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Abstract

The general tendency for species number (S) to increase with sampled area (A)
constitutes one of the most robust empirical laws of ecology, quantified by species-
area relationships (SAR). In many ecosystems, SAR curves display a power-law
dependence, S ∝ Az. The exponent z is always less than one but shows significant
variation in different ecosystems. We study the multitype voter model as one of the
simplest models able to reproduce SAR similar to those observed in real ecosystems
in terms of basic ecological processes such as birth, dispersal and speciation. Within
the model, the species-area exponent z depends on the dimensionless speciation rate
ν, even though the detailed dependence is still matter of controversy. We present
extensive numerical simulations in a broad range of speciation rates from ν = 10−3

down to ν = 10−11, where the model reproduces values of the exponent observed
in nature. In particular, we show that the inverse of the species-area exponent
linearly depends on the logarithm of ν. Further, we compare the model outcomes
with field data collected from previous studies, for which we separate the effect
of the speciation rate from that of the different species lifespans. We find a good
linear relationship between inverse exponents and logarithm of species lifespans.
However, the slope sets bounds on the speciation rates that can hardly be justified
on evolutionary basis, suggesting that additional effects should be taken into account
to consistently interpret the observed exponents.

Key words: Species-area exponents, Spatial models, Dispersal, Voter model,
Biodiversity, Neutral Theory
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1 Introduction

Species-area relationships (SAR) quantify ecosystem richness and, in partic-
ular, the spatial variations of biodiversity. These curves measure the average
number of species (S) present in a sample area (A) of a given ecosystem and
usually display a triphasic shape (Preston, 1960; Rosenzweig, 1995; Hubbell,
2001). For small areas (below the dispersal range) and large areas (continen-
tal scale), the number of species rapidly increases with the area; while for
intermediate areas a slower, sub-linear growth is observed. The intermediate
range is the most intriguing one and has gathered much attention since its
discovery. Although many functional forms have been proposed to fit the data
in this intermediate regime (He and Legendre, 1996; Tjorve, 2003), the most
common and widely accepted ones are the algebraic law S = CAz (with z < 1
and C a positive constant) proposed by Arrhenius (1921) (see also Gleason
(1922)), and the logarithmic one S ≈ C ln A due to Fisher et al. (1943). A
recent survey by Drakare et al. (2006), reconsidering most of the existing SAR
studies from different ecosystems, shows that the former provides a better fit
in about half of the cases. Even though any of the two hypothesis cannot be a

priori discarded, much efforts across the years (Preston, 1962; MacArthur and
Wilson, 1967; Connor and McCoy, 1979; Wright, 1988; Kohn and Walsh, 1994;
Durrett and Levin , 1996; Hubbell, 2001; Chave et al., 2002; He and Legendre,
2002; Martin and Goldenfeld, 2006) have been devoted to explain the observed
values of the exponent z. Observations support the idea of a dependence of the
exponent z on quantities such as latitude (Allen and Gillooly, 2006) and body
size of considered species (Drakare et al., 2006). Notwithstanding observations
and theoretical efforts, a satisfactory theory able to predict the value of the
exponent in different ecological situations is still lacking.

On the theoretical side, two distinct viewpoints on ecosystems organization
correspond to different explanations for species-area relationships. According
to the first, larger areas contain a larger variety of habitats and consequently
can sustain a richer species diversity (Kohn and Walsh, 1994). For the second
viewpoint, species-area relationships are the outcome of demographic pro-
cesses such as colonization, dispersal, speciation and local extinction, and do
not need environmental diversity for their explanation (MacArthur and Wil-
son, 1967; Hubbell, 2001). We should mention a third explanation, ascribing
species-area relationships to statistical biases induced by the skewedness of
species abundance distributions (He and Legendre, 2002; Martin and Golden-
feld, 2006). As both niche-based and neutral-dispersal mechanisms are able to
sustain diversity, the hope is to extract information on the importance of the
different classes of effects from the shape of SAR curves (Chave et al., 2002).

