
HAL Id: hal-00554623
https://hal.science/hal-00554623

Submitted on 11 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bone ingrowth on the surface of endosseous implants.
Part 2: Theoretical and numerical analysis

Pedro Moreo, J.M. José Manuel García-Aznar, Manuel Doblaré

To cite this version:
Pedro Moreo, J.M. José Manuel García-Aznar, Manuel Doblaré. Bone ingrowth on the surface of
endosseous implants. Part 2: Theoretical and numerical analysis. Journal of Theoretical Biology,
2009, 260 (1), pp.13. �10.1016/j.jtbi.2009.05.036�. �hal-00554623�

https://hal.science/hal-00554623
https://hal.archives-ouvertes.fr


www.elsevier.com/locate/yjtbi

Author’s Accepted Manuscript

Bone ingrowth on the surface of endosseous implants.
Part 2: Theoretical and numerical analysis

Pedro Moreo, José Manuel García-Aznar, Manuel
Doblaré

PII: S0022-5193(09)00246-X
DOI: doi:10.1016/j.jtbi.2009.05.036
Reference: YJTBI5576

To appear in: Journal of Theoretical Biology

Received date: 14 August 2008
Revised date: 21 May 2009
Accepted date: 24 May 2009

Cite this article as: Pedro Moreo, José Manuel García-Aznar and Manuel Doblaré, Bone
ingrowth on the surface of endosseous implants. Part 2: Theoretical and numerical analysis,
Journal of Theoretical Biology, doi:10.1016/j.jtbi.2009.05.036

This is a PDF file of an unedited manuscript that has been accepted for publication. As
a service to our customers we are providing this early version of the manuscript. The
manuscript will undergo copyediting, typesetting, and review of the resulting galley proof
before it is published in its final citable form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply
to the journal pertain.

http://www.elsevier.com/locate/yjtbi
http://dx.doi.org/10.1016/j.jtbi.2009.05.036


Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

Bone ingrowth on the surface of endosseous

implants. Part 2: theoretical and numerical

analysis
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Abstract

The study of osseointegration of endosseous implants is a matter of great interest,

mostly due to the increase in the use of many types of implants in clinical practice.

Bone ingrowth results from a complex process, in which mechanics and biology play

a major role. A wide variety of diverse factors can affect the development of the

process, such as the properties or geometry of the implant surface, the mechani-

cal stimulation or the initial cell conditions. In the first part of this article (Moreo

et al., 2008) a model composed of a set of reaction-diffusion equations was proposed

to simulate the formation of bone around implants, specially focused on the early

stages of bone healing, that was able to contemplate the effects of surface micro-

topography. The goal of this second part is to use the model to analyse the effect
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of factors such as cell stimulation, the initial cell concentration in the host bone

and the geometry of the implant. For this purpose, two different simplified versions

of the model are here analysed theoretically and further insight is gained from the

study of the stability of fixed points and existence of travelling waves. Additionally,

numerical simulations by means of the finite element method have been performed

to examine the osseointegration of a dental implant with grooves at the surface

of the threads. Results obtained from the analysis and simulations show that the

model can reproduce some features of peri-implant bone ingrowth.

Key words: Osseointegration, Travelling wave, Groove, Finite element simulation

1 Introduction

In Part 1 of this work a model to study the formation of bone around en-

dosseous implants was presented (Moreo et al., 2008). This model is composed

by a set of coupled nonlinear reaction-diffusion equations, one for each of the

eight variables of the model: three types of cells (platelets, osteogenic cells

and osteoblasts), two generic types of growth factors (secreted by platelets

and secreted by osteogenic cells and osteoblasts) and the volume fractions of

the extracellular matrix constituents (fibrin network, woven inmature bone

and lamellar mature bone).

Compared to current literature this work presented a novel aspect: it aimed

to model the first biological phenomena that occur after implantation. In par-

ticular, it reproduces the activation of platelets after contacting the surface

∗ Corresponding author. Phone: (+34) 976 761912 Fax: (+34) 976 762578 E-mail

address: jmgaraz@unizar.es (J.M. Garćıa-Aznar)
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of the implant. This activation depends on the level of plasma protein ad-

sorption, which in turn is determined by the microtopography of the implant

surface, among other factors (Park et al., 2001; Kikuchi et al., 2005). This

scheme allows taking into account in a simple and efficient manner the effect

of surface roughness on the whole osseointegration process. In fact, in Moreo

et al. (2008) finite element simulations of bone deposition around a dental im-

plant were performed and the model successfully reproduced the differences

between contact and distance osteogenesis, which appear when the topogra-

phy of the surface is changed from rough to polished (Berglundh et al., 2003;

Davies, 2003).

The goal of the second part of this study is (i) to analyse the effect that the

following factors have upon peri-implant bone ingrowth: initial cell conditions,

implant geometry and different levels of cell stimulation; and (ii) to study how

the composition of the matrix is altered as the ossification front propagates.

The first issue to be studied is the influence of the initial cell concentration

at the surface of the host bone, that depends on the type of bone one

considers. It is known that there are significant differences between cortical

and trabecular bone. For example, cortical bone presents higher mechani-

cal properties that trabecular bone, hence providing better primary stability

for endosseous implants. However, trabecular bone presents other advantages,

since the marrow that fills its pores is an excellent source of progenitor cells

and contains a rich vasculature necessary for angiogenesis. Therefore, in order

to fully evaluate the influence of the type of surrounding bone both mechan-

ical and biological aspects have to be considered. Since this subject is rather

complicated, we chose to focus on examining how the number of osteogenic

cells at the surface of the host bone can drive the osteoconduction phase.
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Secondly, we evaluate how the implant geometry can affect the formation of

bone, not only by changing the stresses and strains of the surrounding tissue,

what has been experimentally verified (Vandamme et al., 2007), but also by

altering certain biological phenomena, such as growth factor diffusion or the

direction of cell migration.

Thirdly, we also study how the composition of the matrix is altered as

the ossification front crosses a region which is affected by the kinetics of the

different phenomena involved in the ossification process.

Finally, we also look into the effect of cell stimulation upon the global

process of peri-implant bone healing.

To address all these points, two different methods are presented. On the one

hand, finite element simulations of bone deposition around a dental implant

are performed. On the other hand, two different simplified versions of the

mathematical model are proposed and examined analytically. This second

procedure is an attractive option, since it allows acquiring useful information

about the qualitative behaviour of specific parts of the model. This would be

more difficult to do through numerical simulation, given the complexity of the

model and the large number of parameters involved.

Specifically, the analysis of the simplified models will consist in the deter-

mination of the existence and stability of fixed points and the appearance

of travelling wave-like solutions. Travelling waves are particular solutions of

reaction-diffusion systems, consisting in the propagation through the domain

of a wave, which travels at constant speed with constant shape. They are a

recurring topic in mathematical biology since there is a vast number of bi-

ological phenomena in which a key element seems to be the appearance of

4



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

travelling waves (see, for example, Murray (2005)). Their analytical study is

useful, because it provides information about the speed of propagation of the

wave and the concentrations of the variable before and after the propagation.

