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Abstract

While ordinary differential equations (ODEs) form the conceptual framework for
modelling many cellular processes, specific situations demand stochastic models
to capture the influence of noise. The most common formulation of stochastic
models for biochemical networks is the chemical master equation (CME). While
stochastic simulations are a practical way to realise the CME, analytical ap-
proximations offer more insight into the influence of noise. Towards that end,
the two-moment approximation (2MA) is a promising addition to the estab-
lished analytical approaches including the chemical Langevin equation (CLE)
and the related linear noise approximation (LNA). The 2MA approach directly
tracks the mean and (co)variance which are coupled in general. This coupling
is not obvious in CME and CLE and ignored by LNA and conventional ODE
models. We extend previous derivations of 2MA by allowing a) non-elementary
reactions and b) relative concentrations. Often, several elementary reactions are
approximated by a single step. Furthermore, practical situations often require
the use relative concentrations. We investigate the applicability of the 2MA
approach to the well established fission yeast cell cycle model. Our analytical
model reproduces the clustering of cycle times observed in experiments. This is
explained through multiple resettings of MPF, caused by the coupling between
mean and (co)variance, near the G2/M transition.

Key words: Noise, two-moment approximation, mean, (co)variance, cell cycle

1. Introduction

At a coarse level, cellular functions are largely determined by spatio-temporal
changes in the abundance of molecular components. At a finer level, cellular
events are triggered by discrete and random encounters of molecules [1]. This
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suggests a deterministic modelling approach at the coarse level (cell function)
and a stochastic one at the finer level (gene regulation) [2–11]. However, stochas-
tic modelling is necessary when noise propagation from processes at the fine level
changes cellular behaviour at the coarse level.

Stochasticity is not limited to low copy numbers. The binding and dissoci-
ation events during transcription initiation are the result of random encounters
between molecules [4]. If molecules are present in large numbers and the molec-
ular events occur frequently, the randomness would cancel out (both within a
single cell and from cell to cell) and the average cellular behaviour could be
described by a deterministic model. However, many subcellular processes, in-
cluding gene expression, are characterised by infrequent (rare) molecular events
involving small copy numbers of molecules [1, 4]. Most proteins in metabolic
pathways and signalling networks, realising cell functions, are present in the
range 10-1000 copies per cell [12–14]. For such moderate/large copy numbers,
noise can be significant when the system dynamics are driven towards critical
points in cellular systems which operate far from equilibrium [15–17]. The signif-
icance of noise in such systems has been demonstrated for microtubule formation
[18], ultrasensitive modification and demodification reactions [12], plasmid copy
number control [19], limit cycle attractor [20], noise-induced oscillations near a
macroscopic Hopf bifurcation [21], and intracellular metabolite concentrations
[22].

Noise has a role at all levels of cell function. Noise, when undesired, may
be suppressed by the network (e.g. through negative feedback) for robust be-
haviour [2, 23–27]. However, all noise may not be rejected and some noise may
even be amplified from process to process, and ultimately influencing the phe-
notypic behaviour of the cell [6, 11, 28–30]. Noise may even be exploited by the
network to generate desired variability (phenotypic and cell-type diversification)
[2, 31–34]. Noise from gene expression can induce new dynamics including am-
plification (stochastic focusing) [6, 35, 36], bistability (switching between states)
and oscillations [37–40], that is both quantitatively and qualitatively different
from what is predicted or possible deterministically.

The most common formulation of stochastic models for biochemical networks
is the chemical master equation (CME). While stochastic simulations [41] are a
practical way to realise the CME, analytical approximations offer more insights
into the influence of noise on cell function. Formally, the CME is a continuous-
time discrete-state Markov process [42–44]. For gaining intuitive insight and a
quick characterisation of fluctuations in biochemical networks, the CME is usu-
ally approximated analytically in different ways [44, 45], including the frequently
used the chemical Langevin approach [46–49], the linear noise approximation
(LNA) [15, 50–52] and the two-moment approximation (2MA) [53–55].

Of the analytical approaches mentioned above, we here focus on the 2MA
approach because of its representation of the coupling between the mean and
(co)variance. The traditional Langevin approach is based on the assumption
that the time-rate of abundance (copy number or concentration) or the flux of
a component can be decomposed into a deterministic flux and a Langevin noise
term, which is a Gaussian (white noise) process with zero mean and amplitude
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determined by the the dynamics of the system. This separation of noise from the
system dynamics may be a reasonable assumption for external noise that arises
from the interaction of the system with other systems (like the environment), but
cannot be assumed for internal noise that arises from within the system [4, 5, 11,
14, 56, 57]. As thoroughly discussed in [47], internal noise is not something that
can be isolated from the system because it results from the discrete nature of the
underlying molecular events. Any noise term in the model must be derived from
the system dynamics and cannot be presupposed in an ad hoc manner. However
the chemical Langevin equation (CLE) does not suffer from the above criticism
because Gillespie [46] derived it from the CME description (see also [58]). The
CLE allows much faster simulations compared to the exact stochastic simulation
algorithm (SSA) [43] and its variants. The CLE is a stochastic differential
equation (dealing directly with random variables rather than moments) and
has no direct way of representing the mean and (co)variance and the coupling
between the two. That does not imply that CLE ignores the coupling like the
LNA which has the same mean as the solution of the deterministic model.

The merits of the 2MA compared to alternative approximations have been
discussed in [53, 54, 59]. In [55], the 2MA is developed as an approximation of
the master equation for a generic Markov process. In [54], the 2MA framework is
developed under the name “mass fluctuation kinetics” for biochemical networks
composed of elementary reactions. The authors demonstrate that the 2MA can
reveal new behaviour like stochastic focusing and bistability. Another instance
of the 2MA is proposed in [45, 53] under the names “mean-field approximation”
and “statistical chemical kinetics”. Again, the authors assume elementary re-
actions so that the propensity function is at most quadratic in concentrations.
The authors evaluate the accuracy of the 2MA against the alternatives (such
as LNA) for a few toy models. The derivation of the 2-MA for more general
systems with non-elementary reactions is one motivation for the present paper.

The 2MA approaches referred to above assume absolute concentrations (copy
number divided by some fixed system size parameter). In systems biology,
however, models often use relative concentrations with arbitrary units [60–63].
In general, the concentration of each component in the system may have been
obtained by a different scaling parameter, rather than using a global system
size. For such models, the above mentioned approaches need modification. This
was another motivation for our derivation in this paper.

In the present paper we develop a compact derivation of the first two-
moments, the mean and (co)variance of the continuous-time discrete-state Markov
process that models a biochemical reaction system by the CME. This derivation
is an extension of previous derivations, taking into account arbitrary concentra-
tions and non-elementary reactions. The matrix form of our derivation allows
for an easy interpretation. Using these analytical results, we develop our 2MA
model of the fission yeast cell cycle which has two sets of ODEs: one set for the
mean protein concentrations and the other set for concentration (co)variances.
Numerical simulations of our model show a considerably different behaviour.
Especially, for the wee1- cdc25Δ mutant (hereafter referred simply as double-
mutant), the timings of S-phase and M-phase are visibly different from those
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obtained for a deterministic model because of the oscillatory behaviour of the key
regulator. Since the 2MA is only an approximation, we investigate its validity
by comparing the statistics computed from the 2MA model with experimental
data.