We consider the voter model as the simplest prototype of neutral models able
to generate non-trivial species-area relationships (Durrett and Levin , 1996;
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Hubbell, 2001; Zillio et al., 2005; Rosindell and Cornell, 2007). The model
accounts, in a simple way, for the processes of birth, local dispersal and intro-
duction of new species. Its main parameter, ν, is a dimensionless number mea-
suring the rate of appearance of new species — speciation events — in units of
the death rate. The other ingredient is the dispersal kernel, which quantifies
the probability for an individual of a species to colonize different locations in
the ecosystem. Speciation and dispersal are enough to produce triphasic SAR
curves resembling those observed in field data (Chave et al., 2002; Rosindell
and Cornell, 2007). In particular, for local (short-range) dispersal, the inter-
mediate regime is well described by a power-law behavior S = CAz, with an
exponent z depending on the speciation rate ν. We mention that the loga-
rithmic function is reproduced by the voter model with global dispersal, when
individuals can invade all loci of the ecosystem (Coleman, 1981; Chave et al.,
2002). The logarithmic law is also retrieved, for large dispersal, for areas being
smaller than the dispersal range, indeed at these scales the dispersal appears
as if it was long range. Understanding how the exponent z depends on the
parameters of the model (in this case, mostly on ν) is fundamental to move
a step toward the theoretical prediction of the variations of experimentally
observed exponents in terms of ecological quantities.

However, this dependence has been source of some controversy in the liter-
ature. In a seminal paper, Durrett and Levin (1996) proposed a formula
according to which, in the limit small ν, z∼1/ ln(1/ν). Rosindell and Cornell
(2007) suggest a power law relationship between z and ν. Finally, the scaling
argument of Zillio et al. (2005) predicts z approaching a finite value z ≈ 0.2
for vanishing ν. These discrepancies have not yet been settled and, due to
the weak dependence of z on ν, a clean answer requires numerical simulations
with ν varying over several orders of magnitude. So far, only speciation rates
ν � 10−6 were explored as simulations at lower (possibly more realistic) values
of the speciation rate are computationally very expensive.

In this paper we present results of simulations of the voter model with specia-
tion rates varying in a wide range of values from ν = 10−3 down to ν = 10−11,
with the twofold aim of disentangling the low speciation rate behavior and ex-
amine an ecologically relevant range of parameters. Our findings are also useful
to assess whether neutral predictions are consistent with realistic speciation
rates (Hubbell, 2001), a question which raised a heated debate (Hubbell, 2003;
Ricklefs, 2003). SAR curves resulting from our simulations are characterized
by a power law behavior with exponent z, displaying a logarithmic dependence
on the speciation rate and supporting de facto Durrett-Levin’s scenario, even
though with different numerical coefficients. In agreement with Rosindell and
Cornell (2007), we also found that the exponent z is essentially insensitive to
the dispersal range implying that, accepting the hypothesis of the model, the
observation of a species-area exponent imposes strong constraints on the rate
of appearance of new species. In the Discussion section, we examine the plau-
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sibility of the model predictions on the basis of data available in the literature.
In particular, we consider the z-values reported in the literature for different
taxa and, due to the absence of reliable data on speciation times, we study how
measured exponents depend on the lifespan, with the additional assumption
that average speciation times and lifespans are linked by a scaling relation.
The observed variations turn out to be much larger than those allowed in the
framework of the model; we finally discuss which effects may be included to
possibly achieve a quantitative description.

