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Abstract

Biological networks of large dimensions, with their diagram of interactions, are

often well represented by a Boolean model with a family of logical rules. The

state space of a Boolean model is finite, and its asynchronous dynamics are fully

described by a transition graph in the state space. In this context, a model reduc-

tion method will be developed for identifying the active or operational interactions

responsible for a given dynamic behaviour. The first step in this procedure is the

decomposition of the asynchronous transition graph into its strongly connected

components, to obtain a “reduced” and hierarchically organized graph of transi-

tions. The second step consists of the identification of a partial graph of interac-

tions and a sub-family of logical rules that remain operational in a given region of

the state space. This model reduction method and its usefulness are illustrated by

an application to a model of programmed cell death. The method identifies two

mechanisms used by the cell to respond to death-receptor stimulation and decide

between the survival or apoptotic pathways.
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1. Introduction

Discrete and, in particular, Boolean models have been playing an increasingly

important role in the study and analysis of complex biological systems [27, 25,

5, 26, 11, 6] (note that even though [25] deals with piecewise linear differential

models, a large part of the analysis of such systems pertains to the discrete frame-

work). Based on the idea that each variable may take values only on a finite set,

discrete models offer a very attractive framework for the systematic study of the

dynamics of large systems, which may range from a few to hundreds of variables

and their interactions.

The discrete modelling approach is highly relevant for many of the currently

data acquisition techniques for signalling and genetic regulatory networks (mi-

croarrays, fluorescence markers, electrophoretic mobility shift assays, etc.) which

involve more qualitative measurements. A discrete system may be expected to

give a good idea of the system’s dynamics from the available data (for example,

on multistationary, stability, or oscillatory behavior). At the same time, Boolean

networks provide a measure of the robustness of a system [5], since this dynam-

ical information is essentially independent of the system’s parameters (such as

kinetic rates, binding rates, or degradation constants) and depends only on the

interconnection structure, and the logical function characterizing each node. For

instance, the transition graph of the network indicates how much a given trajectory

may be affected by perturbations, or whether the system is capable of maintaining

a given dynamical behaviour despite fluctuations in the environment. Indeed, a

major advantage of discrete and Boolean modelling is the possibility, for systems

of reasonable size, of fully characterizing all qualitative dynamical trajectories

of a particular network, based simply on the structure of links and interactions

between nodes. This general characterization and “easier” handling of the state

space, counterbalance the loss of detailed information on time evolution and (more

realistic) continuous concentration changes.

The study of complex systems with many variables frequently raises questions

concerning the possibility of simplifying or reducing the system in some way. To

simplify the analysis and gain intuition, it is often useful to identify a smaller,

easier to analyze, family of variables and interactions that still faithfully describe

the original system and exhibit the same overall qualitative dynamics. Likewise, it

is often of interest to find out whether different groups of variables are associated

with different dynamics [29]. Another related question is whether all interactions

operate at all times, or whether different groups of interactions become active or

operational at different times, in response to a precise context [18]. Similarly, find-
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ing interactions which prevent a given target function is useful from the point of

view of therapeutical interventions, for instance [19, 26]. These are all challeng-

ing problems, and while some model reduction methods exist, they are generally

aimed at special classes of systems (a survey of methods used for control systems

can be found in [1]; a method for identifying the variables responsible for com-

plex cell behavior was proposed in [29]). One of the objectives of this paper is

to show that, to some extent, answers to these questions may be obtained through

the discrete systems framework and some of its techniques.

In this context, a model reduction technique is proposed in this paper, for

the analysis of asynchronous Boolean networks motivated by biological (namely,

signalling or genetic) regulatory networks of intermediate dimension (e.g., 8-20

variables). The model reduction technique combines and adapts two methods: the

classical decomposition of a graph into its strongly connected components [7] and

an identification algorithm described in [20, 36]. The first part of the model re-

duction technique involves the simplification of the asynchronous transition graph

into its strongly connected components. These components are then organized

into hierarchical levels, such that any given trajectory can only move into the next

level in the hierarchy, but never into the previous level. A new “reduced” transi-

tion graph is then constructed which describes the transitions between the strongly

connected components (Section 3). The second part of the model reduction in-

volves the identification of the “operational” network (active interactions) that is

responsible for the dynamics of the system from a given level in the hierarchy

(Section 4).

Finally, in Section 5, biological knowledge is incorporated into the Boolean

model by associating a (fixed) matrix of transition probabilities to the graph edges,

a process which corresponds to generating a Markov chain. Several relevant quan-

tities can then be computed, such as the expected times for convergence to a given

attractor.

The methods proposed above are illustrated by an application to an apopto-

sis (or programmed cell death) network [28, 6], with n = 12, as described in

Section 2.3. The dynamics of the network in response to death-receptor stimula-

tion is studied, and two core groups of variables and pathways are identified: it

is shown that these correspond to two mechanisms responsible for the decision

between programmed cell death or cell survival. In addition, associating a transi-

tion probabilities’ matrix to the apoptosis network allows us to estimate, among

other quantities, the probability of cell survival or death upon stimulation of death

receptors.
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2. Asynchronous Boolean models of gene regulatory networks

Discrete dynamical systems have been widely studied for decades, as they

provide a good mathematical and algorithmic framework to model systems where

variables are known or assumed to take values only in a finite set (as opposed to a

continuum of values). In particular, the discrete framework has been often applied

to model biological (for instance, genetic) regulatory networks [17, 33]. A math-

ematical discrete model consists of a finite set of variables together with a family

of activation functions, which describe the interactions among the variables. Both

variables and activation functions are only allowed to take values in a finite set.

A common example is that of Boolean variables, which take only the values 1 or

0 (ON or OFF). The interactions among variables can be described by a (finite)

directed graph, called interaction graph. This graph, together with the family of

activation functions, define the structure of a discrete system. Each variable will

evolve according to a given rule, constructed from the interaction graph. In order

to describe the dynamics of such a system, a fixed time unit is postulated, and the

system is updated at integer multiples of this time unit (between two updates, the

system’s variables are assumed to be constant). To update the system one must

define a strategy that determines the order in which the variables are evaluated

over time.

Two updating strategies have been studied in the literature. The first one is

the synchronous strategy, where all variables are simultaneously updated at each

discrete instant (see [17] for an extensive study of this synchronous strategy; see

also [30, 37]). The dynamics resulting from the synchronous strategy presents

some nice mathematical properties (mainly, the transition graph is deterministic)

that allow one to simulate high-dimensional networks, in order to find statistically

relevant types of dynamical behavior [17]. However, if one wants to model a given

biological system in a more realistic manner, the synchronous updating strategy is

quite a strong assumption, implying that all variables are produced or degraded at

the same rates. Thus other approaches have been proposed, by developing asyn-
chronous strategies, where the discrete variables are updated in a heterogeneous

way over time. For example, the variables may be updated in a randomly gen-

erated order, or according to an order based on known properties (for instance,

transcription or translation are slower processes than protein-protein binding) [5].

Discrete networks with asynchronous updating orders are often called Thomas’

networks [33, 35, 34], and are much better suited to model the dynamical behav-

ior of biological regulatory networks. Before giving more details on the type of

asynchronicity that will be used in this paper, we first recall some basic definitions
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about the structure of discrete networks.

2.1. Structure of a Boolean network
In this paper, we will consider Boolean networks, where the variables (which

represent, for instance, the level of expression of genes, or the level of concen-

tration of different species, such as proteins) can take only two qualitative values.

“0” represents a basal level (inhibition -or weak activation- of the transcription

of a gene, or absence2 of a biochemical species) and “1” represents a high level

(activation of the transcription of a gene, or presence of a species). We note here

that there exist more general frameworks, where the variables can take more than

two qualitative values (see for instance [27, 4] or [31]).

As most of the work on discrete or Boolean gene networks is based on the

same mathematical objects (with slightly different definitions), the following part

is only a brief summary of the main definitions and notations that will be used in

the rest of this paper (for a detailed explanation of these definitions, one can refer

to the extensive literature on discrete networks). Let us begin with the definition

of the interaction graph, which is the core of the structure of a discrete model.

Definition 1 (Interaction Graph) The interaction graph of a n-dimensional Boolean
network is defined by G = (V,E), where V = {v1, . . . , vn} is the set of nodes (each
node may represent a biological species) and E ⊂ V × V is the set of directed
edges (representing the interactions between these species). The edge (v j, vi) ex-
ists if node v j influences node vi (e.g. v j activates or inhibits vi).

Each node vi ∈ V has a set of inputs (possibly empty), which are the nodes that

influence its evolution:

I(vi) =
{
v j ∈ V | (v j, vi) ∈ E

}
⊂ V.

For each vi ∈ V, the cardinality of the set I(vi) (the number of its inputs) is often

called the connectivity of node vi and is generally denoted by ki. In order to give a

complete definition of the structure of the network, we now define the activation

functions.

2generally, a given species is considered to be absent if its concentration is lower than a given

threshold, present otherwise
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Definition 2 The structure of a n-dimensional Boolean network is defined by an
interaction graph G = (V,E) together with a collection F = { fi : i = 1, . . . , n},
of Boolean functions:

fi : {0, 1}ki −→ {0, 1},

where, for each i ∈ {1, . . . , n}, fi designates the activation function of node vi, and
ki its number of inputs.

