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ABSTRACT 

We study the plasticity of a delayed stochastic model of a genetic toggle switch as a 
multipotent differentiation pathway switch, at the single cell and cell population 
levels, by observing distributions of differentiation pathways choices of genetically 
homogeneous cell populations. Assuming a model of stochastic pathway 
determination of cell differentiation that is regulated by the proteins of the switch, we 
vary the proteins’ expression level and degradation rates, which cells are known to be 
able to regulate, to vary mean level, noise, and bias of the proteins’ expression levels. 
It is shown that small changes in each of these dynamical features significantly and 
distinctively affects the dynamics of the switch at the single cell level and thus, the cell 
differentiation patterns. The regulation of these features allows cells to regulate their 
pluripotency and cell populations’ distribution of lineage choice, suggesting that the 
stochastic switch has high plasticity regarding differentiation pathway choice 
regulation, thus providing adaptability to environmental stresses and changes.  
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I. INTRODUCTION 

It has long been hypothesized that some types of cell differentiation are based on 

bistable genetic sub-circuits controlling many downstream genes (Monod and Jacob, 

1961). In this process, a stem cell turns into a ‘stable’ phenotype. The genetic decision 

circuit of differentiation must be (at least) bistable, to allow branching into distinct cell 

types, and reliable to prevent reversibility (Gardner et al., 2000).  Recent evidences 

suggest that the neutrophil cell lineage has such bistable switch-like behavior (Chang et 

al., 2006). Single cell analysis of the expression kinetics of the differentiation marker 

CD11b (Mac-1) revealed an all-or none switch-like behavior in HL60 promyelocytic 

precursor cells that transit to the neutrophil cell lineage. The progression from the 

precursor to the differentiated state is a discrete transition between low- (CD11bLow) 

and high- (CD11bHigh) expressing subpopulations which are distinguishable in a 

bimodal distribution (Chang et al., 2006). 

In the deterministic framework, it was hypothesized that cell types are attractors of 

the gene regulatory network dynamics (Kauffman, 1969). To be biologically plausible, 

the attractors need to be very confined patterns of gene expression (Kauffman, 1993). 

An important criticism to this framework (Aldana et al., 2002) is that noise renders 

attractors a poor model of cell types since the closure of an attractor in the discrete 

dynamics is delicate. To address this, the concept of ‘ergodic set’ was proposed as a set 

of states from which the gene network, once entering, does not leave for a very long 

time, given internal noise (Ribeiro and Kauffman, 2007). An ergodic set can be 

composed of one or several ‘noisy attractors’, which will be the set of states where the 

gene regulatory network spends most of the time when on that ergodic set. It was 

shown, using a delayed stochastic model of gene regulatory networks (Ribeiro et al., 

2006), that there are stochastic gene networks that are able to remain in confined 
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regions of the state space for very long periods of time, in agreement with the 

hypothesis that ergodic sets corresponds to cell types (Ribeiro and Kauffman, 2007). In 

support of this hypothesis, it was observed that Bacillus subtilis transiently and 

probabilistically differentiates between two phenotypes (Suel et al., 2006). One 

phenotype is able to uptake DNA from the environment and appears mostly when the 

cells are under stress. This might be an example of noise-driven transitions between 

noisy attractors of the same ergodic set. 

The toggle switch, a gene network of two mutually repressing genes, can be used 

by cells to adopt different phenotypes (Arkin et al., 1998)(Neubauerz and Calef, 

1970)(Gardner et al., 2000) and as decision circuits of differentiation pathways (Huang 

et al., 2005). Recent evidences further support that stochastic genetic switches in cells 

determine alone, or within a network of bistable switches, cell differentiation lineages, 

and are also responsible for preventing reversibility (Wang et al, 2009).  

The bistability of the toggle switch, i.e., having two noisy attractors (with one 

gene’s expression level high and the other low), depends on its internal noise level. 

Given sufficient noise, the two genes can express simultaneously for long periods of 

time, thus, the toggle switch can be tri-stable (Ribeiro, 2008). Importantly, this 

‘unstable attractor’ can be the region of the state space where cells spend most of its 

lifetime (Ribeiro, 2008). 

Previously, assuming genes following a Boolean-like noise-free dynamics, 

proposals of intervention strategies to drive differentiation focused on the mechanisms 

that silence or over-express genes (Shmulevich et al, 2002). More accurate measures of 

gene expression showed that the dynamics of gene regulatory networks is ‘richer’ than 

the assumed on-off logic and that its inherent stochasticity cannot be neglected (Kaern 

et al, 2005)(Elowitz et al, 2002), especially in the process of determination of 
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differentiation pathways (Arkin et al, 1998) and as a source of phenotypic diversity 

(Blake et al, 2006)(Weinberger et al, 2006). The increased understanding of cell 

differentiation raises questions concerning the plasticity of the genetic circuits 

regulating differentiation pathway choices, i.e., besides the intervention strategies 

aforementioned, it might be possible to regulate differentiation by using the inherent 

stochasticity of gene networks. Here we address this issue and explore strategies to 

regulate patterns of cell differentiation.  