2 Model

We consider the voter model with mutation as defined by Durrett and Levin
(1996). Individuals belonging to different species are placed at each site of a
two-dimensional (L×L)-square lattice and evolve according to the following
dynamics. At each time-step, a randomly chosen individual is killed, creat-
ing a gap which is immediately filled, with probability ν, by an individual
from a new species (not present in the ecosystem) — speciation event — or,
with a probability 1 − ν, by a new individual of an already existing (in the
ecosystem) species chosen among those present in a neighborhood (that will
be detailed below) of the site — birth/dispersal event. The dynamics is then
advanced until the number of species in the ecosystem reaches a statistically
steady value. Strictly speaking, the fact that empty locations are immediately
colonized means that the birth rate is infinite (see discussion in Durrett and
Levin (1996)). Therefore the basic time-step of the dynamics correspond to a
death event, and thus the dimensionless parameter ν represents the speciation
rate σ measured in unit of the death rate d. Equivalently, we can express ν as
the average species lifespan t divided by the average time between speciation
events t(s) (we shall come back to this point in the Discussion section).

As for the dispersal rule several options are possible. The simplest possibility
is the nearest-neighbor rule, where the individual is replaced by one of the
species present in the four neighbor sites with probability 1/4. We will refer
to this in the following as the nearest-neighbor (NN) case. A more realistic
choice is to use a generic dispersal kernel introducing the probability P (r) of
a gap being filled by a species whose representative individual is at a distance
r from it. We adopt a computationally simple instance by choosing the square
kernel: we replace the individual with a copy of another individual randomly
chosen in a square of side 2K + 1 centered on the gap. This choice does not
represent a restriction as it has been shown that the relevant quantity is the
averaged square dispersal distance and not the specific functional form of the
kernel. For instance, a Gaussian and a square dispersal kernel with the same
squared dispersal distance produce very similar SAR (Rosindell and Cornell,
2007).
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We stress that, independently of the dispersal rule, the model is completely
neutral: all species (and individuals) undergo the same dynamics, as differences
among species arise only due to demographic stochasticity.

Simulations have been efficiently performed by using the dual representation
of the voter model (Holley and Liggett, 1975), providing a way to reconstruct
the asymptotic configuration of the ecosystem by tracing backward in time its
evolution. An important advantage of the dual representation is that it recon-
structs the genealogy of each individual up to the speciation event originating
its species, meaning that the system is ensured to have reached equilibrium.
Moreover, it allows to implement open boundary conditions: the genealogy
of an individual can be reconstructed also when its ancestors are outside the
simulated area, which can thus be considered as a sample of a virtually infinite
ecosystem Rosindell and Cornell (2007); Rosindell et al. (2008). This means
that we can interpret ν as a bona fide speciation rate, since immigration from
outside the system is included in the birth-dispersal process. However, long-
range immigration events qualitatively different from local dispersal (i.e. seeds
transported by birds) can be modeled as an higher “effective” speciation rate
ν. We managed to optimize the algorithm to simulate the model for very low
speciation rates, down to ν = 10−11. Details on how the simulations have been
performed and the statistics have been collected can be found in Appendix A;
see also Rosindell et al. (2008) for other possible improvements of the coa-
lescence algorithm. As for the dispersal, we explored both the NN and the
square kernels, for the latter K has been varied in the range K = 3 − 64,
though we shall mostly present the results for K = 7 (see the discussion in
the next section).

3 Numerical results

We begin studying SAR curves obtained at fixed dispersal range (K = 7)
and varying ν, as shown in Fig. 1. All curves display a fast growth for small
areas with a crossover, for areas of the order of the dispersal kernel (A ≈
K2), to the power-law regime. The final regime where the number of species
becomes linear with the area can be detected only for rather large speciation-
rate values, 10−5 ≤ ν ≤ 10−3; to observe it at lower values of ν much larger
simulation samples would be required. In the inset, we plot the “local species-
area exponent” for each curve, d(lnS)/d(ln A), which clearly shows that the
smaller ν the smaller the exponent becomes and the larger is the range of
scales where a well defined power-law behavior establishes. Finally, when the
parameter ν is not too small, it is possible to observe also the final linear
regime which occurs for areas much larger than ν−1 (Durrett and Levin ,
1996).
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Fig. 1. Dependence of SAR curves on the speciation rate: S vs A for different spe-
ciation rates ν ∈ [10−9 : 10−3] obtained with the square kernel with K = 7 in
a simulation sample of side L = 2048, and averaging over 100 independent real-
izations. Note the triphasic shape clearly observable for larger values of ν. Inset:
Logarithmic derivatives of the SAR curves, d(lnS)/d(ln A) vs A, a plateau identifies
the intermediate regime and the plateau value the exponent z. Note that z increases
with ν and the intermediate regime enlarges in width at decreasing ν up to invading
almost all the simulation sample for small ν values.

