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While ordinary differential equations (ODEs) form the conceptual framework for modelling many cellular processes, specific situations demand stochastic models to capture the influence of noise. The most common formulation of stochastic models for biochemical networks is the chemical master equation (CME). While stochastic simulations are a practical way to realise the CME, analytical approximations offer more insight into the influence of noise. Towards that end, the two-moment approximation (2MA) is a promising addition to the established analytical approaches including the chemical Langevin equation (CLE) and the related linear noise approximation (LNA). The 2MA approach directly tracks the mean and (co)variance which are coupled in general. This coupling is not obvious in CME and CLE and ignored by LNA and conventional ODE models. We extend previous derivations of 2MA by allowing a) non-elementary reactions and b) relative concentrations. Often, several elementary reactions are approximated by a single step. Furthermore, practical situations often require the use relative concentrations. We investigate the applicability of the 2MA approach to the well established fission yeast cell cycle model. Our analytical model reproduces the clustering of cycle times observed in experiments. This is explained through multiple resettings of MPF, caused by the coupling between mean and (co)variance, near the G2/M transition.

Introduction

At a coarse level, cellular functions are largely determined by spatio-temporal changes in the abundance of molecular components. At a finer level, cellular events are triggered by discrete and random encounters of molecules [START_REF] Paulsson | Stochastic Modeling of Intracellular Kinetics[END_REF]. This
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suggests a deterministic modelling approach at the coarse level (cell function) and a stochastic one at the finer level (gene regulation) [START_REF] Rao | Control, exploitation and tolerance of intracellular noise[END_REF][START_REF] Paulsson | Summing up the noise[END_REF][START_REF] Kaern | Stochasticity in gene expression: from theories to phenotypes[END_REF][START_REF] Raser | Noise in gene expression: Origins, consequences, and control[END_REF][START_REF] Pedraza | Noise Propagation in Gene Networks[END_REF][START_REF] Mantzaris | From single-cell genetic architecture to cell population dynamics: quantitatively decomposing the effects of different population heterogeneity sources for a genetic network with positive feedback architecture[END_REF][START_REF] Ansel | Cell-to-Cell Stochastic Variation in Gene Expression Is a Complex Genetic Trait[END_REF][START_REF] Lipniacki | Transcriptional stochasticity in gene expression[END_REF][START_REF] Paszek | Modeling stochasticity in gene regulation: Characterization in the terms of the underlying distribution function[END_REF][START_REF] Becskei | Contributions of low molecule number and chromosomal positioning to stochastic gene expression[END_REF]. However, stochastic modelling is necessary when noise propagation from processes at the fine level changes cellular behaviour at the coarse level. Stochasticity is not limited to low copy numbers. The binding and dissociation events during transcription initiation are the result of random encounters between molecules [START_REF] Kaern | Stochasticity in gene expression: from theories to phenotypes[END_REF]. If molecules are present in large numbers and the molecular events occur frequently, the randomness would cancel out (both within a single cell and from cell to cell) and the average cellular behaviour could be described by a deterministic model. However, many subcellular processes, including gene expression, are characterised by infrequent (rare) molecular events involving small copy numbers of molecules [START_REF] Paulsson | Stochastic Modeling of Intracellular Kinetics[END_REF][START_REF] Kaern | Stochasticity in gene expression: from theories to phenotypes[END_REF]. Most proteins in metabolic pathways and signalling networks, realising cell functions, are present in the range 10-1000 copies per cell [START_REF] Berg | Fluctuations and Quality of Control in Biological Cells: Zero-Order Ultrasensitivity Reinvestigated[END_REF][START_REF] Levine | Intrinsic fluctuations, robustness, and tunability in signaling cycles[END_REF][START_REF] Paulsson | Models of stochastic gene expression[END_REF]. For such moderate/large copy numbers, noise can be significant when the system dynamics are driven towards critical points in cellular systems which operate far from equilibrium [START_REF] Elf | Fast evaluation of fluctuations in biochemical networks with the linear noise approximation[END_REF][START_REF] Tao | Stochastic fluctuations in gene expression far from equilibrium: Omega expansion and linear noise approximation[END_REF][START_REF] Zhang | Nonequilibrium Model for Yeast Cell Cycle[END_REF]. The significance of noise in such systems has been demonstrated for microtubule formation [START_REF] Dogterom | Physical aspects of the growth and regulation of microtubule structures[END_REF], ultrasensitive modification and demodification reactions [START_REF] Berg | Fluctuations and Quality of Control in Biological Cells: Zero-Order Ultrasensitivity Reinvestigated[END_REF], plasmid copy number control [START_REF] Paulsson | Noise in a minimal regulatory network: plasmid copy number control[END_REF], limit cycle attractor [START_REF] Qian | From discrete protein kinetics to continuous Brownian dynamics: A new perspective[END_REF], noise-induced oscillations near a macroscopic Hopf bifurcation [START_REF] Vilar | Mechanisms of noiseresistance in genetic oscillators[END_REF], and intracellular metabolite concentrations [START_REF] Elf | Near-critical phenomena in intracellular metabolite pools[END_REF].

Noise has a role at all levels of cell function. Noise, when undesired, may be suppressed by the network (e.g. through negative feedback) for robust behaviour [START_REF] Rao | Control, exploitation and tolerance of intracellular noise[END_REF][START_REF] Samad | Intrinsic noise rejection in gene networks by regulation of stability[END_REF][START_REF] Thattai | Attenuation of noise in ultrasensitive signaling cascades[END_REF][START_REF] Fraser | Noise Minimization in Eukaryotic Gene Expression[END_REF][START_REF] Morishita | Noise-reduction through interaction in gene expression and biochemical reaction processes[END_REF][START_REF] Paulsson | Random signal fluctuations can reduce random fluctuations in regulated components of chemical regulatory networks[END_REF]. However, all noise may not be rejected and some noise may even be amplified from process to process, and ultimately influencing the phenotypic behaviour of the cell [START_REF] Pedraza | Noise Propagation in Gene Networks[END_REF][START_REF] Becskei | Contributions of low molecule number and chromosomal positioning to stochastic gene expression[END_REF][START_REF] Hornung | Noise Propagation and Signaling Sensitivity in Biological Networks: A Role for Positive Feedback[END_REF][START_REF] Lan | The interplay between discrete noise and nonlinear chemical kinetics in a signal amplification cascade[END_REF][START_REF] Shibata | Noise generation, amplification and propagation in chemotactic signaling systems of living cells[END_REF]. Noise may even be exploited by the network to generate desired variability (phenotypic and cell-type diversification) [START_REF] Rao | Control, exploitation and tolerance of intracellular noise[END_REF][START_REF] Blomberg | Fluctuations for good and bad: The role of noise in living systems[END_REF][START_REF] Chen | On the attenuation and amplification of molecular noise in genetic regulatory networks[END_REF][START_REF] Hasty | Noise-based switches and amplifiers for gene expression[END_REF][START_REF] Yoda | Roles of noise in single and coupled multiple genetic oscillators[END_REF]. Noise from gene expression can induce new dynamics including amplification (stochastic focusing) [START_REF] Pedraza | Noise Propagation in Gene Networks[END_REF][START_REF] Paulsson | Stochastic focusing: fluctuationenhanced sensitivity of intracellular regulation[END_REF][START_REF] Samoilov | Stochastic amplification and signaling in enzymatic futile cycles through noise-induced bistability with oscillations[END_REF], bistability (switching between states) and oscillations [START_REF] Ferrell | Bistability in cell signaling: How to make continuous processes discontinuous, and reversible processes irreversible[END_REF][START_REF] Aumaître | Noise-induced bifurcations, multiscaling and on-off intermittency[END_REF][START_REF] Ozbudak | Multistability in the lactose utilization network of Escherichia coli[END_REF][START_REF] Artyomov | Purely stochastic binary decisions in cell signaling models without underlying deterministic bistabilities[END_REF], that is both quantitatively and qualitatively different from what is predicted or possible deterministically.

The most common formulation of stochastic models for biochemical networks is the chemical master equation (CME). While stochastic simulations [START_REF] Turner | Stochastic approaches for modelling in vivo reactions[END_REF] are a practical way to realise the CME, analytical approximations offer more insights into the influence of noise on cell function. Formally, the CME is a continuoustime discrete-state Markov process [START_REF] Singer | Application of the theory of stochastic processes to the study of irreproducible chemical reactions and nucleation processes[END_REF][START_REF] Gillespie | Exact stochastic simulation of coupled chemical reactions[END_REF][START_REF] Kampen | Stochastic Processes in Physics and Chemistry (Third Edition)[END_REF]. For gaining intuitive insight and a quick characterisation of fluctuations in biochemical networks, the CME is usually approximated analytically in different ways [START_REF] Kampen | Stochastic Processes in Physics and Chemistry (Third Edition)[END_REF][START_REF] Goutsias | A hidden Markov model for transcriptional regulation in single cells[END_REF], including the frequently used the chemical Langevin approach [START_REF] Gillespie | The chemical Langevin equation[END_REF][START_REF] Kampen | The Langevin approach[END_REF][START_REF] Steuer | Effects of stochasticity in models of the cell cycle: from quantized cycle times to noise-induced oscillations[END_REF][START_REF] Zamborszky | Computational Analysis of Mammalian Cell Division Gated by a Circadian Clock: Quantized Cell Cycles and Cell Size Control[END_REF], the linear noise approximation (LNA) [START_REF] Elf | Fast evaluation of fluctuations in biochemical networks with the linear noise approximation[END_REF][START_REF] Hayot | The linear noise approximation for molecular fluctuations within cells[END_REF][START_REF] Scott | Using the linear noise approximation to characterize molecular noise in reaction pathways[END_REF][START_REF] Scott | Estimations of intrinsic and extrinsic noise in models of nonlinear genetic networks[END_REF] and the two-moment approximation (2MA) [START_REF] Goutsias | Classical versus stochastic kinetics modeling of biochemical reaction systems[END_REF][START_REF] Gómez-Uribe | Mass fluctuation kinetics: capturing stochastic effects in systems of chemical reactions through coupled mean-variance computations[END_REF][START_REF] Ferm | A Hierarchy of Approximations of the Master Equation Scaled by a Size Parameter[END_REF].