Specifically, we model single cells, each with a toggle switch whose dynamics is 

driven by the delayed stochastic simulation algorithm (delayed SSA) (Roussel and 

Zhu, 2006), and investigate how the distribution of differentiation pathway choices of 

an initially undifferentiated cell population is determined and can be altered by the 

changes in the dynamics of the switch. We chose to vary proteins’ degradation rates, 

since it has been shown that these vary widely from one protein to another and there are 

evidences that cells can regulate (and thus evolve) such rates to some extent (Cooper, 

2000), and transcription initiation rates, which can be subject to regulation (Golding et 

al, 2005) and are, to some extent, sequence dependent (Herbert et al., 2006), thus 

evolvable.  

We assume a simple scenario where in each cell, the proteins’ levels of its toggle 

switch determine, at a moment in time determined stochastically, which one of four 

possible differentiation pathways does the cell follow. This choice is “binary” in the 

sense that it depends only on the “presence” or “absence” of the two proteins, but 

stochastic since, given the presence of proteins, they will compete towards ‘activating’ 

distinct differentiation pathways via a specific chemical reaction out of the four 

possible ones (modeling the ‘activation’ of different sets of downstream genes). We 
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study how changes in the dynamics of the toggle switch affect the ratios of cells opting 

for each pathway. 

 

II. METHODS 

Delayed Stochastic Gene Network Model 

We model gene regulatory networks according to the modeling strategy proposed 

in (Ribeiro et al., 2007). We use the delayed SSA (Roussel and Zhu, 2006) to drive the 

cell gene network’s dynamics since evidences suggest that relatively low levels of 

expression (Bon et al, 2006) and small changes in expression levels affect early cell 

fate outcomes (Heyworth et al, 1999). Namely, the number of molecules involved in 

the reactions controlling differentiation can be from one to a few (Arkin et al, 1998). 

Therefore, noise needs to be accurately accounted for in the differentiation process of 

multipotent cells (Bruno et al, 2004). 

This modeling strategy also accounts for the time needed for transcription and 

translation to be completed, once initiated, which can be from a few seconds to several 

minutes, and thus, cannot be neglected (McClure, 1980)(Zhu et al, 2007) and was 

shown to affect significantly the dynamics of gene networks (Ribeiro, 2007). 

Gene regulatory networks consist of genes coupled via protein-protein interactions 

and protein-operator sites interactions. Transcription and translation are independently 

modeled as multiple time delayed reactions. The dynamics is driven by a modified 

version of the original Stochastic Simulation Algorithm (SSA) (Gillespie, 1977), the 

‘delayed SSA’ (Roussel and Zhu, 2006), which uses a waiting list to store delayed 

output events. The waiting list is a list of elements (e.g., proteins being produced and 

occupied promoter regions), each to be released after a certain time interval (also stored 

in the waitlist). The algorithm proceeds as follows:  
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1) Set t = 0, tstop = stop time, read initial number of molecules and reactions, create 

empty waitlist L. 

2) Do an SSA step for reacting events to get next reacting event R1 and 

corresponding occurrence time t + t1. 

3) Compare t1 with the least time in L, tmin. If t1 < tmin or L is empty, set: t = t + t1. 

Update the number of molecules by performing R1, adding delayed products (if 

existing) and the time delay they have to stay in L from the appropriate distribution. 

4) If L is not empty and if t1 ¸ tmin, set t = t + tmin. Update the number of molecules 

and L, by releasing the first element in L; otherwise go to step 5. 

5) If t < tstop, go to step 2; otherwise stop. 

The delayed SSA was used to simulate the dynamics of a model of a repressed gene 

(Zhu et al, 2007) which matched the observed dynamics of RNA and proteins levels 

measured at the single molecule level (Yu et al, 2006). 

 Other stochastic algorithms have been proposed to simulate chemical reactions 

with time delays. In (Bratsun et al, 2005) was proposed a detailed delay SSA (from 

which the delayed SSA was later on developed) which allows explicit delays on the 

protein production. A similar algorithm was independently proposed in (Barrio et al, 

2006). Both works present examples of gene regulatory networks where delays in 

proteins’ production play a relevant role in the dynamics.   