In peri-implant bone healing, the invasion of the cavity between an implant

and the host bone by osteogenic cells and the subsequent propagation of an

ossification front are two examples of travelling wave-like phenomena.

The article is organised as follows. In Section 2, the main features of the model

are briefly discussed. In Sections 3 and 4, two different simplified versions

of the model are proposed and studied analytically. Next, two-dimensional

numerical simulations of bone ingrowth around a dental implant with grooves

at the surface of the threads are presented in Section 5. Finally, a discussion

on the results are given in Section 6.

2 Mathematical modelling of bone ingrowth

In this section we describe the most relevant characteristics of the mathemat-

ical model for peri-implant bone ingrowth that was developed in Part 1 of the

paper (Moreo et al., 2008). In this model a continuum approach is adopted and

therefore reaction-diffusion equations are used to compute the spatio-temporal

evolution of the volumetric concentration of each specie.

Specifically, the model has eight variables, which can be classified into three

groups:

Cell densities Three different types of cells are considered: platelets, os-

teogenic cells and osteoblasts, whose respective densities are denoted by

c, m and b. The inclusion of platelets in the model is noteworthy, since it
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allows taking into account early stages of bone healing and the influence of

the implant surface microtopography. Osteogenic cells and osteoblasts are

included, since they are known to be the two most important types of cells

involved in peri-implant bone ingrowth (Davies, 2003). By osteogenic cells

here we mean mesenchymal stem cells, which have the potential to differen-

tiate into a variety of mesenchymal tissues, such as bone, cartilage, tendon,

muscle, marrow, dermis and fat.

Growth factors A large number of growth factors and signalling molecules

are known to intervene in the mediation of bone healing (Dimitriou et al.,

2005). Hence, in order to obtain a tractable model some simplification has

to be done. Since many growth factors have a similar effect in the process, it

is possible to group them into families that have the same influence. In our

case two generic families are distinguished: s1 stands for the concentration of

the growth factors secreted by platelets (PDGF, TGF-β and others), which

are known to stimulate the proliferation and migration of osteogenic cells

(Kark et al., 2006); s2 represents the concentration of osteogenic growth

factors (BMPs, TGF-β superfamily), which have a stimulating effect on the

secretion of bone and on the proliferation of osteogenic cells (Linkhart et al.,

1996).

Volume fractions of the matrix The extracellular matrix can be composed

of three different constituents: first, the fibrin network, whose volume frac-

tion is denoted by vf , that is assumed to be the initial constituent of the

matrix; second, woven or inmature bone, vw, that is laid down by osteoblasts

and, third, lamellar or mature bone, vl, that comes from remodelling of wo-

ven bone.

Finally, the concentration of adsorbed proteins, p, appears in the formulation
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but is not a model variable but an input data, since its value is assumed to be

known a priori as a function of the microtopography of the implant surface.

The model equations and a concise description of the biological interpretation

of the model parameters can be found in the Appendix A. The reader is

referred to Part 1 of the paper (Moreo et al., 2008) for a more thorough

discussion on the model.

3 Osteoconduction: analysis and simulation of a first simplified

model

The goal of this section is to examine in detail the phenomenon of osteocon-

duction and, in particular, analyse how this process can be influenced by the

level of cell stimulation and the number of osteogenic cells available at the

surface of the host bone. We recall that osteoconduction consists in the inva-

sion of the cavity between the host bone and the implant by osteogenic cells.

In fact, it is the most important phase in bone healing (Davies, 2003), since

the following stages of bone formation and remodelling critically depend on

the speed of migration of osteogenic cells and the level of cell density achieved

after osteoconduction.

Within this section, we are only interested in osteoconduction. Therefore we

focus exclusively on the equations that are involved in this process. With

this in mind, a reduced version of the model was obtained. From this model

we can extract analytical information regarding the existence of fixed points

and travelling waves. Finally, the performance of numerical simulations of the

simplified model permits to gain further insight into the dynamic behaviour
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of the model.

3.1 Description of the simplified model

The reduced model that we propose retains only the equations for two cellu-

lar types, osteogenic cells and osteoblasts, and one generic growth factor, s2,

secreted by both types of cells. Osteogenic cells must be necessarily taken into

account, since they are the main cellular type involved in osteoconduction.

Also, given that part of the osteogenic cells differentiate into osteoblasts as

the cells move forward towards the surface of the implant, osteoblasts should

also appear in the reduced model. Finally, the chemotactic effect of the generic

growth factor s2 upon the migration of osteogenic cells as well as the depen-

dence of the rate of osteogenic cell proliferation upon s2 motivate the inclusion

of s2 in the simplified model.

The nondimensionalised equations of the reduced model are:

∂m

∂t
= ∇ · [Dm∇m−mBm2∇s2] +

σ

(
1 +

αms2

βm + s2

)
m(1−m)− (αmb + Am)m︸ ︷︷ ︸
f(m,s2,b)

(1a)

∂s2

∂t
= ∇ · [Ds2∇s2] +

α2s2

β2 + s2
(m + b)− As2s2︸ ︷︷ ︸
g(m,s2,b)

(1b)

∂b

∂t
= αmbm− Abb︸ ︷︷ ︸

h(m,s2,b)

(1c)

It is to be noted that the model equations have not been altered, since the flux

and kinetic terms are the same as in the full model, neglecting the influence
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of the growth factor s1. Only, for simplicity, the stimulating effect of s2 on the

secretion of s2 by osteoblasts and osteogenic cells has been assumed to be the

same for both cellular types. Also, note that given that this reduced model

does not include platelets or the growth factor s1, it is not suitable for the

study of the effect of surface microtopography upon osteogenesis (Moreo et al.,

2008). However, the general features of the osteoconduction phenomenon are

independent of the type of osteogenesis, so still relevant information can be

obtained from the reduced model.

3.2 Existence and stability of homogeneous steady states

We first examine the existence and stability of homogeneous steady states of

the system (fixed points). Homogeneous steady states of the model will be

denoted by z∗ = (m∗, s∗2, b
∗) and verify f(z∗) = g(z∗) = h(z∗) = 0, where f ,

g and h are the reaction terms of Eqs. (1). Note that this simplified model is

similar to the one proposed in Dale et al. (1995) and Olsen et al. (1996) for

the study of wound healing disorders and presents equivalent mathematical

properties. Here, however, we have performed a systematic study of all the

possible travelling wave solutions that can appear depending on the parameter

values and initial conditions.