Of the analytical approaches mentioned above, we here focus on the 2MA approach because of its representation of the coupling between the mean and (co)variance. The traditional Langevin approach is based on the assumption that the time-rate of abundance (copy number or concentration) or the flux of a component can be decomposed into a deterministic flux and a Langevin noise term, which is a Gaussian (white noise) process with zero mean and amplitude
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determined by the the dynamics of the system. This separation of noise from the system dynamics may be a reasonable assumption for external noise that arises from the interaction of the system with other systems (like the environment), but cannot be assumed for internal noise that arises from within the system [START_REF] Kaern | Stochasticity in gene expression: from theories to phenotypes[END_REF][START_REF] Raser | Noise in gene expression: Origins, consequences, and control[END_REF][START_REF] Becskei | Contributions of low molecule number and chromosomal positioning to stochastic gene expression[END_REF][START_REF] Paulsson | Models of stochastic gene expression[END_REF][START_REF] Dublanche | Noise in transcription negative feedback loops: simulation and experimental analysis[END_REF][START_REF] Shahrezaei | Colored extrinsic fluctuations and stochastic gene expression[END_REF]. As thoroughly discussed in [START_REF] Kampen | The Langevin approach[END_REF], internal noise is not something that can be isolated from the system because it results from the discrete nature of the underlying molecular events. Any noise term in the model must be derived from the system dynamics and cannot be presupposed in an ad hoc manner. However the chemical Langevin equation (CLE) does not suffer from the above criticism because Gillespie [START_REF] Gillespie | The chemical Langevin equation[END_REF] derived it from the CME description (see also [START_REF] Tomioka | Multivariate analysis of noise in genetic regulatory networks[END_REF]). The CLE allows much faster simulations compared to the exact stochastic simulation algorithm (SSA) [START_REF] Gillespie | Exact stochastic simulation of coupled chemical reactions[END_REF] and its variants. The CLE is a stochastic differential equation (dealing directly with random variables rather than moments) and has no direct way of representing the mean and (co)variance and the coupling between the two. That does not imply that CLE ignores the coupling like the LNA which has the same mean as the solution of the deterministic model. The merits of the 2MA compared to alternative approximations have been discussed in [START_REF] Goutsias | Classical versus stochastic kinetics modeling of biochemical reaction systems[END_REF][START_REF] Gómez-Uribe | Mass fluctuation kinetics: capturing stochastic effects in systems of chemical reactions through coupled mean-variance computations[END_REF][START_REF] Tang | The mean and noise of stochastic gene transcription[END_REF]. In [START_REF] Ferm | A Hierarchy of Approximations of the Master Equation Scaled by a Size Parameter[END_REF], the 2MA is developed as an approximation of the master equation for a generic Markov process. In [START_REF] Gómez-Uribe | Mass fluctuation kinetics: capturing stochastic effects in systems of chemical reactions through coupled mean-variance computations[END_REF], the 2MA framework is developed under the name "mass fluctuation kinetics" for biochemical networks composed of elementary reactions. The authors demonstrate that the 2MA can reveal new behaviour like stochastic focusing and bistability. Another instance of the 2MA is proposed in [START_REF] Goutsias | A hidden Markov model for transcriptional regulation in single cells[END_REF][START_REF] Goutsias | Classical versus stochastic kinetics modeling of biochemical reaction systems[END_REF] under the names "mean-field approximation" and "statistical chemical kinetics". Again, the authors assume elementary reactions so that the propensity function is at most quadratic in concentrations. The authors evaluate the accuracy of the 2MA against the alternatives (such as LNA) for a few toy models. The derivation of the 2-MA for more general systems with non-elementary reactions is one motivation for the present paper.

The 2MA approaches referred to above assume absolute concentrations (copy number divided by some fixed system size parameter). In systems biology, however, models often use relative concentrations with arbitrary units [START_REF] Novák | Mathematical model of the cell division cycle of fission yeast[END_REF][START_REF] Novák | Systems biology of the yeast cell cycle engine[END_REF][START_REF] Tyson | The dynamics of cell cycle regulation[END_REF][START_REF] Csikász-Nagy | Analysis of a generic model of eukaryotic cell cycle regulation[END_REF]. In general, the concentration of each component in the system may have been obtained by a different scaling parameter, rather than using a global system size. For such models, the above mentioned approaches need modification. This was another motivation for our derivation in this paper.

In the present paper we develop a compact derivation of the first twomoments, the mean and (co)variance of the continuous-time discrete-state Markov process that models a biochemical reaction system by the CME. This derivation is an extension of previous derivations, taking into account arbitrary concentrations and non-elementary reactions. The matrix form of our derivation allows for an easy interpretation. Using these analytical results, we develop our 2MA model of the fission yeast cell cycle which has two sets of ODEs: one set for the mean protein concentrations and the other set for concentration (co)variances. Numerical simulations of our model show a considerably different behaviour. Especially, for the wee1 -cdc25Δ mutant (hereafter referred simply as doublemutant), the timings of S-phase and M-phase are visibly different from those
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obtained for a deterministic model because of the oscillatory behaviour of the key regulator. Since the 2MA is only an approximation, we investigate its validity by comparing the statistics computed from the 2MA model with experimental data. The rest of this paper is organised as follows. In the first section we introduce the basic terminology and notation. Then the system of ODEs forming the 2MA approach is presented. Next, we introduce an application to the fission yeast cell cycle model [START_REF] Novák | Mathematical model of the cell division cycle of fission yeast[END_REF]. We present a 2MA model of the cell cycle, followed by a comparison to the experimental data and conclusions. The appendices contain full derivations of the 2MA model, further proofs and additional tables.

Stochastic modelling of biochemical systems

Imagine a well-mixed homogeneous cellular compartment of a fixed volume V at thermal equilibrium that contains molecules of s different kinds (each kind referred to as a chemical component or species) interacting in r distinct ways (each way referred to as a reaction channel or step). Since these biochemical reactions occur by random encounters of reactant molecules, the copy number of a particular component present in the system at time t fluctuates. The state of the cellular system is described by the s × 1 random vector N (t) whose ith element is the copy number N i (t) of the ith species present in the system at time t. Each (time-varying) element N i (t) is a stochastic process, where N i (t) = n i means that n i molecules of the ith species are present in the system at time t. The s × 1 vector n, with elements n i , is thus a sample (or a value) of the stochastic process N (t).

We can also describe the system state at time t by the s × 1 vector X(t) whose ith element is the concentration X i (t) of the ith component. The concentration X i (t) is, in general, the copy number N i (t) divided by some fixed scaling parameter Ω i specific to that component. In other words

N i (t) = Ω i X i (t), n i = Ω i x i .
Each concentration X i (t) is a stochastic process, where X i (t) = x i means that the concentration of the ith component at time t is x i . The s × 1 vector x, with elements x i , is thus a sample of the stochastic process X(t). The copy number and concentration (vectors) are related by

N (t) = Ω X(t), n = Ω x,
where Ω is the s-vector of elements Ω i and the binary operation denotes the element-wise multiplication.

Commonly, all components are scaled by a single parameter, in which case Ω is a scalar known as the system size. A common choice for the system size is some multiple of the volume V of the system. For molar concentrations, the system size chosen is Ω = N A V where N A is the Avogadro's constant. In systems biology, one often uses relative concentrations x i where Ω i is some fixed copy
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number specific to component i. The simplest case of relative concentrations uses a single (maximum) copy number n max for all components. Note, however, that the approach developed here allows for relative concentrations instead of assuming one global system-size Ω as done in [START_REF] Tao | Stochastic fluctuations in gene expression far from equilibrium: Omega expansion and linear noise approximation[END_REF][START_REF] Scott | Using the linear noise approximation to characterize molecular noise in reaction pathways[END_REF][START_REF] Goutsias | Classical versus stochastic kinetics modeling of biochemical reaction systems[END_REF][START_REF] Gómez-Uribe | Mass fluctuation kinetics: capturing stochastic effects in systems of chemical reactions through coupled mean-variance computations[END_REF][START_REF] Yi | Theoretical study of mesoscopic stochastic mechanism and effects of finite size on cell cycle of fission yeast[END_REF].

If we assume that the molecules are well mixed and are available everywhere for a reaction (space can be ignored), then the probability of a reaction in a short time interval depends almost entirely on the most recent copy numbers (and not its earlier values). In other words, the stochastic process N (t) of copy numbers is Markovian in continuous-time. Since changes in the copy numbers require the occurrences of reactions which are discrete event phenomena, N (t) is referred as a jump process. The Markov property implies that each reaction channel j can be characterised by a reaction propensity a j (n) defined such that, in state n, the probability of one occurrence of reaction channel j in a vanishingly short time interval of length dt is a j (n)dt.