The algorithm proposed in (Roussel and Zhu, 2006) differs from the mentioned 

algorithms, in that it can handle more than one delayed generating event for one 

reacting event. Because the time delay on the promoter release has been shown to be as 

crucial in gene networks’ dynamics as the proteins’ delays (namely, it affects the 

toggling frequency of the toggle switch (Ribeiro, 2007)), we opted for using here the 

delayed SSA (Roussel and Zhu, 2006). 
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Model of the Toggle Switch 

The model of toggle switch consists of reactions (1) to (6) (Ribeiro, 2008), where i 

= 1, 2 (when only the index i is present), or i, j = 1, 2 with i ≠ j (when both indices are 

present): 

1 2 1Pr Pr ( ) ( ) ( )t
i i i

ko Rp o Rp Rτ τ τ+ ⎯⎯→ + +      (1) 

3 4 5 5( ) ( ) ( , )tr
i i i std

kR Rib R Rib t Pτ τ τ τ+ ⎯⎯→ + + +      (2) 

rbs
i

dR ⎯⎯⎯→∅          (3) 

dk
iP ⎯⎯→∅          (4) 

Pr Prkrep
i j i jkunrep

o P o P⎯⎯⎯→+ ←⎯⎯⎯         (5) 

Pr Prdk
i j io P o⎯⎯→         (6) 

Gene expression is modeled by multiple time-delayed reactions for transcription  

(1) and translation (2), where Proi is the promoter of gene i, Rp is an RNA polymerase, 

Rib is a ribosome, and Ri is the ribosome binding site of each RNA. The delays (τ1 to 

τ5) account for the duration of the processes in transcription and translation. When a 

product X has a delay τ, represented by X(τ), it implies that when the reaction occurs, it 

takes τ seconds after that for X to appear in the system. 

Reaction (2) for translation accounts for the variability of the time needed to 

complete a functional protein (translation, folding, activation, etc.) given that the delay 

of Pi follows a normal distribution, with a mean of τ5 and a standard deviation of τ5,std 

(we choose the normal distribution since the distribution has not yet been 

experimentally assessed, only mean and variance have) (Zhu et al., 2007).  

Each protein Pi represses the other gene’s promoter. Reactions (5) model binding 

and unbinding of the repressor protein to the other gene’s promoter, which defines the 
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toggle switch. Reactions (4) and (6) model the decay and degradation of proteins, while 

reaction (3) models decay and degradation of RNAs. 

The rates (in s-1) of reactions (1) to (6) are kt = 0.005, ktr = 0.00042, drbs = 0.01, krep 

= 1, kunrep = 0.1, and kd = 0.0012. Time delays (in seconds) are τ1 = 40, τ2 = 90, τ3 = 2, τ4 

= 58, τ5 = 420, and τ5std = 140. The transcription rate kt and the protein decay rate kd are 

varied as discussed ahead. Each ‘cell’ is initialized with P1 = 0, P2 = 0, R1 = 0, and R2 = 

0, and with one promoter of each gene (Pro1 = 1, Pro2 = 1), 40 RNA polymerases (Rp = 

40), and 100 ribosomes (Rib = 100). 

Values for the delays where extracted from measurements. One of the most detailed 

measurements of gene expression to date has been presented in (Yu et al., 2006), thus 

most values were here derived from this experiment. The length of the gene tsr-venus 

driven by a Lac promoter studied in E. coli is ~2500 nucleotides (Yu et al., 2006). Since 

the average rate of transcriptional elongation in E. coli is approximately 50 nt/s, it 

follows that τ2 is, on average, 90 s (τ2 = τ1 + 2500 / 50). The post-translational protein 

assembly process was observed to take 420±140 s in (Yu et al, 2006), thus τ5 and τ5,std 

were set in accordance. The time of the RBS clearance in translation initiation, τ3, is set 

to 2 s, according to experimental estimations (Draper, 1996). The average translation 

rate is 15 amino acids /s, thus τ4 = τ3 + 2500 nt/(45 nt/s) = 58 s. Finally, the transcription 

initiation process includes the transition from the closed promoter complex to the open 

promoter complex (accounted by τ1). We set the value of τ1 to 40 s, within the 

measured range from 10 s to several minutes for the lac promoter (McClure 1980).  

All delays, except τ5, were assumed constant (Zhu et al, 2007) since experimental 

measurements suggest that they are not highly variable between transcription events of 

a single gene (although vary widely from gene to gene) (Herbert et al, 2006)(McClure, 

1980)(Yu et al, 2006)(Zhu et al, 2007). For example, regarding the promoter delay τ1, 
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although it varies from one transcription event to another, measurements on an 

unrepressed Lac promoter (Lutz et al, 2001) suggest that it follows a Gaussian 

distribution with a mean of 40 s and std. of 4 s, but this varies widely from gene to gene 

(Ross and Gourse, 2009). We tested for the present case and in previous works 

(Ribeiro, 2007)(Ribeiro, 2008) the effects of introducing variable delays following a 

normal distribution with the same mean values and with standard deviations small 

compared to the mean values, and the dynamics of the toggle switch was not 

significantly different to the dynamics of model with fixed delays, i.e., qualitatively, 

our conclusions hold when using a model with variable delays.  

Model of differentiation pathway choice 

In the simplified model of cell differentiation here used, both the moments at which 

a cell commits to differentiate and the choice of differentiation pathway are stochastic. 

