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Abstract

There is an ongoing discussion on how bone strength could be explained from its
internal structure and composition. Reviewing recent experimental and molecular
dynamics studies, we here propose a new vision on bone material failure: mutual duc-
tile sliding of hydroxyapatite mineral crystals along layered water films is followed
by rupture of collagen crosslinks. In order to cast this vision into a mathematical
form, a multiscale continuum micromechanics theory for upscaling of elastoplas-
tic properties is developed, based on the concept of concentration and influence
tensors for eigenstressed microheterogeneous materials. The model reflects bone’s
hierarchical organization, in terms of representative volume elements for cortical
bone, for extravascular and extracellular bone material, for mineralized fibrils and
the extrafibrillar space, and for wet collagen. In order to get access to the stress
states at the interfaces between crystals, the extrafibrillar mineral is resolved into
an infinite amount of cylindrical material phases oriented in all directions in space.
The multiscale micromechanics model is shown to be able to satisfactorily predict
the strength characteristics of different bones from different species, on the basis of
their mineral/collagen content, their intercrystalline, intermolecular, lacunar, and
vascular porosities, and the elastic and strength properties of hydroxyapatite and
(molecular) collagen.
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1 Introduction

Explanation of the highly diverse mechanical properties of the material bone

from its internal structure and composition has been a biomechanician’s wish

[Fung, 2002, Martin et al., 1998], ever since the establishment of this scien-

tific field. This wish has motivated (i) comprehensive mechanical testing series

over all types of tissues and vertebrates (led by Currey and colleagues [Currey,

1959, Reilly and Burstein, 1974a, Keaveny et al., 1993]), (ii) the incorporation

of the theory of anisotropic elasticity in the framework of ultrasonic testing

(driven forward by Katz and colleagues [Katz, 1980, Ashman et al., 1984]),

and (iii) the complementation of the aforementioned two activities with chem-

ical and physical measurements revealing micro and nanostructural features

of mineralized collagenous tissues (pioneered in an unparalleled experimental

campaign by Lees and colleagues [Lees et al., 1979b,a, 1983, Lees, 1987]). The

huge experimental legacy following from the aforementioned activities was

theoretically integrated in the context of validating micromechanical mod-

els holding for bone materials across different species, ages and anatomical

locations [Hellmich and Ulm, 2002a, Hellmich et al., 2004a, Hellmich and

Ulm, 2005, Fritsch and Hellmich, 2007, Hellmich et al., 2009]. Such microme-

chanical models predict, on the basis of mechanical properties of bone ele-

mentary constituents (hydroxyapatite, collagen, water), the (poro-)elasticity

tensors at the different hierarchical levels of the material, from tissue-specific

composition data, such as porosities and mineral/collagen content. There-

∗ Corresponding author. Tel.: +4315880120220; fax: +4315880120299.
Email addresses: Andreas.Fritsch@tuwien.ac.at (Andreas Fritsch),

Christian.Hellmich@tuwien.ac.at (Christian Hellmich),
dormieux@lmsgc.enpc.fr (Luc Dormieux).
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fore, morphological features such as Haversian and lacunar, intercrystalline,

and intermolecular porosities, mineralized fibrils and collagen-free extrafibril-

lar space, plate or needle-type hydroxyapatite crystals and long crosslinked

collagen molecules were represented in the framework of continuum microme-

chanics, also referred to as random homogenization theory [Hill, 1963, Su-

quet, 1997, Zaoui, 2002]. A key feature of these micromechanical models is

the explicit consideration of the extrafibrillar mineral crystals whose existence

was evidenced earlier [Lees et al., 1984a, 1994, Prostak and Lees, 1996, Pi-

daparti et al., 1996, Benezra Rosen et al., 2002], and further confirmed by

the kinetics of recent demineralization experiments [Balooch et al., 2008]. In

this sense, the challenge of micromechanics-supported, consistently upscaled

microstructure-property relationships for poroelasticity in bone has been met

quite reasonably.

However, the case of explaining bone strength from its internal structure

and composition seems to be fairly unsettled: while scaling relations for the

strength of trabecular bone as function of porosity have become classical [Gib-

son, 1985, Gibson and Ashby, 1997], the micro and nanostructural origin of

bone strength remains an open question: While several researchers favor the

idea of brittle mineral crystals embedded in a compliant ductile organic (col-

lagenous) matrix [Currey, 1969, Katz, 1980, 1981, Sasaki, 1991, Mammone

and Hudson, 1993, Jäger and Fratzl, 2000, Kotha and Guzelsu, 2003] (still,

explanation of a large number of experimental data through only one model

and realistic prediction of measured stress-strain curves are somewhat out

of sight), experiments show that collagen may actually fail in a quasi-brittle

fashion [Christiansen et al., 2000, Gentleman et al., 2003], and this observa-

tion is confirmed by latest molecular dynamics simulations [Buehler, 2006a,

Bhowmik et al., 2007]. Such computations are essential tools for understand-

ing the interaction of huge numbers of molecules, but, due to computational

constraints, the largest models which can be realized nowadays are of the or-
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der of some hundreds of nanometers [Buehler, 2006a], far away from the larger