The stochastic process N (t) is characterised by the (time-dependent) probability distribution P (n, t) = Pr [N (t) = n], starting from some initial distribution P (n, 0) as in [START_REF] Tomioka | Multivariate analysis of noise in genetic regulatory networks[END_REF]. Usually, the initial state is assumed to be known (as in [START_REF] Kampen | Stochastic Processes in Physics and Chemistry (Third Edition)[END_REF]), N (0) = n 0 so that P (n 0 , 0) = 1 and P (n, 0) = 0 for all n = n 0 . In that case the distribution can be interpreted as a time-dependent transition probability

P (n, t) = Pr N (t) = n | N (0) = n 0
of moving from the fixed initial state n 0 to the state n at time t. The probability distribution itself is characterised by its moments. The transition from state n to the state determined by the jth reaction will be represented by the following scheme n

aj (n) -------→ n + S j
where S j is the jth column of the stoichiometry matrix S whose element S ij denotes the change in copy number of the ith component resulting from the occurrence of the jth channel. Similarly the transitions towards state n from the state determined by the jth reaction can be represented by

n -S j aj (n-S j ) ----------→ n
where the argument of the propensity function a j is n-S j which is the assumed current state. Transitions away from state n will decrease the probability P (n, t) while those towards state n will increase it. Since this is equally true for each reaction channel, during a short time interval of length Δt, the change in the probability is given by

P (n, t+Δt)-P (n, t) = r j=1 P (n-S j , t)a j (n-S j )Δt- r j=1 P (n, t)a j (n)Δt+o(Δt)
where o(Δt) represents terms that vanish faster than Δt as the later approaches zero. As Δt approaches zero in the above system of equations, we are led to
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what is known as the chemical master equation (CME):

d dt P (n, t) = r j=1 a j (n -S j )P (n -S j , t) -a j (n)P (n, t) , (1) 
subject to the initial condition: P (n 0 , 0) = 1 and P (n, 0) = 0 for all n = n 0 . We will switch between the two alternative notations d dt φ(t) and dφ dt for any scalar quantity φ(t). We will prefer the later when dependence on time variable is implicitly clear.

Since there is one equation for each state n and there is potentially a large number of possible states, it is impractical to solve the CME. In most cases, we are interested in the first two-moments: component-wise copy number means

N i (t) = n n i P (n, t),
and the covariances

N i , N k = N i -N i N k -N k ,
between copy numbers of component pairs. These covariances form the covariance matrix in which the diagonal elements are component-wise variances.

In the present paper, we are interested in the mean concentration vector μ(t) with elements

μ i (t) = X i (t) = N i (t) Ω i
and the concentration covariance matrix σ(t) with elements

σ ik (t) = X i (t), X k (t) = N i (t), N k (t) Ω i Ω k
Hereafter, we leave out the dependence on time to simplify the notation, but include it occasionally when causing confusion.

Continuous approximations of the jump process N (t)

Although the stochastic simulation algorithm and its extensions provide a way to generate sample paths of copy numbers for a biochemical system, there is a significant computational burden. Characterisation of the probability distribution in terms of its moments requires a large number of simulations runs. To that end, attempts have been made towards approximations of the CME, the most notable being the chemical Langevin equation (CLE) by Gillespie [START_REF] Gillespie | The chemical Langevin equation[END_REF] (see also [START_REF] Tomioka | Multivariate analysis of noise in genetic regulatory networks[END_REF]). He obtained that continuous approximation for the incremental change ΔN = N (t+Δt)-N (t) in copy number during a short interval [t, t+Δt] where the interval length Δt satisfies two conditions: (i) It is small enough that the propensity does not change "appreciably" during the interval, and (ii) is large enough that the expected number of occurrences Z j (t + Δt) -Z j (t) of
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each reaction channel j during the interval is much larger than unity. That continuous approximation takes the form of the CLE (derived in Appendix A)

ΔN i = r j=1 S ij a j (N ) Δt + r j=1 S ij a j (N ) N j √ Δt. ( 2 
)
where {N j (t)} is a set of r statistically independent standard Gaussian random processes (with zero mean and unit variance). An alternative form of CLE (derived in Appendix A) is

ΔN = S a (N ) Δt + D (N ) 1/2 N √ Δt ( 3 
)
where N (t) is an s × 1 vector of statistically independent standard Gaussian random processes and D 1/2 is the matrix square root of the diffusion matrix

D(n) = S diag (a 1 (n), . . . , a r (n)) S T , ( 4 
)
where the superscript T represents the transpose of a matrix and diag (a 1 , . . . , a r ) is the diagonal matrix with elements a 1 , . . . , a r on the diagonal. The probability density function P c (n, t) of the continuous Markov process obeys the (forward) Fokker-Planck equation (FPE) [START_REF] Gillespie | The chemical Langevin equation[END_REF][START_REF] Gillespie | The multivariate Langevin and Fokker-Planck equations[END_REF] 

∂ ∂t P c (n, t) = r j=1 - s i=1 S ij ∂ ∂n i + 1 2 s i,k=1 S ij S kj ∂ 2 ∂n i ∂n k a j (n)P c (n, t) . ( 5 
)
In effect, condition (i) allows a Poissonian approximation of Z j (t + Δt) -Z j (t) and condition (ii) allows a normal approximation of the Poissonian. The two conditions seem conflicting and require the existence of a domain of macroscopically infinitesimal time intervals. Although the existence of a such a domain cannot be guaranteed, Gillespie argues that this can be found for most practical cases. Admitting that, "it may not be easy to continually monitor the system to ensure that conditions (i) and (ii) [..] are satisfied." He justifies his argument by saying that this "will not be the first time that Nature has proved to be unaccommodating to our purposes." [START_REF] Gillespie | The chemical Langevin equation[END_REF]. Generating sample paths of ( 2) is orders of magnitude faster than doing the same for the CME because it essentially needs generation of normal random numbers. See [START_REF] Higham | An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations[END_REF] for numerical simulation methods of stochastic differential equations such as ( 2) and [START_REF] Paulsson | Summing up the noise[END_REF]. The choice between ( 2) and ( 3) may be dictated by the number of reactions r relative to the number of species s because, in each simulation step, the former requires r random numbers whereas the latter requires s random numbers. However, solving the nonlinear FPE [START_REF] Raser | Noise in gene expression: Origins, consequences, and control[END_REF] for the probability density is as difficult as the CME. Therefore, on the analytical side, the CLE and the associated nonlinear FPE do not provide any significant advantage. That leads to a further simplification referred to as the linear noise approximation (LNA) [START_REF] Kampen | Stochastic Processes in Physics and Chemistry (Third Edition)[END_REF][START_REF] Goutsias | A hidden Markov model for transcriptional regulation in single cells[END_REF]. The LNA is a linear approximation of the nonlinear FPE (5) obtained by linearising the propensity function around the mean.
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The solution of the LNA is a Gaussian distribution with a mean that is equal to the solution of the deterministic ODE model and a covariance matrix that obeys a linear ODE. That is the main drawback of LNA because, for a system containing at least one bimolecular reaction, the mean of a stochastic model is not equal to the solution of deterministic ODEs, as shown next.

Mean of the stochastic model

The mean copy number for the ith component obeys the ODE

d N i dt = r j=1 S ij a j N (6)
which is derived in Appendix B. In general, the expectation on the right of ( 6) involves involves the unknown probability distribution P (n, t). In other words, the mean copy number depends not just on the mean itself, but also involves higher-order moments, and therefore ( 6) is, in general, not closed in the mean unless the reaction propensity is a linear function of N which is the case only for zero-and first-order reactions. Take the example of a first-order reaction X k -→ Y with n denoting the copy number of its reactant and k denoting the reaction coefficient. The reaction propensity a(n) = kn (mass action kinetics) is linear in n. From probability theory, the expectation becomes kN = k N and thus we do not need to know the probability distribution for solving the ODE in the mean. Only when all reactions are elementary and are of zero or first-order, we have exact equations for the evolution of mean:

d N i dt = r j=1 S ij a j N .
This corresponds to the ODE system for the deterministic model, which treats the copy numbers n(t) as a continuous time-varying quantity that can be uniquely predicted for a given initial condition. For systems containing second (and higher) order reactions, a(n) is a nonlinear function and the evolution of the mean cannot be determined by the mean alone. Instead the mean depends on higher-order moments, and hence the deterministic ODE model and the LNA cannot be used to describe the mean in (6).

The 2MA approach

The present section provides only a brief outline of the 2MA approach and we refer to the Appendix B for a detailed derivation.