It is assumed that the choice of pathway is internally driven, i.e., not determined by 

external signals. Namely, it depends solely on the amounts of proteins of the toggle 

switch present at the moment of differentiation (reactions 8 to 11). The mechanism 

determining when differentiation occurs fits both the assumption of externally and 

internally induced differentiation (reaction 7) since it is regulated by the appearance of 

a protein X in the cell, which could be internally produced or be an external signal. 

In order to have stochasticity in these two processes we model them via simple 

chemical reactions that are, as the previous ones, dynamically controlled by the 

delayed SSA, thus their occurrence are probabilistic events with a given propensity 

(Gillespie, 1977). It’s noted that the cell is only allowed to differentiate once, and that 

this process is irreversible. The cell commits to differentiate after the protein ‘X’ 

becomes present in the cell, via reaction (7). Its rate, kx, is set to 5.10-6 s-1 implying that, 
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on average, X will appear in the cell around t = 500.000 s (half the cell lifetime, here set 

to 107 s, as justified ahead): 

xk X∅ ⎯⎯→         (7) 

Reaction (7) can only occur once, at most, during a cell’s lifetime. Once it occurs 

and X becomes present in the cell, reactions (8) to (11) can then occur. These need X as 

substrate, thus, are competing with one another, and only one can ever occur in a cell, 

since there is only, at most, one molecule X (kdif is set to 10-5s-1): 

1 0 1* difkX P cell cell+ + ⎯⎯→       (8) 

2 0 2* difkX P cell cell+ + ⎯⎯→       (9) 

1 2 0 3* * difkX P P cell cell+ + + ⎯⎯→       (10) 

0 4
difkX cell cell+ ⎯⎯→        (11) 

In these reactions, the notation “*P” indicates that substance P is not consumed in 

the reaction, acting only as an indirect activator. The need for the substrate “cell0” in 

reactions (8) to (11) guarantees that only one of these four reactions will ever occur in a 

cell, since we initialize each cell with a single ‘molecule’ cell0. The presence of “cell0” 

in the cell indicates that the cell is still undifferentiated. 

From reactions (8) to (11) it is apparent how the amounts of P1 and P2 in a cell, at 

the moment of differentiating, will stochastically determine the differentiation pathway 

(celli, i =1,..,4, represent the possible four cell types that the initial cell can differentiate 

into). For example, when these reactions become active, the cell will most likely 

differentiate into cell type 1 (reaction 8) if only P1 is present (it is possible to also 

differentiate into type 4 but with lower propensity). If both P1 and P2 are present with 

significant amount, the cell will probably differentiate into cell type 3 (reaction 10) 

and, if both proteins are absent, into cell type 4 (reaction 11). 
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Cell type 4 (cell4) can, instead of being considered as a differentiated cell, be seen 

as an undifferentiated cell, i.e., a cell of the initial population that did not undergo any 

of the other three differentiation pathways, due to the absence of both transcription 

factors that activate the differentiation process.  From this point onwards we refer to 

cells of type 4 as undifferentiated cells. 

Figure 1 is a schematic representation of the stochastic genetic toggle switch, along 

with the four different differentiation pathways that can be chosen, depending on the 

proteins’ levels of the mother cell during differentiation. 

FIGURE 1 

Given this model of differentiation, we next study how, starting with a population 

of cells genetically and phenotypically identical, the final resulting distribution of 

differentiated cells varies with changes in the internal properties of the toggle switch. 

  

III. RESULTS AND DISCUSSION 

To study the effects on the dynamics of single cells, and its consequences on the 

population’s distribution of differentiation pathway choices, of varying a given internal 

parameter, we simulate in each case 9 cell populations with distinct parameter values. 

Each cell population consists of 1000 identical cells to provide enough sampling. This 

amount of cells for each population is sufficient for the obtained distributions to vary 

less than 5% between different simulations, in number of cells choosing each pathway. 

All simulations are done by simulators SGNSim (Ribeiro and Lloyd-Price, 2007) 

and CellLine (Ribeiro et al, 2007). Besides the distribution of differentiated cells, we 

measure proteins’ mean level, noise in expression levels, and toggling frequency of the 

toggle switch. In all cases, a cell’s lifetime is set to 107 s and a cell’s state is measured 

every 104 s. The unrealistically long lifetime allows better statistics without affecting 
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the results qualitatively (alternatively one could follow the dynamics of cell lines for 

several generations). 

An initial transient of 104 s is discarded since cells are initialized without proteins. 

