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Abstract
Taking into account the interplay between spatial ecological dynamics and selection is a major

challenge in evolutionary ecology. Although inclusive fitness theory has proven to be a very useful
tool to unravel the interactions between spatial genetic structuring and selection, applications of
the theory usually rely on simplifying demographic assumptions. In this paper, I attempt to bridge
the gap between spatial demographic models and kin selection models by providing a method to
compute approximations for relatedness coefficients in a spatial model with empty sites. Using
spatial moment equations, I provide an approximation of nearest-neighbour relatedness on random
regular networks, and show that this approximation performs much better than the ordinary pair
approximation. I discuss the connection between the relatedness coefficients I define and those used
in population genetics, and sketch some potential extensions of the theory.

Understanding the feedback between spatial structuring and selection is a major challenge in evolu-
tionary theory. Different ecological models have been proposed to tackle this problem (Tilman and Kareiva, 1997;
Dieckmann et al., 2000; Rousset, 2004; Lion and van Baalen, 2008). Most models for the evolution
of spatially structured populations assume that space can be represented as a network of patches
or demes, each site being occupied by a finite number of individuals (Tilman and Kareiva, 1997;
Dieckmann et al., 2000; Rousset, 2004; Lion and van Baalen, 2008). Such deme-structured popula-
tion models can be traced back to works by Wright (1943), Kimura (1953), and Malécot (1975), and
have a long history in spatial population genetics (reviewed in Rousset (2004)).

Among the several methods that have been proposed to analyse the selection process in deme-
structured populations, inclusive fitness theory has proven to be a powerful technique (Rousset and Billiard, 2000;
Rousset, 2004; Taylor et al., 2007; Grafen and Archetti, 2008). Although inclusive fitness theory has
been developed in a very general way, its applications are usually restricted to a specific class of mod-
els in which the size of each deme is fixed (but see Rousset and Ronce (2004), Lehmann et al. (2006),
Grafen (2007), and Alizon and Taylor (2008)). The assumption of fixed local density is a strong one
from an ecological point of view, and as a consequence, the conclusions of this type of models de-
pend in general on very specific assumptions on density-dependence and habitat saturation. Strictly
speaking, a (sometimes overlooked) assumption in those models is that reproduction takes place at
a large (ideally infinite) rate if generations are overlapping, or that each individual produces a large
(ideally infinite) number of juveniles before population regulation if generations do not overlap. Then,
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the population is always at carrying capacity, and all locations in space will contain a fixed number
of individuals at each time. An open problem is to extend the theory in order to encompass more
realistic ecological scenarios that take into account the feedback between population dynamics and
evolution. A useful approach to this problem is to derive inclusive fitness from the ecological dynamics
(van Baalen and Rand, 1998; Lion and van Baalen, 2007; Jansen and Vitalis, 2007).

In deme-structured models with constant deme size, exact recursion equations can be derived and
solved for the equilibrium values of coefficients of relatedness between individuals at different distances,
in the limiting case of vanishing selection (Rousset, 2004). The neutral values of those coefficients of
relatedness are used to compute the inclusive fitness effect on the trait (Rousset and Billiard, 2000;
Taylor et al., 2000; Rousset, 2004; Taylor et al., 2007b). The limiting models where each site con-
tains at most one individual have been later rediscovered by mathematicians and formalised as
interacting particle systems∗1 (Durrett and Levin, 1994a; Liggett, 1985; , 1999). The voter model∗
(Holley and Liggett, 1975) forms the mathematical underpinning of the theoretical developments in
spatial population genetics. Recently, evolutionary graph theory has emphasized the importance of
network structure vs. spatial structure, and considered various declinations of the biased voter model∗
on graphs (Lieberman et al., 2005; Ohtsuki et al., 2006; Taylor et al., 2007; Sood et al., 2008).

When reproduction rate is finite and dispersal is local, spatial self-structuring occurs and leads
to patterns with regions of low and high density in space. In the limiting case where each site
can contain at most one individual, patches of individuals develop in an otherwise empty habi-
tat. These spatial demographic models have been framed in the mathematical framework of the
contact process∗ (Harris, 1974), and analysed using spatial moment equations (Matsuda et al., 1992;
van Baalen and Rand, 1998; Rand, 1999; Boots and Sasaki, 1999; van Baalen, 2000; Lion and van Baalen, 2008).
However, under these life cycle assumptions, a high-dimensional infinite system of equations is needed
to describe population dynamics. Indeed, when introducing empty sites, most of the symmetry prop-
erties that simplify the analysis of models with fixed local population size are lost. In order to obtain
an approximation of the full spatial dynamics, the authors typically rely on various moment closure
approximations, by which higher-order spatial moments are approximated as functions of lower-order
spatial moments (Matsuda et al., 1992; Sato et al., 1994; Rand, 1999; van Baalen, 2000). Although
the mathematical techniques used to analyse spatial demographic models differ from those classically
used in inclusive fitness analyses, the underlying approach is very similar. In fact, it is possible to
calculate inclusive fitness in spatial demographic models as a function of coefficients of relatedness
evaluated at neutrality (Lion and Gandon, in press). The difficulty is that this requires one to simul-
taneously describe the demographic and genetic structuring of the population, in contrast with models
with constant population size.

My aim in this article is threefold. First, I provide some results on the neutral multitype contact
process (Neuhauser, 1992), which is a minimal process for inclusive fitness analyses of spatial demo-
graphic models. Second, I show that spatial moments can be used to define various coefficients of
relatedness and I derive equations for the dynamics of these coefficients of relatedness in the neutral
model, in which the genetic and demographic structures of the population are decoupled. Third, I
show that ordinary pair approximation yields a bad estimate of nearest-neighbour relatedness even
on regular random networks and give a triple approximation that provides a better estimate on those
graphs. I discuss the relationship of the coefficients of relatedness I define with those used in the
literature, and conclude by sketching some directions for future work.