An exact and closed representation for the mean is not possible in general, as evident from [START_REF] Pedraza | Noise Propagation in Gene Networks[END_REF]. The same is true for (co)variance and higher-order moments. One way to solve this problem is by repeating many stochastic simulation runs based on CME or the CLE, and computing the desired moments from the ensemble runs. An alternative is to find approximations to the exact ODEs such as [START_REF] Pedraza | Noise Propagation in Gene Networks[END_REF] for the moments. The 2MA is one such attempt which assumes closure to the
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first two moments. A scheme of chemical reactions or a system of deterministic ODEs is the starting point. From this are concluded the reaction propensities a j (n) which appear as coefficients in the CME describing the time derivative of the probability distribution P (n, t). By taking the first two-moments of the CME and subsequent simplifications followed by appropriate scaling, two sets of ODEs for the mean concentration vector μ(t) and covariance matrix σ(t) are derived. This is followed by Taylor expansions of any nonlinear functions involving the propensity vector a(n). Ignoring central moments of 3rd and order higher eventually leads to the 2MA system (derived in Appendix B):

dμ i dt = f i (μ) + 1 2 ∂ 2 f i ∂x∂x T : σ ( 7 
)
dσ ik dt = ∂f i ∂x T σ k + σ i ∂f k ∂x + 1 √ Ω i Ω k B ik (μ) + 1 2 ∂ 2 B ik ∂x∂x T : σ (8)
where σ k and σ i respectively denote the kth column and ith row of σ, all partial derivatives with respect to the state x are evaluated at x = μ, and

f i (x) = 1 Ω i r j=1 S ij a j (Ω x) B ik (x) = 1 √ Ω i Ω k r j=1 S ij S kj a j (Ω x) . (9) 
Here the binary operation : denotes the Frobenius inner product, that is, the sum of products of the corresponding elements between two matrices. The effective flux on the right in [START_REF] Mantzaris | From single-cell genetic architecture to cell population dynamics: quantitatively decomposing the effects of different population heterogeneity sources for a genetic network with positive feedback architecture[END_REF] is the sum of a deterministic flux f (μ) and a stochastic flux 1 2

∂ 2 fi
∂x∂x T : σ, the latter determined by the dynamics of both the mean and (co)variance. This influence of the (co)variance implies that knowledge of fluctuations is important for a correct description of the mean. This also indicates an advantage of the stochastic framework over its deterministic counterpart: starting from the same assumptions and approximations, the stochastic framework allows us to describe the influence of fluctuations on the mean. This can be posed as the central phenomenological argument for stochastic modelling.

Note that ( 7) is exact for systems where no reaction has an order higher than two because then 3rd and higher derivatives of propensity are zero. In [START_REF] Ansel | Cell-to-Cell Stochastic Variation in Gene Expression Is a Complex Genetic Trait[END_REF], the drift matrix ∂f /∂x T reflects the noise dynamics for relaxation (dissipation) to the steady state and the (Taylor approximation to the 2nd order of) diffusion matrix B(x) the randomness (fluctuation) of the individual events. These terms are borrowed from the fluctuation-dissipation theorem (FDT) [START_REF] Keizer | Statistical thermodynamics of nonequilibrium processes[END_REF][START_REF] Lax | Fluctuations from the nonequilibrium steady state[END_REF], which has the same form as [START_REF] Ansel | Cell-to-Cell Stochastic Variation in Gene Expression Is a Complex Genetic Trait[END_REF]. The scaling factor 1 / √ ΩiΩ k , that becomes 1 /Ω for scalar Ω, confirms the inverse relationship between the noise, as measured by (co)variance, and the system size. Note the influence of the mean on the (co)variance in [START_REF] Ansel | Cell-to-Cell Stochastic Variation in Gene Expression Is a Complex Genetic Trait[END_REF].

A deterministic model treats concentrations x(t) as continuous variables that can be predicted entirely from the initial conditions. Hence there is no noise term in the deterministic model and the ODEs reduce to ẋ = f (x).
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Since the 2MA approach is based on the truncation of terms containing 3rd and higher-order moments, any conclusion from the solution of 2MA must be drawn with care. Ideally, the 2MA should be complemented and checked with a reasonable number of SSA runs.

In [START_REF] Goutsias | Classical versus stochastic kinetics modeling of biochemical reaction systems[END_REF][START_REF] Gómez-Uribe | Mass fluctuation kinetics: capturing stochastic effects in systems of chemical reactions through coupled mean-variance computations[END_REF], the 2MA has been applied to biochemical systems, demonstrating quantitative and qualitative differences between the mean of the stochastic model and the solution of the deterministic model. The examples used in [START_REF] Goutsias | Classical versus stochastic kinetics modeling of biochemical reaction systems[END_REF][START_REF] Gómez-Uribe | Mass fluctuation kinetics: capturing stochastic effects in systems of chemical reactions through coupled mean-variance computations[END_REF] all assume elementary reactions (and hence propensities at most quadratic) and the usual interpretation of concentration as the moles per unit volume. In the next section, we investigate the 2MA for complex systems with non-elementary and relative concentrations. The reason for our interest in non-elementary reactions is the frequent occurrence of rational propensities (reaction rates), say of Michaelis-Menten type or Hill type, in models in the system biology literature (e.g. [START_REF] Tyson | Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell[END_REF]).

The link between the CLE and the 2MA

Consider the system in state n = Ωx. The component-wise flux (appearing in the 2MA and defined in ( 9)) multiplied by the corresponding size parameter, Ω i f i (x), appears as the coefficient of Δt of the first term on the right of the CLE (2). Moreover, the (i, k)th element of concentration diffusion matrix B, appearing in [START_REF] Lipniacki | Transcriptional stochasticity in gene expression[END_REF], multiplied by the square root of the corresponding pair of size parameters,

√ Ω i Ω k B ik (x)
, turns out to be the element D ik (n) of the copynumber diffusion matrix D(n) whose matrix square root (D(n)) 1/2 appears as a coefficient in the noise term of the CLE (3). Essentially, both approaches approximate the Markov process by a Gaussian random process.

Fission yeast cell cycle modelling

The growth and reproduction of organisms requires a precisely controlled sequence of events known as the cell cycle [START_REF] Morgan | The Cell Cycle: Principles of Control, Primers in Biology[END_REF]. On a coarse scale, the cell cycle is composed of four phases: the replication of DNA (S phase), the separation of DNA (mitosis, M phase), and the intervening phases (gapes G1 and G2) which allow for preparation, regulation and control of cell division. The central molecular components of cell cycle control system have been identified [START_REF] Morgan | The Cell Cycle: Principles of Control, Primers in Biology[END_REF][START_REF] Nurse | A Long Twentieth Century of the Cell Cycle and Beyond[END_REF].

Cell cycle experiments show that cycle times (CTs) have different patterns for the wild type and for various mutants [START_REF] Sveiczer | The size control of fission yeast revisited[END_REF][START_REF] Sveiczer | Regularities and irregularities in the cell cycle of the fission yeast, Schizosaccharomyces pombe (a review)[END_REF]. For the wild type, the CTs have more or less a constant value near 150 min ensured by a size control mechanism: mitosis happens only when the cell has reached a critical size. The value 150 min has been considered in [START_REF] Steuer | Effects of stochasticity in models of the cell cycle: from quantized cycle times to noise-induced oscillations[END_REF][START_REF] Yi | Theoretical study of mesoscopic stochastic mechanism and effects of finite size on cell cycle of fission yeast[END_REF][START_REF] Sveiczer | Regularities and irregularities in the cell cycle of the fission yeast, Schizosaccharomyces pombe (a review)[END_REF][START_REF] Sveiczer | Modeling the fission yeast cell cycle: Quantized cycle times in wee1-cdc25Delta mutant cells[END_REF] as the CT of an average WT cell (also referred to as the "mass-doubling time"). The double-mutant of fission yeast (namely wee1 -cdc25Δ) exhibits quantised cycle times: the CTs get clustered into three different groups (with mean CTs of 90, 160 and 230 min). The proposed explanation for the quantised cycle times is a weakend positive feedback loop (due to wee1 and cdc25) which means cells reset (more than once)
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back to G2 from early stages of mitosis by premature activation of a negative feedback loop [START_REF] Sveiczer | Regularities and irregularities in the cell cycle of the fission yeast, Schizosaccharomyces pombe (a review)[END_REF][START_REF] Sveiczer | Modeling the fission yeast cell cycle: Quantized cycle times in wee1-cdc25Delta mutant cells[END_REF]. Many deterministic ODE models describing the cell cycle dynamics have been constructed [START_REF] Novák | Mathematical model of the cell division cycle of fission yeast[END_REF][START_REF] Tyson | The dynamics of cell cycle regulation[END_REF][START_REF] Novák | Mathematical model of the fission yeast cell cycle with checkpoint controls at the G1/S, G2/M and metaphase/anaphase transitions[END_REF][START_REF] Novák | Modelling the controls of the eukaryotic cell cycle[END_REF]. These models can explain many aspects of the cell cycle including the size control for both the wild type and mutants. Since deterministic models describe the behaviour of a non-existing 'average cell', neglecting the differences among cells in culture, they fail to explain curious behaviours such as the quantised cycle times in the double-mutant. To account for such curiosities in experiments, two stochastic models were constructed by Sveiczer: The first model [START_REF] Sveiczer | Regularities and irregularities in the cell cycle of the fission yeast, Schizosaccharomyces pombe (a review)[END_REF][START_REF] Sveiczer | Modeling the fission yeast cell cycle: Quantized cycle times in wee1-cdc25Delta mutant cells[END_REF] introduces (external) noise into the rate parameter of the protein Pyp3. The second model [START_REF] Sveiczer | A stochastic, molecular model of the fission yeast cell cycle: role of the nucleocytoplasmic ratio in cycle time regulation[END_REF] introduces noise into two cell and nuclear sizes after division asymmetry. Full stochastic models that treat all the time-varying protein concentrations as random variables are reported in [START_REF] Steuer | Effects of stochasticity in models of the cell cycle: from quantized cycle times to noise-induced oscillations[END_REF][START_REF] Yi | Theoretical study of mesoscopic stochastic mechanism and effects of finite size on cell cycle of fission yeast[END_REF]. They provide a reasonable explanation for the size control in wild type and the quantised CTs in the double-mutant type. Both models employ the Langevin approach and hence require many simulation runs to provide an ensemble for computing the mean and (co)variance. However, the simulation results of stochastic models in [START_REF] Steuer | Effects of stochasticity in models of the cell cycle: from quantized cycle times to noise-induced oscillations[END_REF][START_REF] Yi | Theoretical study of mesoscopic stochastic mechanism and effects of finite size on cell cycle of fission yeast[END_REF][START_REF] Sveiczer | Regularities and irregularities in the cell cycle of the fission yeast, Schizosaccharomyces pombe (a review)[END_REF][START_REF] Sveiczer | Modeling the fission yeast cell cycle: Quantized cycle times in wee1-cdc25Delta mutant cells[END_REF][START_REF] Sveiczer | A stochastic, molecular model of the fission yeast cell cycle: role of the nucleocytoplasmic ratio in cycle time regulation[END_REF] represent one trajectory (for a large number of successive cycles) of the many possible in the ensemble from which the CT statistics (time averages) are computed. We will see that the time-averages computed from the 2MA simulation are for the ensemble of all trajectories.