A cell’s mean level of proteins is measured as the average value of (P1+P2) during its 

lifetime. The mean proteins’ level of a cell population is the average of the means of 

each of its cells. The noise level of the proteins’ time series is measured by the standard 

deviation over the mean of the time series of (P1+P2). The noise level of a cell 

population is the average of the noise of its cells. Finally, the toggling frequency of the 

toggle switch is measured from the time series of the two proteins, P1 and P2. We count 

a “toggling event” when, from moment t to moment (t+1) in the time series, the 

relationship between the amounts of P1 and P2 invert and, one has either P1 or P2 

amounts (or both) changing more than 50% of its maximum amplitude observed, i.e., 

(|Pi(t)-Pi(t+1)| > 0.5*Pi,max), where i=1,2 and Pi,max, is the maximum value observed in 

the time series of Pi,max. This number of events is then divided by the number of time 

steps in the time series to obtain the frequency of toggling. This definition of toggling 

proved to be reliable, not mistaking toggling events of the toggle switch with stochastic 

fluctuations of a protein level around a mean value when on a ‘noisy attractor’. 

Next, we analyze the effects of varying proteins’ mean levels, varying noise while 

maintaining the same mean levels, and varying the bias in the proteins’ mean levels, 

separately, in the dynamics of single cells and in the cell populations’ distribution of 

differentiation pathway choices.  

Effects of varying the proteins mean levels 

To vary the proteins’ mean level we vary the proteins’ decay rate, kd, by 

multiplying it by a specific value, which is different for cells of each of the nine 

populations. The original kd of proteins P1 and P2 is multiplied by the 0.1, 0.2, 0.3, 0.4, 
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0.5, 0.6, 0.7, 0.8, and 0.9 in cells of populations 1 to 9, respectively. These values for 

the multiplicative factors were found empirically to alter significantly the toggling 

dynamics of the switch (Ribeiro, 2008). Note that the smaller the multiplicative factor, 

the smaller is the decay rate and, thus, the higher is the increase of proteins’ mean 

levels. There are other means by which the proteins’ mean level can be varied, e.g., by 

varying the transcription initiation rate. Here we opted for varying the degradation rates 

since its value has a more linear relationship with the proteins’ mean levels than the 

transcription rate, for example. As mentioned, proteins degradation rates can be, to 

some extent, controlled by cells (Cooper, 2000) thus, we consider it here to be a 

parameter that cells can tune to alter proteins’ mean levels.  

As shown in FIG 2, (P1+P2) varies nonlinearly with a linear variation of kd, since 

transcription (1) and translation (2) are time-delayed reactions.  

FIGURE 2 

Interestingly, the differences in mean protein levels do not cause significant 

differences in proteins’ noise level, which is similar in cells of all populations (FIG 3).  

To explain this we show in FIG 4 examples of the time series of proteins’ levels in 

single cells of two cell populations, one from population 1 (cell A) and the other from 

population 9 (cell B). It is apparent why the noise levels are identical in all populations. 

In cell A (pop. 1), (P1+P2) mean level is ~500 with ~600 standard deviation, resulting 

in the observed noise level of ~1.2 (FIG 3A), while in cell B (pop. 9) the mean of 

(P1+P2) is ~50 and the standard deviation is ~60, resulting in an identical noise level. 

From pop. 1 to 9, the decrease in (P1+P2) mean is ‘compensated’ by a decrease in the 

standard deviation, causing the noise level to be identical in cells of all populations.  

FIGURE 3 

FIGURE 4 
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However, the differences in proteins mean levels do affect the cells’ dynamics, i.e., 

the toggling frequency of the switch (FIG 5). Small decreases in proteins’ mean levels 

cause a significant increase in the toggling frequency. This is somehow surprising since 

the switches in the switch are noise driven and the noise level is similar in cells of all 

populations (thus, one would expect similar toggling frequencies). The difference in 

toggling frequencies is caused by differing proteins’ mean levels, which determine the 

average fraction of time that promoters are repressed. Higher mean levels cause longer 

occupation intervals of the promoters by their repressors, resulting in less switches.  

FIGURE 5 

FIGURE 6 

Given the differences in the dynamics of cells of each population, we now observe 

the consequences in their differentiation process (FIG 6). The results show that the 

composition of the differentiated cell populations of all nine cell populations are very 

similar, thus one can conclude that changes in proteins’ mean levels and toggling 

frequency alone do not affect the differentiation process at a population level.  

The only significant difference in the differentiation patterns is that populations 1 

and 2 have a higher number of cells differentiated into cell type 3 (the cell type more 

commonly chosen when both proteins are present in significant amounts). This is 

explained by the results shown in FIG 2. While not easily apparent, it is noted that in 

cells of populations 1 and 2, the protein level of the repressed gene is significantly 

higher (~10-50 proteins) than that of other populations (~1-10 proteins). Cells of 

populations 1 and 2 actually have the promoters of the repressed gene more strongly 

repressed than the others, however, their proteins’ decay rate is sufficiently lower for 

proteins of the repressed gene to remain present for much longer periods of time, thus 
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explaining how the number of cells of these two populations that differentiate into cell 

type 3 is larger than in the other populations.  