Let xi denote the Boolean variable associated with node vi. The updated value of

xi, denoted by x′i is therefore given by:

x′i = fi

(
xi1 , . . . , xiki

)
, where:

{
vi1 , . . . , viki

}
= I(vi).

To illustrate these definitions, let us consider a simple 2-dimensional network,

given by the following interaction graph and set of rules:

�������	v1

���������	v2 ����

{
f1(x2) = x2,
f2(x1, x2) = xor(x1, x2) = (x1 ∧ x2) ∨ (x1 ∧ x2).

The notations used in this example are classical in Boole’s algebra: if x and y
denote two Boolean variables, x denotes the negation of x, and x∧ y, x∨ y denote,

respectively, the product (logical function and) and summation (logical function

or) of x and y. The symbol xor denotes the exclusive or.

Remark 1 The three following points emphasize modeling choices, induced by
these definitions, that will be made in the rest of the paper.

• Multiple edges are not allowed in the interaction graph. If a particular
element of the network vi has two distinct influences on another element v j,
they will be represented by a unique edge in G. Nevertheless, these two
influences will appear in the logical rule of f j.

• In the study of discrete models of biochemical networks, the arrows of the
interaction graph are usually signed, indicating whether the arrow repre-
sents an activation (

+
→ or→) or an inhibition (

−
→ or 	). It is to be noted that,

for a general network given by Def. 2, it is not always possible to associate
a sign to each arrow in an unequivocal manner. In the previous example,
for instance, the arrows (v1, v2) and (v2, v2) cannot be signed as the interac-
tions they represent are neither activations nor inhibitions. Nevertheless, in
a Boolean network constructed from the description of a particular biologi-
cal system, most of the interactions can be signed unequivocally. In the rest
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of the paper, activations and inhibitions will thus be labelled (respectively
with ‘+’ and ‘-’) while all other interactions will stay unlabelled.

• In the above approach, connectivity is defined prior to the activation func-
tions. This can lead to inaccuracies if the real connectivity (as defined in
[36]) of the function does not match its apparent connectivity. Thus, the
function f (x1, x2) = (x1 ∧ x2) ∨ (x1 ∧ x2) has an apparent connectivity of 2,
whereas its real connectivity is 1 (indeed f (x1, x2) = x1). In the terminology
of [30], x2 is called a fictitious (or non essential) variable for function f .
This issue becomes particularly important if one wants to identify a network
from given data. It will be addressed in more details in Section 4.

2.2. Synchronous vs asynchronous dynamics
Consider a n-dimensional network given by N = (V,E,F ) (see Def. 2). The

state space of N is the set Ω = {0, 1}n whose cardinality is 2n. As the state space

is finite, one can represent the discrete dynamical behavior of the network with

a finite directed graph, called transition graph. In order to define it properly, we

need to assign an updating strategy for the networkN . Two main approaches have

been considered in the literature. The first one is to consider a synchronous update

of all nodes at each time (see [17]). If the state of the network at time t is given by

the Boolean vector:

X(t) = (x1(t), . . . , xn(t)) ∈ Ω,

then the next state X(t + 1) (also called the synchronous successor) is simply:

X(t + 1) = (x1(t + 1), . . . , xn(t + 1)) ∈ Ω,

where, for all i, xi(t + 1) = x′i(t) (the updated value of xi(t)). In this case, the

temporal evolution of the network is autonomous, in the sense that any vector

X ∈ Ω has a (unique) successor F(X) = ( f1(X), . . . , fn(X)), and that successor is

independent of time t. We can then construct a directed transition graph: its set of

nodes is Ω and its set of directed edges is defined by the “successor” function. The

main property of the synchronous graph is that it is deterministic, i.e. each state

has a unique successor. In particular, this property implies that each connected

component of the graph contains a unique attractor, and this attractor is either a

cycle or a fixed point. More precisely, the connected components are in fact the

basins of attraction of their attractor. The synchronous updating strategy is a very

strong assumption, not very realistic if one wants to model the dynamical behavior

of a given biological system.
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Actually, as discrete interactions are coarse-grained models of sometimes very

complex biochemical processes (often implying several biochemical reactions), it

is preferable to consider time-dependent, asynchronous updating strategies (his-

torically introduced by R. Thomas [33]). In order to give a precise definition of

an asynchronous transition graph, we first introduce the following notation:

• For each X ∈ Ω = {0, 1}n, F(X) ∈ Ω designates the synchronous successor

of X:

∀i ∈ {1, . . . , n} , Fi(X) = x′i .

• For each X ∈ Ω and each i ∈ {1, . . . , n}, X̃i designates the vector:

X̃i = (x1, . . . , xi−1, xi, xi+1, . . . , xn) ∈ Ω.

• For each X ∈ Ω, let U(X) =
{
vi ∈ V | xi � x′i

}
⊂ V . U(X) designates the

(possibly empty) set of nodes that can actually be updated when the system

is in the state X.

• An element X∗ ∈ Ω is a steady state of the Boolean model if it satisfies:

U(X∗) = ∅, that is x∗i = Fi(X∗), for all i ∈ {1, . . . , n}.

We also state the following assumptions, that we will suppose verified throughout

this paper:

Assumption 1 At each discrete time t, at most one node is updated (no update
means the network is in a steady state).

Assumption 2 Each state X ∈ Ω such that X � F(X) has exactly |U(X)| succes-
sors.

The first assumption forbids the simultaneous update of several nodes (which is

reasonable from the biological point of view), whereas the second one implies that

every possible update is taken into account (i.e. if at state X the node vi is liable

to change, then that update must be present in the transition graph). With these

assumptions, we can now define the (asynchronous) transition graph:

Definition 3 (Asynchronous Transition Graph) The asynchronous transition graph
of the network N = (V,E,F ) is the directed graph G = (V, E) where the set of
nodes V is the state space Ω = {0, 1}n and the set of directed edges E is defined
by:

E =
{(

X → X̃i
)
| X ∈ Ω, vi ∈ U(X)

}
.

8
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In the comparison between synchronous and asynchronous dynamics, a well-

known result is that, provided Assumptions 1 and 2 are satisfied, the asynchronous

and synchronous steady states are the same. The proof follows immediately from

the definition of steady state.

The non determinism of the asynchronous transition graph is a fundamental

property. It allows to consider any possible trajectory implied by the structure

of the network. If one wants to study one particular trajectory, then a particular

path in the graph has to be chosen, which is equivalent to the choice of a partic-

ular updating strategy. Considering biological applications, such a choice will be

based on the information available on the system. Unfortunately, the knowledge

of the system is often incomplete. An advantage of this framework is the pos-

sibility to test and analyze different plausible sets of updating orders, as will be

done later in this paper (it corresponds to the notion of priority classes developed

in [11]). The main advantage of the asynchronous graph is that it comprises all

the possible choices in a finite structure, which allows to find general dynamical

properties valid whatever the updating strategy. Obviously, although finite, the

size of the transition graph grows exponentially with the dimension of the system

(in the Boolean case, its size is exactly 2n). This limits the use of general graph

algorithms to relatively low dimensional systems (on the order of n = 10-20), with

respect to the synchronous case, where the dimension of the system under study

can be higher [37].

2.3. Working example: an apoptosis signalling pathway
The model reduction method will be illustrated by application to an apoptosis

network (Fig. 1). Apoptosis, or programmed cell death, is a physiological process

which allows an organism to remove damaged or unwanted cells in a “clean” and

natural way. The signalling pathways leading to apoptosis play fundamental roles

in embryonic development and in adult organisms, by maintaining normal cellular

homeostasis in organs and other cellular tissues [8]. Malfunctioning apoptotic

pathways may lead to various diseases, such as cancer (in this case cells do not

die, there is insufficient apoptosis), or immunodeficiency and infertility (in this

case too many cells die, there is too much apoptosis) [8].

The apoptosis signalling pathway to be considered in this paper (Fig. 1) is

based on the model presented in [6], which is, in fact, a discrete version of a con-

tinuous model of apoptosis first developed in [28]. A brief description of the net-

work is provided next, and the reader is referred to [6, 28] and references therein

for more details.

9
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A20a IKKa

ΙκΒ NFκΒ

NFκΒnuc IAP
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+−

Figure 1: Interaction graph of the simplified model of regulation of apoptosis via the NFκB path-

way. As noted in Remark 1, some edges do not have a fixed sign (influence of TNF on IκB, IAP

and CARP).

The network is composed essentially of a pro-apoptotic and an anti-apoptotic

pathway, which are activated by the same signal: stimulation of death receptors

by a factor such as Tumor Necrosis Factor α (denoted TNF in Fig. 1). The pro-

apoptotic pathway is based on the model developed in [9], and consists of a family

of proteins called caspases, represented by active caspases 3 and 8 (resp., C3a and

C8a) in Fig. 1. The caspases play the main role in apoptosis, as they cleave (or

break into small pieces) the principal proteins in the cell, eventually leading to a

“clean disposal” of the cell in response to an apoptotic signal. The anti-apoptotic

pathway is based on the pioneering work of [16] and on the models developed

in [16, 21], and represents the Nuclear Factor κB (NFκB) signalling pathway.