The number and stability of the steady states and, therefore, the qualitative

dynamical behaviour of the system, depend on the value of a bifurcation pa-

rameter χ. As shown in the Appendix B, χ is a function of model parameters

defined as χ = α2(1 + αmb/Ab). Below we list all the possible homogeneous

steady states that the system can exhibit (more details can be found in the

Appendix B):

9



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

Chronic non healing state zt = (0, 0, 0) With no cells or growth factor,

this steady state exists for all parameter values. Since bone deposition relies

on the presence of osteoblasts, this state represents a situation of chronic

absence of bone formation. This situation is of little relevance for the pur-

poses of this paper and therefore this state will be forced to be unstable by

imposing σ > Am + αmb (see Appendix B).

Low density state z0 = (m0, 0, b0) In this case the growth factor concen-

tration is zero and the density of osteogenic cells and osteoblasts is m0 =

1− (Am + αmb)/σ and b0 = m0αmb/Ab, respectively. Note that the density

of cells is small compared to that of high density states z±. This is a direct

consequence of the absence of s2, which leads to a low proliferation rate of

osteogenic cells. Formation of new bone would certainly be possible in this

situation, but at a low rate, since the velocity of bone matrix deposition de-

pends on the concentration of osteoblasts, which in this case is small. This

steady state exists with realistic (positive) values for m0 and b0 if and only

if σ > Am + αmb, what was assumed as a global condition in the previous

paragraph, and is stable if and only if 0 < χ < χ(2) = As2β2/m0.

High density states z± = (m±, s2±, b±) This pair of steady states only ex-

ists when χ > χ(1) (where χ(1) < χ(2)). The analytical expressions for χ(1)

and z± are not simple and can be found in Appendix B. In this case it is

possible to show that z+ is stable whereas z− is unstable. However, when

χ > χ(2), z0 becomes unstable, z− takes negative values and hence only z+

is biologically relevant. Theoretically, the stable state z+ is attractive since

high values of the osteoblast density and the growth factor concentration

ensure a high rate of bone matrix deposition. These results are summarised

qualitatively in Fig. 1.

10



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

3.3 Biophysical interpretation of χ

It is clear that the number of homogeneous steady states, as well as their sta-

bility can be determined in terms of the bifurcation parameter χ, which has

a direct biophysical interpretation. Note that χ is a monotonically increasing

function of the rate of growth factor secretion, α2, and the rate of cell differen-

tiation, αmb. These two cellular processes take place at a faster rate when cells

are highly stimulated. Hence, χ can be seen as a measure of the general level

of cell stimulation, irrespective of the actual nature of the stimulus (chemical,

mechanical, etc.).

Thus, the qualitative dynamical behaviour of the system can be classified into

three different regimes depending on the value of χ, assuming that the rest of

parameters are kept constant (see Fig. 1):

Regime I: χ ∈ (0, χ(1)) In this situation the system will tend to evolve to z0,

since it is globally stable. However, given the reduced number of cells exist-

ing at z0, new bone formation will take place at a slow rate. Theoretically,

this condition could correspond to a slow implant osseointegration, due to

an insufficient stimulation.

Regime II: χ ∈ (χ(1), χ(2)) In this case two locally stable states exist, z0 and

z+, each one with its own region of attraction. Depending on the initial

or boundary conditions, the system will tend to move to one of the two

stable states. From the point of view of peri-implant bone healing, it is

very desirable that the system evolves towards z+, since this state offers a

large number of osteoblasts and a high concentration of s2, what guarantees

fast bone deposition. Mathematically, the transition from regime I to II

11
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corresponds to a saddle-node bifurcation (Strogatz, 2001), leading to the

appearance of z±.

Regime III: χ ∈ (χ(2),∞) Here z+ is the stable state and corresponds to

the well-known situation in which an adequate stimulation enhances bone

ingrowth and osseointegration of the implant. The transition to this third

regime from the second one takes place now through a transcritical bifurca-

tion (Strogatz, 2001).

Figure 1. Phase space diagrams of the simplified model in the m− s2 plane. Biolog-

ically realistic steady states are depicted with circles, filled in the stable case and

void in the unstable one. (a) Regime I: χ ∈ (0, χ(1)), (b) Regime II: χ ∈ (χ(1), χ(2)),

(c) Regime III: χ ∈ (χ(2),∞).

3.4 Travelling wave solutions

During the osteoconduction phase, the space between the implant and the

host bone is invaded by osteogenic cells that migrate from the bone. Math-

ematically, this can be seen as the appearance a travelling wave solution of

the system (1). Thus, the study of travelling waves with our reduced system

is interesting, since it permits to extract information with a direct biological

interpretation, namely:
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• Bounds for the speed of propagation of the front. This speed is a measure of

the velocity of invasion of the space around the implant by osteogenic cells.

Therefore, it is a critical parameter that conditions the time needed for the

implant to osseointegrate.

• Steady states between which travelling waves will develop. Again, this con-

stitutes a relevant source of information, since it allows us to know the

concentrations of cells and the growth factor before and after the propaga-

tion of the wave. In our case, the density of cells after the propagation of

the wave is another critical value for osseointegration, given that the larger

the density of cells, the faster bone matrix will be deposited in subsequent

phases.

Formally travelling waves are solutions of the form z(x, t) = Z(r), where r =

x−at and a is the wave velocity (see Murray (2005) for a detailed description of

travelling wave analysis). Below, we present the different travelling waves that

can develop depending on the regime that we consider (Appendix C describes

the mathematical analysis):

Regime I: χ ∈ (0, χ(1)) It can be shown that in this interval a travelling wave

from zt to z0 does exist. A lower bound for the wave speed is found analyti-

cally, namely a ≥ a
(1)
min = 2

√
Dm[σ − (αmb + Am)]. In the simulations shown

in the next section, it is found that the numerically evaluated wave speed

compares well with this minimum value a
(1)
min. This also holds true for the

rest of travelling waves described below.

Regime II: χ ∈ (χ(1), χ(2)) The same travelling wave from zt to z0 also ap-

pears in this regime, with the same bound for the wave speed. Further, a

second travelling wave joining z0 with z+ can also develop, with no analytic

lower bound for the wave velocity. Note that there is no travelling wave
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solution joining directly the states zt and z+.

Regime III: χ ∈ (χ(2),∞) The number of possibilities is greater in this in-

terval. In first place, a travelling wave solution from zt to z0 also exists, now

with the condition for the wave speed a ≥ max{a
(1)
min, a

(2)
min}, where

a
(2)
min = 2

√√√√Ds

(
χm0

β2

−As2

)
(2)

Next, the travelling wave joining z0 with z+ also appears, in this case with

the restriction for the wave speed a ≥ a
(2)
min. Finally, the steady states zt and

z+ are now connected by a third travelling wave type solution, with a lower

bound for the velocity equal to a
(1)
min.