The rest of this paper is organised as follows. In the first section we introduce
the basic terminology and notation. Then the system of ODEs forming the 2MA
approach is presented. Next, we introduce an application to the fission yeast
cell cycle model [60]. We present a 2MA model of the cell cycle, followed by a
comparison to the experimental data and conclusions. The appendices contain
full derivations of the 2MA model, further proofs and additional tables.

2. Stochastic modelling of biochemical systems

Imagine a well-mixed homogeneous cellular compartment of a fixed volume
V at thermal equilibrium that contains molecules of s different kinds (each kind
referred to as a chemical component or species) interacting in r distinct ways
(each way referred to as a reaction channel or step). Since these biochemical
reactions occur by random encounters of reactant molecules, the copy number
of a particular component present in the system at time t fluctuates. The state
of the cellular system is described by the s × 1 random vector N(t) whose ith
element is the copy number Ni(t) of the ith species present in the system at time
t. Each (time-varying) element Ni(t) is a stochastic process, where Ni(t) = ni
means that ni molecules of the ith species are present in the system at time
t. The s × 1 vector n, with elements ni, is thus a sample (or a value) of the
stochastic process N(t).

We can also describe the system state at time t by the s × 1 vector X(t)
whose ith element is the concentration Xi(t) of the ith component. The con-
centration Xi(t) is, in general, the copy number Ni(t) divided by some fixed
scaling parameter Ωi specific to that component. In other words

Ni(t) = ΩiXi(t), ni = Ωixi .

Each concentration Xi(t) is a stochastic process, where Xi(t) = xi means that
the concentration of the ith component at time t is xi. The s× 1 vector x, with
elements xi, is thus a sample of the stochastic process X(t). The copy number
and concentration (vectors) are related by

N(t) = Ω �X(t), n = Ω � x,

where Ω is the s−vector of elements Ωi and the binary operation � denotes the
element-wise multiplication.

Commonly, all components are scaled by a single parameter, in which case
Ω is a scalar known as the system size. A common choice for the system size
is some multiple of the volume V of the system. For molar concentrations, the
system size chosen is Ω = NAV whereNA is the Avogadro’s constant. In systems
biology, one often uses relative concentrations xi where Ωi is some fixed copy
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number specific to component i. The simplest case of relative concentrations
uses a single (maximum) copy number nmax for all components. Note, however,
that the approach developed here allows for relative concentrations instead of
assuming one global system-size Ω as done in [16, 51, 53, 54, 64].

If we assume that the molecules are well mixed and are available everywhere
for a reaction (space can be ignored), then the probability of a reaction in a short
time interval depends almost entirely on the most recent copy numbers (and not
its earlier values). In other words, the stochastic process N(t) of copy numbers
isMarkovian in continuous-time. Since changes in the copy numbers require the
occurrences of reactions which are discrete event phenomena, N(t) is referred
as a jump process. The Markov property implies that each reaction channel j
can be characterised by a reaction propensity aj(n) defined such that, in state
n, the probability of one occurrence of reaction channel j in a vanishingly short
time interval of length dt is aj(n)dt.

The stochastic process N(t) is characterised by the (time-dependent) prob-
ability distribution P (n, t) = Pr [N(t) = n], starting from some initial distribu-
tion P (n, 0) as in [58]. Usually, the initial state is assumed to be known (as
in [44]), N(0) = n0 so that P (n0, 0) = 1 and P (n, 0) = 0 for all n �= n0. In
that case the distribution can be interpreted as a time-dependent transition
probability

P (n, t) = Pr
[
N(t) = n |N(0) = n0

]
of moving from the fixed initial state n0 to the state n at time t. The probability
distribution itself is characterised by its moments. The transition from state n
to the state determined by the jth reaction will be represented by the following
scheme

n
aj(n)−−−−−−−→ n+ S

�j

where S
�j is the jth column of the stoichiometry matrix S whose element Sij

denotes the change in copy number of the ith component resulting from the
occurrence of the jth channel. Similarly the transitions towards state n from
the state determined by the jth reaction can be represented by

n− S
�j

aj(n−S�j)−−−−−−−−−−→ n

where the argument of the propensity function aj is n−S�j which is the assumed
current state. Transitions away from state n will decrease the probability P (n, t)
while those towards state n will increase it. Since this is equally true for each
reaction channel, during a short time interval of length Δt, the change in the
probability is given by

P (n, t+Δt)−P (n, t) =
r∑
j=1

P (n−S
�j, t)aj(n−S�j)Δt−

r∑
j=1

P (n, t)aj(n)Δt+o(Δt)

where o(Δt) represents terms that vanish faster than Δt as the later approaches
zero. As Δt approaches zero in the above system of equations, we are led to
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what is known as the chemical master equation (CME):

d

dt
P (n, t) =

r∑
j=1

[
aj(n− S�j)P (n− S�j, t)− aj(n)P (n, t)

]
, (1)

subject to the initial condition: P (n0, 0) = 1 and P (n, 0) = 0 for all n �= n0. We
will switch between the two alternative notations ddtφ(t) and

dφ
dt for any scalar

quantity φ(t). We will prefer the later when dependence on time variable is
implicitly clear.

Since there is one equation for each state n and there is potentially a large
number of possible states, it is impractical to solve the CME. In most cases, we
are interested in the first two-moments: component-wise copy number means

〈Ni(t)〉 =
∑
n

niP (n, t),

and the covariances

〈Ni, Nk〉 =
〈(
Ni − 〈Ni〉

)(
Nk − 〈Nk〉

)〉
,

between copy numbers of component pairs. These covariances form the covari-
ance matrix in which the diagonal elements are component-wise variances.

In the present paper, we are interested in the mean concentration vector μ(t)
with elements

μi(t) = 〈Xi(t)〉 = 〈Ni(t)〉
Ωi

and the concentration covariance matrix σ(t) with elements

σik(t) = 〈Xi(t), Xk(t)〉 = 〈Ni(t), Nk(t)〉
ΩiΩk

Hereafter, we leave out the dependence on time to simplify the notation, but
include it occasionally when causing confusion.

2.1. Continuous approximations of the jump process N(t)

Although the stochastic simulation algorithm and its extensions provide a
way to generate sample paths of copy numbers for a biochemical system, there
is a significant computational burden. Characterisation of the probability dis-
tribution in terms of its moments requires a large number of simulations runs.
To that end, attempts have been made towards approximations of the CME,
the most notable being the chemical Langevin equation (CLE) by Gillespie [46]
(see also [58]). He obtained that continuous approximation for the incremental
change ΔN = N(t+Δt)−N(t) in copy number during a short interval [t, t+Δt]
where the interval length Δt satisfies two conditions: (i) It is small enough that
the propensity does not change “appreciably” during the interval, and (ii) is
large enough that the expected number of occurrences 〈Zj(t+Δt)− Zj(t)〉 of
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each reaction channel j during the interval is much larger than unity. That
continuous approximation takes the form of the CLE (derived in Appendix A)

ΔNi =

r∑
j=1

Sijaj (N)Δt+

r∑
j=1

Sij

√
aj (N)Nj

√
Δt. (2)

where {Nj(t)} is a set of r statistically independent standard Gaussian random
processes (with zero mean and unit variance). An alternative form of CLE
(derived in Appendix A) is

ΔN = S a (N)Δt+
(
D (N)