The links among the two pathways are as yet, not fully characterized. It is well

known that the NFκB signalling pathway is responsible for activating transcrip-

tion of both pro- and anti-apoptotic genes [22], and thus plays an important role

in regulating apoptosis. There is also evidence to show that caspase 3 has an in-

hibitory influence on inhibitor of IkB kinases (IKK) [12]. The components of

the NFκB pathway are as follows (in biological terminology): Nuclear Factor κB
in the cytoplasm (NFκB) and in the nucleus (NFκBnuc); inhibitor of NFκB (IκB);

inhibitor of IκB kinases (IKKa); inhibitor of apoptosis proteins (IAP); caspase-8

and -10-associated RING proteins (CARP); a protein associated with inhibition of

complex T2 (FLIP); and a protein regulating IKK activity (A20a).

Binding of TNF to a death receptor activates the anti-apoptotic pathway and,

after a certain delay (upon formation of a second complex, denoted by T2), the

10
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pro-apoptotic pathway is also activated. The anti-apoptotic pathway activates syn-

thesis of various proteins (IAP, CARP, FLIP) that will contribute to inhibit and

regulate the caspases. Therefore, TNF stimulation triggers two opposite effects:

activation and inhibition of caspases. The dynamics of the pro- and anti-apoptotic

pathways, as well as the interconnections between them, will ultimately lead to

a decision between cell death or cell survival. An abundance of active caspases

(such as C3a) together with a low concentration of IAP typically leads to cell

death. In contrast, a high concentration of IAP and a low level of active cas-

pases typically characterizes a living cell (in this case, enough molecules IAP are

present to down-regulate the level of active caspases). In the network represented

in Fig. 1, and in particular in its corresponding Boolean model (Table 1), steady

states corresponding to cell death should satisfy C3a = 1 and IAP = 0, while

steady states corresponding to cell survival should satisfy C3a = 0 and IAP = 1.

The Boolean model in Table 1 has been slightly simplified from that in [6],

namely the mRNAs have been removed and only the corresponding proteins nodes

are represented. This does not affect the overall dynamics, but reduces the number

of variables to facilitate the use of the asynchronous algorithms. The analysis of

the transition graph of the Boolean network will allow us to study the dynamics

of the system, in particular the effect of the structure of the network in creating

and/or maintaining a balance between the pro- and anti-apoptotic pathways, and

ultimately the decision between death or survival.

3. Hierarchical organization of the asynchronous transition graph

In this section, a general methodology to analyze the asynchronous transition

graph of a Boolean network is presented. This methodology is based on different

algorithms that are classical in the field of graph theory (mainly the strongly con-

nected components decomposition and the topological sort). One can refer to [7]

for a detailed analysis of these algorithms. Various implementations of strongly

connected components decomposition and hierarchical organization, dedicated to

biological networks, already exist in the literature (see, for instance, [11, 4]). We

provide an alternative implementation of these algorithms, specifically designed

to handle Boolean models of biological genetic regulatory networks (where a node

has only two values). Our goal is to make an optimal use of the hierarchical orga-

nization of the transition graph in order to answer, algorithmically, some specific

biological questions, related to local dynamical behaviors of the system. For in-

stance, given any state, what regions of the phase space lead, or not, to it? What

attractors are reachable, or not, from it? Moreover, in Section 4, we will also

11
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Node Boolean rule

TNF TNF (input of the whole system)

T2 TNF ∧ FLIP

IKKa TNF ∧ A20a ∧ C3a

NFκB IκB

NFκBnuc NFκB ∧ IκB

IκB [TNF ∧ (NFκBnuc ∧ IKKa)] ∨ [TNF ∧ (NFκBnuc ∨ IKKa)]

A20a TNF ∧ NFκBnuc

IAP [TNF ∧ (NFκBnuc ∧ C3a)] ∨ [TNF ∧ (NFκBnuc ∨ C3a)]

FLIP NFκBnuc

C3a IAP ∧ C8a

C8a CARP ∧ (C3a ∨ T2)

CARP [TNF ∧ (NFκBnuc ∧ C3a)] ∨ [TNF ∧ (NFκBnuc ∨ C3a)]

Table 1: Boolean rules for the apoptosis network depicted in Fig. 1. See explanation of variables

in the text. Note that the variable TNF can be considered an input of the system, as its activation

function is TNF′ = TNF.

provide an algorithmic method, based on the hierarchical organization, to further

analyse the system and identify a subnetwork of interactions responsible for such

local behaviors.

3.1. SCC decomposition and hierarchical organization
The notion of hierarchical organization of a directed graph (or digraph) relies

on the well known strongly connected components (SCC) decomposition algo-

rithm. Let us first recall some basics about digraphs (see [7] for more details). Let

G = (V, E) be a digraph. Two vertices u, v ∈ V are mutually reachable (denoted

u ∼ v) if and only if there exist two (directed) paths ρ and ρ′ such that ρ joins u to

v and ρ′ joins v to u. This relation is clearly an equivalence relation on the set V
of vertices. The strongly connected components of the digraph G are then defined

as the elements of V/ ∼, that is to say the equivalence classes of the relation ∼.

In other words, a strongly connected component of G is a maximal set of vertices

C ⊆ V such that for every pair u, v ∈ C, u and v are reachable from each other.

The SCC decomposition of a digraph G consists in computing the strongly

connected components of G: C1, . . . ,Cp and then to compute the digraph Gscc =

(V scc, Escc) defined as follows:
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• V scc =
{
C1, . . .Cp

}
,

• given 1 ≤ i, j ≤ p, the directed edge (Ci,C j) belongs to Escc if and only if

there are u ∈ Ci and v ∈ C j such that (u, v) ∈ E.

It can be easily proved (see [7]) that the digraph Gscc contains no (oriented) cycles.

It is called a dag (for directed acyclic graph). This is a key property of Gscc, be-

cause every dag can be topologically sorted (see [7], section 22.4). A topological

sort of a dag can be viewed as a classification of its vertices in several hierarchical

levels H1,H2, . . . , defined, by induction, as follows:

• H1 =
{
Cq ∈ V scc : ∀Cq′ ∈ V scc, (Cq′ ,Cq) � Escc

}
,

• Hi =
{
Cq ∈ V scc : ∀Cq′ ∈ V scc,

(
(Cq′ ,Cq) ∈ Escc ⇒ ∃ j < i, Cq′ ∈ Hj

)}
,

so that the vertices of the first level H1 are vertices with no predecessors, and the

predecessors of vertices of level Hi, i > 0, are contained in inferior levels Hj with

j < i (see also Fig. 2). The decomposition and hierarchical organization of a

digraph G can be computed in linear time with respect to the number of vertices

and edges of G [7]. The main interest of this hierarchical organization, applied

to the asynchronous transition graph of a Boolean network, is that, whatever path

we choose in the graph (i.e. whatever updating order we choose for the variables),

once the path leaves a hierarchical level Hi, it cannot return to this level. So,

any path will travel “down” the hierarchical levels: Hi1 → Hi2 → . . . (with i1 <
i2 < . . . ). Due to this property, we can now give a precise definition of the term

attractor for a Boolean network evolving according to an asynchronous strategy.

Definition 4 (Attractor) LetN be a Boolean network. An SCC c∗ ∈ V scc that has
no successor in Gscc is called an (asynchronous) attractor of N .

In graph theory, such SCCs are often called terminal SCCs. In other words, the

asynchronous attractors of a Boolean network are the strongly connected com-

ponents of the transition graph that cannot be escaped by the system, whatever

the updating strategy. However, it should be noted that it is still possible to con-

struct specific asynchronous updating strategies such that the system gets “stuck”

in a non terminal SCC. Indeed, for any SCC that contains at least two states, it is

obvious that we can find a particular strategy that allows the system to remain in-

definitely in this component (by strong connectedness). Such intermediate SCCs

will not be considered as attractors in this paper, as we seek general dynamical

properties that are valid for all the choices of updating rules. The hierarchical

13
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organization of the transition graph allows the formulation of simple algorithmic

definitions of attraction and reachability sets.

Algorithm 1 - Computation of attraction and reachability sets in Gscc.

Input: c ∈ {1, . . . , p} (a SCC of the asynchronous transition graph).

Output: A(c),R(c): attraction and reachability sets of c.

1: A(c) := ATTR(c)

2: R(c) := REACH(c)

where ATTR and REACH are two simple recursive functions:

1: ATTR(c):

2: A := {c}
3: P := predecessors(c)

4: if P � ∅ then
5: for all γ ∈ P do
6: A := A ∪ ATTR(γ)
7: end for
8: end if
9: return A

1: REACH(c):

2: R := {c}
3: S := successors(c)

4: if S � ∅ then
5: for all γ ∈ S do
6: R := R ∪ REACH(γ)
7: end for
8: end if
9: return R

The functions predecessors and successors return, respectively, the -possibly

empty- sets of immediate predecessors and successors of a node in the dag Gscc.

As explained in the text, if the node γ ∈ V scc belongs to a hierarchical level Hi,

then its predecessors (resp. its successors) can only lie in hierarchical levels Hj

with j < i (resp. with j > i).

Definition 5 Let c ∈ V scc be a SCC of the asynchronous transition graph. The
sets A(c) and R(c) computed by Algorithm 1 are, respectively, the attraction set
of c (i.e. the set of all SCCs that can lead to c) and the reachability set of c (i.e.
the set of all SCCs that can be reached from c). If c is an attractor of the network
(in other words, if R(c) = {c}), the set A(c) is its basin of attraction.