3.5 Numerical simulation of the simplified model

Armed with the knowledge of the main features of the simplified model thanks

to the mathematical analysis described above, we now investigate numerically

the formation of travelling wavefronts depending on cell stimulation, char-

acterised in this approach by χ. For this purpose, the nondimensionalised

system described by Eqs. (1) has been solved using the Matlab solver pdepe

in the one dimensional domain x ∈ [0, 100], where x is the nondimensional

space variable. This domain represents the space between the host bone and

the implant. Hence, the left end stands for the surface of the bone while the

right one stands for the surface of the implant. As stated in previous sections,

with this simplified model we are able to reproduce only the osteoconduction

phase. The initial conditions must therefore account for the situation before

this phase has started, that is, no osteoblasts, a low concentration of growth

factor s2 in the whole domain and a low concentration of osteogenic cells near

the surface of the host bone and null in the rest. Zero flux boundary conditions
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have been considered at both ends, representing the impossibility of cells and

growth factors to migrate through the surface of the implant and the bone.

The results of the numerical simulations with different initial conditions and

three different sets of parameter values χ = 1.5, 3.0, 7.5, corresponding to the

three different regimes of the model, are shown in Figs. 2-6.

Figure 2. Numerical solution of the model given by Eqs. (1) in the Regime I (χ = 1.5)

with the following initial conditions (m(x, 0) = m+/10 if x < 5, 0 otherwise;

s2(x, 0) = s2+/100; b(x, 0) = 0). (a) Phase portrait with the trajectory of the

travelling wave. Nondimensionalised values of (b) osteoblast concentration b and

(c) osteogenic cells concentration m. Growth factor concentration s2 is not shown

since it decreases to zero within the first increments of the simulation and remains

constant from that moment. Wavefronts travel from left (surface of the host bone)

towards the right (surface of the implant) at constant speed. Solutions are shown at

successive time intervals τ = 0, 10, 20, . . . , 150. Nondimensional parameters are as

follows: Dm = Ds2 = 1.0, Bm2 = 0, σ = 1.5, αm = βm = 2.0, Am = 1.25, αmb = 0.1,

As2 = 0.5, αm2 = 0.5, βm2 = 1.0, Ab = 0.05. Critical values of bifurcation parameter

χ are χ(1) � 2.08 and χ(2) = 5.0. All the parameters except αm2 take the same value

in Figs. 2-6.

For the set of parameters chosen in Fig. 2, the system lies in the Regime I. After

an initial transient period, wavefronts for m and b develop, acquire constant

shape and move along the domain with constant speed towards the right, that

is, from the host bone towards the implant surface. This corresponds to a

travelling wave from the unstable steady state zt to the stable steady state
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Figure 3. Numerical solution of the model given by Eqs. (1) in the Regime II

(m(x, 0) = m+/10 if x < 5, 0 otherwise; s2(x, 0) = s2+/100; b(x, 0) = 0). (a) Phase

portrait with the trajectory of the travelling wave. Nondimensionalised values of (b)

osteoblast concentration b and (c) osteogenic cells concentration m. Growth factor

concentration s2 is not shown since it decreases to zero within the first increments

of the simulation and remains constant from that moment. Wavefronts travel from

left (surface of the host bone) towards the right (surface of the implant) at constant

speed. Solutions are shown at successive time intervals τ = 0, 10, 20, . . . , 150.

z0. Note that the concentration of the growth factor rapidly tends to zero and

remains there during the rest of the simulation. This could be expected since

this travelling wave lies in the s2 = 0 plane in the phase diagram (see Fig. 1a).

In a biological context, this represents the invasion of the cavity between bone

and implant by cells, that is, the osteoconduction phase.

With equivalent initial conditions, a very similar result is obtained in the

Regime II and is shown in Fig. 3. However, with the same parameter values

as in Fig. 3, if the initial conditions at one of the ends of the domain —the

host bone end—, are in the attraction region of the steady state z+ —a high

density of osteogenic cells—, the behaviour of the solution is markedly differ-

ent, as can be seen in Fig. 4. In this case we impose as initial condition a high

concentration both of osteogenic cells and growth factor in the neighbour-

hood of the left end. This causes the formation of a first wavefront between

zt and z0 and, immediately later, a second one between z0 and the high cell
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Figure 4. Numerical solution of the model given by Eqs. (1) in the Regime II

(χ = 3.0, αm2 = 1.0) with the following initial conditions (m(x, 0) = m+/1.2 if

x < 5, 0 otherwise; s2(x, 0) = s2+/1.2; b(x, 0) = 0). (a) Phase portrait with the tra-

jectory of the travelling waves. Nondimensionalised values of (b) osteoblast concen-

tration b, (c) osteogenic cells concentration m and (d) growth factor concentration

s2. Two travelling fronts develop, one from zt to z0, highlighted with arrow 1, and

next, after the first one has fully developed, a second one from z0 to z+, highlighted

with arrow 2. Solutions are shown at successive time intervals τ = 0, 10, 20, . . . , 150.

concentration state z+. Biologically this also represents the characteristic cell

migration of the osteoconduction phase, but now leading to a higher cell den-

sity compared to the results of Figs. 2-3. Note that the second wave speed

is much slower compared to the first one, so the desirable final state z+ is

reached after a long healing period. Note also that the development of a single

travelling wave between zt and z+ is not possible, since this trajectory does

not exist in the phase diagram of this regime. The osseointegration velocity

is therefore limited in this case by the small second wave speed that does not

have any analytical lower bound.

The most desirable situation is shown in Fig. 5, corresponding to a direct and

fast travelling wave between zt and z+. This is possible because the system is
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Figure 5. Numerical solution of the model given by Eqs. (1) in the Regime III

(χ = 7.5, αm2 = 2.5) with the following initial conditions (m(x, 0) = m+/5 if x < 5,

0 otherwise; s2(x, 0) = s2+/100; b(x, 0) = 0). (a) Phase portrait with the trajectory

of the travelling wave. Nondimensionalised values of (b) osteoblast concentration

b, (c) osteogenic cells concentration m and (d) growth factor concentration s2.

Wavefronts travel from left (surface of the host bone) towards the right (surface

of the implant) at constant speed. Solutions are shown at successive time intervals

τ = 0, 10, 20, . . . , 150.

now in the Regime III, where z0 and z+ do not compete for regions of attraction

since z0 is now unstable (Fig. 1c), and also because the initial concentration

of osteogenic cells at the end of the host bone is relatively high. Otherwise a

two-wavefront-type solution would emerge again, as is shown in Fig. 6. In this

latter case, after the propagation of the first wavefront, the solution in the

whole domain corresponds to the unstable state z0, so spontaneously a second

travelling wave leading to the invasion of the domain by a high cell density is

formed. Note that this solution, although slower than the one of Fig. 5, is still

attractive, since it is considerable faster than the invasion in Fig. 4 and does

not require initial conditions close to z+. Hence, in this case the adequate cell

stimulation compensates the poor source of osteogenic cells.
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Figure 6. Numerical solution of the model given by Eqs. (1) in the Regime III

(χ = 7.5, αm2 = 2.5) with the following initial conditions (m(x, 0) = m+/10 if x < 5,

0 otherwise; s2(x, 0) = s2+/100; b(x, 0) = 0). (a) Phase portrait with the trajectory

of the travelling waves. Nondimensionalised values of (b) osteoblast concentration

b, (c) osteogenic cells concentration m and (d) growth factor concentration s2. Two

travelling fronts develop, one from zt to z0, highlighted with arrow 1, and next,

after the first one has fully developed, a second one from z0 to z+, highlighted with

arrow 2. Solutions are shown at successive time intervals τ = 0, 10, 20, . . . , 150.