)1/2

N
√
Δt (3)

where N (t) is an s × 1 vector of statistically independent standard Gaussian
random processes and D1/2 is the matrix square root of the diffusion matrix

D(n) = S diag (a1(n), . . . , ar(n)) S
T , (4)

where the superscript T represents the transpose of a matrix and diag (a1, . . . , ar)
is the diagonal matrix with elements a1, . . . , ar on the diagonal. The probability
density function P c(n, t) of the continuous Markov process obeys the (forward)
Fokker-Planck equation (FPE) [46, 65]

∂

∂t
P c(n, t) =

r∑
j=1

(
−
s∑
i=1

Sij
∂

∂ni
+
1

2

s∑
i,k=1

SijSkj
∂2

∂ni∂nk

)[
aj(n)P

c(n, t)
]
. (5)

In effect, condition (i) allows a Poissonian approximation of Zj(t+Δt)− Zj(t)
and condition (ii) allows a normal approximation of the Poissonian. The two
conditions seem conflicting and require the existence of a domain of macroscop-
ically infinitesimal time intervals. Although the existence of a such a domain
cannot be guaranteed, Gillespie argues that this can be found for most practical
cases. Admitting that, “it may not be easy to continually monitor the system
to ensure that conditions (i) and (ii) [..] are satisfied.” He justifies his argument
by saying that this “will not be the first time that Nature has proved to be
unaccommodating to our purposes.” [46].

Generating sample paths of (2) is orders of magnitude faster than doing the
same for the CME because it essentially needs generation of normal random
numbers. See [66] for numerical simulation methods of stochastic differential
equations such as (2) and (3). The choice between (2) and (3) may be dictated
by the number of reactions r relative to the number of species s because, in
each simulation step, the former requires r random numbers whereas the latter
requires s random numbers. However, solving the nonlinear FPE (5) for the
probability density is as difficult as the CME. Therefore, on the analytical side,
the CLE and the associated nonlinear FPE do not provide any significant ad-
vantage. That leads to a further simplification referred to as the linear noise
approximation (LNA) [44, 45]. The LNA is a linear approximation of the non-
linear FPE (5) obtained by linearising the propensity function around the mean.
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The solution of the LNA is a Gaussian distribution with a mean that is equal
to the solution of the deterministic ODE model and a covariance matrix that
obeys a linear ODE. That is the main drawback of LNA because, for a system
containing at least one bimolecular reaction, the mean of a stochastic model is
not equal to the solution of deterministic ODEs, as shown next.

2.2. Mean of the stochastic model

The mean copy number for the ith component obeys the ODE

d 〈Ni〉
dt

=

r∑
j=1

Sij
〈
aj

(
N
)〉

(6)

which is derived in Appendix B. In general, the expectation on the right of (6)
involves involves the unknown probability distribution P (n, t). In other words,
the mean copy number depends not just on the mean itself, but also involves
higher-order moments, and therefore (6) is, in general, not closed in the mean
unless the reaction propensity is a linear function of N which is the case only
for zero- and first-order reactions. Take the example of a first-order reaction

X
k−→ Y with n denoting the copy number of its reactant and k denoting the

reaction coefficient. The reaction propensity a(n) = kn (mass action kinetics)
is linear in n. From probability theory, the expectation becomes 〈kN〉 = k 〈N〉
and thus we do not need to know the probability distribution for solving the
ODE in the mean. Only when all reactions are elementary and are of zero or
first-order, we have exact equations for the evolution of mean:

d 〈Ni〉
dt

=

r∑
j=1

Sijaj
(〈N〉) .

This corresponds to the ODE system for the deterministic model, which treats
the copy numbers n(t) as a continuous time-varying quantity that can be uniquely
predicted for a given initial condition. For systems containing second (and
higher) order reactions, a(n) is a nonlinear function and the evolution of the
mean cannot be determined by the mean alone. Instead the mean depends on
higher-order moments, and hence the deterministic ODE model and the LNA
cannot be used to describe the mean in (6).

2.3. The 2MA approach

The present section provides only a brief outline of the 2MA approach and
we refer to the Appendix B for a detailed derivation.

An exact and closed representation for the mean is not possible in general, as
evident from (6). The same is true for (co)variance and higher-order moments.
One way to solve this problem is by repeating many stochastic simulation runs
based on CME or the CLE, and computing the desired moments from the en-
semble runs. An alternative is to find approximations to the exact ODEs such as
(6) for the moments. The 2MA is one such attempt which assumes closure to the
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first two moments. A scheme of chemical reactions or a system of deterministic
ODEs is the starting point. From this are concluded the reaction propensities
aj(n) which appear as coefficients in the CME describing the time derivative
of the probability distribution P (n, t). By taking the first two-moments of the
CME and subsequent simplifications followed by appropriate scaling, two sets
of ODEs for the mean concentration vector μ(t) and covariance matrix σ(t) are
derived. This is followed by Taylor expansions of any nonlinear functions in-
volving the propensity vector a(n). Ignoring central moments of 3rd and order
higher eventually leads to the 2MA system (derived in Appendix B):

dμi
dt

= fi(μ) +
1

2

∂2fi
∂x∂xT

: σ (7)

dσik
dt

=
∂fi
∂xT
σ

�k + σi�
∂fk
∂x

+
1√
ΩiΩk

[
Bik(μ) +

1

2

∂2Bik
∂x∂xT

: σ

]
(8)

where σ
�k and σi� respectively denote the kth column and ith row of σ, all partial

derivatives with respect to the state x are evaluated at x = μ, and

fi(x) =
1

Ωi

r∑
j=1

Sijaj(Ω � x)

Bik(x) =
1√
ΩiΩk

r∑
j=1

SijSkjaj(Ω � x) .
(9)

Here the binary operation : denotes the Frobenius inner product, that is, the sum
of products of the corresponding elements between two matrices. The effective
flux on the right in (7) is the sum of a deterministic flux f(μ) and a stochastic

flux 1
2
∂2fi
∂x∂xT : σ, the latter determined by the dynamics of both the mean and

(co)variance. This influence of the (co)variance implies that knowledge of fluc-
tuations is important for a correct description of the mean. This also indicates
an advantage of the stochastic framework over its deterministic counterpart:
starting from the same assumptions and approximations, the stochastic frame-
work allows us to describe the influence of fluctuations on the mean. This can
be posed as the central phenomenological argument for stochastic modelling.

Note that (7) is exact for systems where no reaction has an order higher
than two because then 3rd and higher derivatives of propensity are zero. In (8),
the drift matrix ∂f/∂xT reflects the noise dynamics for relaxation (dissipation)
to the steady state and the (Taylor approximation to the 2nd order of) diffusion
matrix B(x) the randomness (fluctuation) of the individual events. These terms
are borrowed from the fluctuation-dissipation theorem (FDT) [67, 68], which has
the same form as (8). The scaling factor 1/

√
ΩiΩk, that becomes 1/Ω for scalar Ω,

confirms the inverse relationship between the noise, as measured by (co)variance,
and the system size. Note the influence of the mean on the (co)variance in (8).

A deterministic model treats concentrations x(t) as continuous variables that
can be predicted entirely from the initial conditions. Hence there is no noise
term in the deterministic model and the ODEs reduce to ẋ = f(x).
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Since the 2MA approach is based on the truncation of terms containing 3rd
and higher-order moments, any conclusion from the solution of 2MA must be
drawn with care. Ideally, the 2MA should be complemented and checked with
a reasonable number of SSA runs.