The appearance of cells of type 4 (assumed as undifferentiated cells) is rare 

(~0.1%) but identical in all populations, which further confirms that the toggling 

frequency does not affect significantly the distribution of differentiation pathway 

choice and that simulating 1000 cells per cell population provides sufficient sampling.  

 

Effects of varying proteins’ time series noise level while maintaining mean levels 

We now test the effects of changing the noise level of the toggle switch. It was 

shown that the noise of this model of switch can be varied by multiplying the 

transcription rate kt and decay rate kd with a pair of factors, while maintaining 

approximately constant the mean level of (P1+P2) (Ribeiro, 2008). Using the same 

procedure, we study how the differentiation pathway choice, at the population level, 

depends on varying the toggle switch’s noise level alone.  

It’s noted that the changes in kt and kd, while not affecting mean protein levels, do 

affect the dynamics of the toggle switch significantly. Until a certain noise level only 

the switching frequency increases but, beyond that (pop. 6 and beyond), the two genes 

start expressing simultaneously (when the transcription reactions (1) have higher 

propensity than the reactions causing the promoters’ repression (5)) (Ribeiro, 2007).  

To obtain cells with identical mean proteins’ levels but distinct noise levels, the 

cells are altered by multiplying kt and kd with a pair of factors (vi, wi), where i Є 

{1,…9}, respectively, for each of the nine cell populations (originally, kt=10-2 and 

kd=10-3). These pairs of values cannot be varied by constant amounts each time to 

attain equal mean proteins’ levels due to the delay τ1 at each transcription event, which 

accounts for the promoter occupancy time by an RNA polymerase (McClure, 1980). 
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We first set the v’s, where v = 1 is the ‘baseline’ and four inverse pairs are arranged on 

each side in ascending order; then w’s are searched by a heuristic method so that the 

mean (P1 + P2) doesn’t differ beyond 4% among cells of different populations. The nine 

pairs of multiplicative values of kt and kd are (0.01, 0.28), (0.1, 1.09), (0.25, 1.25), (0.5, 

1.2), (1, 1), (2, 0.92), (4, 1.08), (10, 1.73), and (100, 3.46), respectively (Dai et al, 

2009), with the average noise levels shown in FIG 7. Empirically, these pairs of values 

were found to allow significant variation in the noise of the proteins levels of the 

switch. 

FIGURE 7 

FIGURE 8 

FIG. 8 shows the distribution of the choices for differentiation pathways of cells of 

the nine populations. The distinct dynamics of the toggle switch in cells of the various 

populations results in distinct distributions of differentiated cells. Cells of populations 

1 to 3 are bistable and thus, the two most common differentiation pathways are towards 

cell types 1 and 2. Cells of populations 4 and 5 have three differentiation pathways 

almost equally probable (pathways 1, 2 and 3). In populations 6 to 9, the most common 

noisy attractor that these cells are on is the unstable one, i.e., ‘both genes are on’, due to 

the loss of bistability (Ribeiro, 2008) thus, the most common cell type found after 

differentiation is cell type 3. The time series of a cell of each of the populations is 

shown in FIG. 9, illustrating how the dynamics of the toggle switch changes with the 

change in noise, explaining the differences in differentiation distributions. 

FIGURE 9 

The cells with higher noise levels are those that produce the most uniformly 

distributed populations of differentiated cells, expressing the significant role of noise in 

the differentiation process. The noisier the toggle switch, the less deterministic is the 
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choice of differentiation pathway. Regulating the noise level (e.g., by tuning the 

production and degradation rates of proteins) is a viable method to gradually tune the 

fractions of cells that chose between differentiating into cell types 1 or 2 and into cell 

type 3. 

Effects of biasing proteins’ levels at each noisy attractor 

We now test the effects of biasing the amounts of P1 versus P2 in the process of cell 

differentiation. For this, given the original cell model, we set the degradation rates of P1 

and P2 to different values to bias their expected concentrations. This is done 

maintaining the same noise level, while allowing variation in proteins’ mean levels.  

The multiplicative factor pairs of kd for P1 and P2 are (0.10, 0.107), (0.2, 0.209), 

(0.3, 0.314), (0.4, 0.431), (0.5, 0.535), (0.6, 0.647), (0.7, 0.759), (0.8, 0.89), (0.9, 1), 

respectively, for cell populations 1 to 9. These values for the multiplicative factors 

were found empirically to alter significantly the differentiation patterns, while still 

being within realistic intervals of parameter values. For comparison purposes, we also 

show a 10th population whose proteins’ decays is unbiased (FIG. 10). Note that the 

difference (bias) between the two decay rates increases from pop. 1 to 9 (FIG. 14). 

FIGURE 10 

As a result of setting identical noise levels in cells of all nine populations, their 

mean protein levels (P1+P2) differs (FIG. 11), which causes the toggling frequency of 

cells of different cell populations to differ, as seen in FIG. 12.  