1 The neutral dimorphic contact process

I assume that space can be modelled as a regular network of N sites. Each site has n neighbours and
can harbour at most one individual. Throughout the paper, I will focus on the limiting case N →∞.
I introduce the multitype contact process (Neuhauser, 1992) in the following way: individuals can
be of two types, R or M (for resident and mutant respectively), and an individual can die at rate
d, or reproduce at rate b. If reproduction occurs, an offspring is sent to a random neighbouring
site, and survives only if the site is empty (o). In general, the rates b and d will depend on the

1Words marked with a star are explained in more detail in Appendix A.
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individual’s environment (for instance if the trait under selection is altruism, dispersal, etc.), but
since I am interested in the neutral process in which both types are identical except for their label, I
shall assume, without loss of generality, that b and d are constant. In the more general case, the rates
b and d will be functions of the amount of empty and occupied sites in an individual’s neighbourhood,
but they will not depend on the labels of neighbours if the model is neutral.

1.1 Spatial moments

The state of site x is given by a set of indicator functions σx(i), where i = o, R or M , and σx(i) is 1
if site x is in state i, and 0 otherwise. The global density of sites in state i is given by

pi =
1
N

∑
x

σx(i) = 〈σx(i)〉

where 〈.〉 denotes an average across all sites x on the network. Likewise, we can compute the global
density of pairs of sites in state ij. Because there are Nn pairs on the network, we have

pij =
1
Nn

∑
x

∑
y∈Nx

σx(i)σy(j)

where y ∈ Nx indicates that the sum is taken over all y sites connected to site x. (Note that this
definition implies that pairs are counted in both directions, so pairs ii are counted twice. This will
account for the presence of a factor two in some equations. See Morris (1997) and Rand (1999) for
more details.) We can also express this sum as

pij =
1
N

∑
x

σx(i)qx(j)

where qx(j) = 1
n

∑
y∈Nx σy(j) is the proportion of sites in state j in the neighbourhood of i. Then pij

can be expressed as
pij = 〈qx(j)|σi(x) = 1〉 pi

The expectation of qx(j) over all i sites, qj/i, measures the expected local density of j sites experienced
by an site in state i. We have the following relationship

pij = qj/ipi = qi/jpj

In a similar manner, it is possible to define higher-order moments, such as the global density of triples
pijk and the local densities qi/jk = pijk/pjk.

1.2 Expected dynamics of singlets

An individual in state i may die at rate d, or reproduce to an empty site at rate b. Then the dynamics
of pi are given by

dpi
dt

= 〈(bqx(o)− d)σx(i)〉 = (b 〈qx(o)|σx(i) = 1〉 − d)pi
The dynamics of the global densities pR and pM are thus given by the following exact equations

dpR
dt

= (bqo/R − d)pR
dpM
dt

= (bqo/M − d)pM
where qo/i is the expected density of empty sites experienced by an i individual. Therefore, the
dynamics of singlets depend on the dynamics of pairs. At equilibrium, we see that

qo/R = qo/M =
d

b

Then, in the neutral dimorphic process, the local density of empty sites experienced by an individual
is equal to d/b, the local density of empty sites around an individual in the monomorphic contact
process (Appendix B). This result will prove very useful in the next section.
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1.3 Expected dynamics of pairs

The analysis can be extended to the dynamics of pairs ij using the following equation (van Baalen and Rand, 1998;
Rand, 1999; van Baalen, 2000)

dpij
dt

=
〈∑
kl

rxy(kl→ ij)σx(k)σy(l)−
∑
kl

rxy(ij → kl)σx(i)σy(j)
〉
x; y∈Nx

where the expectation is taken over all connected sites (x, y), and rxy(kl → ij) is the local rate at
which the pair xy in state kl changes to state ij. We need to compute the conditional expectation
of those rates over all pairs kl. To do so, a bookeeping of all possible events is needed. Let us for
instance consider the dynamics of pairs MM . A pair xy in state MM can be destroyed if one of
the two individuals dies: this occurs at rate d. Or it can be created from a oM pair either if the y
individual reproduces to the empty o site, or if another neighbour of the empty site reproduces into
it. The rate at which this occurs is bqx(M), which yields the following dynamics for pMM

dpMM
dt

= 2b 〈qx(M)〉oM poM − 2d pMM

where the coefficient 2 reflects the fact that both oM and Mo pairs contribute to the dynamics of
MM pairs. The average of qx(M) is taken over all pairs xy in state oM . Because the empty site in a
oM pair has at least one M neighbour, this average is (van Baalen and Rand, 1998; Rand, 1999)

〈qx(M)〉oM =
1 + (n− 1)qM/oM

n

This gives the following equation for the expected dynamics of pMM

dpMM
dt

= 2b(φ + φ̄qM/oM )poM − 2d pMM

where I have used the notations φ = 1/n and φ̄ = (n − 1)/n. A similar analysis can be repeated for
all pairs ij. Note, however, that because of conservation relationships on the network, some equations
will be redundant.

The dynamics of pairs in turn depend on the dynamics of triples. Equations for the dynamics of
triples can also be derived, and these will in turn depend on the dynamics of higher-order configura-
tions. We are thus faced with an infinite system of equations for the dynamics of spatial moments.

1.4 Selection and relatedness between nearest neighbours

In order to compute the selective advantage of a mutant, we need to study the quasi-neutral process
in which R and M individuals bear slightly different traits. Cconsider that R and M individuals
differ with respect to their investment ε into helping others. Suppose for instance that R individuals
are selfish, but M individuals can increase their neighbours’ survival by an increment B ≡ B(ε) at
a survival cost C ≡ C(ε) for themselves. For the sake of simplicity, I assume that the investment is
unconditional (helping individuals pay the cost irrespective of the number of neighbours), but this
does not affect the conclusions of the paper. Then the average mortality rate of M individuals is

dM = d−BqM/M + C,

and the average mortality rate is
dR = d−BqM/R.

In the neutral model (ε = 0), B(ε) = C(ε) = 0, and the R and M individuals have the same mortality
rate d. Under weak selection (ε small, i.e. the mutant is quasi-neutral), helping will be favoured if the
per-capita growth rate of M individuals is larger than the per-capita growth rate of R individuals. To
the first order in ε, this yields the invasion condition

ΔB(qM/M − qM/R) > ΔC − bΔ(qo/M − qo/R) (1)
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where Δ denotes the partial derivative with respect to ε evaluated at neutrality. It can be shown
(Lion and Gandon, in press) that this condition is a spatial variant of Hamilton’s rule, in which
Δ(qo/M − qo/R) is a measure of competition for space than can be interpreted as the ecological cost of
helping and

r = qM/M − qM/R
is the relevant measure of relatedness between neighbours. Importantly, r is evaluated in the neutral
model (i.e. for ε = 0), while the other components of equation (1) must be computed in the model
with selection. In this paper, I restrict my attention to the computation of relatedness in the neutral
model. The model with selection is studied elsewhere ((Lion and Gandon, in press), Lion and Gandon,
in prep.).