In [53, 54], the 2MA has been applied to biochemical systems, demonstrat-
ing quantitative and qualitative differences between the mean of the stochastic
model and the solution of the deterministic model. The examples used in [53, 54]
all assume elementary reactions (and hence propensities at most quadratic) and
the usual interpretation of concentration as the moles per unit volume. In the
next section, we investigate the 2MA for complex systems with non-elementary
and relative concentrations. The reason for our interest in non-elementary reac-
tions is the frequent occurrence of rational propensities (reaction rates), say of
Michaelis-Menten type or Hill type, in models in the system biology literature
(e.g. [69]).

2.4. The link between the CLE and the 2MA

Consider the system in state n = Ωx. The component-wise flux (appearing
in the 2MA and defined in (9)) multiplied by the corresponding size parameter,
Ωifi(x), appears as the coefficient of Δt of the first term on the right of the
CLE (2). Moreover, the (i, k)th element of concentration diffusion matrix B,
appearing in (9), multiplied by the square root of the corresponding pair of
size parameters,

√
ΩiΩkBik(x), turns out to be the element Dik(n) of the copy-

number diffusion matrix D(n) whose matrix square root (D(n))1/2 appears as
a coefficient in the noise term of the CLE (3). Essentially, both approaches
approximate the Markov process by a Gaussian random process.

3. Fission yeast cell cycle modelling

The growth and reproduction of organisms requires a precisely controlled
sequence of events known as the cell cycle [70]. On a coarse scale, the cell cycle
is composed of four phases: the replication of DNA (S phase), the separation
of DNA (mitosis, M phase), and the intervening phases (gapes G1 and G2)
which allow for preparation, regulation and control of cell division. The central
molecular components of cell cycle control system have been identified [70, 71].

Cell cycle experiments show that cycle times (CTs) have different patterns
for the wild type and for various mutants [72, 73]. For the wild type, the
CTs have more or less a constant value near 150 min ensured by a size control
mechanism: mitosis happens only when the cell has reached a critical size. The
value 150 min has been considered in [48, 64, 73, 74] as the CT of an average
WT cell (also referred to as the “mass-doubling time”). The double-mutant of
fission yeast (namely wee1- cdc25Δ) exhibits quantised cycle times: the CTs get
clustered into three different groups (with mean CTs of 90, 160 and 230 min).
The proposed explanation for the quantised cycle times is a weakend positive
feedback loop (due to wee1 and cdc25) which means cells reset (more than once)
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back to G2 from early stages of mitosis by premature activation of a negative
feedback loop [73, 74].

Many deterministic ODE models describing the cell cycle dynamics have
been constructed [60, 62, 75, 76]. These models can explain many aspects of
the cell cycle including the size control for both the wild type and mutants.
Since deterministic models describe the behaviour of a non-existing ‘average
cell’, neglecting the differences among cells in culture, they fail to explain cu-
rious behaviours such as the quantised cycle times in the double-mutant. To
account for such curiosities in experiments, two stochastic models were con-
structed by Sveiczer: The first model [73, 74] introduces (external) noise into
the rate parameter of the protein Pyp3. The second model [77] introduces noise
into two cell and nuclear sizes after division asymmetry. Full stochastic models
that treat all the time-varying protein concentrations as random variables are
reported in [48, 64]. They provide a reasonable explanation for the size control
in wild type and the quantised CTs in the double-mutant type. Both models em-
ploy the Langevin approach and hence require many simulation runs to provide
an ensemble for computing the mean and (co)variance. However, the simulation
results of stochastic models in [48, 64, 73, 74, 77] represent one trajectory (for
a large number of successive cycles) of the many possible in the ensemble from
which the CT statistics (time averages) are computed. We will see that the
time-averages computed from the 2MA simulation are for the ensemble of all
trajectories.

3.1. The deterministic model

We base our 2MA model on the deterministic ODE model for the fission
yeast cell cycle, developed by Tyson-Novák in [60]. In this context, the cell
cycle control mechanism centres around the M-phase promoting factor (MPF),
the active form of the heterodimer Cdc13/Cdc2, and its antagonistic interactions
with enemies (Ste9,Slp1,Rum1) and the positive feedback with its friend Cdc25.
These interactions, among many others, define a sequence of check points to
control the timing of cell cycle phases. The result is MPF activity oscillation
between low (G1-phase), intermediate (S- and G2-phases) and high (M-phase)
levels that is required for the correct sequence of cell cycle events. For simplicity,
it is assumed that the cell divides functionally when MPF drops from 0.1.

Table 1 lists the proteins whose concentrations xi, together with MPF con-
centration, are treated as dynamic variables that evolve according to

dxi
dt

= f+
i (x)− f−i (x) . (10)

Here f+
i (x) is the production flux and f−i (x) is the elimination flux of ith

protein. Note that the summands in the fluxes f+
i (x) and f

−
i (x) are rates of

reactions, most of which, are non-elementary (summarizing many elementary
reactions into a single step). Quite a few of these reaction rates have rational
expressions which requires the extended 2MA approach developed in this paper.
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Table 1: Proteins and fluxes. Here x denotes the vector of concentrations x1 to
x8.

Index Protein Production flux Elimination flux
i f+

i (x) f−i (x)

1 Cdc13T k1M (k′2 + k
′′
2x3 + k

′′′
2 x5)x1

2 preMPF (x1 − x2) kwee (k25 + k
′
2 + k

′′
2x3 + k

′′′
2 x5)x2

3 Ste9
(k′3+k′′3 x5)(1−x3)

J3+1−x3

(k′4x8+k4xmpf)x3

J4+x3

4 Slp1T k′5 +
k′′5 x

4
mpf

J4
4

+x4
mpf

k6x4

5 Slp1 k7
(x4−x5)x6

J7+x4−x5
k6x5 + k8

x5

J8+x5

6 IEP k9
(1−x6)xmpf

J9+1−x6
k10

x6

J10+x6

7 Rum1T k11 (k12 + k
′
12x8 + k

′′
2xmpf)x7

8 SK k13xtf k14x8

The MPF concentration xmpf can be obtained from the algebraic relation

xmpf =
(x1 − x2) (x1 − xtrim)

x1
(11)

where

dM

dt
= ρM

xtrim =
2x1x7

Σ +
√
Σ2 − 4x1x7

xtf = G (k15M,k
′
16, k

′′
16xmpf , J15, J16)

kwee = k
′
wee + (k′′wee − k′wee)G (Vawee, Viweexmpf , Jawee, Jiwee)

k25 = k
′
25 + (k′′25 − k′25)G (Va25xmpf , Vi25, Ja25, Ji25)

Σ = x1 + x7 +Kdiss,

G(a, b, c, d) =
2ad

b− a+ bc+ ad+√
(b− a+ bc+ ad)2 − 4(b− a)ad

(12)

Note that the cellular mass M is assumed to grow exponentially with a rate
ρ, and the concentrations (xtrim, xtf , kwee, k25) are assumed to be in a pseudo-
steady-state to simplify the model. Note that we use a slightly different notation:
ρ for mass growth rate (instead of μ), xtrim for Trimmer concentration and xtf

for TF concentration. We have to emphasise that the concentrations used in
this model are relative and dimensionless. When one concentration is divided
by another, the proportion is the same as a proportion of two copy numbers.
Hence, such a concentration should not be interpreted as a copy number per unit
volume (as misinterpreted in [64]). The parameters used in the Tyson-Novák
model [60] are listed in Table 3 in Appendix D.