The deterministic model

We base our 2MA model on the deterministic ODE model for the fission yeast cell cycle, developed by Tyson-Novák in [START_REF] Novák | Mathematical model of the cell division cycle of fission yeast[END_REF]. In this context, the cell cycle control mechanism centres around the M-phase promoting factor (MPF), the active form of the heterodimer Cdc13/Cdc2, and its antagonistic interactions with enemies (Ste9,Slp1,Rum1) and the positive feedback with its friend Cdc25. These interactions, among many others, define a sequence of check points to control the timing of cell cycle phases. The result is MPF activity oscillation between low (G1-phase), intermediate (S-and G2-phases) and high (M-phase) levels that is required for the correct sequence of cell cycle events. For simplicity, it is assumed that the cell divides functionally when MPF drops from 0.1.

Table 1 lists the proteins whose concentrations x i , together with MPF concentration, are treated as dynamic variables that evolve according to

dx i dt = f + i (x) -f - i (x) . ( 10 
)
Here f + i (x) is the production flux and f - i (x) is the elimination flux of ith protein. Note that the summands in the fluxes f + i (x) and f - i (x) are rates of reactions, most of which, are non-elementary (summarizing many elementary reactions into a single step). Quite a few of these reaction rates have rational expressions which requires the extended 2MA approach developed in this paper.
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Table 1: Proteins and fluxes. Here x denotes the vector of concentrations x 1 to x 8 . The MPF concentration x mpf can be obtained from the algebraic relation

Index Protein Production flux Elimination flux

i f + i (x) f - i (x) 1 Cdc13 T k 1 M (k 2 + k 2 x 3 + k 2 x 5 ) x 1 2 preMPF (x 1 -x 2 ) k wee (k 25 + k 2 + k 2 x 3 + k 2 x 5 ) x 2 3 Ste9 (k 3 +k 3 x5)(1-x3) J3+1-x3 (k 4 x8+k 4 x mpf )x3 J 4 +x3 4 
x mpf = (x 1 -x 2 ) (x 1 -x trim ) x 1 (11) 
where dM dt = ρM [START_REF] Berg | Fluctuations and Quality of Control in Biological Cells: Zero-Order Ultrasensitivity Reinvestigated[END_REF] Note that the cellular mass M is assumed to grow exponentially with a rate ρ, and the concentrations (x trim , x tf , k wee , k 25 ) are assumed to be in a pseudosteady-state to simplify the model. Note that we use a slightly different notation: ρ for mass growth rate (instead of μ), x trim for Trimmer concentration and x tf for TF concentration. We have to emphasise that the concentrations used in this model are relative and dimensionless. When one concentration is divided by another, the proportion is the same as a proportion of two copy numbers. Hence, such a concentration should not be interpreted as a copy number per unit volume (as misinterpreted in [START_REF] Yi | Theoretical study of mesoscopic stochastic mechanism and effects of finite size on cell cycle of fission yeast[END_REF]). The parameters used in the Tyson-Novák model [START_REF] Novák | Mathematical model of the cell division cycle of fission yeast[END_REF] are listed in Table 3 in Appendix D.

x trim = 2x 1 x 7 Σ + √ Σ 2 -4x 1 x 7 x tf = G (k 15 M, k 16 , k 16 x mpf , J 15 , J 16 ) k wee = k wee + (k wee -k wee ) G (V awee , V iwee x mpf , J awee , J iwee ) k 25 = k 25 + (k 25 -k 25 ) G (V a25 x mpf , V i25 , J a25 , J i25 ) Σ = x 1 + x 7 + K diss , G(a, b, c, d) = 2ad b -a + bc + ad + (b -a + bc + ad) 2 -4(b -a)ad
The deterministic ODE model describes the behaviour of an 'average cell', neglecting the differences among cells in culture. Specifically, it fails to explain
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the experimentally observed clusters of the CT-vs-BM plot and the tri-modal distribution of CT [START_REF] Sveiczer | The size control of fission yeast revisited[END_REF][START_REF] Sveiczer | Regularities and irregularities in the cell cycle of the fission yeast, Schizosaccharomyces pombe (a review)[END_REF][START_REF] Sveiczer | Modeling the fission yeast cell cycle: Quantized cycle times in wee1-cdc25Delta mutant cells[END_REF][START_REF] Sveiczer | A stochastic, molecular model of the fission yeast cell cycle: role of the nucleocytoplasmic ratio in cycle time regulation[END_REF].

Feasibility of Gillespie simulations

Ideally, we should repeat many runs of Gillespie's SSA and compute our desired moments from the ensemble of those runs. At present, there are two problems which this. The first problem is the requirement of elementary reactions for SSA. The elementary reactions underlying the deterministic model [START_REF] Novák | Mathematical model of the cell division cycle of fission yeast[END_REF] are not known. Many elementary steps have been simplified to obtain that model. Trying to perform an SSA on non-elementary reactions will lose the discrete event character of the SSA. The second problem arises from the fact that the SSA requires copy numbers which in turn requires knowledge of measured concentrations. All protein concentrations in the model are expressed in arbitrary units (a.u.) because the actual concentrations of most regulatory proteins in the cell are not known [START_REF] Csikász-Nagy | Analysis of a generic model of eukaryotic cell cycle regulation[END_REF]. Tyson and Sveiczer1 define relative concentration x i of the ith protein as

x i = n i /Ω i where Ω i = C i N A V .
Here C i is an unknown characteristic concentration of the ith component. The idea is to make the relative concentrations x i free of scale of the actual (molar) concentrations n i /N A V . Although one would like to vary C i , this is computationally intensive. This problem is not so serious for the continuous approximations such as CLE, LNA and the 2MA which are all ODEs and can be numerically solved. Using Matlab R2009a on a quad-core 2.66 GHz CPU took longer than 10 hours to complete one SSA run of 465 cycles. According to a recently published report [START_REF] Ahn | Cell Cycle Modeling for Budding Yeast with Stochastic Simulation Algorithms[END_REF], to compare the stochastic results with the average behaviour, the simulation must be run thousands of times, for which the cited authors had to use a parallel super computer. The main focus of the present paper is the analytical 2MA.

The stochastic model using Langevin's approach

In [START_REF] Yi | Theoretical study of mesoscopic stochastic mechanism and effects of finite size on cell cycle of fission yeast[END_REF] a stochastic model is proposed that replaces the ODE model [START_REF] Paszek | Modeling stochasticity in gene regulation: Characterization in the terms of the underlying distribution function[END_REF] with a set of chemical Langevin equations (CLEs)

d dt x i (t) = f + i x(t) -f - i x(t) + 1 Ω f + i (x(t))Γ + i (t) -f - i (x(t))Γ - i (t) ,
which uses the Langevin noise terms: White noises Γ + i and Γ - i scaled by f + i (x) and f - i (x) to represent the internal noise. The system parameter Ω has been described as the volume by the author. As we discussed before, the concentrations are relative levels with different system size parameters. That means that concentrations are not the same as copy numbers per unit volume.
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Another stochastic model, employing the Langevin's approach, is reported in [START_REF] Steuer | Effects of stochasticity in models of the cell cycle: from quantized cycle times to noise-induced oscillations[END_REF]. It approximates the squared noise amplitudes by linear functions:

d dt x i (t) = f i (x(t)) + 2D i x i (t)Γ i (t),
where D i is a constant. The model dynamics f (x) are missing in the noise term because the author wanted to represent both the internal and external noise by the second term on the right.

The 2MA model

For the cell cycle model, the flux f and the diffusion matrix B, defined in (9), have elements

f i (x) = f + i (x) -f - i (x), B ik (x) = f + i (x) + f - i (x) ifi = k 0 i f i = k .
The off-diagonal elements of B are zero because each reaction changes only one component, so that S ij S kj = 0 for i = k. Once these quantities are known, it follows from ( 7) and ( 8) that the following set of ODEs:

dμ i dt = f i (μ) + 1 2 ∂ 2 f i ∂x∂x T : σ ( 13 
)
dσ ii dt = 2 l ∂f i ∂x l σ li + 1 Ω i B ii (μ) + 1 2 ∂ 2 B ii ∂x∂x T : σ ( 14 
)
dσ ik dt = l ∂f i ∂x l σ lk + σ il ∂f k ∂x l i = k (15)
approximates (correctly to the 2nd order moments) the evolution of componentwise concentration mean and covariance. See See Tables 456in Appendix D for the respective expressions of the drift matrix A, the stochastic flux ε f and the correction-term ε B added to the diffusion matrix B in [START_REF] Paulsson | Models of stochastic gene expression[END_REF].