Exact solutions for the equilibrium value of r in the neutral model are currently unavailable. My
main goal in this paper is to partially solve this problem by providing an approximation for the
equilibrium value of r at neutrality. In section 4, I shall discuss the relationship of r with classical
measures of relatedness that take the form of a covariance over variance ratio, and with other measures
used in the literature.

2 Equations for measures of relatedness

In this section, I describe a method to derive the equilibrium value of r in terms of other measures of
relatedness. My aim is to express coefficients of relatedness as functions of the spatial structure of a
monomorphic population.

2.1 Assumptions

Two main assumptions will be used in the remainder of this article. The first one is an assump-
tion of ergodicity. For the basic contact process, it is known that the stationary state on an infi-
nite space is ergodic. For the neutral dimorphic model, the probability of long-term coexistence is
zero (Neuhauser, 1992). Simulations show however that the two types may persist for enough time
for the local densities to reach a quasi-stationary distribution. I conjecture that, conditional upon
non-extinction, this quasi-stationary state is ergodic, in the sense that it is equivalent to compute
relatedness from a single realisation or from an ensemble of realisations. In other words, I assume
that the equilibrium of the deterministic system of moment equations gives a good approximation of
relatedness for a sufficiently large system.

The second assumption is more technical, and will be used to simplify the equations. Let C(o,R,M)
be a configuration of sites. This can be a pair, a triplet, or a more complicated configuration. I
conjecture that the density of empty sites experienced by a site belonging to C(o,R,M) is independent
of the “color” of individuals in this configuration. Mathematically, this means that

qo/C(o,R,M) = qo/C(o,×,×)

where × denotes an occupied site (irrespective of the “color” of the individual). If C(o,R,M) is a single
occupied site, this approximation is exact, as qo/R = qo/M = d/b ≡ qo/× at equilibrium (Appendix
B). For more complicated configurations, I assume that, because R and M individuals only differ
by their color, the configuration to which they belong experience the same density of empty sites as
would the same configuration in the monomorphic population. In particular, this yields three useful
approximations, for i, j = R or M

qo/oi ≈ qo/o× (2)
qo/ij ≈ qo/×× (3)
qo/o<ij

≈ qo/o<×× (4)

where qi/jkl is the density of sites i experienced by the j individual in a jkl triple, and qi/j<k
l
is the

density of sites i experienced by the middle individual in triples kjl. Simulations show that those
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approximations are actually very good across the range of values of the death-birth ratio d/b, both on
random regular graphs and on lattices, although they tend to be less accurate near the critical value
for population extinction (results not shown).

2.2 Equation for nearest-neighbour relatedness

Because r = qM/M − qM/R, I first derive the equations for the dynamics of MM and MR pairs. The
derivation of the equation for pMM has been outlined above, and a similar equation can be obtained
for pMR

dpMM
dt

= 2(φb+ φ̄bqM/oM )poM − 2dpMM
dpMR
dt

= φ̄bqR/oMpoM + φ̄bqM/oRpoR − 2dpMR

The fact that labels are clonally inherited accounts for the fact that the term φb is missing from the
equation for pMR.

At equilibrium, the time-derivatives vanish. We can rewrite the second equation using the fact
that qR/oMpoM = qM/oRpoR. Then, we divide the first equation by pM and the second one by pR, and
substract the two equations, which yields

d(qM/M − qM/R) = φbqo/M + φ̄b(qM/oM qo/M − qM/oRqo/R)
Because qo/R = qo/M = qo/× = d/b, we obtain

qM/M − qM/R = φ+ φ̄(qM/oM − qM/oR)
There is a striking structural similarity between the expressions that appear on the two sides of the
equations. Following the interpretation of qM/M − qM/R as a measure of relatedness between neigh-
bours, qM/oM −qM/oR can be interpreted as a measure of relatedness between individuals separated by
an empty site (see section 4 for more details). Denoting by ro this measure of relatedness, we obtain
finally

r = φ+ φ̄ ro (5)

This is the first step of a recursion on relatedness coefficients. Note that ro depends on triple densities.
Then, to obtain an equation for ro, we need to derive equations for the density of triples.

2.3 Equations for second-order coefficients of relatedness

In order to derive an equation for ro, I apply a similar method to the dynamics of triples MoM and
MoR (where, as for pairs, triples will be counted in both directions; see Morris (1997) and Rand (1999)
for further details). The expected dynamics of pMoM and pMoR are given by the following equations

dpMoM
dt

= 2φ̄bqM/ooMpooM + dpM×M − pMoM [2d+ 2φb+ (1− 2φ)b(qM/o<MM + qR/o<MM )]

dpMoR
dt

= φ̄bqM/ooRpooR + φ̄bqR/ooMpooM + dpM×R − pMoR[2d + 2φb+ (1− 2φ)b(qM/o<MR + qR/o<MR )]

where qi/j<k
l
denotes the density of i sites in the neighbourhood of the central site of an kjl triplet.

To understand how these equations are derived, let us focus on the equation for pMoM . AMoM triple
can be destroyed if one of the two M individuals dies, or if the middle empty site becomes occupied.
In the latter case, the offspring can come either from one of the two M individuals in the triple, or
from another neighbour (R or M) of the empty site. This gives the third term on the right-hand side
of the equation. Second, a MoM triple can be created from a MMM or MRM triple if the middle
individual dies (middle term), or from a Moo triple if the side empty site becomes occupied by the
offspring of a neighbour (left term). A similar bookkeeping allows to derive the equation for pMoR.
Now because

qM/o<ij
+ qR/o<ij = q×/o<ij = 1− qo/o<ij ,
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approximations (3) and (4) can be used to rewrite the system as
dpMoM
dt

= 2φ̄bqM/ooMpooM + dpM×M − pMoM [2d+ 2φb+ (1− 2φ)bq×/o<×× ]

dpMoR
dt

= 2φ̄bqM/ooRpooR + dpM×R − pMoR[2d+ 2φb+ (1− 2φ)bq×/o<×× ]