The deterministic ODE model describes the behaviour of an ‘average cell’,
neglecting the differences among cells in culture. Specifically, it fails to explain
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the experimentally observed clusters of the CT-vs-BM plot and the tri-modal
distribution of CT [72–74, 77].

3.2. Feasibility of Gillespie simulations

Ideally, we should repeat many runs of Gillespie’s SSA and compute our
desired moments from the ensemble of those runs. At present, there are two
problems which this. The first problem is the requirement of elementary re-
actions for SSA. The elementary reactions underlying the deterministic model
[60] are not known. Many elementary steps have been simplified to obtain that
model. Trying to perform an SSA on non-elementary reactions will lose the
discrete event character of the SSA. The second problem arises from the fact
that the SSA requires copy numbers which in turn requires knowledge of mea-
sured concentrations. All protein concentrations in the model are expressed
in arbitrary units (a.u.) because the actual concentrations of most regulatory
proteins in the cell are not known [63]. Tyson and Sveiczer1 define relative con-
centration xi of the ith protein as xi = ni/Ωi where Ωi = CiNAV . Here Ci is an
unknown characteristic concentration of the ith component. The idea is to make
the relative concentrations xi free of scale of the actual (molar) concentrations
ni/NAV . Although one would like to vary Ci, this is computationally intensive.
This problem is not so serious for the continuous approximations such as CLE,
LNA and the 2MA which are all ODEs and can be numerically solved. Using
Matlab R2009a on a quad-core 2.66 GHz CPU took longer than 10 hours to
complete one SSA run of 465 cycles. According to a recently published report
[78], to compare the stochastic results with the average behaviour, the simula-
tion must be run thousands of times, for which the cited authors had to use a
parallel super computer. The main focus of the present paper is the analytical
2MA.

3.3. The stochastic model using Langevin’s approach

In [64] a stochastic model is proposed that replaces the ODE model (10)
with a set of chemical Langevin equations (CLEs)

d

dt
xi(t) = f

+
i

(
x(t)

)− f−i (
x(t)

)
+

1

Ω

[√
f+
i (x(t))Γ

+
i (t)−

√
f−i (x(t))Γ

−
i (t)

]
,

which uses the Langevin noise terms: White noises Γ+
i and Γ

−
i scaled by

√
f+
i (x)

and
√
f−i (x) to represent the internal noise. The system parameter Ω has been

described as the volume by the author. As we discussed before, the concentra-
tions are relative levels with different system size parameters. That means that
concentrations are not the same as copy numbers per unit volume.

1Personal communication.

13



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

Another stochastic model, employing the Langevin’s approach, is reported
in [48]. It approximates the squared noise amplitudes by linear functions:

d

dt
xi(t) = fi (x(t)) +

√
2Dixi(t)Γi(t),

where Di is a constant. The model dynamics f(x) are missing in the noise term
because the author wanted to represent both the internal and external noise by
the second term on the right.

3.4. The 2MA model

For the cell cycle model, the flux f and the diffusion matrix B, defined in
(9), have elements

fi(x) = f
+
i (x) − f−i (x), Bik(x) =

{
f+
i (x) + f

−
i (x) if i = k

0 if i �= k .

The off-diagonal elements of B are zero because each reaction changes only one
component, so that SijSkj = 0 for i �= k. Once these quantities are known, it
follows from (7) and (8) that the following set of ODEs:

dμi
dt

= fi(μ) +
1

2

∂2fi
∂x∂xT

: σ (13)

dσii
dt

= 2
∑
l

∂fi
∂xl
σli +

1

Ωi

[
Bii(μ) +

1

2

∂2Bii
∂x∂xT

: σ

]
(14)

dσik
dt

=
∑
l

[
∂fi
∂xl
σlk + σil

∂fk
∂xl

]
i �= k (15)

approximates (correctly to the 2nd order moments) the evolution of component-
wise concentration mean and covariance. See See Tables 4-6 in Appendix D for
the respective expressions of the drift matrix A, the stochastic flux εf and the
correction-term εB added to the diffusion matrix B in (14).

Having at hand the moments involving the eight dynamic variables x1 to
x8, the mean MPF concentration can be shown to be approximately (correct to
2nd order moments):

μmpf = μ1 − μ2 − xtrim +
xtrim

μ1

[(
1 +
σ11

μ2
1

)
μ2 − σ12

μ1

]
(16)

for the mean MPF concentration with the understanding that xtrim is in pseudo
steady state (See Appendix C for the derivation). This expression for the av-
erage MPF activity demonstrates the influence of (co)variance on the mean as
emphasised here. We see the dependence of mean MPF concentration μmpf on
the variance σ11 and covariance σ12 in addition to the means μ1, μ2 and xtrim.
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Figure 1: The time-courses of mass and MPF activity: (a) for the wild type, (b)
for the double-mutant type. The 2MA predicted mean trajectories are plotted
as solid lines and the corresponding deterministic trajectories as dashed lines.
The difference between the two predictions is negligible for the wild type, but
significant for double-mutant type.

3.5. Simulations of the 2MA model

The system of ODEs (13)-(15) was solved numerically by the MATLAB
solver ode15s [79]. The solution was then combined with algebraic relations
(16). For parameter values, see Table 3. Since information about the individual
scaling parameters Ωi used in the definition of concentrations is not available,
we have used Ωi = 5000 for all i. This value has also been used in [64], although
there is no clear justification. Note, however, that the 2MA approach developed
here will work for any combination of {Ωi}. The time-courses of mass and
MPF activity are plotted in Figure 1a for the wild type and in Figure 1b for the
double-mutant type. For the wild type, the 2MA predicted mean trajectories do
not differ considerably from the corresponding deterministic trajectories. Both
plots show a more or less constant CT near 150 min. Thus internal noise does
not seem to have a major influence for the wild type.

For the double-mutant type, the difference between the 2MA and determin-
istic predictions is significant. The deterministic model (10) predicts alternating
short cycles and long cycles because cells born at the larger size have shorter
cycle, and smaller newborns have longer cycles [60]. This strict alternation due
to size control is not observed in experiments: cells of same mass may have
short or long cycles (excluding very large cells that have always the shortest
CT) [72, 74]. This lack of size control is reproduced by the 2MA simulations:
the multiple resettings of MPF to G2, induced by the internal noise, result in
longer CTs (thus accounting for the 230-min cycles observed experimentally).
Such MPF resettings have been proposed in [73, 74] to explain quantised CTs.
No such resetting is demonstrated by the deterministic model.

Note that the mean μ(t) of the 2MA describes the average of an ensemble of
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Figure 2: Variance σ11 (of Cdc13T) and covariance σ12 (between Cdc13T and
preMPF): (a) for the wild type, (b) for double-mutant type.

cells. Yet the MPF resettings observed in Figure (1b), near G2/M transition,
introduce the required variability that explains the clustering of the cycle time
observed in experiments. This is in contrast to the alternative stochastic ap-
proaches in [48, 64, 73, 74, 77] that use one sample trajectory rather than the
ensemble average.