Figure 2 (left and middle panel) exemplifies the behavior of species-area curves
at fixed ν and different dispersal range K. At increasing the dispersal range
the onset of the power law regime shifts at larger areas, apparently with-
out affecting the exponent. A more careful analysis of the local exponents
d(ln S)/d(ln A), shown in the right panel, detects a dependence of the value
of the exponent on the dispersal range when this is small, K � 5, including
the NN case.

On the other hand, when K � 5, we did not observe any appreciable correc-
tions to the value of the exponent. The independence against variations of K,
when it is large enough, has been quantified by Rosindell and Cornell (2007),
who have shown that curves obtained with different (not too small) K can be
rescaled on a universal function of A and ν only via the transformation:

S = f(A, ν, L) = Krφ(A/Kr, ν) (1)

characterized by the scaling exponent r ≈ 1.97. We checked that this relation
holds also with the small values of ν that we studied, for instance the insets
of Figure 2 (left and middle panel) show it for ν = 10−5 and ν = 10−8. We
will then study in the following the NN and the K = 7 cases, the former
being that originally studied by Durrett and Levin (1996) and the latter
being representative of the behavior of the model for large average dispersal
distances.

We now turn to the main results of this paper about the dependence of z on ν.
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Fig. 2. Dependence of SAR curves on the dispersal length. Left and Middle panels:
S vs A, for ν = 10−5 and ν = 10−8 obtained with the square kernel with several
values of K in a simulation sample with L = 2048. Note that in the intermediate
regime, which starts and ends at different area values by changing K, the slope of
the curves is the same indicating that z is independent of K. Insets show the curves
rescaled with the transformation (1). Right panel: local slopes d(lnS)/d(ln A) vs A
for ν = 106 and different kernels: NN and square with K = 1, 3, 5, 7, 11. Note the
tiny dependence of the exponent (the region between the two horizontal lines) on
the dispersal length. For K � 5 the plateau region (lower horizontal line) does not
change anymore apart from an horizontal shifting of its onset towards larger areas.

In Figure 3 (left) we show the exponent z as a function of the speciation rate ν
(see Appendix A for a discussion on how we estimated z). We observe a clear
discrepancy with previous predictions (Durrett and Levin , 1996; Rosindell
and Cornell, 2007) (also shown in the picture). In particular, for ν � 1, we
found the data to fall into a straight line when plotting 1/z vs. ln(ν) (Fig. 3
right), suggesting the following functional dependence

z =
1

q + m ln(ν)
, (2)

