domain SD μ∞ = 1
3
. Increase of α (i.e. increase of the payoff

of C against D, accompanying by the simultaneous decrease of the payoff of D against

D) results in shrinking of the PD domain and the emergence of the AC domain. This is

illustrated, for α = 1
4
, in Fig. 4b, in which in SD μ∞ = 5

13
, in AC μ∞ = 1

5
.



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

10

FIG. 4: Transition diagrams for the mean field model, symmetric weights; a): PD initial matrix

[3, 1, 5, 2]; b): PD initial matrix [3, 11
4 , 5, 13

4 ]

FIG. 5: Transition diagrams for the mean field model, symmetric weights; a): Weak PD initial

matrix [3, 11
2 , 5, 11

2 ]; b): SD initial matrix [3, 2, 5, 1]

Further increase of α leads - for α = 1
2

- to the Weak PD game, cf. Fig. 5a, in which

in SD μ∞ = 3
7
, in AC μ∞ = 3

13
. For α > 1

2
the initial game is SD. In Fig. 5b α = 1,

and in SD μ∞ = 1
2
, in AC μ∞ = 2

7
, with absence of the PD domain and enlargening of

the AC domain. In the limiting case α = 2 corresponding to the ’weak’ anticoordination
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game the final payoff matrix is always of the type AC, i.e. all the square of initial (ω0, μ0)

is covered by one domain AC (not shown). Note also that, as expected, the increase of

α, i.e. the payoff of the cooperator from the interaction with the defector, implies the

increase of the final percentage of the cooperators in the corresponding domains SD and

AC.

For other initial PD games the topology of the transition diagrams is similar. The type,

the number of the final domains and the points of intersection of the dotted lines with the

axis depend on the numerical values of the payoffs, as discussed in the presented diagrams.

We note that a similar change of the matrix types was found by Pachecho et al. (2006b),

cf. also Traulsen et al. (2008). The authors proposed a mean field type model in which

the evolution of the number of different types (CC, CD, DD) of the links was governed by

a system of ordinary differential equations. In some well defined limits, under constraints

for the initial state, the initial PD game was converted to a coordination game, and the

SD game to a harmony game. While in the above papers the interactions advantageous for

both interacting partners were assumed to last longer then when one player was exploited

by the opponent in the symmetric situation, in our approach the advantageous weights

are continuously strengthened, with the rate depending on their actual values.

For the asymmetric weights and the PD
[

3 1
5 2

]
we obtained μ∞ = 0, and two forms of P∞

matrix: P∞ =
[

3 α
5 β

]
, 0 < α < β < 2 (PD games), or P∞ =

[
3 0
5 0

]
(Weak PD game). For

the SD initial matrix
[

3 2
5 1

]
we obtained μ∞ = 0, and P∞ =

[
3 0
5 0

]
(Weak PD), as the only

type of the final payoff matrix (not shown). Thus, for both PD and SD the asymmetric

weights lead to defection in the mean field model. For other initial PD and SD payoff

matrices μ∞ = 0, and P∞ have in general the same structure.

VI. DISCUSSION

We introduced a new mechanism of the evolution of interactions between players, in which

their connection weights are time dependent. We proposed two models in which the new

mechanism is incorporated: the model of agents on graphs and the mean field model.

In the model on graphs the speed of the changes of the player’s connection weights is

much faster than the speed of their strategy changes, and that makes the evolution of

the weights the key factor in the coevolution of the whole system. In both models the

dynamics of the strategy changes is governed by evolutionary rules of better fitness. The
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dynamical weights change the effective payoffs during the evolution, which may result

in optimal coordination of the actions of the agents due to the interplay between the

composition of the population and the strength of the effective links. In the case of the

PD game the coexistence of both strategies in the long run is observed.