How do we explain this significant effect of noise for the double-mutant on
one hand and its negligible effect for the wild type on the other hand? If we
look at expression (16), we see the influence of the variance σ11 (of Cdc13T) and
covariance σ12 (between Cdc13T and preMPF) on the mean MPF concentration
μmpf . The two (co)variances are plotted in Figure 2a for the wild type and in
Figure 2b for the double-mutant type. It is clear that the two (co)variances have
very small peaks for the wild type compared to the large peaks for the double-
mutant type. Note that the larger peaks in Figure 2b are located at the same
time points where the MPF activity exhibits oscillations and hence multiple
resettings to G2. This suggest that the oscillatory behaviour of MPF near the
G2/M transition is due to the influence of the oscillatory (co)variances. This
coupling between the mean and (co)variance is not captured by the deterministic
model.

It has to be realised that the above proposition requires validation since
the 2MA approach ignores 3rd and higher-order moments. We cannot know
whether that truncation is responsible for the oscillations in Figures 1 and 2,
unless compared with a few sample trajectories simulated by the SSA. However,
as discussed before, the SSA cannot be performed (at present) for the model
in consideration. Therefore we need to compare the 2MA predictions for the
double-mutant type cells with experimental data. Towards that end, values of
cycle time (CT), birth mass (BM) and division mass (DM) were computed for
465 successive cycles of double-mutant cells. Figure 3 shows the CT-vs-BM plot
and the CT distribution for three different values {5000, 5200, 5300} of system
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Table 2: Statistics over 465 successive cell cycles of the double-mutant type
cells, predicted by the 2MA model, compared with experimental data, see [72,
Table 1].

Case μCT σCT CVCT μDM σDM CVDM μBM σBM

(1) 131 47 0.358 2.22 0.45 0.203 1.21 0.24
(2) 138.8 12.4 0.09 3.18 0.101 0.0319 1.59 0.0575
(3) 138.8 17.6 0.127 3.25 0.178 0.055 1.623 0.0934
(4) 138.8 23.9 0.172 3.32 0.231 0.0697 1.657 0.12

(1) experimental data, (2) Ω = 5000, (3) Ω = 5200, (4) Ω = 5300.

size Ω.
To make this figure comparable with experimental data from [72, 73], we

assume that 1 unit of mass corresponds to 8.2 μm cell length [74]. We can
see the missing size control (CT clusters), in qualitative agreement with experi-
mentally observed ones (see [72, Figure 6] and [73, Figure 5] for a comparison).
There are more than four clusters, which may have arisen from the truncated
higher-order moments. The extreme value of CT higher than 230 min suggests
more than two MPF resettings. Furthermore, more than three modes in the CT
distribution may have arisen from the truncated higher-order moments. Table
2 compares the statistics for the double-mutant type cells, computed with the
2MA approach, with data from [72, Table 1]. Column 2-4 tabulate, for CT, the
mean μCT, the standard deviation σCT and the coefficient of variation CVCT,
respectively. The other columns tabulate similar quantities for the division
mass (DM) and the birth mass (BM). We see that only the mean CT is in
agreement with the experimental data. The mean values for both BM and DM
are larger than the corresponding experimental values. The other statistics are
much smaller the corresponding experimental values. This and the above plots
suggest that the 2MA should be used with caution. However, another aspect of
the cell cycle model deserves attention here. The way the relative protein con-
centrations have been defined implies unknown values of the scaling parameters
{Ωi}. Since Ωi = CiNAV , knowing the volume V does not solve the problem:
the characteristic concentrations {Ci} are still unknown. Our simulations have
chosen typical values Ω = {5000, 5200, 5300}. The corresponding three pairs of
plots in Figure 3 and rows in Table 2 demonstrate a dependence of the results
on a suitable system size. There is no way to confirm these values. The scaling
parameters could be varied in a wider range in order to improve simulation ac-
curacy, which we leave for future work. The conclusion is that the quantitative
disagreement of the 2MA predictions can be attributed to two factors: 1) the
truncated higher-order moments during the derivation of the 2MA, and (2) the
unknown values of scaling parameters.
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Figure 3: Cycle time behaviour over 465 successive cycles of the double-mutant
cells, predicted by the 2MA model. (a,c,e): CT vs BM, (b,d,f): CT distribution,
(a,b): Ω = 5000, (c,d): Ω = 5200, (e,f): Ω = 5300. The plots are in qualitative
agreement to experiments, see [72, Figure 6] and [73, Figure 5] for comparison.
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4. Conclusions

The recently developed two-moment approximation (2MA) [53, 54] is a
promising approach because it accounts for the coupling between the means
and (co)variances. We here extended the derivation of the 2MA to biochemical
networks and established two advances to previous efforts: a) relative concentra-
tions and b) non-elementary reactions. Both aspects are important in systems
biology where one is often forced to aggregate elementary reactions into single
step reactions. In these situations one cannot assume knowledge of elemen-
tary reactions to formulate a stochastic model. Previous derivations assumed
elementary reactions and absolute concentrations. However, numerous existing
models in systems biology use relative concentrations.

We investigated the applicability of the 2MA approach to the well estab-
lished fission yeast cell cycle model. The simulations of the 2MA model show
oscillatory behaviour near the G2/M transition, which is significantly different
from the simulations of deterministic ODE model. One notable aspect of our
analytical model is that, although it describes the average of an ensemble, it
reproduces enough variability among cycles to reproduce the curious quantised
cycle times observed in experiments on double mutants.
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Appendix A. Derivation of alternative forms of the CLE

The progress of a particular reaction can be described by a quantity known
as the reaction count (RC) or degree of advancement. We will write Zj(t) for
the RC of the jth reaction, where Zj(t) = zj means that the jth reaction
has occurred zj times during the interval [0, t). In the same interval the jth
reaction will contribute a change of zjSij molecules to the overall change in the
copy number Ni of the ith component. Summing up contributions from all the
reactions, the copy number can be expressed as

Ni(t) = Ni(0) +

r∑
j=1

SijZj(t) . (17)
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The copy number increment ΔNi = Ni(t + Δt) − Ni(t) during a short time
interval [t, t+Δt] is then a linear combination

ΔNi =

r∑
j=1

SijΔZj, (18)

of the short-time RC increments ΔZj = Zj(t + Δt) − Zj(t). Following Gille-
spie [46], suppose it is known that N(t) = n. Since all the probabilities and
expectations in this appendix are conditional on N(t) = n, we will use a sim-
plified notation, which will not explicitly indicate this conditionality. Then the
short-time RC increment ΔZj has the probability distribution

Pr [ΔZj = zj ] = o(Δt) +

⎧⎪⎨
⎪⎩
aj(n)Δt if zj = 1

1− aj(n)Δt if zj = 0

0 if zj > 1

(19)

where o(Δt) represents a quantity that vanishes faster than Δt as the later
approaches zero. For a vanishingly small Δt, the above distribution approaches
the Poisson distribution with mean and variance equal to aj(n)Δt. If Δt is
small enough that each reaction propensity aj(n) does not change “appreciably”
during the interval, then ΔZ is approximately Poissonian with channel-wise
mean

〈ΔZj〉 ≈ aj(n)Δt, (20)

and (co)variance

〈ΔZj ,ΔZl〉 ≈
{
aj(n)Δt if j = l

0 if j �= l, (21)

between channel pairs. If Δt is large enough that each RC increment 〈ΔZj〉 has
a very large value, aj(n)Δt	 1, then the Poissonian ΔZj can be approximated
by a normal random variable with the same mean and variance aj(n)Δt for each
reaction channel. Since any normal random variable can be written as a sum
of its mean and the standard normal variable, scaled by its standard deviation,
we can write the normal approximation as

ΔZj ≈ aj(n)Δt+ (aj(n)Δt)
1/2Nj(t), (22)

where Nj(t) denotes the channel-wise standard normal process, all processes in
the set {Nj(t)} being statistically independent. Inserting the above equation
into (18) gives

ΔNi ≈
r∑
j=1

Sijaj(n)Δt+

r∑
j=1

Sij (aj(n)Δt)
1/2Nj(t) .