by which we obtained a best fit to the data with q ≈ −3.3 and m ≈ −0.72.
To compare our results with previous studies of these models, notice that the
power-law fit suggested in by Rosindell and Cornell (2007) agrees with the
data in the same range of speciation rate values, i.e. ν ≥ 10−5. Deviation from
a power law behavior are clearly observed for lower values of ν, where the
data also rule out the saturation at z ≈ 0.2 predicted by Zillio et al. (2005).
Actually, our fit confirms Durrett and Levin (1996) prediction of a logarithmic
decay of z with ν, up to corrections order O(ln(ln(ν))). However, the fitting
parameters m and q for both the square kernel with K = 7 and the NN kernel
are very different from those of Durrett and Levin (see caption of Fig. 3). We
conjecture that the differences in prefactors could be caused by two different
assumptions used by Durrett and Levin to derive the dependence of z on ν.
The first is about pre-asymptotic effects: the statistical results used by Durrett
and Levin are strictly valid only when t → ∞ which requires ν → 0, while
finite-time corrections may affect the exponent value. In this respect, also for
our data the ν → 0 limit seems to be crucial for the validity of the fit (2). The
second is the assumption that a power law regime establishes from A = 1 to
A = ν−1. Conversely, we observe the onset of the power law for areas being
slightly larger than 1 even in the NN case. Moreover, the crossover to the
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Fig. 3. Dependence of the species-area exponent on the speciation rate. (left) SAR
exponent z versus the speciation rate ν for the NN and square kernel with K = 7.
For comparison it is also shown the prediction by Durrett and Levin (1996) and the
power-law dependence suggested by Rosindell and Cornell (2007). (right) Same data
as left but shown plotting 1/z vs ln(ν). The straight lines reports the best fit with
(2) with parameters: m =−0.48 ± 0.02, q =−1.4 for NN data, m =−0.72 ± 0.02,
q = −3.2 for square kernel data (K = 7) and m = −0.127 ± 0.002, q = 2.10 for
Durrett-Levin tabulated data. Errors on the exponents are of the order of symbol
sizes, see Appendix A for details.

linear asymptotic regime begins for areas quite smaller than 1/ν.

It should be noticed that discrepancies in the numerical factors have profound
implications when the model is used to estimate a speciation rate from an
observed species area exponent. The logarithmic dependence of z on ν makes,
in fact, ν exponentially dependent on z. We will discuss in the next section
how this dependence can be compared with experimental data. It should also
be remarked that both Durrett and Levin prediction and equation (2) are
valid for small values of ν and can lead to incorrect results, such as negative
z, for ν close to 1.

All simulations so far presented have been performed with open boundary con-
ditions, which are appropriate when the sample is a homogeneous portion of a
much larger ecosystem. However, closed boundary conditions can be of interest
for modeling confined ecosystems such as islands. Intuitively, open boundaries
allow new species to immigrate into the sampled system from the external
infinite ecosystem, independently of the speciation events. Closed boundaries
exclude this possibility and are thus expected to reduce the exponent z and,
in general, species richness. Fixing the speciation rate ν the decreasing of z
becomes more and more efficient as the system size decreases, and at fixed
size the effect is the stronger the smaller is ν. The closed boundaries effects
becomes dramatic for simulation samples with A ≈ 1/ν, and, in particular, we
observed that for ν such that A � 1/ν, biodiversity is definitely lost, i.e. z = 0
(see Fig 4). Notice that when the system size is large (i.e. A ≥ 20482) and the
speciation rate is not too small (i.e. ν ≤ 10−4) the exponent is essentially the
same of the open boundary case. We also remind that, if islands are modeled
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Fig. 4. z vs ν for the square kernel with K = 7 with closed boundary conditions
(CBC) at L = 512 and L = 2048 compared with the result with open boundary
conditions (OBC) and L = 2048. Note how the decrease of z with ν becomes more
and more dramatic at decreasing the size.

by closed boundaries, the parameter ν should be meant to include the im-
migration rate of new species (MacArthur and Wilson, 1967), since dispersal
from outside the system is forbidden in this case.

We stress here that the implementation of closed boundary is a very simplistic
way of describing confined ecosystems and more sophisticated effects may be
relevant in these cases. For example, it has been shown that the dynamics at
the edge of ecosystems can be quite different from that in the bulk (Laurance
et al., 2006). This means that “open” situations, when the sample is part
of a much larger and homogeneous system, provide a much safer comparison
between models and field data.

4 Comparison with empirical data and discussion

Species-Area relationships have been subject of intense experimental research
in a variety of ecosystems, and the range of variability of the exponent describ-
ing the intermediate regime goes from z ≈ 0.05 in bacteria (Horner-Devine
et al., 2004) to z = 0.4 − 0.5 in some plants community (see Drakare et al.
(2006) for an exhaustive review of field observations). According to our results,
the voter model with speciation displays a variability of z in the same range
when the speciation rate is allowed to vary over several orders of magnitude.
It is thus tempting to go in the direction of a more quantitative comparison
between field data and the model results.