length scales spanned by the material bone up to its macroscopic appearance

at the millimeter to centimeter scale. What further complicates the matter is

that once the elementary constituents mineral and collagen have failed, a com-

plex series of crack propagation events starts, spanning length scales between

tens of nanometers and ultimately several millimeters. Related toughening

strategies in bone have been intensively studied [Burr et al., 1998, Reilly and

Currey, 2000, Akkus and Rimnac, 2001, Okumura and Gennes, 2001, Taylor

et al., 2003, Ballarini et al., 2005, O’Brien et al., 2007, Koester et al., 2008],

but a consistent mathematical theory for relating them to the overall, tissue-

specific bone strength seems to be an enormously difficult task. Given this

highly challenging situation, we ask: Can continuum micromechanics help to

explain not only bone elasticity, but also bone strength from the material’s

internal structure and composition?

It is often felt that, in contrast to the elastic case, homogenization tech-

niques which often refer to strains or stresses averaged over the material’s

constituents, might not help for the explanation of bone strength, where stress

peaks are likely to govern material failure. Fortunately, this is not necessarily

true: one remedy lies in the resolution of one material constituent into an infi-

nite amount of sub-phases – e.g. the mineral phase may be split into an infinite

amount of differently oriented needles, giving access to information on local

needle-specific stress peaks. It was recently shown [Fritsch et al., 2009] that

based on such a concept, the brittle failure of various hydroxyapatite bioma-

terials characterized by different porosities could be explained from the failure

characteristics of individual crystals (quantified in terms of two strength values

only) and from the microstructure these crystals build up.

This recent micromechanics model can deliver important input, in terms of

the strength properties of single hydroxyapatite crystals, for a micromechanics

model explaining bone strength – the latter is the focus of the present paper. It
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is organized as follows: Reviewing recent experimental and molecular dynamics

studies, we first propose a new vision on bone material failure: mutual ductile

sliding of mineral crystals along layered water films is followed by rupture of

collagen crosslinks. In order to cast this vision into a mathematical form, we

then present a continuum micromechanics theory for upscaling of elastoplastic

properties. Thereafter, this theory is applied to a multiscale representation of

bone materials. Conclusively, it is shown that the corresponding multiscale

model can satisfactorily predict the stress-strain curves and the strength values

of different bones from different species, on the basis of their mineral/collagen

content, their intercrystalline, intermolecular, lacunar, and vascular porosities,

and the elastic and strength properties of hydroxyapatite and collagen.

2 A new proposition for bone failure: layered water-induced ductile

sliding of minerals, followed by rupture of collagen crosslinks

Classically, the strength of bone materials is thought to be related to the

strength properties of collagen, to the strength properties of hydroxyapatite,

and/or the interfaces between these constituents. However, more recent works

extend and modify this traditional picture, by indicating the great role of

water for the failure properties of bone. In this context, molecular dynamics

studies on collagen molecules being detached from hydroxyapatite in solvated

conditions, revealed that the interaction energies between hydroxyapatite and

water, and between collagen and water, are by orders of magnitude larger than

that between hydroxyapatite and collagen [Bhowmik et al., 2007, 2009]. This

implies that water probably plays a central role in ‘glueing’ together the ma-

terial’s elementary constituents, mineral with mineral, collagen with collagen,

and also mineral with collagen. The latter interaction was confirmed by solid

state Nuclear Magnetic Resonance (1H NMR) studies [Wilson et al., 2006]. As

concerns the water-hydroxyapatite interactions, molecular dynamics simula-

tions of crystal systems surrounded by water molecules revealed two to three
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well-organized water layers on the crystal surfaces, these structured water lay-

ers having ice-like features [Pan et al., 2007]. These features were shown to

chemically stabilize the crystals, along very stable apatite/water in-

terfaces shown by molecular dynamics simulations of Zahn and

Hochrein [2003], Zahn et al. [2007]. In the present contribution, we

will discuss the possibility that they also mechanically stabilize the interac-

tion between mineral crystals: More specifically, we consider the case when the

mineral crystals will not break or detach one from another once a critical stress

threshold is reached (as in dry conditions), but when the intra- and intercrys-

talline loads accumulated up to the elastic limit, will be maintained through

the (hydrated) crystals starting to glide upon each other, along the ice-like fea-

tures, which prevent the sliding hydroxyapatite surfaces from disintegration

(see Figure 1 for a multiscale view of bone, focusing on this gliding effect). The

latter is also prevented by the collagen fibrils interweaving the extracellular

bone matrix. This vision is consistent with an elastoplastic interface behavior

between hydrated hydroxyapatite. However, from a mathematical viewpoint,

modeling interfaces between non-spherical objects is extremely expending (or

extremely complex), so that we will benefit from the recent finding [Fritsch

et al., 2009] that the effect of ‘micro’-interface behavior of elongated 1D parti-

cles, on the overall ‘macroscopic’ material can be mimicked by equivalent ‘bulk’