Having at hand the moments involving the eight dynamic variables x 1 to x 8 , the mean MPF concentration can be shown to be approximately (correct to 2nd order moments):

μ mpf = μ 1 -μ 2 -x trim + x trim μ 1 1 + σ 11 μ 2 1 μ 2 - σ 12 μ 1 ( 16 
)
for the mean MPF concentration with the understanding that x trim is in pseudo steady state (See Appendix C for the derivation). This expression for the average MPF activity demonstrates the influence of (co)variance on the mean as emphasised here. We see the dependence of mean MPF concentration μ mpf on the variance σ 11 and covariance σ 12 in addition to the means μ 1 , μ 2 and x trim . The difference between the two predictions is negligible for the wild type, but significant for double-mutant type.

Simulations of the 2MA model

The system of ODEs ( 13)-( 15) was solved numerically by the MATLAB solver ode15s [START_REF] Mathworks | [END_REF]. The solution was then combined with algebraic relations [START_REF] Tao | Stochastic fluctuations in gene expression far from equilibrium: Omega expansion and linear noise approximation[END_REF]. For parameter values, see Table 3. Since information about the individual scaling parameters Ω i used in the definition of concentrations is not available, we have used Ω i = 5000 for all i. This value has also been used in [START_REF] Yi | Theoretical study of mesoscopic stochastic mechanism and effects of finite size on cell cycle of fission yeast[END_REF], although there is no clear justification. Note, however, that the 2MA approach developed here will work for any combination of {Ω i }. The time-courses of mass and MPF activity are plotted in Figure 1a for the wild type and in Figure 1b for the double-mutant type. For the wild type, the 2MA predicted mean trajectories do not differ considerably from the corresponding deterministic trajectories. Both plots show a more or less constant CT near 150 min. Thus internal noise does not seem to have a major influence for the wild type.

For the double-mutant type, the difference between the 2MA and deterministic predictions is significant. The deterministic model [START_REF] Paszek | Modeling stochasticity in gene regulation: Characterization in the terms of the underlying distribution function[END_REF] predicts alternating short cycles and long cycles because cells born at the larger size have shorter cycle, and smaller newborns have longer cycles [START_REF] Novák | Mathematical model of the cell division cycle of fission yeast[END_REF]. This strict alternation due to size control is not observed in experiments: cells of same mass may have short or long cycles (excluding very large cells that have always the shortest CT) [START_REF] Sveiczer | The size control of fission yeast revisited[END_REF][START_REF] Sveiczer | Modeling the fission yeast cell cycle: Quantized cycle times in wee1-cdc25Delta mutant cells[END_REF]. This lack of size control is reproduced by the 2MA simulations: the multiple resettings of MPF to G2, induced by the internal noise, result in longer CTs (thus accounting for the 230-min cycles observed experimentally). Such MPF resettings have been proposed in [START_REF] Sveiczer | Regularities and irregularities in the cell cycle of the fission yeast, Schizosaccharomyces pombe (a review)[END_REF][START_REF] Sveiczer | Modeling the fission yeast cell cycle: Quantized cycle times in wee1-cdc25Delta mutant cells[END_REF] cells. Yet the MPF resettings observed in Figure (1b), near G2/M transition, introduce the required variability that explains the clustering of the cycle time observed in experiments. This is in contrast to the alternative stochastic approaches in [START_REF] Steuer | Effects of stochasticity in models of the cell cycle: from quantized cycle times to noise-induced oscillations[END_REF][START_REF] Yi | Theoretical study of mesoscopic stochastic mechanism and effects of finite size on cell cycle of fission yeast[END_REF][START_REF] Sveiczer | Regularities and irregularities in the cell cycle of the fission yeast, Schizosaccharomyces pombe (a review)[END_REF][START_REF] Sveiczer | Modeling the fission yeast cell cycle: Quantized cycle times in wee1-cdc25Delta mutant cells[END_REF][START_REF] Sveiczer | A stochastic, molecular model of the fission yeast cell cycle: role of the nucleocytoplasmic ratio in cycle time regulation[END_REF] that use one sample trajectory rather than the ensemble average.

How do we explain this significant effect of noise for the double-mutant on one hand and its negligible effect for the wild type on the other hand? If we look at expression [START_REF] Tao | Stochastic fluctuations in gene expression far from equilibrium: Omega expansion and linear noise approximation[END_REF], we see the influence of the variance σ 11 (of Cdc13 T ) and covariance σ 12 (between Cdc13 T and preMPF) on the mean MPF concentration μ mpf . The two (co)variances are plotted in Figure 2a for the wild type and in Figure 2b for the double-mutant type. It is clear that the two (co)variances have very small peaks for the wild type compared to the large peaks for the doublemutant type. Note that the larger peaks in Figure 2b are located at the same time points where the MPF activity exhibits oscillations and hence multiple resettings to G2. This suggest that the oscillatory behaviour of MPF near the G2/M transition is due to the influence of the oscillatory (co)variances. This coupling between the mean and (co)variance is not captured by the deterministic model.

It has to be realised that the above proposition requires validation since the 2MA approach ignores 3rd and higher-order moments. We cannot know whether that truncation is responsible for the oscillations in Figures 1 and2, unless compared with a few sample trajectories simulated by the SSA. However, as discussed before, the SSA cannot be performed (at present) for the model in consideration. Therefore we need to compare the 2MA predictions for the double-mutant type cells with experimental data. Towards that end, values of cycle time (CT), birth mass (BM) and division mass (DM) were computed for 465 successive cycles of double-mutant cells. Figure 3 shows the CT-vs-BM plot and the CT distribution for three different values {5000, 5200, 5300} of system size Ω.
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To make this figure comparable with experimental data from [START_REF] Sveiczer | The size control of fission yeast revisited[END_REF][START_REF] Sveiczer | Regularities and irregularities in the cell cycle of the fission yeast, Schizosaccharomyces pombe (a review)[END_REF], we assume that 1 unit of mass corresponds to 8.2 μm cell length [START_REF] Sveiczer | Modeling the fission yeast cell cycle: Quantized cycle times in wee1-cdc25Delta mutant cells[END_REF]. We can see the missing size control (CT clusters), in qualitative agreement with experimentally observed ones (see [START_REF] Sveiczer | The size control of fission yeast revisited[END_REF]Figure 6] and [73, Figure 5] for a comparison). There are more than four clusters, which may have arisen from the truncated higher-order moments. The extreme value of CT higher than 230 min suggests more than two MPF resettings. Furthermore, more than three modes in the CT distribution may have arisen from the truncated higher-order moments. Table 2 compares the statistics for the double-mutant type cells, computed with the 2MA approach, with data from [72, Table 1]. Column 2-4 tabulate, for CT, the mean μ CT , the standard deviation σ CT and the coefficient of variation CV CT , respectively. The other columns tabulate similar quantities for the division mass (DM) and the birth mass (BM). We see that only the mean CT is in agreement with the experimental data. The mean values for both BM and DM are larger than the corresponding experimental values. The other statistics are much smaller the corresponding experimental values. This and the above plots suggest that the 2MA should be used with caution. However, another aspect of the cell cycle model deserves attention here. The way the relative protein concentrations have been defined implies unknown values of the scaling parameters {Ω i }. Since Ω i = C i N A V , knowing the volume V does not solve the problem: the characteristic concentrations {C i } are still unknown. Our simulations have chosen typical values Ω = {5000, 5200, 5300}. The corresponding three pairs of plots in Figure 3 and rows in Table 2 demonstrate a dependence of the results on a suitable system size. There is no way to confirm these values. The scaling parameters could be varied in a wider range in order to improve simulation accuracy, which we leave for future work. The conclusion is that the quantitative disagreement of the 2MA predictions can be attributed to two factors: 1) the truncated higher-order moments during the derivation of the 2MA, and (2) the unknown values of scaling parameters. 

Conclusions

The recently developed two-moment approximation (2MA) [START_REF] Goutsias | Classical versus stochastic kinetics modeling of biochemical reaction systems[END_REF][START_REF] Gómez-Uribe | Mass fluctuation kinetics: capturing stochastic effects in systems of chemical reactions through coupled mean-variance computations[END_REF] is a promising approach because it accounts for the coupling between the means and (co)variances. We here extended the derivation of the 2MA to biochemical networks and established two advances to previous efforts: a) relative concentrations and b) non-elementary reactions. Both aspects are important in systems biology where one is often forced to aggregate elementary reactions into single step reactions. In these situations one cannot assume knowledge of elementary reactions to formulate a stochastic model. Previous derivations assumed elementary reactions and absolute concentrations. However, numerous existing models in systems biology use relative concentrations.