4 Propagation of the ossification front: a second simplified model

In the previous section the volume fractions of the components of the matrix

were not taken into account so we could not examine the new bone forma-

tion. Here, we propose another simplified model in which growth factors and

platelets are neglected with the purpose of exploring the shape of the ossifi-

cation front. From the experiments it is well known that either the implant

becomes surrounded by an ossification front coming from the host bone (dis-

tance osteogenesis) or new bone forms first on the implant surface and the

front propagates from there towards the inside of the cavity between the host

bone and the implant (contact osteogenesis). The aim of this section is to

study how the composition of the matrix is altered as the ossification front
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crosses a region of the cavity, independently of the type of osteogenesis that

we consider.

To study the deposition of bone, it is not necessary to contemplate the equa-

tions for platelets and the growth factor s1, because the effect of platelet

activation is to alter the direction of propagation of the ossification front

(contact/distance osteogenesis), but not the way new bone is laid down as the

front propagates. Furthermore, the growth factor s2 needs not to be included

in such a model, since its main effect is to stimulate osteogenesis by increasing

the rate at which bone formation takes place, but again does not provoke any

substantial change in the way bone matrix is deposited.

Therefore the reduced model that we suggest retains the equations for the

osteogenic cells, m, and osteoblasts, b, as well as the volume fractions of the

components of the matrix: fibrin network, vf , woven bone, vw, and lamellar

bone, vl. The nondimensionalised equations of the reduced model read as:

∂m

∂t
= Dm∇

2m + σm(1−m)− (αmb + Am)m (3a)

∂b

∂t
= αmbm− Abb (3b)

∂vf

∂t
= −αwbvf (1− vw) (3c)

∂vw

∂t
= αwbvf (1− vw)− γvw(1− vl) (3d)

∂vl

∂t
= γvw(1− vl) (3e)

(3f)

The flux and kinetic terms are straightforwardly inferred from the full model,

simply neglecting the influence of the growth factors. The kinetics of the sys-
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tem is now simpler than in Section 3, so the analysis is simplified. We follow the

same steps as before: first the fixed points of the system are determined, then

the possibility of having travelling wave solutions is studied analytically and

finally one dimensional finite difference simulations are performed to examine

the shape of the wave fronts.

Denoting the homogeneous steady states by z∗ = (m∗, b∗, v∗f , v
∗

w, v∗l ), we find

two of them of interest: z∗0 = (m0, b0, 0, 0, 1) and z∗t = (0, 0, 1, 0, 0), where

m0 = 1 − (αmb + Am)/σ and b0 = αm0/Ab. We assume that σ > αmb + Am

so that m0 is positive and physically realistic. The first state, z0, represents a

situation in which the composition of the matrix corresponds to pure lamellar

bone. It is therefore the result of the whole bone healing process. On the other

hand, zt stands for the situation that appears just after implantation, where

the extracellular matrix is composed only of a fibrin network and there are

no osteogenic cells or osteoblasts. Using standard techniques (Murray, 2005)

it is possible to show that a travelling wave can develop between zt and z0

with minimum wave speed of 2
√

Dm[σ − (αmb + Am)]. After the propagation

of this wave the composition of the matrix changes from a pure fibrin network

to lamellar bone. The spatial propagation of this travelling wave solution is

interpreted biologically as the advance of the ossification front.

Following the same procedure as in the previous section, we solve the system

of Eqs. (3) numerically in a one dimensional domain x ∈ [0, 100] that can be

thought as the cavity between the implant and the host bone. Again the left

end of the domain represents the surface of bone whereas the right one stands

for the surface of the implant. Zero flux boundary conditions are applied to

both ends. We model the propagation of the ossification front in a case of

distance osteogenesis, so the initial conditions consist of a low concentration

21



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

of osteogenic cells near the surface of bone and null in the rest of the domain, a

null concentration of osteoblasts and a matrix composed exclusively by fibrin.

The results of the numerical simulation are shown in Figs. 7-8.

Figure 7. Evolution of the density of osteogenic cells, m, and osteoblasts, b. Wave-

fronts travel from left (host bone) to right (implant) at constant speed. x denotes

the distance to the surface of the host bone. Nondimensional parameters are as

follows: Dm = 1.0, σ = 2.5, Am = 1.25, αmb = 1.0, Ab = 0.5, αw = 1.0, γ = 0.25.

In the figures we appreciate the early formation, development up to a constant

shape and propagation at a constant velocity of the ossification front. Observe

the shape of the cellular waves (Fig. 7): they are very similar, although the

osteoblast wave is slightly delayed with respect to the one of osteogenic cells.

This is obvious since the only source of osteoblasts is precisely the differen-

tiation from the osteogenic precursor. One might intuitively expect a greater

delay between the two moving fronts of cells, but this result is realistic if one
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Figure 8. Evolution of the composition of the matrix: volume fractions of fibrin, vf ,

woven bone, vw and lamellar bone, vl. Wavefronts travel from left (surface of the

host bone) towards the right (surface of the implant) at constant speed. x denotes

the distance to the surface of the host bone.

considers that cell differentiation is a fast process (Bailón-Plaza and van der

Meulen, 2001) compared to the time scale of the full invasion of the cavity by

bone.

Note that the profiles of the volume fractions along the ossification front have

a very particular shape. In first place, ahead of the front (right side in Fig. 8)

the composition of the matrix corresponds to pure fibrin. Far behind the front

(on the left side), the composition corresponds to lamellar bone. This is an area

that has already been crossed by the ossification front. Between these areas

there is a transition region where the volume fraction of woven bone reaches
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a maximum. Hence, the profile of woven bone corresponds to a propagating

pulse which is notably asymmetric, since the ahead (right) front is markedly

steeper than the rear (left) one. This is again in agreement with the basis of

bone healing since the processes that take place in the head front of the pulse

(cell differentiation, laying done of bone matrix) are quite fast compared to

the speed of remodelling, that occurs at the rear tail of the pulse. Observe

that at a certain instant of time deposition of bone is localised in the small

region in the front part of the wave.