Setting both equations to zero and dividing by poM and poR respectively, we obtain after substraction

[2d+2φb+(1−2φ)bq×/o<×× ](qM/oM − qM/oR) = d
q×/×
qo/×

(qM/×M − qM/×R)+2φ̄bqo/o×(qM/ooM − qM/ooR)

where I have used the fact that q×/i = 1 − qo/i = 1 − qo/× = q×/× for i = R or M . I will follow the
same procedure as previously and define the following coefficients of relatedness

r× ≡ qM/×M − qM/×R and roo ≡ qM/ooM − qM/ooR.
This yields the final equation

[2d + 2φb+ (1− 2φ)bq×/o<×× ]ro = d
q×/×
qo/×

r× + 2φ̄bqo/o×roo (6)

In appendix C, I show that a similar method can be used to derive the following equation for r×
3dq×/×r× = [2φb + (1− 2φ)bq×/o<×× ]qo/×ro + 2φbqo/××r + 2φ̄bqo/××q×/×ro× (7)

This equation involves an additional coefficient of relatedness ro× ≡ qM/o×M − qM/o×R.

2.4 The unclosed system up to second order

Combining equations (5), (6) and (7), the following system of equations is obtained⎛
⎜⎜⎝

1 −φ̄ 0
0

(
2d+ 2φb+ (1− 2φ)bq×/o<××

)
qo/× −dq×/×

2φbqo/××
(
2φb+ (1− 2φ)bq×/o<××

)
qo/× −3dq×/×

⎞
⎟⎟⎠
⎛
⎜⎝ rro
r×

⎞
⎟⎠+2φ̄b

⎛
⎜⎝ 0
qo/o×qo/×roo
qo/××q×/×ro×

⎞
⎟⎠ =

⎛
⎜⎝φ0
0

⎞
⎟⎠
(8)

The first term of that equation collects all first-order (r) and second-order (ro and r×) terms, and the
second-term depends on third-order coefficients of relatedness (roo and ro×). As expected, the system
(8) is not in closed form. It is of course possible to write similar equations for roo and ro×, and even
for higher-order moments, By recusively applying the method used to derive equation (8), one could
ultimately derive an infinite system of equations of the form

A.Q = C

where Q =
(
r ro r× roo . . .

)T
is a vector of relatedness coefficients, C is a constant vector,

and A is a matrix that depends only on the demographic and network parameters and on the spatial
structure of the monomorphic population.

There are two main problems with this approach however. First, deriving equations for higher-
order coefficients of relatedness (such as roo and ro×) is a daunting task, and would result in very
intricate expressions. Second, the resulting equations would depend on the frequency of complex
spatial configurations of the monomorphic populations, for which no analytical solutions are known.

In the next section, I will therefore explore a less ambitious but more realistic path, and close the
system (8) using moment closure approximations.

3 Moment closure approximations

The definitions and results of the first two sections are valid for any regular network and do not depend
on the topology of the regular network. My aim in this section is to find a good approximation for
relatedness on a random regular network (i.e. a network in which each site is connected to n other
uniformly chosen sites). I will investigate the consequences of two moment closure approximations of
the system of equations derived in the previous section, and compare the predictions with the results
of stochastic simulations of the dimorphic contact process on a random regular network.
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3.1 Pair approximation

To deal with the infinite system of spatial moment equations, a first approach is to use the ordinary pair
approximation (OPA) (Matsuda et al., 1992; Rand, 1999; van Baalen, 2000). This moment closure
approximation assumes that triples and quadruplets can be expressed in function of pairs, and that
there is no clumping on the network. This yields the following estimates

qi/jk ≈ qi/jkl ≈ qi/j<k
l
≈ qi/j

Because qM/oM ≈ qM/oR ≈ qM/o, the solutions of the system (8) is then simply⎧⎨
⎩ r =

1
n

ro = r× = 0

OPA thus predicts that nearest-neighbour relatedness r is given by

r =
1
n

Previous studies relying on OPA (van Baalen and Rand, 1998; Le Galliard et al., 2003) have similarly
found that r = 1/n in the limiting case of a rare mutant (in which case r ≈ qM/M because qM/R ≈ 0).
In figure 1, we compare the prediction of OPA with the results of stochastic simulations on a random
regular network. It is clear that OPA does not capture the full impact of habitat saturation on
relatedness, even on a random regular network. In particular, it constantly underestimates the value
of relatedness.

This goes somewhat against the usual expectation that OPA should perform well on random
regular graphs, because their local structure resembles that of a tree on which short loops are absent
(Szabó and Fáth, 2007). There is, however, some confusion about this point. First, it should be
clear that details of the underlying stochastic process do matter. For instance, the performance of
OPA will be different in models based on the voter model or on the contact process. In particular,
pair approximation is not exact for the basic contact process on an infinite tree, and yields only a
lower bound for its critical birth-death ratio (Pemantle, 1992; Peltomäki et al., 2005). Thus, pair
approximation is not in general exact on a tree, although it predicts well the dynamics of local
densities such as qo/× or q×/o in a monomorphic population. An additional issue here is that the
neutral dimorphic model is a critical point at which clustering occurs (Neuhauser, 1992). Thus, the
accuracy of moment closure approximations decreases because the influence of loops and long-range
correlations becomes more important (Hauert and Szabó, 2005; Szabó and Fáth, 2007).