The definition of attraction or reachability set should be understood as a weak
notion, in the sense that the existence of a trajectory from a SCC c to a SCC

c′ is sufficient to have c ∈ A(c′) (or c′ ∈ R(c)). On the contrary, Definition 4

of an attractor c∗ is strong, in the sense that no trajectories are allowed to move

out of c∗. These notions of strong and weak attraction are remniscent of those

found in [3], in the context of equilibria of differential inclusions. In [3] a set
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of equilibria is said to be weakly asymptotically stable if there is at least one
solution of the differential inclusion for which the set is asymptotically stable in

the classical sense. The strong notion holds if the set is asymptotically stable in

the classical sense for every solution of the differential inclusion. In a discrete

graph, if a1, . . . , ar designate the attractors of the network, an element c ∈ A(a1)

may lead to attractor a1 (i.e., there exists an updating strategy such that c leads

to a1). If one wants the basin of attraction of a1 in a strong sense, that is, the

set of SCCs that always lead to a1 (whatever the updating order), then one has to

compute the set:

As(a1) = A(a1)\
⎛⎜⎜⎜⎜⎜⎝ r⋃

i=2

A(ai)

⎞⎟⎟⎟⎟⎟⎠ ,
which may in some cases be reduced to the singleton {a1}.

3.2. Application to the apoptosis network
The SCC decomposition and hierarchical organization were applied to the

NFκB signalling pathway described in Section 2.3. The results presented here

were obtained with codes implemented in Matlab. Following the matlab bgl3

library specifications, the graphs are represented with sparse matrices, which al-

low a quite efficient implementation.

We recall that the system under study is of dimension n = 12, and that one

particular variable, TNF, is an input (i.e. its activation function is TNF′ = TNF).

The state space is Ω = {0, 1}n, and the size of the asynchronous transition graph

G is 2n = 4096. The number of strongly connected components is p = 1472,

therefore the size of the graph Gscc is only 40% of the size of G. After the hier-

archical organization of this graph, we found only 38 hierarchical levels, and 3

attractors. Fig. 2 represents a scheme of this graph with its main elements. The

fact that TNF is an input implies that its value remains constant, whatever path

is chosen. Mathematically, this means that Gscc is the union of two disconnected

(sub)graphs, denoted T 0 (where TNF = 0) and T 1 (where TNF = 1). The com-

ponents T 0 and T 1 are two subsets of nodes of Gscc that are completely separated

(there exist no directed edge going from a SCC in T 0 to a SCC in T 1, and vice

versa).

We found three terminal SCCs in our graph, which means that the system has

three different attractors. Using the SCC labels returned by the hierarchization, the

SCCs 1 and 123 contain only one state (they are therefore steady states) whereas

3see http://www.stanford.edu/˜dgleich/programs/matlab_bgl/
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... ...

558 964

... ... ... H 2

...
...

123

1 49

H 36

H 37

H 38

H 1

TNF = 0 TNF = 1

Figure 2: Scheme of the main elements of the hierarchical graph Gscc for the apoptosis network.

The vertical line separates the two connected components (generated by the input TNF), and the

horizontal lines separates the different hierarchical levels. The SCCs are designated by their inte-

ger index (between 1 and p = 1472). The only SCCs that are represented here are the roots (SCCs

that belong to the first hierarchical level) and the attractors (in bold characters).

the third one, 49 is a more complex SCC with 56 states. Table 2 indicates the

Boolean values taken by the variables within each attractor. The two steady states

belong to T 0 (TNF is absent), the first one corresponds to survival of the cell

(the caspases C3a and C8a are absent) and the second one corresponds to the

triggering of apoptosis (with activation of the caspases). The complex attractor

(SCC 49) belongs to T 1 (TNF is present). As we can see in Table 2, within this

attractor the caspases are activated while NFκB, IκB and other factors oscillate. At

first, this might seem to indicate that apoptosis will be the final outcome, but, as

will be seen later, upon TNF removal, the cell may still choose either the survival

or apoptotic steady states.

In the previous example, the computations of the asynchronous transition

graph and of its hierarchical organization take only a few seconds (simulations

made on a PC: Intel 2.13 GHz, RAM: 1.99 Go). The implementation of these

graphs is based on sparse matrices, which makes the storage of data and the run
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TNF T2 IKKa NFκB NFκBnuc IκB

Attractor aL (SCC 1) 0 0 0 0 0 1

Attractor aD (SCC 123) 0 0 0 0 0 1

Attractor aO (SCC 49) 1 * 0 * * *

A20a IAP FLIP C3a C8a CARP

Attractor aL (SCC 1) 0 1 0 0 0 1

Attractor aD (SCC 123) 0 0 0 1 1 0

Attractor aO (SCC 49) * 0 * 1 1 0

Table 2: Boolean patterns of the three attractors. Attractor aL is a steady state that corresponds to

cell survival (or “life”). Attractor aD is another steady state that corresponds to the triggering of

apoptosis (or “death”). Attractor aO is a SCC which contains 56 states. The symbol * means that

the corresponding variable has no fixed value in the attractor and may oscillate between 0 and 1.

of the different algorithms rather efficient (including the computation of attraction

and reachability sets). However, as the size of the transition graph is 2n, the time

complexity of its construction grows exponentially. Moreover, the non determin-

ism of the graph makes its analysis more difficult than in the synchronous case

(in particular in the search of attractors, or attraction basins). At present, with not

fully optimized codes, the computation time remains reasonable for dimensions

n around 15. This is a major difference with the synchronous framework, where

the determinism of the transition graph makes it possible to analyze much higher

dimensional systems [37].

The hierarchical organization has the advantage of characterizing the dynam-

ics for all possible updating orders. It allows for instance to detect “spurious” be-

haviors, that may appear when the network get apparently stuck in a non terminal

SCC. It also comprises all the possible dynamical behaviors in a finite structure,

avoiding generation of large numbers of simulations.

4. Identification of operational interactions

The family of SCCs and their transition graph describe a new state space (re-

duced from 2n to p states), which characterizes the dynamics of a new, reduced,

system. A second stage in our model reduction procedure involves the determi-

nation of a set of rules governing this new system. Starting from the simplified

asynchronous transition graph Gscc, the goal of this part is to reconstruct, as far

as possible, the active, or operational interactions along time (the definition of an
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operational interaction can be found in the following). Recall that the SCCs are

hierarchically organized, in such way that trajectories can go in one sense from

one level to another. Thus, the Gscc graph is particularly well suited for an identi-

fication process which consists, roughly, of finding all the operational interactions

from a level l down to the terminal level (i.e. down to the possible attractors).

In general, this identification method can be applied to any, hierarchically or-

ganized, state space. It can be used to uncover groups of variables (and interac-

tions) that are mainly responsible for the dynamical behavior of the system in a

given region of the state space. More precisely, the method identifies groups of

interactions responsible for the system’s asymptotic behaviour, from a given level

in the state space, or within a “self-contained” subgraph.

4.1. Synchronous identification algorithm
The identification technique that will be used consists in the Boolean identi-

fication algorithm REVEAL developed in [20]. The term identification must be

understood in a precise sense, related to the Boolean structure of the networks

under study. Basically, given a family of transition pairs {si → s j , si, s j ∈ Ω}, one

wants to reconstruct the structure of a network, that is: its interaction graph G and

(possibly) its set of Boolean rules F = { fi, i = 1 . . . n}. This algorithm is based

on the fact that data (typically, time series issued from DNA microarrays), are

supposed to be synchronous. More precisely, data consist in temporal sequences

of Boolean vectors,
(
Xt)

t=0,1,..., that satisfy, for all t and i, Xt+1
i = fi(Xt), where the

fi are the functions that we seek to identify. Details about REVEAL can be found

in [20, 36] and references therein. In order to describe our method, we summarize

in the following some basic facts.

Definition 6 Let f : {0, 1}n → {0, 1} and j ∈ {1, . . . , n}. The variable x j will be
called fictitious in function f if, for all (x1, . . . , x j−1, x j+1, . . . , xn) ∈ {0, 1}n−1,

f (x1, . . . , x j−1, 0, x j+1, . . . , xn) = f (x1, . . . , x j−1, 1, x j+1, . . . , xn)

The set of indices j such that x j is non-fictitious in f is called the support of f and
is denoted σ( f ).

The real connectivity of f , as evoked in Rem. 1, is in fact the size of σ( f ). We

will also use the following notation. For 1 ≤ k ≤ n, let I = {i1, . . . , ik} ⊆ {1, . . . , n}
be a set of indices and let Ī = { j1, . . . , jn−k} denote the set {1, . . . , n}\I. For each

x = (x1, . . . , xn) ∈ {0, 1}n, xI (respectively xĪ) designates the k-tuple (xi1 , . . . , xik)
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(respectively the (n − k)-tuple (x j1 , . . . , x jn−k)). If xI is fixed in {0, 1}k, fxI will

designate the function:

fxI : {0, 1}n−k −→ {0, 1}
(x j1 , . . . , x jn−k) �−→ f (x1, . . . , xn).

This lemma will be useful in the following:

Lemma 1 The support of f satisfies σ( f ) ⊆ I if and only if, for all xI ∈ {0, 1}k,
the function fxI is constant.

The proof, that comes directly from Def. 6, is left to the reader.