5 Influence of geometry: numerical simulation of the full model

5.1 Description of the simulation

In Part 1 of this paper (Moreo et al., 2008) the complete model was numerically

solved by means of the finite element method in a geometry corresponding to

the cavity between two threads of a dental implant and host bone in which

the implant was placed. The simulations were performed with two different

implant surface microtopographies to show the ability of the model to repro-

duce the differences between contact and distance osteogenesis. In this section

we present the results of numerical simulations of bone ingrowth around a

screw-shaped dental implant characterised by threads with inclined walls and

longitudinal grooves of circular section, proposed by some manufactures as an

innovative way to enhance the formation of new bone and achieve a better in-

terlock between bone and implant (Hall et al., 2005). We intend to investigate

the effect of these grooves and find out if the model provides any clue about

the role of this particular implant geometry in peri-implant bone formation.
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All the details of the simulation have already been described in detail in Moreo

et al. (2008) and are here briefly discussed. The computational domain is two

dimensional and is depicted in Fig. 9a, where the grooves of the surface of the

implant thread can be seen. Two different values of the density of adsorbed

proteins at the implant surface have been considered: p = 0.5μg/mm−2, sim-

ulating the case of a high microtopography implant, and p = 0.1μg/mm−2, in

the case of an implant of low surface microtopography (Sela et al., 2007).

As initial conditions, we have considered a concentration of 2.5×108 platelets/ml,

being this high value characteristic of blood (Ganong, 2005), and residual con-

centrations of osteogenic cells and osteoblasts of 103 cells/ml. Both growth

factors are also present at the initial time at a concentration of 1 ng/ml, resid-

ual in comparison with typical values in bone healing (Joyce et al., 1990).

Zero flux boundary conditions have been applied for all the species of model

at the surface of the implant and the host bone, except for the concentration

of osteogenic cells at the surface of bone during the first 14 days, that was

fixed to 2× 105 cells/ml. The healing period that was simulated consisted of

twelve months, more than sufficient in clinical practice to obtain a full osseoin-

tegration of the implant and achieve a high degree of remodelling of woven

bone into lamellar bone. Details on the numerical method and the values of

the model parameters can be found in Moreo et al. (2008).

5.2 Results

In first place, note that as early as four days after implantation some differ-

ences in the concentration of the growth factor s1 secreted by platelets appear

between the the two types of microtopographies. In the rough implant (high
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(a) (b)

Figure 9. (a) Sketch of the insertion of a screw-shaped dental implant in a drilled

cavity of bone, where the computational domain of our simulations is highlighted.

(b) Boundary conditions.

(a) (b)

Figure 10. Concentration of growth factor s1 (x100 ng/ml) after four days in the

case of an implant with (a) high microtopography and (b) low microtopography.

microtopography) s1 reaches a value ∼50% higher than in the polished one

(low microtopography), and additionally a marked gradient of the concentra-

tion develops, being higher near the implant surface. However, more important

than this discrepancy, originated from the different types of surfaces and al-

ready detected in Part 1 of this work (Moreo et al., 2008), is the effect of the

geometry of the grooves upon the concentration of s1. Note that the highest
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value of s1 is reached near the implant surface inside the grooves and it also

there where a more abrupt gradient in the concentration is obtained. This

could be expected just by the geometry of the surface: the greatest rate of

growth factor secretion appears next to the surface, where platelets are acti-

vated thanks to the presence of adsorbed proteins. Thus, s1 diffuses from the

surface towards the internal regions of cavity, but the curvature of the surface

at the grooves is responsible for a concentrating effect, so the growth factor

tends to accumulate inside the grooves. This strongly conditions the posterior

behaviour of osteogenic cells in several ways. In first place, the migration of

osteogenic cells is affected by chemotaxis, so they preferentially move along

gradients of the growth factor, that is, inside the grooves. Furthermore, the

rate of cell mitosis and differentiation is also enhanced by the local level of s1.

Therefore, a higher density of osteogenic cells is achieved inside the grooves,

particularly in the case of the high microtopography surface implant, where

the effect of grooves is more pronounced. Moreover, these cells differentiate

into the osteoblastic phenotype at a faster rate.

The characteristic effect of this altered migration, proliferation and differen-

tiation of cells inside the grooves can be noticed in the formation of bone.

In Figs. 11 and 12 the temporal evolution of the volume fraction of lamellar

bone has been represented for a rough and a polished implant, respectively.

First, remark that again the characteristic contact osteogenesis with initial

formation of lamellar bone on the implant surface occurs with the rough im-

plant, while with the polished implant distance osteogenesis predominates and

a well-defined ossification front propagates in this case from the surface of the

surrounding host bone inside the cavity. This was presented in Part 1 of the

work (Moreo et al., 2008). Nevertheless, what must be here highlighted is the
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Figure 11. Temporal evolution of the volume fraction of lamellar bone around an

implant with a high surface microtopography.

early deposition of bone inside the grooves, characteristic of rough implants.

From Fig. 11 we conclude that the grooves have a stimulating effect on bone

formation, that can be observed after 1 and 2 months of healing, when the vol-

ume fraction of lamellar bone is greater inside the grooves compared with the

rest of the cavity. In the case of the polished implant, this effect also appears

after the second month of healing, but its magnitude is lower, as could be ex-

pected. The temporal evolution of the global level of bone formation is similar

to the results obtained in Part 1, that were within the range of experimental
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results.

Figure 12. Temporal evolution of the volume fraction of lamellar bone around an

implant with a low surface microtopography.

6 Discussion

In Part 1 of this work (Moreo et al., 2008) a mathematical model for the simu-

lation of bone healing around endosseous implants was presented, its biological

basis was discussed and numerical simulations were performed to show some of

its capabilities. The goal of this second part was to further evaluate the model
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by means of analysing the effect that certain factors (initial cell population at

the surface of the host bone, implant geometry and cell stimulation) have upon

peri-implant bone ingrowth and studying how the composition of the matrix

is altered as the ossification front propagates. This goal has been achieved

through the combination of theoretical analysis and numerical simulations.