We investigated the applicability of the 2MA approach to the well established fission yeast cell cycle model. The simulations of the 2MA model show oscillatory behaviour near the G2/M transition, which is significantly different from the simulations of deterministic ODE model. One notable aspect of our analytical model is that, although it describes the average of an ensemble, it reproduces enough variability among cycles to reproduce the curious quantised cycle times observed in experiments on double mutants.
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The copy number increment ΔN i = N i (t + Δt) -N i (t) during a short time interval [t, t + Δt] is then a linear combination

ΔN i = r j=1 S ij ΔZ j , ( 18 
)
of the short-time RC increments ΔZ j = Z j (t + Δt) -Z j (t). Following Gillespie [START_REF] Gillespie | The chemical Langevin equation[END_REF], suppose it is known that N (t) = n. Since all the probabilities and expectations in this appendix are conditional on N (t) = n, we will use a simplified notation, which will not explicitly indicate this conditionality. Then the short-time RC increment ΔZ j has the probability distribution

Pr [ΔZ j = z j ] = o(Δt) + ⎧ ⎪ ⎨ ⎪ ⎩ a j (n)Δt if z j = 1 1 -a j (n)Δt if z j = 0 0 i f z j > 1 ( 19 
)
where o(Δt) represents a quantity that vanishes faster than Δt as the later approaches zero. For a vanishingly small Δt, the above distribution approaches the Poisson distribution with mean and variance equal to a j (n)Δt. If Δt is small enough that each reaction propensity a j (n) does not change "appreciably" during the interval, then ΔZ is approximately Poissonian with channel-wise mean ΔZ j ≈ a j (n)Δt, [START_REF] Qian | From discrete protein kinetics to continuous Brownian dynamics: A new perspective[END_REF] and (co)variance

ΔZ j , ΔZ l ≈ a j (n)Δt if j = l 0 i fj = l, (21) 
between channel pairs. If Δt is large enough that each RC increment ΔZ j has a very large value, a j (n) Δt 1, then the Poissonian ΔZ j can be approximated by a normal random variable with the same mean and variance a j (n)Δt for each reaction channel. Since any normal random variable can be written as a sum of its mean and the standard normal variable, scaled by its standard deviation, we can write the normal approximation as

ΔZ j ≈ a j (n)Δt + (a j (n)Δt) 1 /2 N j (t), (22) 
where N j (t) denotes the channel-wise standard normal process, all processes in the set {N j (t)} being statistically independent. Inserting the above equation into [START_REF] Dogterom | Physical aspects of the growth and regulation of microtubule structures[END_REF] gives

ΔN i ≈ r j=1 S ij a j (n)Δt + r j=1 S ij (a j (n)Δt) 1 /2 N j (t) .
Replacing the supposedly known n by N (t) in the above equation gives the first form (2) of the CLE in the main text.
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Being a linear combination of Gaussian variables ΔZ j , the copy number increment ΔN is also Gaussian which can be written in the form

ΔN ≈ ΔN + ΔN, ΔN T 1/2 N (t), (23) 
which is a sum of the mean ΔN and an s × 1 standard Gaussian random vector N (t) scaled by the matrix square-root ΔN, ΔN T 1/2 of the covariance matrix ΔN, ΔN T . Combining ( 18) and [START_REF] Qian | From discrete protein kinetics to continuous Brownian dynamics: A new perspective[END_REF] gives

ΔN i = r j=1 S ij ΔZ j ≈ r j=1 S ij a j (n)Δt
for the component-wise mean copy-number increment and ΔN ≈ S a(n)Δt [START_REF] Thattai | Attenuation of noise in ultrasensitive signaling cascades[END_REF] for the mean copy-number increment vector. The covariance matrix ΔN, ΔN T can be expressed in terms of reaction counts in the following way. From [START_REF] Dogterom | Physical aspects of the growth and regulation of microtubule structures[END_REF] we get the pair-wise multiplication

ΔN i ΔN k = r j=1 r l=1 S ij S kl ΔZ j ΔZ l .

Combining the standard relation ΔN

i , ΔN k = ΔN i ΔN k -ΔN i ΔN k with (21) gives ΔN i , ΔN k = r j=1 r l=1 S ij S kl ΔZ j , ΔZ l ≈ r j=1 S ij S kj a j (n)Δt
for the pair-wise covariance between copy-number increments. Introducing an s × s matrix D defined element-wise by

D ik (n) = r j=1 S ij S kj a j (n),
the copy-number covariance matrix and its matrix square root can be written in the form

ΔN, ΔN T ≈ D(n)Δt, ΔN, ΔN T 1/2 ≈ (D(n)) 1/2 (Δt) 1/2 .
Substituting the above and ( 24) in [START_REF] Samad | Intrinsic noise rejection in gene networks by regulation of stability[END_REF] gives

ΔN ≈ S a(n)Δt + (D(n)) 1/2 N (t) (Δt) 1/2 . ( 25 
)
Replacing the supposedly known n by N (t) in the above proves (3) in the main text. Note that the matrix square root D 1/2 is such that D = D 1/2 D 1/2 T and can be found from the eigenvalue decomposition of D.

A c c e p t e d m a n u s c r i p t

Denoting such an inner product between two matrices by : and ignoring terms involving 3rd and higher-order moments, the ODE (28) can be approximated by

dμ i dt = f i (μ) + 1 2
∂ 2 f i ∂x∂x T : σ, which proves the first set of 2MA equations [START_REF] Mantzaris | From single-cell genetic architecture to cell population dynamics: quantitatively decomposing the effects of different population heterogeneity sources for a genetic network with positive feedback architecture[END_REF] in the main text. Here the 2nd term on the right is the internal noise that arises from the discrete and random nature of chemical reactions. Note that this term has been derived from the CME instead of being assumed like external noise. This shows that knowledge of fluctuations (even if small) is important for a correct description of the mean. This also indicates an advantage of the stochastic framework over it deterministic counterpart: starting from the same assumptions and approximations, the stochastic framework allows us to see the influence of fluctuation on the mean. Note that the above equation is exact for systems where no reaction has an order higher than two because then 3rd and higher derivatives of propensity are zero.

Before we can see how the covariance σ evolves in time, let us multiply the CME with n i n k and sum over all n,

n n i n k dP (n, t) dt = n n i n k r j=1 [a j (n -S j )P (n -S j , t) -a j (n)P (n, t)] = n r j=1 (n i + S ij ) (n k + S kj ) a j (n)P (n, t) -n i n k a j (n)P (n, t) = n r j=1 (n k S ij + n i S kj + S ij S kj ) a j (n)P (n, t)
where dependence on time is implicit for all variables except n and S. Dividing by Ω i Ω k and recognising sums of probabilities as expectations,

d X i X k dt = X k f i (X) + X i f k (X) + B ik (X) √ Ω i Ω k
where the diffusion matrix B(x) has elements

B ik (x) = 1 √ Ω i Ω k r j=1 S ij S kj a j (Ω x) . The relation σ ik = X i X k -μ i μ k can be utilised to yield dσ ik dt = (X k -μ k ) f i (X) + (X i -μ i ) f k (X) + B ik (X) √ Ω i Ω k ( 29 
)
for the covariances between concentrations of component pairs. The argument of the first expectation in [START_REF] Lan | The interplay between discrete noise and nonlinear chemical kinetics in a signal amplification cascade[END_REF] has Taylor expansion

f i (x) (x k -μ k ) = f i (μ) (x k -μ k ) + ∂f i ∂x T (x -μ) (x k -μ k ) + • • • .

A c c e p t e d m a n u s c r i p t

Expectation of the first term on the right is zero. Ignoring 3rd and higher-order moments, the first expectation in (29) is then

(X k -μ k ) f i (X) = ∂f i ∂x T σ k .
By a similar procedure, the second expectation in ( 29) is

(X i -μ i ) f k (X) = σ i ∂f k ∂x ,
correct to 2nd-order moments. The element B ik (x) of the diffusion matrix has Taylor expansion

B ik (x) = B ik (μ) + ∂B ik ∂x T (x -μ) + 1 2 (x -μ) T ∂ 2 B ik ∂x∂x T (x -μ) + • • • .
Taking term-wise expectation, and ignoring 3rd and higher-order moments,

B ik (X) = B ik (μ) + 1 2 ∂ 2 B ik ∂x∂x T : σ .
Summing up the three expectations above gives the approximation of ( 29) by

dσ ik dt = ∂f i ∂x T σ k + σ i ∂f k ∂x + 1 √ Ω i Ω k B ik (μ) + 1 2
∂ 2 B ik ∂x∂x T : σ , which proves the 2nd set of 2MA equations [START_REF] Ansel | Cell-to-Cell Stochastic Variation in Gene Expression Is a Complex Genetic Trait[END_REF] in the main text. Remember that ( 8) is exact for systems that contain only zero and first-order reactions because in that case the propensity is already linear.

Appendix C. Mean MPF concentration

To find the mean MPF concentration, we start with the MPF concentration

x mpf = (x 1 -x 2 ) 1 - x trim x 1 = x 1 -x 2 -x trim + x trim x 2 x 1 .
The ratio x2 /x1 can be expanded around the mean,

x 2 x 1 = 1 μ 1 x 2 1 + (x1-μ1) μ1 = 1 μ 1 x 2 - (x 1 -μ 1 ) x 2 μ 1 + (x 1 -μ 1 ) 2 x 2 μ 2 1 + • • • .
Taking expectation on both sides,

X 2 X 1 = 1 μ 1 X 2 1 + (X1-μ1) μ1 = 1 μ 1 X 2 - (X 1 -μ 1 ) X 2 μ 1 + (X 1 -μ 1 ) 2 X 2 μ 2 1 + • • • = 1 μ 1 μ 2 - σ 12 μ 1 + μ 2 σ 11 μ 2 1 .