The data used by REVEAL, given by a series of (input state,output) pairs, are

first arranged under the form of a truth table, defined as a couple (In,Out) of q× n
Boolean matrices such that the rows of In are all distinct (1 ≤ q ≤ 2n). The

purpose of REVEAL is to find sets of Boolean functions that are consistent with

(In,Out), as defined by:

Definition 7 Let In and Out be two q×n Boolean matrices, such that all the rows
of In are different. A Boolean function f j : {0, 1}n → {0, 1} is consistent with
(In,Out) with respect to column j if, for all row Ri(In) of In (i = 1 . . . q), we have
f j(Ri(In)) = Outi j. A function F = ( f1, . . . , fn) : {0, 1}n → {0, 1}n is consistent with
(In,Out) if for all j, f j is consistent with respect to column j.

Basically, the main loop of REVEAL consists in finding, for each node v j of

the network, k-tuples of nodes (vi1 , . . . , vik) that are possible sets of inputs for

the logical rule of v j. Mathematically, the existence of such a tuple implies the

existence of a function f j that is consistent with respect to column j and which

satisfies σ( f j) = {i1, . . . , ik}. To test whether the tuple (vi1 , . . . , vik) is a possible set

of inputs for v j, the following equality is checked:

H (COut( j),CIn(i1), . . . ,CIn(ik)) = H (CIn(i1), . . . ,CIn(ik)) ,

where CX(i) designates the i-th column of matrix X, and H designates the Shan-

non’s entropy (a classical notion in information theory), defined by:

Definition 8 Let M1, . . . ,Mr ∈ {0, 1}q, and let M designate the q × r Boolean
matrix of columns M1, . . . ,Mr. The entropy of M is the quantity H(M) defined by:

H(M) = H(M1, . . . ,Mr) = −
∑

x∈{0,1}r
Px

M log(Px
M),
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where log designates the logarithm to the base 2, and Px
M ∈ [0, 1] is the proportion

of rows of M that are equal to the boolean vector x.

To justify the correctness of the algorithm, we prove the following

Proposition 1 Let I = {i1, . . . , ik} ⊆ {1, . . . , n} and j ∈ {1, . . . , n}. The two asser-
tions are equivalent:

(i) H (COut( j),CIn(i1), . . . ,CIn(ik)) = H (CIn(i1), . . . ,CIn(ik)),

(ii) There exists a function f j that is consistent with (In,Out) with respect to
column j and such that σ( f j) ⊆ {i1, . . . , ik}.

Proof.
Let M (resp. M′) designate the matrix formed by the columns CIn(i1), . . . ,CIn(ik)

(resp. by the columns COut( j),CIn(i1), . . . ,CIn(ik)). Definition 8 yields:{
H(M) = −

∑
x∈{0,1}k Px

M log(Px
M)

H(M′) = −
∑

x∈{0,1}k P0,x
M′ log(P0,x

M′) −
∑

x∈{0,1}k P1,x
M′ log(P1,x

M′)

Moreover, we have: Px
M = P0,x

M′ + P1,x
M′ . Equality (i) is thus equivalent to:∑

x∈{0,1}k

[
P0,x

M′(log(P0,x
M′ + P1,x

M′) − log(P0,x
M′)) + P1,x

M′(log(P0,x
M′ + P1,x

M′) − log(P1,x
M′))

]
= 0

As this is a sum of nonnegative terms, it is equivalent to:

P0,x
M′(log(P0,x

M′ + P1,x
M′) − log(P0,x

M′)) = 0

P1,x
M′(log(P0,x

M′ + P1,x
M′) − log(P1,x

M′)) = 0

which both imply that either P0,x
M′ or P1,x

M′ is equal to zero in each term of the sum,

i.e. for each x ∈ {0, 1}k. In other words, this means that (i) is equivalent to the

following assertion:

(iii) For each x ∈ {0, 1}k, let Ax := {i : 1 ≤ i ≤ q, Ri(In) = x} (where Ri(In)

denotes the i-th row of In). Then there exists αx ∈ {0, 1} such that Outi j = αx

for all i ∈ Ax.

Suppose (i) (or equivalently (iii)) is satisfied, let us construct a function f j that

satisfies (ii). To do that, take any Boolean vector x ∈ {0, 1}n. We have to consider

two different cases. First, suppose there exists a row Ri(In) of In such that Ini,il =
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xil , for all l = 1, . . . , k. Then, set f j(x) = Outi j (which, according to (iii), is

independent of the choice of i). If, on the other hand, the pattern xI is not present

in In, then we have a degree of freedom: we choose ε(xI) ∈ {0, 1} and set f j(x) =

ε(xI). By construction, such a function f j is consistent with (In,Out) with respect

to column j. Furthermore, each projection ( f j)xI is constant which, according

to Lemma 1, implies that σ( f j) ⊆ I. This proves that (i)⇒(ii). The converse

implication can be proved using analogous arguments. �

The main loop of the algorithm is made for increasing k (from k = 0, detecting

constant functions, to k = n). In order to avoid redundancies, the algorithm stops

once it finds the minimal connectivity of each node, i.e. the minimal value of k that

ensures the existence of a consistent function. Therefore, the functions identified

by REVEAL are minimally consistent, in the sense that, among all consistent

functions, they are the ones with a support of minimal size.

As a general reverse engineering algorithm, the purpose of REVEAL is to

identify consistent functions “from scratch”, that is, independently of any prior

knowledge about the system under study. The problem that is addressed here

is slightly different, as we are searching subsets of interactions included in an

already known set of interactions. Therefore, given a collection of Boolean func-

tions F = { f1, . . . , fn}, we force the algorithm to select only the minimally consis-

tent functions gj whose support is included in σ( f j) (see Alg. 2).

Algorithm 2 - Identification of minimally consistent sub-networks.

Input: (G,F ): Boolean network. In,Out: Boolean q × n matrices.

Output: set of sub-networks minimally consistent with (In,Out).

1: mark all nodes {v1, . . . , vn} as untreated
2: for k = 0, 1, . . . , n do
3: for all untreated node vi do
4: for all (i1, . . . , ik) ⊆ σ( fi) do
5: if H (COut(i),CIn(i1), . . . ,CIn(ik)) = H (CIn(i1), . . . ,CIn(ik)) then
6: → (vi1 , . . . , vik) are inputs of node vi

7: → mark node vi as treated
8: end if
9: end for

10: end for
11: end for
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For the original REVEAL algorithm, the existence of a minimally consistent

function is guaranteed, but this is not the case for Algorithm 2. In Section 4.2,

we propose a way to construct truth tables (In,Out) that will ensure the existence

of solutions. Regarding uniqueness, the proof of Prop. 1 shows that if a solution

exists, it is not necessarily unique if the size of the table q is < 2n.

4.2. Algorithmic search for operational interactions
In order to properly define the algorithmic search for operational interactions,

let us first recall the following definitions, classical in graph theory.

Definition 9 Let G = (V, E) be a directed graph.

• For V ′ ⊂ V, the subgraph of G, induced by V ′, is the graph G(V ′) =

(V ′, E(V ′)), where E(V ′) is the subset of E containing only the directed
edges whose head and tail both belong to V ′.

• For E′ ⊂ E, the graph G′ = (V, E′) is called a partial graph of G (G′ is said
to be included in G, denoted by G′ ⊂ G).

Let N = (G,F ) be a (given) n-dimensional Boolean network, and let G = (Ω, E),

Gscc = (V scc, Escc) denote, respectively, its asynchronous transition graph and

its (hierarchically organized) SCC decomposition. We will also make use of

the synchronous transition graph of the system, which will be designated by

Gsync = (Ω, Esync) (recall that each state s ∈ Ω has a unique successor in that graph,

which is the state s′ = (s′1, . . . , s
′
n) where s′i = fi(s)). If c ∈ V scc denotes a SCC

of G, Algorithm 1 computes the reachability set of c, R(c). This set contains all

SCCs (and thus all states) that are reachable by the system starting from c, what-

ever the updating order of the variables. Therefore, it is possible to construct the

subgraph of Gscc (respectively, the subgraph of G), induced by R(c), that contains

all possible SCC trajectories starting from c (resp., all possible state trajectories

starting from any state in c). Let Gscc(c) (resp., G(c)) denote this subgraph. Us-

ing Assumptions 1 and 2, it is straightforward to deduce, from G(c), the subgraph

Gsync(c) of Gsync induced by R(c). This subgraph Gsync(c) is then organized under

the form of a truth table (In,Out) (see Algorithm 3 - step 1). The application of

Algorithm 2 on these synchronous data (step 2 of Alg. 3) allows identification of

all interactions which are sufficient to reproduce all asynchronous trajectories is-

sued from c. These interactions are called operational and can be formally defined

as follows:
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Definition 10 Consider an n-dimensional Boolean network with interaction graph
G = (V,E). Let G = (Ω, E) be its asynchronous state transition graph. Let c ⊂ Ω

and let R(c) denote the set of states reachable from any state in c. The subgraph
of G induced by R(c) is designated by G(c).

• An edge e ∈ E is a non-operational interaction associated with c if the asyn-
chronous subgraph Ĝ(c), generated by Ĝ = (V,E \ {e}) (starting from c),
satisfies: Ĝ(c) = G(c).

• An edge e ∈ E is an operational interaction associated with c if e is not
non-operational.