FIGURE 11 

FIGURE 12 

However, unlike the first case (of varying the proteins’ mean level) where the noise 

level is uniform over all populations and the toggling frequency differs, resulting in 

similar distributions of differentiation pathway choices for the nine cell populations, in 
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the present case, although the noise is still uniformly distributed across all cell 

populations, the differentiation choices differ more pronouncedly (FIG. 13) due to a 

combination of two effects. First, there is a bias towards differentiating into cell type 1 

in comparison to type 2 (type 1 is more probable since kd of P1 is smaller than kd of P2 

in all populations) and, second, the  amount of cells that undergo pathway 3 varies 

significantly across the populations (due to the differences in mean proteins’ levels).  

Regarding the fraction of cells undergoing pathway 3, the variation across the 

populations is similar to the first case studied, i.e., as the mean protein level decreases, 

the number of cells choosing this pathway decreases (FIG 13). This, as previously, is 

only clear in the first two cell populations, while the other populations do not differ 

significantly among each other. 

To measure the effects of the bias in decay rates on choosing between pathways 1 

and 2, we compare the ratio (N1-N2)/N12 of each cell population, where N1 and N2 are 

the number of cells that differentiated into cell types 1 and 2, respectively, and N12 = 

N1+N2. This quantity accounts for the variation in the number of cells that are available 

to choose pathways 1 and 2 among the various cell populations, thus allowing a more 

precise comparison of the effect of different biases in proteins’ decay rates. From FIG. 

14, that shows both the bias in decay rates and the bias in choosing between pathway 1 

or 2, one can confirm that the bigger the bias (kd1-kd2), the bigger the ratio (N1-N2)/N12. 

FIGURE 13 

FIGURE 14  

As before, the fraction of undifferentiated cells (pathway 4) is very small and 

similar in all populations, based on which one can conclude that biasing proteins’ 

amounts doesn’t change the fraction of cells opting for differentiating given the 

assumed control mechanism of differentiation pathway selection.  
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IV. CONCLUSIONS 

One genetic circuit used by some cells for differentiation pathway selection is the 

toggle switch (Huang et al., 2005)(Wang et al, 2009). Here we investigated how 

changes in the dynamics of this genetic circuit affect the distribution of the stochastic 

choices of differentiation pathways of a population of genetically and, initially, 

phenotypically identical cells.  

Given our stochastic model of cell differentiation, it is shown that the distribution 

of the differentiation pathway choices can be significantly altered by phenotypic 

changes in the cells, i.e., proteins’ degradation rates and gene expression activities, thus 

suggesting that a differentiation mechanism based on a stochastic toggle switch can be 

‘easily’ tuned to fit survival needs. Importantly, unlike previous models such as 

Boolean networks, the delayed stochastic model of gene regulatory networks has much 

greater plasticity as seen in how the distribution of differentiation pathway choice 

gradually changed due to gradual changes in some of the internal parameters of the 

toggle switch. In some cases we observed also that small changes in the proteins’ levels 

dynamics of the switch caused significant changes in the switch’s dynamics. 

The results suggest, for example, that if some steps in neutrophil differentiation are 

regulated by bistable gene networks, e.g., toggle switches (Huang et al, 2005)(Chang et 

al, 2006)(Chang et al, 2008), the regulation of kt and kd would provide a mechanism to 

bias the differentiation pathway choices along the cell lineage according to the needs of 

the organism at each moment, which is of significant importance in the adaptability of 

the organism to the environmental stress caused by pathogens or other external stimuli. 

It is noted as well that if the noise level of the toggle switch can be altered by 

interaction with other proteins (e.g. signaling stress) in the cell, or external factors, then 
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our results suggest how the differentiation patterns can change depending on external 

conditions, and not necessarily by mutation as assumed here.  

Understanding how the dynamics of stochastic differentiation pathway 

determination determines the distributions of differentiated cell populations is needed 

to better understand the degree of plasticity of multi- and uni-cellular organisms in their 

adaptation to the environment. There are already known cases where plasticity is 

mostly conferred by stochastic mechanisms, such as in neutrophil differentiation 

(Huang et al., 2005), and there also evidences in bacterial populations of a correlation 

between phenotypic diversity and environmental stress and/or variability (Acar et al., 

2008)(Suel et al, 2006)(Suel et al, 2007)(Samoilov et al, 2006).  