As a first step, we assume that the model is able to describe the main fea-
tures of groups of trophically similar species and explore the consequences of
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this assumption. This requires that a speciation rate and a dispersal range
for the whole group of species can be properly defined, although we know
that speciation rates (Mariakeva and Gorshkov, 2004) and dispersal ranges
(Nathan and Muller-Landau, 2000; Kinlan and Gaines, 2003) may have signif-
icant variations from species to species. However, in the model the exponent
is essentially independent on the dispersal range and depends only logarithmi-
cally from the speciation rate, so that these variations might be disregarded
treating all species in the group as having the same “average” dispersal range
and speciation rate.

As far as dispersal is concerned, we only found a tiny dependence for very
short dispersal range, around K < 5. Above these values the exponent is
independent of the dispersal range confirming previous results Rosindell and
Cornell (2007). Realistic average dispersal ranges (Nathan and Muller-Landau,
2000; Kinlan and Gaines, 2003) are certainly far from the short dispersal
case, due to animal motility or wind for seeds. Therefore, we assume that
the dispersal range of real groups of species is always in the range where
the exponent is dispersal-independent. It is however worth remarking that
the dispersal range can still affect the spatial biodiversity via the power-law
prefactor, whose increase can lead to a large number of species that, when z is
small, increases very slowly with the area. In this respect, the model outcomes
are in contrast with interpretations of low values for z in bacteria as an effect of
large dispersal distances as argued in Drakare et al. (2006) and Horner-Devine
et al. (2004).

What about speciation? Unfortunately, we do not have ecological data al-
lowing us to directly estimate the frequency of speciation events. Data from
fossils suggest an average speciation rate on Earth of about three specie per
year (Sepkoski, 1998), but it is hard to infer from this number a reasonable rate
for a living system. Also estimates based on mutation rates (Mariakeva and
Gorshkov, 2004) could be flawed due to genetic bottlenecks and phenomena
like horizontal gene transfer (Jain et al., 1999). Moreover, as discussed in the
Model section, the parameter ν should be interpreted as an “effective” speci-
ation rate, incorporating also long-range dispersal events. Within the model
framework, our results show that species-area exponent and dimensionless spe-
ciation rate ν are related even when the latter is very small, implying that
an observed value of the exponent z would predict the rate of introduction of
new species ν. Remarkably, the existence of positive correlations of these two
quantities is consistent with observational results. As an example, it is known
that close to the equator species-area exponents tend to increase (Drakare et
al., 2006) together with speciation rates (Allen and Gillooly, 2006) and overall
biodiversity (Stevens, 1986).

In order to test the ecological plausibility of the relation between z and ν,
we make use of the definition of ν as the ratio between the speciation rate σ
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and the death rate d. From Eq. (2) and separating the contribution from the
variation in the speciation rate from that of the variation in the death rate,
we have

1

z
= q + m ln(ν) = q + m[ln(σ)− ln(d)] , (3)

where the arguments of the logarithm are made dimensionless by measuring
them in the same units. To ease the interpretation, we recast this equality in
the time domain using the lifespans t = 1/d and the average time between
speciation events t(s) = 1/σ:

1

z
= q + m[ln(t)− ln(t(s))] , (4)

The first term on the right hand side accounts for the variation in z due
to the lifespan which is, of course, much easier to estimate than the term
due to speciation time and can still be important and informative. Indeed
there are evidences that taxa having a shorter generation time have generally
lower species area exponents (Horner-Devine et al., 2004; Green et al., 2004;
Zhou et al., 2008) (we recall that m is negative). We thus study how the
inverse exponent 1/z varies with the logarithm of the lifespan. The results of
this analysis are presented in figure 5 for data obtained from the literature
(see Appendix B for a description of how data have been collected), which
shows that a linear relationship fits rather well the data, with an observed
slope mmeas = −1.76± 0.13 (dashed line in the figure) which is different from
m ≈ −0.72 predicted by the voter model.