Let Ec denote the set of operational interactions, the interaction graph Gc =

(V,Ec) will be called operational graph.

In other words, a minimal family of operational interactions (for the transition

graph generated by a set of states c) contains as small a set as possible of the

original interactions that still generates the original graph G(c). The term minimal
refers to the fact that, thanks to REVEAL, the supports of the identified functions

are of minimal size.

From the construction of the table (In,Out), it is obvious that Alg. 2 effectively

returns a solution (in the worst case, it will return the original functions f1, . . . , fn,

that are obviously consistent with (In,Out)). However, as already evoked, the

returned solution is not necessarily unique. Nevertheless, for the apoptosis net-

work treated in this paper, the operational graph is in fact unique for any SCC c
(see Section 4.3). As the reachability set R(c) captures all possible asynchronous

successors of c, it is easy to see that, if we successively compute the operational

graphs along a particular SCC trajectory: (c1, c2, . . . , cl) (where cl is an attractor

of the system), then we have the following inclusions:

G ⊃ Gc1
⊃ Gc2

⊃ · · · ⊃ Gcl .

(Symbol ⊂ designates the graph inclusion defined in Def. 9). In other words, this

means that it is possible to visualize, along a trajectory, at which step an inter-

action (represented by a directed edge of G) may become non-operational. Ulti-

mately, the final graph Gcl comprises interactions that remain always operational

through the whole trajectory (up to the attractor).

A related notion is that of minimal cut sets (MCS) for logical interaction

graphs, suggested and used in [19]. A MCS has been defined with respect to a
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Algorithm 3 - Identification of asynchronous operational interactions.

Step 1: Construction of synchronous data from a subgraph Γ of the asynchronous

transition graph G.

Input: Γ = (V(Γ), E(Γ)): subgraph of G.

Output: In, Out: Boolean matrices of size q× n (partial truth tables).

1: q := 1

2: for all state X ∈ V(Γ) do
3: In(q, :) := X /* fill in the q-th row of In */

4: S := X /* will contain the synchronous successor of X */

5: for all asynchronous successors Y of X (in Γ) do
6: find i such that Y = X̃i

7: S (i) := not(X(i))
8: end for
9: Out(q, :) := S , q := q + 1

10: end for
Step 2: Identification of operational interactions from a SCC c.

1: compute reachability set R(c) /* use Algorithm 1 */

2: compute subgraph Gscc(c) of Gscc induced by R(c)

3: compute corresponding subgraph G(c) of G
4: compute synchronous truth table (In,Out) from G(c) /* use step 1 */

5: compute operational graphs /* use Alg. 2 */

certain target function or response, and by analogy with the analysis of (contin-

uous, stoichiometric) metabolic networks. A MCS is a minimal set of reactions

whose removal will prevent the target response. The notion of operational interac-

tion defined here differs from that of MCS. Mainly, the operational graph identifies

a subnetwork responsible for a certain dynamical behaviour, that is comprised in

a certain region of the transition graph. The reduction of the whole state space

to this particular region allows to ensure all non-operational interactions to be

removed. In contrast, MCS are not defined in terms of transition graphs.

4.3. Application to the apoptosis network
In this section, Algorithm 3 is applied to the apoptosis NFκB signalling path-

way. This system is interesting because it exhibits two global dynamical proper-

ties that are often studied in systems biology. The first one is the multistationarity,
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i.e. the coexistence of several attractors. According to Fig. 2, this happens when

TNF is absent (the two attractors are steady states). The second one is the presence

of oscillations, which appear when TNF is activated. These two general proper-

ties are often related to the interaction graph, and in particular to the presence

of positive and negative feedback loops. Two famous conjectures, stated in the

eighties by R. Thomas [33], have been proved in different mathematical frame-

works (see for instance [14, 32, 24]). The first one states that the presence of

positive feedback loops is a necessary condition for multistationarity. The second

one states that the presence of negative feedback loops is a necessary condition

for the presence of oscillations (in continuous frameworks, oscillations may be

damped, and can then be related to the biological concept of homeostasis). In the

following, Alg. 3 is used to identify which feedback loops of Fig. 1 are effectively

responsible for the presence of oscillations and for multistationarity.

According to the analysis presented in Section 3.2, the state space of the apop-

tosis NFκB system can be separated in two regions, T 0 and T 1, according to the

value of the input TNF. Within region T 1 (TNF = 1), we found a unique attractor,

a0 (see Fig. 2). It contains 56 states, and the variables that can oscillate within a0

are indicated in Table 2. As it is the only attractor present in T 1, we know that

all trajectories starting from any state of T 1 will eventually reach it and remain

in it for all subsequent times. When applying Algorithm 3 to a0, we obtain the

operational graph Ga0
depicted in Figure 3.

A20a IKKa

ΙκΒ NFκΒ

NFκΒnuc

C3a

C8a

T2 FLIP

CARP

TNF

IAP

+

−

+

−

+

+

−

Figure 3: Operational graph of the NFκB pathway in attractor a0 (TNF = 1). The isolated variables

have a fixed value, that can be found in Table 2.

This interaction graph is included in the initial one (Fig. 1), and comprises all

interactions that remain active in a0. As we can see in Fig. 3, six of the twelve
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variables are isolated, that is, they keep a constant value over time. Their values

can be found in Table 2 (in particular, the caspases C3a and C8a are activated).

Among the six remaining variables, only three are involved in feedback loops:

IκB, NFκB and NFκBnuc (the three other variables are affected by those three, but

do not affect them). One can see that both feedback loops: NFκBnuc � IκB and

IκB → NFκB → NFκBnuc → IκB are negative, as they contain an odd number of

inhibitions. Thomas’ conjectures [14, 32, 24] lead to the following conclusions:

(i) there cannot be more than one steady state because the graph has no positive

loop, and (ii) oscillations are possible because the graph has negative loops. This

is indeed what is observed in the system. As these loops are the only ones that are

active in attractor a0, it can be infered that they are the ones responsible for the

presence of oscillations in the system.

Let us now consider the region T 0, where TNF = 0. As we can see in Figure 2,

this region contains two attractors, corresponding to two steady states. The first

steady state (aL) corresponds to the “survival” of the cell, with the inhibition of

the caspases, whereas the second one (aD) corresponds to the triggering of apop-

tosis, with activation of the caspases. In order to find the feedback loop that is

responsible for the coexistence of these two steady states, we have to find a SCC

c∗ that can lead to both aL and aD, i.e.:

c∗ ∈ A(aL) ∩A(aD)

(where A(aL) and A(aD) are the attraction sets of aL and aD). There are several

possible choices for c∗. As we only want to identify the loop responsible for the

coexistence of the two steady states, we choose c∗ to be the one with the highest

hierarchical level. The operational graph Gc∗ obtained is depicted in Figure 4.

Note that this graph contains only one feedback loop: C3a � C8a, which

is a classical double activation system, involving the caspases. From Thomas’

conjectures, there can be no oscillations, only multistationarity. This is indeed

the case, as there are exactly two steady states: C3a = C8a = 1 (apoptosis) and

C3a = C8a = 0 (survival).

These two examples show that it is algorithmically possible, in the Boolean

framework, to identify, in a complex interaction graph such as the one in Fig. 1

(comprising multiple positive and negative loops), subsets of loops which are ef-

fectively responsible for those two dynamical behaviors.

Each of the two operational graphs represents two different biological scenar-

ios. The first operational graph (Fig. 3), represents the interactions that remain
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A20a

ΙκΒ NFκΒ

NFκΒnuc IAP

C3a

C8a

T2 FLIP

CARP

TNF

IKKa

−

−

+
+

Figure 4: Operational graph of the NFκB pathway just before the choice between attractors aL

(survival) and aD (apoptosis) (i.e. in the region where TNF= 0). Interactions have been signed

with respect to Boolean rules (Table 1).

active after a sufficiently long time interval of TNF stimulation has elapsed. That

is, immediately upon TNF stimulation, the system responds and evolves towards

a certain configuration; once this has been reached, most interactions have been

“stabilized” or achieved a natural balance. At this stage only remain active the

cycle corresponding to NFκB-activated transcription of IκB, and the subsequent

inhibition of NFκB. In this case, oscillations in these two variables may be ob-

served [16], but all the other variables are constant. In particular, the model pre-

dicts that inhibitor of apoptosis proteins (IAP) is present at a low concentration,

but the caspases at high concentration so, from the biological point of view, it may

be expected that a very long stimulation with TNF will eventually lead to apopto-

sis. However, at this stage, the system may still “reverse” its apoptotic decision if

TNF is shut down: the system will then leave the configuration shown in Fig. 3,

and postpone the survival/death decision. In the absence of TNF, the system will

evolve towards the configuration shown in Fig. 4, where only the positive feedback

cycle representing the caspase cascase [9] remains functional. From the biological

point of view this means that, depending on the state of the system when TNF was

shut down (or its initial state), the cell may decide between survival (attractor aL)

or initiating apoptosis (attractor aD).