3.2 Triple approximation

A better approximation can be obtained if one closes the system at the level of triples using an ordinary
triple approximation (OTA). This gives the following estimates (Morris, 1997)

qi/jkl ≈ qi/jk
q×/o<×× ≈ q×/o×

This implies that roo = qM/oo − qM/oo = 0. To close the system, we need to find an approximation
of ro×. Simply setting this to 0 is not correct, however, because the occupied site can be either in
state M or in state R, which will have an impact on relatedness, so we need to be more careful. In
appendix C, I show that the correct estimate based on OTA is

ro× ≈ rro
q×/×

This means that OTA decouples relatedness ro× into a product of r and ro. In other words, OTA
follows from an assumption of independence. This yields the following estimate for all third- and
higher-order terms of system (8)

2φ̄b

⎛
⎜⎝ 0

0
qo/××rro

⎞
⎟⎠ (9)

8



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

Solving the resulting non-linear system gives the value of coefficients of relatedness solely as a function
of model parameters (b, d, n) and of spatial statistics in a monomorphic population (qo/× = 1−q×/× =
d/b, qo/××, qo/o× = 1− q×/o×). Because qo/o× = qo/×/φ̄ (Appendix B), the only remaining unknown
is qo/××. The equilibrium value of qo/×× can be computed in the monomorphic model using OTA,
but the resulting expression is rather messy. For the sake of simplicity, I will use the approximation
qo/×× ≈ qo/×, which is borne out by simulations (results not shown). Solving the system then yields
the approximation

r =
φ̄+ qo/×(2− φ)−

√
(1− 2φ)2φ̄2 + qo/×(2− φ)

[
qo/×(2− φ) + 2φ̄(1− 2φφ̄)

]
2φ̄2 (10)

Comparison of equation (10) with the results of stochastic simulations show that the approximation
captures very well the equilibrium value of nearest-neighbour relatedness (figure 1). Note that the
quality of the approximation increases with the number of neighbours. Using OTA to compute qo/××
does not significantly improve the quality of the approximation.

Note also that, in the limit b→∞ or d→ 0, the local density qo/× vanishes, and we obtain

r =
φ

1− φ =
1

n− 1

which is the value of relatedness computed on the infinite homogenous tree of degree n (Lehmann,
personal communication; Appendix D). This value was also implicitly found by Ohtsuki et al. (2006),
using OPA for the voter model on an infinite regular tree. In contrast, for the contact process,
OPA yields the value 1/n in the limit of high habitat saturation. Thus, moving up to the level of
triples provides an approximation of relatedness that connects smoothly with the values computed in
saturated populations with classical techniques of population genetics. In Appendix F, it is further
shown that the triple approximations for r× and ro converge towards the exact value of relatedness at
distance 2 computed on a saturated tree.

4 Measures of relatedness

4.1 Measures of genetic identity

An important issue in inclusive fitness calculations is to compute the equilibrium values of measures
of relatedness in a neutral model. Classical measures of relatedness take the form of a covariance
over variance ratio (Michod and Hamilton, 1980; Day and Taylor, 1998; Rousset and Billiard, 2000;
Taylor et al., 2007b). Relatedness between a focal individual with genic value X and an actor at
distance j with genic value Yj can then be written as

Rj =
Cov(X,Yj)

Var(X)
(11)

When all sites on the network are occupied, the population variance in genic value is pM −p2
M and the

covariance between neighbours is pMM − p2
M (Appendix E), so equation (11) collapses to the spatial

correlation function at distance 1, C1, as used for instance by Filipe and Maule (2004)

C1 ≡ pMM − p
2
M

pM − p2
M

When habitat saturation is not maximal, the computation is the same but the variance and covariance
must be calculated over all occupied sites. Let p× ≡ pR+pM and p×× be the across-network densities
of occupied sites and of pairs of occupied sites respectively. Introducing the frequencies fM ≡ pM/p×
and fMM ≡ pMM/p××, I show in Appendix E that nearest-neighbour relatedness R1 takes the form

R1 =
fMM − f2

M

fM − f2
M

(12)

9
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Figure 1: Relatedness between nearest neighbours as a function of the local density of empty sites
experienced by individuals qo/× = d/b, for increasing neighbourhood size. Results of stochastic simula-
tions (dots) are compared to the predictions of pair approximation (dotted horizontal lines) and triple
approximation (plain lines). Simulations were performed on regular random networks with 10000 sites
and varying connectivity. Demographic parameters: d = 1.

In other words, the densities pM and pMM are replaced by frequencies fM and fMM . When all sites
are occupied, p× = p×× = 1, so R1 and C1 coincide in the limit of high habitat saturation.

Note that equation (12) is analogous to equation (9) in Rousset and Billiard (2000). Conditioning
on the occupation of sites thus gives a meaningful measure of relatedness in the population in terms
of frequencies (instead of densities), that can be matched with classical measures used in population
genetics.

4.2 The link between r and R1

There is a simple relationship between r and R1 that justifies the use of r as a measure of relatedness
between neighbours. Indeed, I show in Appendix E that, in the neutral model at equilibrium

R1 =
r

q×/×
=
qM/M − qM/R

q×/×
(13)

Thus R1 can be expressed as a ratio of local densities, in which the denominator depends only on the
properties of a monomorphic population, while the numerator should in general depend on the frequen-
cies of both types. The denominator q×/× is a discounting factor that takes into account demography:
q×/× is 1 when the network is saturated, and decreases when habitat saturation decreases. The nu-
merator r = qM/M − qM/R gives the difference in the expected local densities of mutant individuals
experienced by mutant and resident individuals. This measure was actually termed “difference in sub-
jective frequencies” in the group-selection literature (Wilson, 1977). Because q×/× = 1−qo/× = 1−d/b,
it is straightforward to compute R1 from r. In appendix E, it is further shown that ro and r× can
indeed be interpreted as second-order coefficients of relatedness, and a further link is provided in ap-
pendix F between these measures of relatedness and distance-based measures of relatedness classically
used in kin selection theory.
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4.3 The effect of habitat saturation on relatedness

When discussing the impact of habitat saturation on relatedness, the conclusions will be very different
depending on which of the three quantities r, R1 or C1 is used as a measure of relatedness. Indeed,
although all three measures reach a quasi-equilibrium on a fast time-scale, their equilibrium values
are very different (figure 2, top panel). Only in the limit of high habitat saturation (qo/× close to 0)
do the three measures coincide and converge to a limiting value which can be computed in a model
with infinite fecundity using standard population genetics methods. For instance, on a Cayley tree (or
Bethe lattice), it can be shown that r = 1/(n− 1) (Lehmann, personal communication; Appendix D).
The simulations of figure 2 show that this is a reasonably good approximation of the limiting value
on a random regular network.

Moreover, plotting these equilibrium values with respect to the local density of empty sites qo/× =
d/b, we observe that the three measures respond differently to variation in habitat saturation: R1 is
monotonously increasing function of the local density of empty sites qo/×, whereas r is monotonously
decreasing. The spatial correlation C1, on the other hand, has a U-shaped distribution. This raises
the question of which measure of relatedness one should use.