The fact that for species-area exponents measured in field data we found
1/z ∝ ln(t) suggests a scaling relationship between speciation time and lifes-
pan, i.e. that t(s) ∼ tγ , so that mmeas = m(1− γ), as clear by substitution in
the previous formula. We do not have any a priori explanation for justifying
a power law dependence of the speciation time on the lifespan, apart from
the observation that the variations of many ecologically relevant rates among
species are governed by scaling laws (Brown et al., 2004). We are not aware
of independent estimation of the dependence of the speciation time on the
lifespan so to confirm or reject the outcome of our analysis.

However, the relation mmeas = m(1 − γ), with m and mmeas fixed by the
voter model and field data respectively, yields a negative γ. This result is in
contrast with biological expectations as it would imply, e.g., a speciation time
for bacteria much longer than the one for trees, which is hard to justify bio-
logically. Reasonable expectations would have been 0 < γ < 1. The limiting
case of γ = 1 is the trivial case in which speciation time is proportional to the
lifespan. This would have lead to mmeas = 0, i.e. same ν = t/t(s) and z for all
taxa. The other limiting case is γ = 0, which is plausible when the possibility
of creating a new species is triggered by some external mechanism, like the
availability of new niches, which is not strongly correlated to any particular

11



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

 0

 5

 10

 15

 20

 25

 0  2  4  6  8  10

1/
z

ln(lifespan)

tropical trees
birds

butterflies
earthworms

ciliates
bacteria

Fig. 5. 1/z vs logarithm of lifespans (measured in days) for several taxa. Dashed
line is the best fit, giving a slope mmeas = −1.76± 0.13 (reduced χ2 = 1.04).

feature of the species. Another justification could come from co-evolutionary
mechanisms: species having very different lifespans can still evolve on sim-
ilar timescales due to their ecological interactions (Thompson and Jeremy,
1992). Actually, co-speciation is known to occur in some cases of host-parasite
systems (Clayton et al., 2003). In this case, one would find mmeas = m.

The inconsistent value of γ we obtained can be interpreted either as a failure
of the basic assumptions of the neutral model and thus of its inadequacy in
describing realistic ecosystems or as the need of additional mechanisms to be
included in the framework of dispersal models. The quality of the linear fit
shown in Fig. 5 would suggest to opt for the second interpretation, even if
the linear dependence of 1/z on log(t) needs to be tested with further mea-
sures. In recent years, several attempts of relaxing the strong assumptions of
neutral models have been tried. The results of these models are pretty ro-
bust with respect to modifications of some hypothesis such as the saturation
of the resources (Etienne et al., 2007b). In spatial models, it has been also
observed that the introduction of trade-offs does not have a dramatic effect
on species-area exponents (Chave et al., 2002). Therefore, it is reasonable to
search for other elements in the model which can lead to a failure in repro-
ducing the observed data. In particular, the assumptions of a point speciation
mode (i.e. the fact that each individual has a fixed probability to speciate) is
known to be crucial and the results may change dramatically when considering
“fission modes”, corresponding to allopatric speciation (Hubbell, 2001, 2003;
Ricklefs, 2003; Etienne et al., 2007a). Indeed, it seems like the most impor-
tant assumption of neutral models is that new species enter the system with a
population of a single individual (Zillio and Condit, 2007). This could explain
why speciation rates predicted by neutral models with point speciation may
look unrealistically high: new species are introduced with only one individual
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and they have an high probability of going extinct before being able to grow.
In other words, there could be a discrepancy between the parameter ν in the
model and the experimentally observed speciation rate. The effect of realistic
speciation mechanisms on neutral and more general dispersal models could
be key to understand the puzzle of the observed variation of the exponents
among different taxa.