In Section 3, a mathematical analysis of the model permits to address the

effect of cell stimulation on osteoconduction. The main biological conclusion

that can be drawn from this analysis is that the speed of propagation of the

osteogenic cells front, as well as the level of osteoblast concentration that can

be achieved at the end of the osteoconduction phase, depend on the degree of

stimulation of the cells and initial density of osteogenic cells at the surface of

the host bone. For instance, an initial high concentration of osteogenic cells

or growth factors at the surface of the host bone, typical of trabecular bone,

does not guarantee a fast invasion of the cavity between bone and implant

by cells if they lie under very reduced cell stimulation (regime I). However,

the migration of cells will be fostered if they are sufficiently stimulated. In

addition, in this second case (regimes II and III), the density of osteogenic

cells at the surface of the bone does play an important role, since the final

state achieved at the end of osteoconduction as well as the speed at which this

state is reached depend on the initial number of cells. This varying density may

be related to the type of bone. Trabecular bone, although distinguishable by

their inferior mechanical properties compared to cortical bone, is a rich source

of osteogenic cells, that are derived from both the endosteal trabecular surfaces

and the marrow that fills the pores of the bone tissue. Therefore, assuming

that the density of trabecular bone where an implant is going to be placed

is high enough to provide sufficient mechanical stability, peri-implant bone
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healing may be able to evolve rapidly compared to a scenario in which the

macroarchitecture of the host bone is cortical. This was described by Davies

(2003) as “the paradox of poor quality bone”. Nevertheless, note that a region

of trabecular bone with excessive low density and poor mechanical properties

is not adequate for the placement of an implant since its primary stability

is compromised, what can lead to the occurrence of excessive micromotions

and the development of a fibrous capsule. This is usually the origin of higher

failure rates of dental implants in the posterior maxilla (Palmer, 1999).

Along the paper, χ has been always considered as a measure of the gen-

eral level of cell stimulation, without making explicit reference to the specific

stimuli that are comprised in this parameter. The mechanical environment,

for example, can be one possible origin of cell stimulation. In fact, it is known

that moderate mechanical loading stimulates two crucial phenomena in peri-

implant bone healing: osteogenic cell differentiation (Carter and Giori, 1991;

Palma et al., 2005; Ignatius et al., 2005), quantified by αmb in our model, and

growth factor secretion (Raab-Cullen et al., 1994; Yeh et al., 1994; Kobayashi

et al., 2000), denoted by α2. According to these experimental results, an hypo-

thetical rise of the level of mechanical stimulation would lead to an increase of

χ and, thus, χ could be considered to some extent as a measure of mechanical

stimulation (see Fig. 13).

However, the previous reasoning is only valid under low or moderate levels

of mechanical loading, since under severe mechanical solicitations phenomena

such as fibrous tissue formation could take place, what has not been taken

into account in the model. In particular, χ would increase with the mechani-

cal stimulation, due to the increase of αmb and α2, but would decrease under

severe loading (Fig. 13), due to an increase of Ab (osteoblast die under ex-
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Figure 13. Qualitative dependence of χ on the level of mechanical stimulation. The

model is only valid in the low-moderate loading case and must be considered just

as a rough approximation in the case of severe loading. The three different regimes

(I, II, III) of Fig. 1 are shown.

cessive load) and a decrease of αmb (osteogenic cells do not differentiate into

osteoblasts under these conditions, but into chondrocytes or fibroblasts). So,

one possible specific interpretation of χ, with the limitations previously men-

tioned, is the level of mechanical cellular stimulation. Although the present

model and analysis is only valid for low and moderate mechanical stimulation

of the implant, this situation is the most interesting one, given that scenar-

ios of excessive mechanical loads are a priori known to be harmful for the

osseointegration of an implant and must be avoided.

Furthermore, an increase of χ can effectively be the result of mechanical stim-

ulation, but it can also be the consequence of any other sort of adequate cell

stimulation. For example, controlled release of osteogenic growth factors from

the surface of the implant.

Additionally, we examined the effect that the geometry of an implant can exert
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on the deposition of bone around it. In particular, we decided to find out if the

model was able to explain the early formation of bone that has been observed

experimentally inside macroscopic grooves located at the surface of the threads

of dental implants (Hall et al., 2005). By means of numerical simulations we

show that the model indeed predicted this preferential formation of new bone

in the grooves in agreement with the experimental results and offer a simple

explanation: the shape of the grooves promotes the concentration inside of

them of growth factors and signalling molecules secreted by platelets, so they

become a primary site of migration for osteogenic cells where additionally

their differentiation into osteoblasts and the laying down of bone matrix are

fostered. This opens a new line of research focused on the study of the influence

of the shape of the threads of dental implants on the biological processes of

bone healing.

To conclude, we highlight the two main original aspects of this second part of

work:

• The study of the influence of the generic level of cell stimulation on peri-

implant bone healing. It is remarkable that this study has been done analyt-

ically, what has permitted to acquire information regarding the qualitative

behaviour of the model for all the values of the model parameters. This is

useful given the complexity of the model and the large number of parame-

ters.

• The study of the effect of the grooves placed at the surface of the implant

threads upon the biology of peri-implant bone healing. The majority of

previous theoretical works on this point have looked into the influence of

the geometry of the threads on the mechanical behaviour of the implant,

not taking into account any biological implication.
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The model must be nonetheless improved to accommodate biological phenom-

ena such as endochondral ossification or vasculogenesis to augment its range

of application. The explicit consideration of the mechanical behaviour of the

host bone and the implant is also of interest, since it would allow to study

other important issues that influence the performance of endosseous implants,

such as primary stability or the mechanical condition of the surrounding bone.
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A Description of the full model equations

Below we present the equations that particularise the evolution of each model

variable corresponding to (Moreo et al., 2008):

Platelets, c(x, t)

∂c

∂t
= ∇ · [Dc∇c−Hcc∇p]−Acc (A.1)

Dc is a diffusion coefficient that quantifies the rate of cell random dispersal, the

extent of platelet adhesion to the surface depends on the value of the parameter

Hc and Ac is the rate of cell removal due inflammatory mechanisms.

Osteogenic cells, m(x, t)

∂m

∂t
= ∇ · [Dm∇m−m(Bm1∇s1 + Bm2∇s2)]

+

(
αm0 +

αms1

βm + s1
+

αms2

βm + s2

)
m
(
1−

m

N

)
︸ ︷︷ ︸

Proliferation

−
αmbs1

βmb + s1
m︸ ︷︷ ︸

Differentiation

− Amm︸ ︷︷ ︸
Death

(A.2)

Osteogenic cell flux comes from random cell movement that can be biased by

the presence of growth factors. Mathematically this is modelled by means of

linear diffusion, with coefficient Dm, and linear chemotaxis along gradients of
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the growth factors s1 and s2 with coefficients Bm1 and Bm2. For the kinetics,

there is a proliferative term consisting of a logistic growth with a natural linear

rate αm0 that can be enhanced in a dose-dependent manner by the presence of

s1 and s2; phenotypic differentiation into osteoblasts is stimulated by growth

factor s1; and natural cell death is assumed to take place at a linear rate Am.

Osteoblasts, b(x, t)

∂b

∂t
=

αmbs1

βmb + s1
m−Abb (A.3)

The kinetics has a source term of differentiation from the osteogenic phenotype

at a maximum rate αmb and a decay term representing differentiation into

osteocytes with rate Ab.