Replacing the supposedly known n by N(t) in the above equation gives the first
form (2) of the CLE in the main text.
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Being a linear combination of Gaussian variables ΔZj , the copy number
increment ΔN is also Gaussian which can be written in the form

ΔN ≈ 〈ΔN〉+ 〈
ΔN,ΔNT

〉1/2 N (t), (23)

which is a sum of the mean 〈ΔN〉 and an s × 1 standard Gaussian random

vector N (t) scaled by the matrix square-root 〈ΔN,ΔNT 〉1/2
of the covariance

matrix
〈
ΔN,ΔNT

〉
. Combining (18) and (20) gives

〈ΔNi〉 =
r∑
j=1

Sij 〈ΔZj〉 ≈
r∑
j=1

Sijaj(n)Δt

for the component-wise mean copy-number increment and

〈ΔN〉 ≈ S a(n)Δt (24)

for the mean copy-number increment vector. The covariance matrix
〈
ΔN,ΔNT

〉
can be expressed in terms of reaction counts in the following way. From (18)
we get the pair-wise multiplication

ΔNiΔNk =

r∑
j=1

r∑
l=1

SijSklΔZjΔZl .

Combining the standard relation 〈ΔNi,ΔNk〉 = 〈ΔNiΔNk〉 − 〈ΔNi〉 〈ΔNk〉
with (21) gives

〈ΔNi,ΔNk〉 =
r∑
j=1

r∑
l=1

SijSkl 〈ΔZj ,ΔZl〉 ≈
r∑
j=1

SijSkjaj(n)Δt

for the pair-wise covariance between copy-number increments. Introducing an
s× s matrix D defined element-wise by

Dik(n) =
r∑
j=1

SijSkjaj(n),

the copy-number covariance matrix and its matrix square root can be written
in the form〈

ΔN,ΔNT
〉 ≈ D(n)Δt, 〈

ΔN,ΔNT
〉1/2 ≈ (D(n))

1/2
(Δt)

1/2
.

Substituting the above and (24) in (23) gives

ΔN ≈ S a(n)Δt+ (D(n))
1/2 N (t) (Δt)1/2 . (25)

Replacing the supposedly known n by N(t) in the above proves (3) in the main

text. Note that the matrix square root D1/2 is such that D = D1/2
(
D1/2

)T
and can be found from the eigenvalue decomposition of D.
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Appendix B. Derivation of the 2MA equations

The short-time reaction count increment has the channel-wise (conditional)
mean

〈ΔZj |N(t) = n〉 = aj(n)Δt+ o(Δt) . (26)

The unconditional expectation can be obtained by summing up the conditional
expectation, weighted by the probabilities P (n, t), over all possible states n:

〈ΔZj〉 =
〈
aj

(
N(t)

)〉
Δt+ o(Δt),

which for vanishingly small Δt approaches the ODE

d

dt
〈Zj(t)〉 = 〈aj (N(t))〉 . (27)

Thus the mean propensity of a particular reaction can be interpreted as the
average reaction count per unit time. Take the expectation on both sides of the
conservation relation (17) to obtain

d

dt
〈Ni(t)〉 =

r∑
j=1

Sij
〈
aj

(
N(t)

)〉

which proves (6) in the main text. It is interesting to note that the above ODE is
a direct consequence of mass conservation (17) and the definition of propensity
because we have not referred to the CME (which is the usual procedure) during
our derivation.

Dividing (6) by Ωi gives the ODE for the component mean concentration,

d

dt
μi(t) =

〈
fi
(
X(t)

)〉
, (28)

where

fi(x) =
1

Ωi

r∑
j=1

Sijaj(Ω � x)

is the total flux of component i in state x.
Suppose the propensity aj(n) is a smooth function and that central moments

〈(N − μ)m〉 of order higher than m = 2 can be ignored. In that case, the Taylor
series expansion of flux fi(x) around the mean is

fi(x) = fi(μ) +
∂fi
∂xT

(x− μ) + 1

2
(x − μ)T ∂

2fi
∂x∂xT

(x− μ) + · · · .

All partial derivatives with respect to the state x are evaluated at x = μ.
The first-order partial derivative here is the ith row of the Jacobian ∂f/∂xT .
The 2nd-order partial derivative is the Hessian of fi. Expectation of the 2nd
term on the right is zero. Expectation of the 3rd term is the sum of products

of corresponding elements of the Hessian ∂2fi
∂x∂xT and the covariance matrix σ.
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Denoting such an inner product between two matrices by : and ignoring terms
involving 3rd and higher-order moments, the ODE (28) can be approximated
by

dμi
dt

= fi(μ) +
1

2

∂2fi
∂x∂xT

: σ,

which proves the first set of 2MA equations (7) in the main text. Here the 2nd
term on the right is the internal noise that arises from the discrete and random
nature of chemical reactions. Note that this term has been derived from the
CME instead of being assumed like external noise. This shows that knowledge
of fluctuations (even if small) is important for a correct description of the mean.
This also indicates an advantage of the stochastic framework over it determin-
istic counterpart: starting from the same assumptions and approximations, the
stochastic framework allows us to see the influence of fluctuation on the mean.
Note that the above equation is exact for systems where no reaction has an
order higher than two because then 3rd and higher derivatives of propensity are
zero.

Before we can see how the covariance σ evolves in time, let us multiply the
CME with nink and sum over all n,

∑
n

nink
dP (n, t)

dt
=

∑
n

nink

r∑
j=1

[aj(n− S�j)P (n− S�j , t)− aj(n)P (n, t)]

=
∑
n

r∑
j=1

[
(ni + Sij) (nk + Skj) aj(n)P (n, t)− ninkaj(n)P (n, t)

]

=
∑
n

r∑
j=1

(nkSij + niSkj + SijSkj) aj(n)P (n, t)

where dependence on time is implicit for all variables except n and S. Dividing
by ΩiΩk and recognising sums of probabilities as expectations,

d 〈XiXk〉
dt

= 〈Xkfi(X)〉+ 〈Xifk(X)〉+ 〈Bik(X)〉√
ΩiΩk

where the diffusion matrix B(x) has elements

Bik(x) =
1√
ΩiΩk

r∑
j=1

SijSkjaj(Ω � x) .

The relation σik = 〈XiXk〉 − μiμk can be utilised to yield
dσik
dt

= 〈(Xk − μk) fi(X)〉+ 〈(Xi − μi) fk(X)〉+ 〈Bik(X)〉√
ΩiΩk

(29)

for the covariances between concentrations of component pairs. The argument
of the first expectation in (29) has Taylor expansion

fi(x) (xk − μk) = fi(μ) (xk − μk) + ∂fi
∂xT

(x− μ) (xk − μk) + · · · .
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Expectation of the first term on the right is zero. Ignoring 3rd and higher-order
moments, the first expectation in (29) is then

〈(Xk − μk) fi(X)〉 = ∂fi
∂xT
σ

�k .