The correct way to answer this question is to start from the ecological dynamics and to derive an
expression of fitness that takes into account the feedback between population dynamics and selection.
This is the approach I used in section 1.4, and it points to the relevant measure of relatedness in a
given ecological scenario. Although this approach clearly shows that C1 is not the right measure of
relatedness in this context, the choice between r and R1 remains open, because of equation (13).

Two theoretical reasons could justify the use of R1 as a measure of relatedness. First, R1 is
directly comparable with classical measures of relatedness used in the literature. Second, R1 has
a simple limit when the population is close to extinction. Indeed, on the verge of extinction, the
two types R and M are completely segregated, so their local structure should be the same as the
monomorphic pop. Then, qM/M approaches q×/×, and, because it can be shown (Appendix E) that
R1 = (qM/M/q×/× − fM)/(1 − fM), we have R1 → 1.2 Consequently, R1 is a decreasing function of
habitat saturation that takes values between 1 (close to population extinction) and a lower bound
that can be computed from the corresponding saturated model. Therefore, when habitat saturation
increases, the probability of having non-related individuals in one’s neighbourhood increases. Using
R1 as a measure of relatedness allows therefore to better understand the effect of habitat saturation
on genetic structure.

5 Discussion

5.1 Relatedness, kin selection and habitat saturation

In this paper, I give an approximation for relatedness between nearest neighbours under neutral-
ity on large regular random networks. The life cycle assumes that individuals can reproduce only
to empty neighbouring sites. Therefore, the model extends usual kin selection models by incor-
porating demography and density-dependent reproduction. In contrast to previous approximations
(van Baalen and Rand, 1998; Le Galliard et al., 2003), the expression I give describes well the depen-
dence of relatedness on habitat saturation. In particular, in the limit of high habitat saturation,
relatedness converges towards the value found in models with constant population size. This is a
significant improvement over previous results, and extends existing theory by providing a method to
take into account the feedback loop between ecology and evolution in models of kin selection when
computing coefficients of relatedness and inclusive fitness effects. I will now discuss the various steps
of the method, along with some limitations, before turning to potential extensions.

2As a side remark, note that the fact that R1 → 1 on the verge of extinction yields an approximation for the critical
value of qo/× above which the population goes extinct. Setting equation (10) to 1, we obtain qo/× = (3(1 − φ)2)/(3 −
3φ + φ2).
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Figure 2: Relatedness measures on a random regular graph (n = 4, 10000 sites). (a) Nearest-neighbour
relatedness R1 (filled circles) and r (squres), and spatial correlation at distance 1 C1 (open circles) as
a function of time. Demographic parameters: d = 1, b = 2, n = 4. (b) Equilibrium values of R1 (filled
circles), r (squares) and C1 (open circles) as a function of local density of empty sites qo/× = d/b. The
dotted line indicates the value 1/(n − 1). Demographic parameters: d = 1.
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5.2 Deriving spatial moment equations

The first step of the method is to write down the ecological dynamics of the frequency of various
spatial configurations in the neutral dimorphic model, starting with the densities of singlets, pairs and
triples. A careful bookkeeping of all the events that can affect these densities is needed (Rand, 1999;
van Baalen, 2000). Arguably, this may be only feasible for the lower-order spatial moments, because
the algebra becomes quickly tedious when one moves to higher-order moments. In practice, most
studies using spatial moment equations have focused on the dynamics of pairs (but see Morris (1997)
for a thorough discussion of the intricacies of triple and higher-order moment closure approximations).
This paper shows that it is fairly straightforward to extend the analysis to the dynamics of triples,
although more writing effort is required.

5.3 Decoupling demographic and genetic structures

The next step allows to make the connection between the spatial ecological dynamics and the genetic
structuring of the population, and relies on some mild approximations regarding the distribution of
empty sites. Assuming that, in the neutral process, the local densities of empty sites experienced
by a given configuration of sites is equal to the corresponding local densities in the monomorphic
process, it is possible to derive equations for coefficients of relatedness in which the spatial genetic
structure of the population (the relatedness coefficients) and the spatial demographic structure are
decoupled. Solving this system of equations would allow to express relatedness as a function of the
demographic parameters and of the spatial structure of the monomorphic population at equilibrium
(qo/×, qo/××, . . . ). However, because the system of equations is unclosed and the spatial structure
of the monomorphic population at equilibrium is unknown for the contact process, an additional
approximation is required to close the infinite system.

5.4 Closing the system

Moment closure approximations typically rely on heuristic arguments to pick the closure approx-
imation most appropriate to the system of study (Sato et al., 1994; Morris, 1997; Keeling, 1999;
van Baalen, 2000; Dieckmann and Law, 2000) In this paper, I show that arguments based on net-
work topology may break down at neutrality, which may preclude the use of pair approximation. This
is not totally unexpected, as the neutral model is a critical point at which clustering is known to occur
on the infinite lattice (Neuhauser, 1992). However, this point is often overlooked in the literature. As
a consequence, a triple approximation is necessary to obtain a correct description of the impact of
habitat saturation on nearest-neighbour relatedness, even on random regular networks.

5.5 The role of spatial geometry

The approximation I provide yields a good estimate of relatedness only on random regular networks.
While random networks can provide a good representation of the structure of real social networks,
they are not a good model for two-dimensional physical space as encoutered in the field.

Classically, physical space is represented by lattices, usually the square lattice although the trian-
gular lattice is also sometimes used. Simulations show that the approximation we derive significantly
underestimates relatedness on lattices. This is expected of course, because clumping is higher on
lattices than on random graphs.

There are two ways to improve the approximation. One is to work out the equations for quadru-
plets. This is quite tedious, but it is the most obvious way: it will yield a system of equations that
can be closed with an ordinary quadruplet approximation, and give nearest-neighbour relatedness as
a function of spatial statistics in the monomorphic population. An obvious shortcoming, apart from
the increased algebraic complexity, is that one has to calculate (or estimate from simulations) the
equilibrium densities of complex spatial configurations in the monomorphic contact process.

A second improvement would consist in using an improved triple approximation that takes into
account the existence of loops (squares on the square lattice, triangles on the triangular lattice).
Then, instead of setting roo to zero and approximating ro× by rro/q×/×, one would use more elaborate
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approximations, similar to those that have already been introduced at the pair level (Sato et al., 1994;
Morris, 1997; Keeling, 1999; van Baalen, 2000).