We have shown that cells whose differentiation pathway determination is regulated 

by a bistable switch could be tuned to differentiate into cell types 1 to 3 in different 

ratios by tuning transcription rates and protein degradation rates. However, it is also 

worthwhile discussing how one could increase the fraction of cells that undergo the 

fourth possible differentiation pathway in the present model. Here, we have not 

explicitly shown such a case since it is assumed that this ‘cell type’ corresponds to the 

fraction of undifferentiated cells, since it is the case where both proteins of the switch 

are virtually absent in the cell during differentiation. Let us assume, instead, that the 

absence of both proteins would lead to a distinct cell type. To increase the fraction of 

cells opting for this pathway one could, e.g., decrease the proteins’ degradation rate 

when, and only when, they are bound to the promoters (reaction 6). Assuming a 

sufficiently high repression strength, krep, such that krep > kd (as is the case here) and 

assuming that when the protein is bound to the promoter (forming the complex ProjPi), 

it becomes “protected” from degradation (which could be achieved by decreasing the 

rate of reaction (6) alone), then even with very low amounts of P1 and P2 present in the 
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cell, both genes would remain repressed most of the time. This would therefore cause 

an increase in the fraction of cells undergoing the differentiation pathway 

corresponding to having both proteins absent.  

We note that we did not vary all parameters and features of the toggle switch to our 

disposal, and we focused on two of the parameters known to vary from cell to cell in 

genetically identical cell populations. In the future, it would be of interest to study the 

consequences of varying the lengths of the time delays in transcription or translation, 

which are sequence dependent, such as the promoter time delay that is known to have 

significant effects on the dynamics of the toggle switch (Ribeiro, 2007). In eukaryotes, 

one could also study the potential role of methylation to this end. Here we focused on 

changes in the toggle switch that do not, necessarily, require mutations. It would also 

be of interest to analyze further the plasticity of stochastic genetic networks, such as the 

toggle switch, as regulators of differentiation pathway choice, especially within the 

context of cells’ adaptability to environmental changes in long time scales. 
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FIGURE LEGENDS 

 
Fig. 1  

Schematic figure of the stochastic toggle switch along with the four different 

differentiation pathways that can be chosen, depending on the levels of the proteins 

during differentiation. Grey balls represent genes with high expression levels, and 

white balls represent genes with low expression levels. In the mother cell (cell type 0), 

the toggling behavior of the genes’ expression levels is represented by a half-white, 

half-grey ball.  

 

Fig. 2  

Average of (P1+P2) mean level (y-axis) over all cells of each of the 9 cell populations 

(x-axis), differing in proteins’ decay rates. Protein decay increases along the x-axis.  

 

Fig. 3  

Average proteins’ time series noise level (y-axis) over all cells of each of the 9 cell 

populations (x-axis), differing in proteins’ mean levels. Protein’s mean level decreases 

along the x-axis. 

 

Fig. 4  

Protein time series of a single cell of (A) cell population 1 and (B) cell population 9. 

Notice the differences in the y-axis scales. 

 

Fig. 5  

Toggling frequency of the TS (y-axis) of cells of the 9 cell populations (x-axis). 

Toggling frequency is calculated across all the cells in each population. 
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Fig. 6  

Distribution of the number of cells (y-axis) that are differentiated into each of the four 

cell types (x-axis) of the 9 cell populations (1000 cells per population), differing in 

proteins’ mean levels. Protein’s mean level decreases along the x-axis. 

 

Fig. 7  

Average proteins’ noise level (y-axis) of the 9 cell populations (x-axis), differing in 

proteins’ mean levels. Protein’s mean level decreases along the x-axis. 

 

Fig. 8  

Distribution of the amount of cells (y-axis) that are differentiated into each of the four 

cell types (x-axis) of the 9 cell populations (1000 cells per cell population), differing in 

noise levels while maintaining the same protein mean level. Transcription rate 

increases along the x-axis. 

 

Fig. 9  

Protein time series of a single cell chosen from each cell population. Notice the 

differences in scales in the Y-axis. 

 

Fig. 10  

Average noise level (y-axis) of the cells of each of the 9 cell populations (x-axis), 

differing in the bias in proteins decays. Population ‘10’, which contains no bias in 

protein decay rates, is shown for comparison. 

 

Fig. 11  
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Average (P1+P2) mean level (y-axis) over 1000 cells of each of the 9 cell populations 

(x-axis), differing in the bias of proteins’ decay. 

 

Fig. 12  

Toggling frequencies (y-axis) of 1000 cells of each of the 9 cell populations (x-axis). 

Toggling frequency is calculated across all the cells in each population. 

 

Fig. 13  

Distribution of the amount of cells (y-axis) differentiated into each of the four cell 

types (x-axis) of the 9 cell populations (1000 cells per cell population), differing in the 

bias of protein decay rates while keeping the noise fixed. Bias and proteins’ decay rate 

increase along the x-axis. 

 

Fig. 14  

Bias (black line, y-axis) and differentiation change (grey line, y axis) of each cell 

population (x-axis). Bias and differentiation change are represented as (kd1–kd2) and 

(N1-N2)/N12, respectively, where N1 and N2 are the number of cells that are 

differentiated into cell type 1 and cell type 2, and N12 = N1+N2.  
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 
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Fig. 10 
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Fig. 11 
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Fig. 12 
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Fig. 13 
 

 



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

  42

Fig. 14 
 

 