Generic growth factor 1, s1(x, t)

∂s1

∂t
= ∇ · [Ds1∇s1] +

(
αc1p

βc1 + p
+

αc2s1

βc2 + s1

)
c− As1s1 (A.4)

Random dispersal of the growth factor is modelled as a linear diffusion with

coefficient Ds1. The first kinetic term takes into account the secretion of s1 by

platelets, which is fostered by the concentration of adsorbed proteins p, whose

effect is quantified by αc1, and the own growth factor s1, quantified by αc2.

There is also a natural decay of the growth factor with rate As1.

Generic growth factor 2, s2(x, t)

∂s2

∂t
= ∇ · [Ds2∇s2] +

αm2s2

βm2 + s2

m +
αb2s2

βb2 + s2

b−As2s2 (A.5)
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The structure of the equation is completely equivalent to the one of s1, al-

though in this case there are two source terms corresponding to secretion of

s2 by osteogenic cells and osteoblasts.

Fibrin network volume fraction, vf(x, t)

∂vf

∂t
= −

αws2

βw + s2
bvf (1− vw) (A.6)

The only kinetic term comes from partial substitution of the fibrin network

by woven bone matrix, that is, secretion of new bone by osteoblasts. The rate

of deposition of woven bone depends on the value of the parameter αw, is

stimulated by the presence of s2 and increases linearly with the number of

osteoblasts.

Woven bone volume fraction, vw(x, t)

∂vw

∂t
=

αws2

βw + s2
bvf (1− vw)− γvw(1− vl) (A.7)

Woven bone formation is taken into account by the first term, that was ex-

plained in the previous paragraph and describes the formation of woven bone

that replaces the initial fibrin network. The second term quantifies the remod-

elling of woven bone into lamellar bone, being γ the linear rate at which this

process takes place.

Lamellar bone volume fraction, vl(x, t)

∂vl

∂t
= γvw(1− vl) (A.8)

39



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

Finally, the only contribution to the evolution of lamellar bone comes from

remodelling of woven bone.

B Steady states and bifurcations

Expressions for zt and z0 are trivial to obtain and were presented in Sec-

tion 3.2. Analytical expressions for z± are, however, not quite as simple and

are obtained by searching nontrivial solutions of f = g = h = 0. In particular,

s2± are given by the real positive roots of the polynomial a2s
2
2 + a1s2 + a0,

where coefficients ai are defined as

a2 = As2(1 + αm)

a1 = (1 + αm)(β2As2 − χm0) + αmχ(m0 − 1) + βmAs2

a0 = βm(β2As2 − χm0)

(B.1)

Once s2± are determined, m± and b± are straightforwardly derived from the

condition g = h = 0:

m± = As2χ
−1(β2 + s2±)

b± = αmbA
−1
b m±

(B.2)

Taking into account that a2 > 0, the existence conditions of the steady states

z± can be summarised as follows:

• If a1 < 0, a0 > 0 and a2
1 − 4a2a0 > 0, then z+ and z− exist, both with real

positive values (Fig. 1b). The sign of a1 and a0 is derived from Descartes’
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rule of signs and the positiveness of the determinant is required to ensure

the obtention of real solutions.

• If a0 < 0, then the determinant a2
1 − 4a2a0 is always positive, so the so-

lutions are real. However, the product of the solutions verifies in this case

s+s− = a0a
−1
2 < 0, indicating that we only have one positive solution. We

are therefore in the situation of Fig. 1c.

• Otherwise, there are no such steady states.

The stability of the steady states can be determined in the standard way from

the study of the eigenvalues of the jacobian matrix of the system and the main

results have been presented in Section 3.2.

¿From the existence conditions it is easy to deduce the bifurcation values of the

system. In first place, the saddle-point bifurcation leading to the appearance

of the pair of steady states z± clearly occurs when a2
1 = 4a2a0, a1 < 0, a0 > 0.

From this condition the value of χ(1) is obtained as

χ(1) =
−a′1 +

√
a′21 − 4a′2a

′
0

2a′2
(B.3)

where coefficients a′i are defined as

a′2 = (αm + m0)
2

a′1 = 4m0As2(1 + αm)βm − 2As2(αm + m0)[βm + β2(1 + αm)]

a′0 = A2
s2[βm − β2(1 + αm)]2

(B.4)

Finally, the transcritical bifurcation happens when a0 = 0, leading to the

following expression for χ(2):
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χ(2) = β2As2m
−1
0 (B.5)

C Travelling wave solutions

Travelling wave solutions are investigated by means of the variable transforma-

tions m(x, t) = M(r), s2(x, t) = S2(r) and b(x, t) = B(r), where r = x−at and

a is the wave velocity. This change of variables yields a system of five coupled

ordinary differential equations for M , S2, B, U = dN/dz and V = dS2/dz

in terms of the travelling wave coordinate, r. We denote the chronic non

healing steady state in the (M, S2, B, U, V )-space by Zt = (0, 0, 0, 0, 0), the

low density state by Z0 = (m0, 0, b0, 0, 0) and the high density states by

Z± = (m±, s2±, b±, 0, 0).

A necessary condition for travelling wave transitions from Zt to Z0 is the

existence of a heteroclinic trajectory (Strogatz, 2001) from Zt to Z0 in the

(M, S2, B, U, V )-space. The existence of this trajectory can be intuitively ex-

pected from the look of the phase portrait of Fig. 1 and the shape of Eqs. (1)

when we set s2 = 0. Additionally we must require that this trajectory lies

entirely within the subspace (M, S2, B) ≥ (0, 0, 0) in order to be physically

realistic. Thus, the eigenvalues of the jacobian matrix of the system for both

equilibrium points must be real to avoid locally oscillatory solutions that would

cause M , S2 and B to be negative for some r. A linear stability analysis at

Zt and Z0 shows that this condition is satisfied if and only if a ≥ a
(1)
min =

2
√

Dm[σ − (αmb + Am)] when χ ∈ (0, χ(2)) and a ≥ max{a
(1)
min, a

(2)
min} when
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χ ∈ (χ(2),∞), where

a
(2)
min = 2

√√√√Ds

(
χm0

β2
−As2

)
(C.1)

The rigorous proof of existence of a heteroclinic trajectory from Z0 to Z+ is

a very hard task, but linear stability analysis reveals the existence of a stable

local manifold at Z0 and an unstable manifold at Z+. Therefore, with the

conjecture that such heteroclinic trajectory exists, travelling wave solutions

are possible. The condition (M, S2, B) ≥ (0, 0, 0) does not impose any lower

bound on the wave speed when χ ∈ (χ(1), χ(2)), but the restriction a ≥ a
(2)
min is

obtained when χ ∈ (χ(2),∞). Numerical solution of the system confirms that

this trajectory does exist when χ ∈ (χ(1),∞).

The same argument applies for the case of a transition between Zt and Z+.

Numerical solution of the system demonstrates that this travelling wave exists

only when χ ∈ (χ(2),∞). In this case the lower bound that is obtained for the

wave speed is a
(1)
min.
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