A c c e p t e d m a n u s c r i p t

Table 3: Parameter values for the Tyson-Novák cell cycle model of the fission yeast (wild type) [START_REF] Novák | Mathematical model of the cell division cycle of fission yeast[END_REF]. All constants have units min -1 , except the Js, which are dimensionless Michaelis constants, and K diss , which is a dimensionless equilibrium constant for trimer dissociation. For the double-mutant type, one makes the following three changes: k wee = 0. Finally, the mean MPF concentration follows from the expectation of x mpf to be

μ mpf = μ 1 -μ 2 -x trim + x trim μ 1 1 + σ 11 μ 2 1 μ 2 - σ 12 μ 1 ,
thus proving [START_REF] Tao | Stochastic fluctuations in gene expression far from equilibrium: Omega expansion and linear noise approximation[END_REF] in the main text. J3+1-μ3 , 0, 0, -

k 4 μ3 J 4 +μ3
4 [0, 0, 0, -k 6 , 0, 0, 0, 0] 5 0, 0, 0, k 7 J 7 μ6 (J 7 +μ 4 -μ5) 2 , -k 6 -k 7 J 7 μ6 (J 7 +μ 4 -μ5) 2 -k8J8 (J8+μ5) 2 , (μ 4 -μ5)k 7 J 7 +x 4 -μ5 , 0, 0 6 0, 0, 0, 0, 0, -

k9x mpf J9
(J9+1-μ6) 2 -k10J10 (J10+μ6) 2 , 0, 0 7 0, 0, 0, 0, 0, 0, -k 12k 12 μ 8k 2 μ mpf , -k 12 μ 7 8 0, 0, 0, 0, 0, 0, 0, -k 14 

Figure 1 :

 1 Figure 1: The time-courses of mass and MPF activity: (a) for the wild type, (b) for the double-mutant type. The 2MA predicted mean trajectories are plotted as solid lines and the corresponding deterministic trajectories as dashed lines.The difference between the two predictions is negligible for the wild type, but significant for double-mutant type.

  to explain quantised CTs. No such resetting is demonstrated by the deterministic model.Note that the mean μ(t) of the 2MA describes the average of an ensemble of

Figure 2 :

 2 Figure 2: Variance σ 11 (of Cdc13 T ) and covariance σ 12 (between Cdc13 T and preMPF): (a) for the wild type, (b) for double-mutant type.

Figure 3 :

 3 Figure 3: Cycle time behaviour over 465 successive cycles of the double-mutant cells, predicted by the 2MA model. (a,c,e): CT vs BM, (b,d,f): CT distribution, (a,b): Ω = 5000, (c,d): Ω = 5200, (e,f): Ω = 5300. The plots are in qualitative agreement to experiments, see [72, Figure 6] and [73, Figure 5] for comparison.

A c c e p t e d m a n u s c r i p t

  

3 ,

 3 k 25 = k 25 = 0.02 .k 15 = 0.03, k 2 = 0.03, k 2 = 1, k 2 = 0.1, k 3 = 1, k 3 = 10, J 3 = 0.01, k 4 = 2, k 4 = 35, J 4 = 0.01, k 5 = 0.005, k 5 = 0.3, k 6 = 0.1, J 5 = 0.3, k 7 = 1, k 8 = 0.25, J 7 = J 8 = 0.001, J 8 = 0.001, k 9 = 0.1, k 10 = 0.04, J 9 = 0.01, J 10 = 0.01, k 11 = 0.1, k 12 = 0.01, k 12 = 1, k 12 = 3, K diss = 0.001, k 13 = 0.1, k 14 = 0.1, k 15 = 1.5, k 16 = 1, k 16 = 2, J 15 = 0.01, J 16 = 0.01, V awee = 0.25, V iwee = 1, J awee = 0.01, J iwee = 0.01, V a25 = 1, V i25 = 0.25, J a25 = 0.01, J i25 = 0.01, k wee = 0.15, k wee = 1.3, k 25 = 0.05, k 25 = 5, ρ = 0.005.

Appendix D. Parameters and coefficients of the 2MA equations A c c e p t e d m a n u s c r i p t

  

i ∂fi ∂x T 1 -k 2 -k 2 μ 3 -(J 4 +μ3) 2 - (k 3

 12323 k 2 μ 5 , 0, -k 2 μ 1 , 0, -k 2 μ 1 , 0, 0, 0 2 k wee , -k week 25k 2k 2 μ 3k 2 μ 5 , -k 2 μ 2 , 0, -k 2 μ 2 , 0, 0, 0 3 0, 0, -(k 4 μ8+k 4 μ mpf )J4 +k 3 μ5)J3 (J3+1-μ3) 2 , 0,(1-μ3)k 3

Table 2 :

 2 Statistics over 465 successive cell cycles of the double-mutant type cells, predicted by the 2MA model, compared with experimental data, see [72, Table 1]. Case μ CT σ CT CV CT μ DM σ DM CV DM μ BM σ BM

	(1)	131	47	0.358	2.22	0.45	0.203	1.21	0.24
	(2)	138.8 12.4	0.09	3.18 0.101 0.0319 1.59 0.0575
	(3)	138.8 17.6 0.127	3.25 0.178 0.055	1.623 0.0934
	(4)	138.8 23.9 0.172	3.32 0.231 0.0697 1.657	0.12
	(1) experimental data, (2) Ω = 5000, (3) Ω = 5200, (4) Ω = 5300.

Table 4 :

 4 Rows of the drift matrix of the 2MA cell cycle model.

Table 5 :

 5 Stochastic flux, the 2nd-order term in the Taylor expansion of f i (x) around the mean.σ 13k 2 σ 15 2 -k 2 σ 23k 2 σ 25 3 (k 4 μ8+k 4 μ mpf )J4 7 J 7 μ6(2σ 45 -σ 44 -σ55) (J 7 +μ 4 -μ5) 3 + k 7 J 7 (σ 46 -σ56) (J 7 +μ 4 -μ5) 2 + k8J8 (J8+μ5) 3 σ 55

	i	1 2	∂ 2 fi ∂x∂x T : σ	
	1	-k 2 (J 4 +μ3) 3 -(k 3 +k 3 μ5)J3 (J3+1-μ3) 3	σ 33 -	k 3 J3σ35 (J3+1-μ3) 2 -	k 4 J 4 σ38 (J 4 +μ3) 2
	4		0		
	5				

k

Table 6 :

 6 The 2nd-order term in Taylor expansion of B ii (x) around the mean. 7 J 7 μ6(2σ 45 -σ 44 -σ55) (J 7 +μ 4 -μ5) 3+ k 7 J 7 (σ 46 -σ56) (J 7 +μ 4 -μ5) 2 -k8J8 (J8+μ5) 3 σ 55

	i			1 2	∂ 2 Bii ∂x∂x T : σ
	1			k 2 σ 13 + k 2 σ 15
	2			k 2 σ 23 + k 2 σ 25
	3 -	(k 4 μ8+k 4 μ mpf )J4 (J 4 +μ3) 3	+	(k 3 +k 3 μ5)J3 (J3+1-μ3) 3	σ 33 -	k 3 J3σ35 (J3+1-μ3) 2 +	k 4 J 4 σ38 (J 4 +μ3) 2
	4					0	
	5						
	6	-k10J10 (J10+μ6) 3 +	k9μ mpf J9 (J9+1-μ6) 3 σ 66
	7				k 12 σ 78	
	8					0	

k
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Appendix A. Derivation of alternative forms of the CLE

The progress of a particular reaction can be described by a quantity known as the reaction count (RC) or degree of advancement. We will write Z j (t) for the RC of the jth reaction, where Z j (t) = z j means that the jth reaction has occurred z j times during the interval [0, t). In the same interval the jth reaction will contribute a change of z j S ij molecules to the overall change in the copy number N i of the ith component. Summing up contributions from all the reactions, the copy number can be expressed as

A c c e p t e d m a n u s c r i p t Appendix B. Derivation of the 2MA equations

The short-time reaction count increment has the channel-wise (conditional) mean

The unconditional expectation can be obtained by summing up the conditional expectation, weighted by the probabilities P (n, t), over all possible states n:

which for vanishingly small Δt approaches the ODE

Thus the mean propensity of a particular reaction can be interpreted as the average reaction count per unit time. Take the expectation on both sides of the conservation relation ( 17) to obtain

which proves [START_REF] Pedraza | Noise Propagation in Gene Networks[END_REF] in the main text. It is interesting to note that the above ODE is a direct consequence of mass conservation [START_REF] Zhang | Nonequilibrium Model for Yeast Cell Cycle[END_REF] and the definition of propensity because we have not referred to the CME (which is the usual procedure) during our derivation. Dividing [START_REF] Pedraza | Noise Propagation in Gene Networks[END_REF] by Ω i gives the ODE for the component mean concentration,

where

is the total flux of component i in state x. Suppose the propensity a j (n) is a smooth function and that central moments (Nμ) m of order higher than m = 2 can be ignored. In that case, the Taylor series expansion of flux f i (x) around the mean is

All partial derivatives with respect to the state x are evaluated at x = μ. The first-order partial derivative here is the ith row of the Jacobian ∂f /∂x T . The 2nd-order partial derivative is the Hessian of f i . Expectation of the 2nd term on the right is zero. Expectation of the 3rd term is the sum of products of corresponding elements of the Hessian ∂ 2 fi ∂x∂x T and the covariance matrix σ.