5.6 Extension to finite populations

In this article, I focus on the limiting case of an infinite network, but a more general theory would
allow for the computation of relatedness in finite populations. Then, we need an average measure if
relatedness over the distribution of all possible states of the population (Rousset and Billiard, 2000;
Taylor et al., 2000; Taylor et al., 2007b). Following Taylor et al. (2007b), nearest-neighbour related-
ness can then be defined as

R1 =
E[fMM − f2

M ]
E[fM − f2

M ]
where the expectation denotes an ensemble average over realizations of the stochastic process. Al-
though most spatial models analysed with spatial moment equations have focused on the limiting
case of an infinite network, the theory can also be formalised on a finite number of sites by writing
the master equation of the stochastic process and deriving the dynamics of the ensemble mean of the
spatial averages (Stollenwerk, 2003).

5.7 Conclusion

By making an explicit connection between concepts of relatedness used in population genetics and spa-
tial statistics used in spatial moment equations, this paper is a step towards a more ecologically-driven
kin selection theory. Ultimately, the extension of the inclusive fitness technique to incorporate more
demographic realism requires to find a tractable method to derive a low-dimensional approximation
for the recursion of well-chosen measures of identity in state at equilibrium.
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Appendix A: Interacting particle systems

An interacting particle system (IPS) is a continuous-time Markov process defined on a countable set
of sites (e.g. a lattice, a tree, a random graph, etc.). In the voter model, each site is occupied by an
individual of one of two types, labelled R orM . These two types are traditionally interpreted as being
opinions, hence the name “voter model”. In evolution, the R andM labels can refer to different alleles
or phenotypes. Each individual reproduces according to its birth rate and produces an offspring that
replaces a randomly chosen neighbour.

In the contact process, each site can be either empty or occupied by one individual. An individual
can either die at rate d, or produce an offspring at rate b that is sent to a randomly chosen neighbouring
site and survives only if that site is empty. The rate at which a a vacant site becomes occupied is
therefore proportional to the number of occupied neighbours. Note that the contact process describes
the dynamics of a single population and is therefore an ecological model. To study evolution, we need
to consider the multitype contact process, in which each individual can be of one of several types. In this
paper, I distinguish between the monomorphic contact process (in which only demographic structuring
occurs) and the dimorphic contact process (in which both demographic and genetic structuring occur).

In contrast, note that there is no population dynamics in the monomorphic voter model (it is
actually a limiting case where nothing happens). In evolutionary models based upon the voter model,
demographic structuring is naturally decoupled from genetic structuring, which partly explains why
it is often possible to solve for the genetic structure at equilibrium in the neutral voter model.

There is a critical birth-death ratio λc for the (monomorphic) contact process below which the
process does not survive on an infinite space. When the birth-death ratio is larger than λc, the process
converges towards a stationary distribution. (On a finite space, the contact process always dies out
eventually, but large finite systems observed at reasonably large times behave as the infinite system.)
Thus, λc identifies a critical point at which a phase transition occurs. Note that only upper and lower
bounds are known for λc.

Appendix B: Local densities of empty sites in a monomorphic popu-
lation

The dynamics of the global density of empty sites in the monomorphic population is given by

dp×
dt

= (bqo/× − d)p×

where × denotes an occupied site. Thus, the expected local density of empty sites experienced by an
individual is at equilibrium

qo/× =
d

b
.

Likewise, the dynamics of pairs o× and ×× follow

dpo×
dt

= dp×× + φ̄bq×/oopoo − (φb+ φ̄bq×/o× + d)po×
dp××
dt

= 2(φb+ φ̄bq×/o×)− 2dp××
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At equilibrium the derivatives are zero. Substracting the second equation from twice the first yields

0 = 2φ̄bq×/oopoo − 2dpo×

Using the fact that q×/oopoo = qo/o×po× we finally obtain the equilibrium local density qo/o×

qo/o× =
d

φ̄b
.

Appendix C: Equation for r×
We start with the dynamics of pM×M and pM×R

dpM×M
dt

= [2φb + (1− 2φ)bq×/o<M
M
]pMoM + 2φbpMMo + 2φ̄bqM/o×Mpo×M − 3dpM×M

dpM×R
dt

= [2φb + (1− 2φ)bq×/o<MR ]pMoR + 2φbpMRo + φ̄bqR/o×Mpo×M + φ̄bqM/o×Rpo×R − 3dpM×R

Dividing by p×M and p×R, setting the equations to zero and substracting we obtain:

[2φb + (1− 2φ)bq×/o<×× ]
qo/×
q×/×

(qM/oM − qM/oR) + 2φb
qo/××
q×/×

(qM/M − qM/R) + φ̄bqo/××(qM/o×M − qM/o×R)

+φ̄b
q×/o×qo/×
q×/×

(qM/×oM − qM/×oR)− 3d(qM/×M − qM/×R) = 0

where I have used qo/ij ≈ qo/×× (i and j being R or M). Note that qM/o×M − qM/o×R = q×/o××ro×
and qM/×oM − qM/×oR = q×/×o×r×o. Because relatedness is symmetric, ro× = r×o, so we have
ro× = q×/o××r×o/q×/×o×. Using this and rearranging yields equation (7) in the main text.

In order to close the system, we need to find an approximation of ro×. We have

qM/o×i =
pMoRi + pMoMi
poRi + poMi

=
qM/oRiqo/RiqR/i + qM/oMiqo/MiqM/i

qo/RiqR/i + qo/MiqM/i
=

1
q×/×

(qM/oMiqM/i + qM/oRiqR/i)

using qo/ij = qo/×× and qR/i + qM/i = q×/i = q×/×. This leads, under ordinary triple approximation
(qi/jkl ≈ qi/jk)

qM/o×M − qM/o×R =
1
q×/×

(qM/oM qM/M + qM/oRqR/M − qM/oMqM/R − qM/oRqR/R) =
rro
q×/×

using qM/M − qM/R = qR/R − qR/M = r.

Appendix D: Coefficients of relatedness on a saturated tree

The calculation in this appendix is adapted from an unpublished document kindly provided by Laurent
Lehmann.