In conclusion, simulations of the multi-type voter model for low values of
the speciation rate show a clear logarithmic functional dependence of the
specie-area exponent on the speciation rate and independence on the dispersal
kernel (provided it is not too short ranged). Analysis of field data support a
logarithmic dependence of the exponent z on the timescales of the problem,
though with a prefactor which is incompatible with that found in the model.
Our analysis points out that more refined models should allow larger variations
in the exponent z in order to be consistent with observational data.
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A Simulations and data analysis

By means of the dual representation of the voter model, the model becomes
equivalent to a system of coalescing random walkers, where a birth/dispersal
event corresponds to collision-coalescence of two walkers and a speciation event
to the death of a walker. Therefore, as time proceeds, less and less surviving
walkers should be accounted, speeding up the simulation. This allowed us to
simulate lattices L × L with L = 1024, 2048 and L = 4096 for ν ∈ [10−11 :
10−3]. In order to test the effect of the system size when boundaries are present,
we have also used L = 512; in this case we generalized the algorithm by just
refusing all moves causing the exit of a walker from the simulation domain,
thus constraining the walkers to remain inside the initial grid. To embank the
simulation bottleneck due to the initial presence of L2 walkers we optimized
the walker collision detection by means of a look-up table. For each ν and L
we repeated the simulation many times with different seeds for the random
number generator, typically from 100 to 150 − 300 for L = 2048, 4096 and
L = 1024, 512, respectively. For the lower values of ν simulations get very
slow and a lower number of realization was used, typically from 20 to 60 for
ν < 10−10. Once the species occupancy patterns are obtained SAR curves
are derived by averaging the number of species in non-overlapping squares of
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A = 1, . . . , L whose union completely covers the simulation grid. So
that averages are performed both over the number of sampled areas in each
realization and over different realizations. Statistical errors on the average are
also computed. The exponent z characterizing the power law growth of S
with A is then estimated fitting by a linear least square method the function
ln S = q + z ln A with A ∈ [Amin : Amax] chosen at the beginning and the end
of the intermediate regime, respectively. The fit were performed by minimizing
the reduced χ2 function (i.e. normalizing the χ2 with the number of degrees
of freedom) but constraining the minimal number of points to be considered
(from 5 to 15 depending on the extension of the intermediate range). As the
least square error is smaller than the variability of the fitted z at changing
the minimal number of constrained points, we set the error on the estimate
as such variability. In Fig. 3 errors are comparable with the symbol size.

The quality of the fit is then compared by a direct inspection of the local
slopes (logarithmic derivatives, i.e. d lnS/d ln A vs ln A) of the SAR curves.

B Details on observational data

Data presented in Fig. 5 are based on the collection of exponents presented
by Horner-Devine et al. (2004). We avoided presenting the z-value for plants
since it varies a lot among different studies (see supplementary information
of Horner-Devine et al. (2004)). As a representative of long-lived organisms
we have chosen tropical forest trees which are well studied and we assumed
for them z = 0.27 (Lonsdake, 1999) and average lifespan ≈ 60 years (Condit
et al., 1999). The exponent z values for butterflies, earthworms, birds and
ciliates are the same of the original reference; the value for bacteria z = 0.05
is an average between the value z = 0.04 in Horner-Devine et al. (2004) and
the value z = 0.06 in a more recent study by Zhou et al. (2008). As far as
the other lifespans are concerned, we must stress that it can vary much from
species to species and, in most cases, it is hard to find in the literature good
statistical studies. However, due to the logarithmic dependence, the fit is not
be so sensitive to errors in the estimates as far as the order of magnitude
is correct. We assumed an average lifespan of 2 years for birds (see, e.g.,
Speakman (2005)). Despite their short average lifespan in their adult stage,
butterflies usually have a few generations per year (Gilbert and Singer, 1975);
we assumed an average of two, corresponding to t = 0.5 years . Other estimated
lifespans are 1 year for earthworms (Edwards and Bohlen, 1977), 10 days for
ciliates (Jensen and Verschoor, 2004) and 2 days for bacteria (Clarholm and
Rosswall, 1980).
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