The proposed mechanism of the dynamics of the connections is quite general. The players

know only their effective payoffs from the interactions, without knowing which game they

participate at. They do not maximize their effective payoffs, but rather increase the

weights of those connections which give them higher then average payoffs. The updating

rules for the weights do not promote a priori any particular strategy. In the analogous

models in which the connections between the agents are fixed the evolution leads to

total defection for the PD game: in the graph model it follows from the graph structure

and our strategy updating mechanism, whereas the mean field model is reduced to the

classical replicator. More detailed study of other games, comparison of different models

and results for other ratios of the characteristic time scales will be presented elsewhere.

Further research topics include non symmetric matrices, evolution of different populations,

games with more strategies and multi - player games.
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was supported by the Polish Government Grant no. N201 023 31/2069

References

Ashlock, D., Smucker, M.D., Stanley, E.A., Tesfatsion, L., 1996. Preferential partner selection in an
evolutionary study of the Prisoner’s Dilemma. BioSystems 37, 99-125

Ebel, H., Bornholdt, S., 2002. Coevolutionaty games on networks. Phys. Rev. E 66, 056118

Eguiluz V. M., Zimmermann M. G., Cela-Conde, C.J., San Miguel M., 2005. Cooperation and the
emergence of role differentiation in the dynamics of social networks, Am. J. Soc. 110, 977-1008

Gross, T., Blasius, B., 2008. Adaptive coevolutionary networks: a review. J. R. Soc. Interface 5, 20,
259-271

Hauert, C., Szabo, G., 2003. Prisoner’s dilemma and public good games in different geometries: com-
pulsory versus voluntary interactions. Complexity 8, 31-38

Nowak, M.A., May, R.M., 1992. Evolutionary games and spatial chaos. Nature 359, 826-829

Ohtsuki H., Nowak M.A., 2006. The replicator equations on graphs. J. Theor. Biol. 243, 86-97

Ohtsuki, H., Nowak, M.A., 2007. Direct reciprocity on graphs. J. Theor. Biol. 247, 462-470

Pachecho, J.M, Traulsen, A., Nowak, M.A., 2006a. Active linking in evolutionary games. J. Theor.
Biol. 243, 437-443

Pachecho, J.M, Traulsen, A., Nowak, M.A., 2006b. Coevolution of Strategy and Structure in Complex
Networks with Dynamical Linking. Phys. Rev. Lett. 97, 258103

Pachecho, J.M, Traulsen, A., Ohtsuki, H., Nowak, M.A., 2008. Repeated games and direct reciprocity
under active linking. J. Theor. Biol. 250, 723-731

Poncela, J., Gomes-Gardenes, Floria, L.M., Sanchez, A., Moreno, Y., 2007. PLoS One 3, e2449

Roca, C.P., Cuesta, J.A., Sanchez, A., 2006. Time Scales in Evolutionary Dynamics. Phys. Rev. Lett.
97, 158701



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

13

Santos, F.C., Pachecho, J.M., Lenaerts, T., 2006. Cooperation Prevails When Individuals Adjust Their
Social Ties. PLoS Comput. Biol. 2, 1284

Szabo, G., Fath, G., 2007. Evolutionary games on graphs. Physics Reports 446 (4-6), 97-216

Traulsen, A., Santos, F.C., Pachecho, J.M., 2008. Evolutionary games in self-organizing populations.
In ”Adaptive Networks: Theory, Models and Applications”, T. Gross & H. Sayama Eds., New
England Complex Systems Book Series on Complexity, Springer N.Y.

Van Segbroeck, S., Santos, F.C., Pachecho, J.M., Lenaerts, T., 2008. The evolution of prompt reaction
to adverse ties. BMC Evolutionary Biology 8:287

Van Segbroeck, S., Santos, F.C., Pachecho, J.M., Lenaerts, T., 2009. Reacting differently to adverse
ties promotes cooperation in social networks. Phys. Rev. Lett. 102, 058105

Zimmermann M.G., Eguiluz V.M., San Miguel M., 2004. Coevolution of dynamical states and interac-
tions in dynamic networks. Phys. Rev. E 69, 065102(R)

Zimmermann M. G., Eguiluz V.M., 2005. Cooperation, social networks and the emergence of leadeship
in a prisoner’s dilemma with adaptive local interactions. Phys. Rev. E 72, 056118