We consider an infinite homogenous tree of degree n (Cayley tree or Bethe lattice) on which
every site is occupied by exactly one individual. Individuals move to the nearest-neighbour shell with
probability m (stepping-stone model). Let Qj be the probability of identity between individuals at
distance j. The stationary values of the Qj’s follow from the recursion

j ≥ 1 Qj = (1−m)Qj +m
[ 1
n
Qj−1 +

(
1− 1

n

)
Qj+1

]

because on a tree, before a reproduction event, two individuals sampled at distance j were at distance
j − 1 with probability 1/n and at distance j +1 with probability 1− 1/n. Solving the recursion along
with the boundary condition Q∞ = 0 yields

Qj =
( 1
n− 1

)j
C.
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This can also be rewritten as
Qj =

( 1
n− 1

)j−1
Q1

Now we have
Q0 = (1−m) +mQ1

and
Q1 = (1−m)Q1 +m

[ 1
n
Q0 +

(
1− 1

n

)
Q2

]

Inserting the expression for Q2 into that system of equations, we obtain Q1 = 1/(n − 1) which yields
finally

Qj =
( 1
n− 1

)j

Appendix E: Measures of identity in state

E.1 Saturated habitat

Relatedness between nearest neighbours can be defined as

R1 =
Cov
x;y∈Nx

(σx(M), σy(M))

Var(σx(M))

where Cov
x;y∈Nx

(.) denotes a covariance taken over all connected sites x and y. The variance part is given

by
Var(σx(M)) =

〈
σx(M)2

〉
− 〈σx(M)〉2

Because 〈σx(M)〉 = P(σx(M) = 1) = pM and σx(M)2 has the same distribution as σx(M), we obtain

Var(σx(M)) = pM − p2
M

Likewise, the covariance can be expressed as

〈σx(M)σx(M)〉x;y∈Nx − p2
M

where 〈σx(M)σy(M)〉x;y∈Nx = P(σx(M) = 1, σy(M) = 1|x; y ∈ Nx) = pMM . We obtain

R1 =
pMM − p2

M

pM − p2
M

=
qM/M − pM
1− pM ≡ C1

where C1 is the spatial correlation at distance 1 (Filipe and Maule, 2004).

E.2 Non-saturated habitat

Now, we must take into account the fact that some neighbouring sites can be empty. An appropriate
expression for relatedness is then

R1 =
Cov
x;y∈Nx

(σx(M), σy(M)|σx(×)σy(×) 
= 0)

Var(σx(M)|σx(×) 
= 0)

that is, we condition with respect to the occupation of sites. Then, the population variance is〈
σx(M)2|σx(×) 
= 0

〉
− 〈σx(M)|σx(×) 
= 0〉2

Because
〈σx(M)|σx(×) 
= 0〉 = P(σx(M) = 1, σx(×) 
= 0)

P(σx(×) 
= 0)
=
pM
p×

18
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where p× is the density of occupied sites (p× = pR + pM = 1 − po), the population variance is given
by fM − f2

M where fM = pM/p× is the frequency of M sites. For the covariance part, we need to
compute

〈σx(M)σy(M)|x; y ∈ Nx, σx(×)σy(×) 
= 0〉 = P(σx(M)σy(M) = 1|x; y ∈ Nx)
P(σx(×)σy(×) 
= 0|x; y ∈ Nx) =

pMM
p××

where p×× is the total density of pairs of occupied sites. Defining fMM ≡ pMM/p××, we obtain finally

R1 =
fMM − f2

M

fM − f2
M

=
qM/M
q×/×

− fM
1− fM

Now, because qo/× = qo/M = qo/R, we have q×/× = qM/M + qR/M , so the latter equation can be
rewritten as

R1 =
1
q×/×

(
qM/M

1− fM −
fM

1− fM (qM/M + qR/M )
)

Because pMR = qM/RpR = qR/MpM , we have

qM/R =
fM

1− fM qR/M

which finally yields after simplification

R1 =
1
q×/×

(qM/M − qM/R) =
r

q×/×

E.3 Other measures of identity in state

I now show how measures of relatedness ro and rx can be computed from local densities. For i ∈ {o,×},
we have

ri =
fMiM − f2

M

fM − f2
M

where fMiM = pMiM/p×i×. Then

fMiM =
qM/iMqi/MpM

q×/i×qi/×p×
=
qM/iMqi/M
q×/i×qi/×

fM

For i = o or ×, we have qi/M = qi/× because qo/M = qo/×. Then

ri =
1

q×/i×

qM/iM − fMq×/i×
1− fM

Assuming that qo/iM ≈ qo/i×, we obtain

ri =
1

q×/i×

qM/iM − fM (qM/iM + qR/iM )
1− fM =

1
q×/i×

(
qM/iM −

fM
1− fM qR/iM

)

and because qR/iMpM/pR = qM/iR, this yields for i ∈ {o,×}

ri =
qM/iM − qM/iR

q×/i×
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Appendix F: Relatedness between individuals at distance 2

Models of kin selection generally use distance-based measures of identity in state: individuals are
grouped according to their distance from a focal individual, and this yields a sequence of measures of
relatedness Rk where k gives the distance from the focal. The definition of k depends on the topology
of the network (for a circular lattice or a tree, k is an integer; for a square lattice, it is a vector).

The relationship R1 = r/q×/× is always valid, but starting from distance 2, the Rk coefficients will
have to be written as a function of r coefficients, and this functional relationship will depend strongly
on network topology. On a cycle or a tree, however, it is possible to compute R2 as a weighted sum
of ro and r× coefficients, the weights being given by the relative frequency of ×o× and ××× triples
among all × • × triples, where • denotes a site in any state. This yields

R2 =
p×o×ro + p×××r×
p×o× + p×××

Solving system (8) for ro and r×, an expression for R2 can then be obtained. In particular, we find in
the limit of high habitat saturation that

lim
b→∞

R2 =
(

φ

1− φ
)2

=
1

(n− 1)2

which is consistent with the results of Appendix D. Thus, although based on an approximation, the
expressions of R1 and R2 derived by closing the system at the level of the triples are consistent with
population genetics models in the limit of high habitat saturation, up to distance 2. In contrast, OPA
yields expressions that do not connect smoothly with the results of saturated models even at distance
1.
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