By a similar procedure, the second expectation in (29) is

〈(Xi − μi) fk(X)〉 = σi� ∂fk
∂x
,

correct to 2nd-order moments. The element Bik(x) of the diffusion matrix has
Taylor expansion

Bik(x) = Bik(μ) +
∂Bik
∂xT

(x− μ) + 1

2
(x− μ)T ∂

2Bik
∂x∂xT

(x− μ) + · · · .

Taking term-wise expectation, and ignoring 3rd and higher-order moments,

〈Bik(X)〉 = Bik(μ) + 1

2

∂2Bik
∂x∂xT

: σ .

Summing up the three expectations above gives the approximation of (29) by

dσik
dt

=
∂fi
∂xT
σ

�k + σi�
∂fk
∂x

+
1√
ΩiΩk

[
Bik(μ) +

1

2

∂2Bik
∂x∂xT

: σ

]
,

which proves the 2nd set of 2MA equations (8) in the main text. Remember
that (8) is exact for systems that contain only zero and first-order reactions
because in that case the propensity is already linear.

Appendix C. Mean MPF concentration

To find the mean MPF concentration, we start with the MPF concentration

xmpf = (x1 − x2)

(
1− xtrim

x1

)
= x1 − x2 − xtrim + xtrim

x2

x1
.

The ratio x2/x1 can be expanded around the mean,

x2

x1
=

1

μ1

x2

1 + (x1−μ1)
μ1

=
1

μ1

[
x2 − (x1 − μ1)x2

μ1
+
(x1 − μ1)

2
x2

μ2
1

+ · · ·
]
.

Taking expectation on both sides,〈
X2

X1

〉
=

1

μ1

〈
X2

1 + (X1−μ1)
μ1

〉

=
1

μ1

〈
X2 − (X1 − μ1)X2

μ1
+
(X1 − μ1)

2
X2

μ2
1

+ · · ·
〉

=
1

μ1

[
μ2 − σ12

μ1
+
μ2σ11

μ2
1

]
.
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Table 3: Parameter values for the Tyson-Novák cell cycle model of the fission
yeast (wild type) [60]. All constants have units min−1, except the Js, which are
dimensionless Michaelis constants, and Kdiss, which is a dimensionless equilib-
rium constant for trimer dissociation. For the double-mutant type, one makes
the following three changes: k′′wee = 0.3, k′25 = k

′′
25 = 0.02 .

k15 = 0.03, k′2 = 0.03, k′′2 = 1, k′′′2 = 0.1, k′3 = 1, k′′3 = 10, J3 = 0.01,

k′4 = 2, k4 = 35, J4 = 0.01, k′5 = 0.005, k′′5 = 0.3, k6 = 0.1, J5 = 0.3,

k7 = 1, k8 = 0.25, J7 = J8 = 0.001, J8 = 0.001, k9 = 0.1, k10 = 0.04,

J9 = 0.01, J10 = 0.01, k11 = 0.1, k12 = 0.01, k′12 = 1, k′′12 = 3, Kdiss = 0.001,

k13 = 0.1, k14 = 0.1, k15 = 1.5, k′16 = 1, k′′16 = 2, J15 = 0.01, J16 = 0.01,

Vawee = 0.25, Viwee = 1, Jawee = 0.01, Jiwee = 0.01, Va25 = 1, Vi25 = 0.25,

Ja25 = 0.01, Ji25 = 0.01, k′wee = 0.15, k′′wee = 1.3, k′25 = 0.05, k′′25 = 5, ρ = 0.005.

Finally, the mean MPF concentration follows from the expectation of xmpf to
be

μmpf = μ1 − μ2 − xtrim +
xtrim

μ1

[(
1 +
σ11

μ2
1

)
μ2 − σ12

μ1

]
,

thus proving (16) in the main text.

Appendix D. Parameters and coefficients of the 2MA equations
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Table 4: Rows of the drift matrix of the 2MA cell cycle model.

i ∂fi
∂xT

1
[
−k′2 − k′′2μ3 − k′′′2 μ5, 0,−k′′2μ1, 0,−k′′′2 μ1, 0, 0, 0

]
2

[
kwee,−kwee − k25 − k′2 − k′′2μ3 − k′′′2 μ5,−k′′2μ2, 0,−k′′′2 μ2, 0, 0, 0

]
3

[
0, 0,−(k

′

4μ8+k4μmpf)J4

(J4+μ3)2 − (k′3+k′′3 μ5)J3

(J3+1−μ3)2 , 0,
(1−μ3)k′′3
J3+1−μ3

, 0, 0,− k′4μ3

J4+μ3

]
4 [0, 0, 0,−k6, 0, 0, 0, 0]
5

[
0, 0, 0, k7J7μ6

(J7+μ4−μ5)2 ,−k6 − k7J7μ6

(J7+μ4−μ5)2 − k8J8

(J8+μ5)2 ,
(μ4−μ5)k7

J7+x4−μ5
, 0, 0

]
6

[
0, 0, 0, 0, 0,− k9xmpfJ9

(J9+1−μ6)2 − k10J10

(J10+μ6)2 , 0, 0
]

7
[
0, 0, 0, 0, 0, 0,−k12 − k′12μ8 − k′′2μmpf ,−k′12μ7

]
8

[
0, 0, 0, 0, 0, 0, 0,−k14

]

Table 5: Stochastic flux, the 2nd-order term in the Taylor expansion of fi(x)
around the mean.

i 1
2
∂2fi
∂x∂xT : σ

1 −k′′2σ13 − k′′′2 σ15

2 −k′′2σ23 − k′′′2 σ25

3

[
(k′4μ8+k4μmpf)J4

(J4+μ3)3 − (k′3+k′′3 μ5)J3

(J3+1−μ3)3

]
σ33 − k′′3 J3σ35

(J3+1−μ3)2 − k′4J4σ38

(J4+μ3)2

4 0

5 k7J7μ6(2σ45−σ44−σ55)

(J7+μ4−μ5)3 + k7J7(σ46−σ56)

(J7+μ4−μ5)2 + k8J8

(J8+μ5)3 σ55

6
[
k10J10

(J10+μ6)3 − k9μmpfJ9

(J9+1−μ6)3

]
σ66

7 −k′12σ78

8 0
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Table 6: The 2nd-order term in Taylor expansion of Bii(x) around the mean.

i 1
2
∂2Bii
∂x∂xT

: σ

1 k′′2σ13 + k
′′′
2 σ15

2 k′′2σ23 + k
′′′
2 σ25

3 −
[
(k′4μ8+k4μmpf)J4

(J4+μ3)3 +
(k′3+k′′3 μ5)J3

(J3+1−μ3)3

]
σ33 − k′′3 J3σ35

(J3+1−μ3)2 +
k′4J4σ38

(J4+μ3)2

4 0

5 k7J7μ6(2σ45−σ44−σ55)

(J7+μ4−μ5)3 + k7J7(σ46−σ56)

(J7+μ4−μ5)2 − k8J8

(J8+μ5)3 σ55

6 −
[
k10J10

(J10+μ6)3 +
k9μmpfJ9

(J9+1−μ6)3

]
σ66

7 k′12σ78

8 0
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