5. Probabilistic analysis of asynchronous dynamics

The asynchronous transition graph of a given network is a very general object,

in the sense that it contains information on all the possible trajectories of the sys-

tem: that is, for each state, the graph indicates every possible successor. However,
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the graph does not contain any indication on which of the successors is more prob-

able at a given time. Probabilistic approaches to study trajectories of Boolean net-

works have been used before, under different modelling ideas. For instance, [30]

introduces Probabilistic Boolean Networks (PBNs), where several families of log-

ical rules are available (X′ = Fr(X), r ∈ {1, . . . ,R}). At each updating instant, the

family R to be used is chosen according to a probability distribution, but once

Fr is chosen the updating scheme is synchronous. In [5, 11, 13], asynchronous

updating schemes for Boolean models (with a single family of logical rules) were

developed, based on the nature of the biological process (for example, proteins are

always updated at a higher frequency than mRNAs). In [11] the variables are di-

vided into priority classes, and each priority class is updated at its own frequency.

The idea of asynchronous updates was coupled to PBNs in [10].

Here, we will use the concept of priority classes, to construct a matrix of

transition probabilities for the graph G, thus incorporating further quantitative

biological knowledge into discrete dynamics’ models. Application of our method

to the apoptosis/NFκB network leads to estimation, among other quantities, of the

probability of cell survival or apoptosis upon stimulation of death receptors. Such

quantities can be compared with experimental data (see also numerical results

in [6] and references therein).

5.1. Construction of a probabilistic transition graph
In order to confront the general discrete asynchronous dynamics, given by

the transition graph G (see Definition 3) with biological experiments, one has to

be a little bit more specific on the updating strategies. Previous algorithms and

results are essentially qualitative, as they are mainly attached to the structure,

without considering updating strategies at all. If one wants to represent the differ-

ent choices of updating strategies, in a more quantitative manner, one way is to

introduce probabilities in the transition graph G, and to consider a choice of the

updating order of the variables (that is, the choice of a particular trajectory in G)

as the choice of a trajectory in a stochastic process.

G can be implemented by means of its adjacency matrix, that will be de-

noted A(G). Recall that each state of the system is a Boolean vector X ∈ Ω =

{0, 1}n. Such a vector X is unequivocally associated with a unique integer s(X) ∈
{1, . . . , 2n} (X is the binary decomposition of s(X)), so that in the following, “states”

(i.e. elements of Ω) will be represented by integers lying in {1, . . . , 2n}. The adja-

cency matrix A(G) is defined as follows:

A(G) =
(
ai, j

)
1≤i, j≤2n

, with

{
ai j = 1 if “state j” is a successor of “state i”,

ai j = 0 otherwise.
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The size of A(G) is 2n×2n and, in general, A(G) is implemented as a sparse matrix.

As a first example, we propose a naive construction of the transition probabilities

pi j, where all asynchronous successors of a state have the same probability. The

uniform distribution of probabilities of asynchronous successors means that we

make no a priori assumption about the updating rules (beyond of course Assump-

tions 1 and 2). Define the matrix P(G) as the 2n × 2n real matrix:

P(G) =
(
pi, j

)
1≤i, j≤2n

, with: ∀1 ≤ i, j ≤ 2n , pi j =
ai j∑2n

k=1 aik
=

ai j

N+(i)
,

where N+(i) =
∑2n

k=1 aik designates the number of directed edges of G that leave i
(in other words, N+(i) is the number of asynchronous successors of state i), and

pi j ∈ [0, 1] is the probability for the system to go from state i to state j. By

construction, matrices P(G) and A(G) share the same sparsity pattern. Further-

more, it is easy to see that P(G) is a stochastic matrix, i.e. all its elements pi j are

nonnegative, and the sum of the elements of each row,
∑2n

j=1 pi j is equal to 1.

From the construction of P(G), we can now consider the (asynchronous) dy-

namics on G as a discrete time Markov chain, over the state space {1, . . . , 2n}. In

particular, if P(X0 = i0) designates the probability for the system to be initially

in the state i0 ∈ {1, . . . , 2n}, then the probability that a trajectory follows the path

p = (i0, i1, . . . , iq) (where the i j are elements of {1, . . . , 2n}) is equal to:

P(p) = P(X0 = i0)

q−1∏
j=0

pi j,i j+1
.

A similar matrix of probabilities can be constructed for the transition graph Gscc,

which describes transitions among strongly connected components (SCCs). As

explained in Section 3.1, a SCC c ∈ {1, . . . , p} is, by definition, a subset of the

state space Ω. In the following, S (c) denotes the subset of {1, . . . , 2n} of the states

belonging to c, and |S (c)| denotes the size of S (c). The matrix Pscc is a square real

matrix of size p × p, and its entries are given by:

pscc
c,c′ =

1

|S (c)|

∑
i∈S (c)

∑
j∈S (c′)

pi j. (1)

In words, this definition means that to compute the probability of the transition

from a SCC c to a SCC c′, we sum all transitions from any state i in S (c) to any

state j in S (c′), and we divide this sum by the number of states in c, in order

to obtain an average transition probability from c to c′. Moreover, we prove the

following:
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Proposition 2 The matrix Pscc is stochastic.

Proof.
The nonnegativity of Pscc elements is obvious. We prove here that the sum of the

elements of its rows is equal to 1. Let c ∈ {1, . . . , p}. We have:

p∑
c′=1

pscc
c,c′ =

p∑
c′=1

1

|S (c)|

∑
i∈S (c)

∑
j∈S (c′)

pi j

=
1

|S (c)|

p∑
c′=1

∑
i∈S (c)

∑
j∈S (c′)

ai j

N+(i)

=
1

|S (c)|

∑
i∈S (c)

1

N+(i)

p∑
c′=1

∑
j∈S (c′)

ai j.

As the SCCs of a directed graph form a partition of its set of vertices, the quantity∑p
c′=1

∑
j∈S (c′) ai j is equal to the number of edges that leave i (in graph G). By

definition, it is equal to N+(i). This leads to:

p∑
c′=1

pscc
c,c′ =

1

|S (c)|

∑
i∈S (c)

N+(i)
N+(i)

=
|S (c)|
|S (c)|

= 1.

�

The main advantage of considering matrix Pscc instead of matrix P(G) is that it

satisfies some useful properties. For instance, each ergodic class of Pscc (roughly,

an ergodic class is a set of non transient SCCs, see [2] for a precise definition) con-

tains only one element. The corresponding Markov chain is then called absorbing
and its absorbing elements are in fact the attractors of the system. For absorbing

chains, we can use the following well known result (see, e.g. [15]): there exists a

p × p permutation matrix P2 such that

P2PsccPt
2 =

(
Ir 0

R Q

)
, (2)

where r ∈ {1, . . . , p} is the number of attractors of the system, Ir denotes the r × r
identity matrix, and Q is a (p − r) × (p − r) lower triangular matrix that satisfies:

lim
n→∞

Qn = 0. (3)
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The form (2) is often called the canonical form of Pscc. From (3), we can define

the (p − r) × (p − r) matrix N = (I − Q)−1 (often called fundamental matrix). Its

entry ncc′ gives the expected number of times that the process is in the transient

SCC c′ if it started somewhere in the transient SCC c. In particular, it can be used

to compute the vector t = N1 (where 1 designates the column vector of whose

entries are 1). Given a transient SCC c, the entry tc of t gives the expected number

of steps before the chain reaches an attractor, given that it started somewhere in c.

As a consequence, Markov chains provide an efficient mathematical framework,

in which useful global parameters can be computed. These parameters provide

important biological knowledge about the system, as they contribute to further

characterize qualitative dynamical properties, that are robust with respect to the

topology of the network. (See next Sections 5.2 and 5.3.)

5.2. Towards a biological probabilistic graph
The matrix of transition probabilities, P(G), associated with the asynchronous

graph in Section 5.1 was based on a uniform probability distribution. The proba-

bilities of transition can instead be computed according to biological data, by us-

ing the notion of priority classes [11, 13]. For many biological networks, partial

knowledge of the parameters is often available. For example, the relative rates of

two reactions are known (e.g., the rate of formation of protein A is larger than that

of protein B). This biological knowledge can be straigthforwardly incorporated

into the transition graph, by stipulating an updating strategy such as an updating

order among all variables. Roughly, the idea is to group the variables into several

groups, called priority classes, and assign a weight to each of these groups: higher

weights denote a more probable transition. A similar idea was used in [5], where

two classes were considered, one for proteins and another for mRNAs. The up-

dating order stipulated that proteins were always updated first and mRNAs next.

More generally, to implement the notion of priority classes, consider ρ classes C1,

. . ., Cρ ⊂ V and their respective weights,

W1 > W2 > · · · > Wρ.

Recall that, by assumption 1, only one variable is updated at a given instant, so

each transition in G involves a 0/1 switch in exactly one variable. Consider an

edge i → j in G, and suppose that vs ∈ V is the node that switches. Then

associate with edge i → j the value:

wi j = Wr, if vs ∈ Cr

31



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

that is, if the node vs updated in the transition from state i to state j belongs to

class Cr. If no transition from i to j is possible, then set wi j = 0. Then define a

new transition matrix, where each pi j represents a weighted average:

Pbio(G) =
(
pi, j

)
1≤i, j≤2n

, with: ∀1 ≤ i, j ≤ 2n , pi j =
wi jai j∑2n

k=1 wik
. (4)

As before, a corresponding matrix,Pscc
bio, can be constructed for the graph Gscc. The

probability of transition between two SCCs c and c′ is given by Eq. (1), where the

pi j are replaced by the transition probabilities computed in (4). Again, it is easy

to check that Pscc
bio represents an absorbing Markov chain process.

5.3. Application to the apoptosis network
In order to illustrate the probabilistic approach, and the type of results it pro-

vides, an application to the apoptosis network is next described. In particular, the

results show how Tumor Necrosis Factor (TNF) influences the choice of the sys-

tem between the two possible steady states: the “survival” of the cell (attractor aL,

with inhibition of the caspases) and the triggering of apoptosis (attractor aD, with

activation of the caspases). Experimentally, it is observed that a cell irreversibly

enters the apoptotic pathway once a certain threshold in caspase activation has

been reached (see [23]). In turn, caspase activation is observed to depend on

the duration of TNF stimulation, as well as on TNF concentration (typically, the

caspase activation threshold is reached faster for higher TNF concentrations). In

[6], this property was statistically observed by computing many different trajecto-

ries (of a continuous, piecewise linear system), with different updating strategies.

Within the framework presented in this paper, the probability that the cell follows

the “survival” or “apoptosis” pathway can be computed directly from the matri-

ces Pscc (or Pscc
bio), without performing large numbers of simulations. Recall that

a trajectory of the system will converge towards aL or aD in the absence of TNF.

Technically, the shutdown of death receptor stimulation is represented in our sys-

tem by switching the input variable TNF from 1 to 0. For each state X in T 1

(where TNF is equal to 1), a successor Xs is computed in T 0 (where the variable

TNF is 0, and all other variables stay unchanged). Then, using the matrix Pscc and

its canonical form (2), the probabilities to reach attractors aL and aD from initial

state Xs are computed (Figure 5).

Contrary to [6], where time is represented by a continuous variable, in the

asynchronous graphs there is no direct measure of time. However, the hierarchi-

cal levels of the graph Gscc do give an indication of time progression. Indeed,

32



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

Figure 5: The curves represent the system’s response to TNF switch off, after the system has

reached a certain hierarchical level Hi (x-axis). The dashed lines with points represent the average

probability for the system to reach attractor aL (the “survival” steady state), starting from a state

in hierarchical level Hi. The solid lines with ’+’ signs represent the probability to reach attractor

aD (the “apoptosis” steady state), starting from Hi.The weights used in each case were: (a) w1 =

w2 = w3 = 1; (b) w3 = 1, w1 = w2 = 5; (c) w1 = w3 = 1, w2 = 5; and (d) w2 = w3 = 1, w1 = 5.

consider two states along any given trajectory, X1, X2 ∈ T 1 where X1 belongs

to a hierarchical level Hi and X2 belongs to Hj, with j > i. Then we can say

that TNF stimulation has been longer for X2 than for X1. The x-axis of Figure 5,

which represents the hierarchical levels, is thus a relative measure of the duration

of TNF.

Following the procedure developed in Section 5.2, a more realistic matrix Pscc
bio

can be constructed. Based on the parameters reported in [9, 28] (and references

therein), and on the results from Section 4.3, three priority classes were estab-

lished, based on biological function groups (Table 3). The first class represents

the negative feedback loops related to the oscillatory behaviour: NFκB, NFκBnuc,

IκB, and IKKa. The second class represents the caspases’ positive loop and its ac-

tivation: C3a, C8a, and T2. Finally, the third class contains the remaining proteins

(A20a, FLIP, IAP, and CARP) whose transcription is regulated by NFκBnuc.

Setting up these classes allowed us to compare the contribution of each family
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Class Weights Variables

C1 w1 NFκB, NFκBnuc, IκB, IKKa

C2 w2 C3a, C8a, T2

C3 w3 A20a, FLIP, IAP, CARP

Table 3: Priority classes.

of operational interactions to the final survival/apoptosis decision. In a first study,

we computed the probabilities of apoptosis and survival, for all possible combi-

nations of wi ∈ {1, 5} (i = 1, 2, 3). This captures the effect of the relative updating

frequencies (results are summarized in Table 4). Some examples are shown in

Figure 5, which depicts the average probabilities of reaching attractors aL and aD,

after 50 updating steps with TNF=0,

PL(Hi) =
1

N1
i

N1
i∑

k=1

P50
bio(X0

k , aL), PD(Hi) =
1

N1
i

N1
i∑

k=1

P50
bio(X0

k , aD),

where N1
i denotes the number of states in T 1 ∩ Hi, and X0

k ∈ T 0 denotes the

successor of Xk ∈ T 1 after TNF is switched off (computed as explained above).

After 50 steps, the system is likely to have reached an attractor with (practically)

100% probability. Thus, PL(Hi) ≈ 1 − PD(Hi). In all cases studied, we observe

that the probability of survival is larger than that of apoptosis, for almost all lev-
els Hi, i = 1, . . . , 37. This situation is reversed for the last level, H38, where the

probability of apoptosis is always larger than that of survival (see Table 4, col-

umn PL(H38)). It is striking that this property appears in all cases, suggesting the

existence of a threshold state configuration which is independent of the updating

strategy, and constitutes a robust feature of the system. In other words, if one

wants to promote apoptosis, TNF should be sustained long enough for the system

to reach attractor a0, i.e. apoptotic oscillations.

More generally, we observe that the probability of apoptosis (or survival) can

be modulated within a certain range of values. At the last level, the probability

of apoptosis is above 50%. In the levels H1 to H37, the probability of reaching aL

dominates the probability of reaching aD. Nevertheless, PD(Hi), for i = 1, . . . , 37,

is maximal (between 30 and 40%) when w1 > w2, that is, when NFκB-IκB
pathway interactions are more frequent than caspase cascade interactions. (Fig-

ure 5d). In fact, it is interesting to note that, as the frequency of NFκB-IκB inter-
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Weights Survival probability

(w1,w2,w3) PL(H38) 1
37

∑37
i=1 PL(Hi)

(1,1,1) 0.33 0.82

(1,1,5) 0.38 0.79

(1,5,1) 0.40 0.94

(1,5,5) 0.48 0.92

(5,1,1) 0.12 0.67

(5,1,5) 0.19 0.60

(5,5,1) 0.19 0.85

(3,1,1) 0.18 0.71

(5,1,1) 0.12 0.67

(10,1,1) 0.07 0.63

Table 4: Survival probability for different weight combinations.

actions becomes larger, also the probability of apoptosis increases (compare cases

w1 = 1, 3, 5, 10 with w2 = w3 = 1). In contrast, for the cases with w1 = 1 (the

NFκB-IκB interactions happen with smaller frequency), the probability of survival

is significantly higher (larger than 80%) (Figure 5a-c). This suggests that the deci-

sion between cell survival and apoptosis strongly depends on the dynamics of the

anti-apoptotic NFκB-IκB pathway: high “turnover rates” (that is, the interactions

in this pathway happen at a faster rate) increase the probability of apoptosis.

The contribution of this Markov chain approach to the analysis of biological

networks is thus two-fold: first, the common traits of the curves obtained with

different matrices Pscc suggest global qualitative dynamical properties, which are

robust with respect to the structure of the system, that is to say, independent of

the choice of the updating order of the variables. Second, the quantitative aspects

capture the variability and possible operating range of the network. Further appli-

cations of this technique include hypothesis testing and validation. For instance,

one can easily analyze the effect of new interactions in the system’s structure;

similarly, the relative impact of two proteins can be studied by comparing the

response of the system with different priority classes and updating strategies.
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6. Conclusion

A method for model reduction of Boolean networks has been developed, based

on the hierarchical decomposition of asynchronous graphs. The first aspect to be

analyzed is the decomposition of the state space of the n-dimensional Boolean

network into strongly connected components (SCCs), and the construction of the

graph of transitions among them. The SCCs can be viewed as the “new states”

of a “new” reduced system, since very often the number of SCC is less than or

equal to the number of states of the original system. The second aspect in the

model reduction method is the reconstruction of the Boolean rules that represent

the graph of transitions among the SCCs. An identification algorithm (known

as REVEAL) was adapted and used to determine a family of Boolean rules that

describe the dynamics represented by a (sub-)graph of transitions.

More generally, the model reduction method uses the structure of interactions

to isolate and identify smaller subsystems (or groups of variables and interactions)

responsible for a given qualitative dynamical behaviour. This is a particularly

relevant characterization for biological systems where experimental data consists

(mostly) of qualitative measurements. The techniques described here are based

on the fact that, for a Boolean system, the whole state space can, in principle,

be enumerated; this introduces one other limitation to the method, on the size n
of the network that can be computationally managed. Networks of intermediate

size (up to n = 15) are easily computed. For larger networks, one may still use

this method, by first isolating more basic modules. Each module would then be

separately reduced and treated as one “node” with its Boolean rule.

As illustrated with the apoptosis example, model reduction using the asyn-

chronous graph decomposition is a powerful potential source of valuable knowl-

edge on a system. All the possible qualitative trajectories of the system are char-

acterized, as well as their robustness to environmental perturbations. It is possible

to identify the mechanism (in the form of smaller groups of variables and inter-

actions) which is responsible for a given asymptotic behaviour of the system, for

instance, the existence of oscillatory dynamics or (multi-)stability. Finally, the

asynchronous transition graph can be naturally associated with a matrix of transi-

tion probabilities. Biological knowledge on the system’s kinetics can thus be in-

corporated to obtain a more quantitative description of the system. These are also

useful tools to test hypothesis and generate predictions concerning the structure

of interconnections and the importance of each variable to the overall dynamics.
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