failure properties of the elongated phases. In case of hydroxyapatite polycrys-

tals, we even know the (brittle) failure properties of the single hydroxyapatite

crystals, and we will use them as elastic limits in the framework of full elasto-

plastic analysis of the hierarchical mineral-collagen-water composites called

‘bone’. Therefore, it is appropriate to present a continuum micromechanics

theory for elastoplasticity next. Thereby, our focus is on the plastic gliding

mechanisms between mineral crystals, and we only proceed our computations

until a critical stress in the collagen is reached. Potentially plastic behavior

or microcracking events/crack bridging occuring thereafter [Nalla et al., 2004]

are beyond our present scope. The critical stress of collagen is derived from
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direct mechanical experiments on collagen, showing a brittle behavior of this

constituent [Catanese et al., 1999, Christiansen et al., 2000, Gentleman et al.,

2003], which is in agreement with some molecular dynamics studies [Buehler,

2006a, 2008, Vesentini et al., 2005b]. In particular, the latter work shows that

collagen rupture is likely to be related to failure of crosslinks, such as the

decorin molecule [see Figure 1(a)].

3 Fundamentals of continuum micromechanics – random homoge-

nization of elastoplastic properties

3.1 Representative volume element

In continuum micromechanics [Hill, 1963, Suquet, 1997, Zaoui, 1997, 2002],

a material is understood as a macro-homogeneous, but micro-heterogeneous

body filling a representative volume element (RVE) with characteristic length

�, � � d, d standing for the characteristic length of inhomogeneities within

the RVE (see Figure 2), and �� L, L standing for the characteristic lengths

of geometry or loading of a structure built up by the material defined on the

RVE.

In general, the microstructure within one RVE is so complicated that it cannot

be described in complete detail. Therefore, quasi-homogeneous subdomains

with known physical quantities (such as volume fractions or elastoplastic prop-

erties) are reasonably chosen. They are called material phases. The ‘homog-

enized’ mechanical behavior of the overall material, i.e. the relation between

homogeneous deformations acting on the boundary of the RVE and result-

ing (average) stresses, including the ultimate stresses sustainable by the RVE,

can then be estimated from the mechanical behavior of the aforementioned ho-

mogeneous phases (representing the inhomogeneities within the RVE), their

dosages within the RVE, their characteristic shapes, and their interactions.
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If a single phase exhibits a heterogeneous microstructure itself, its mechani-

cal behavior can be estimated by introduction of an RVE within this phase,

with dimensions �2 ≤ d, comprising again smaller phases with characteristic

length d2 � �2, and so on, leading to a multistep homogenization scheme (see

Figure 2).

3.2 Upscaling of elastoplastic properties

We consider an RVE consisting of nr material phases, r = 1, . . . , nr, exhibiting

elastoplastic material behavior, i.e. following the constitutive laws of ideal

associated elastoplasticity,

σr = �r : (εr − ε
p
r) (1)

ε̇
p
r = λ̇r

∂fr
∂σr

, λ̇rfr(σr) = 0, λ̇r ≥ 0, fr(σr) ≤ 0 (2)

In Eq. (2), σr and εr are the stress and (linearized) strain tensors averaged

over phase r with elasticity tensor �r; ε
p
r are the average plastic strains in

phase r, λr is the plastic multiplier of phase r, and fr(σr) is the yield function

describing the (ideally) plastic characteristics of phase r. The RVE is subjected

to Hashin boundary conditions, i.e. to ‘homogeneous’ (‘macroscopic’) strains

E at its boundary, so that the kinematically compatible phase strains εr inside

the RVE fulfill the average condition

E =
∑
r

frεr (3)

with fr as the volume fraction of phase r. In a similar way, the equilibrated

phase stresses σr fulfill the stress average condition

Σ =
∑
r

frσr (4)

with Σ as the ‘macroscopic’ stresses.
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The superposition principle (following from linear elasticity and linearized

strain) implies that the phase strains εr are linearly related to both the

macroscopic strains E, and to the free strains ε
p
r (which can be considered

as independent loading parameters),

εr = �r : E +
∑
s

�rs : ε
p
s (5)

with �r as the fourth-order concentration tensor [Hill, 1965], and �rs as the

fourth-order influence tensors [Dvorak, 1992]. The latter quantify the phase

strains εr resulting from plastic strains ε
p
s, while the overall RVE is free from

deformation, E = 0.

In absence of plastic strains [fr < 0, ε
p
r = 0 in Eqs. (1)-(2)], the RVE behaves

fully elastically, so that (5), (4), (3), and (1) yield a macroscopic elastic law

of the form

Σ = �
hom : E with �

hom =
∑
r

fr�r : �r (6)

as the homogenized elastic stiffness tensor characterizing the material within

the RVE. In case of non-zero ’free’ plastic strains ε
p
r , (6) can be extended to

the form

Σ = �
hom : (E −E

p) (7)

(7), together with (1), (4), (5), and (6) gives access to the macroscopic plastic

strains E
p, reading as

E
p = −

[∑
r

fr�r : �r

]
−1

:

{∑
r

fr�r :

[
(�r : E +

∑
s

�rs : ε
p
s)− ε

p
r

]}
+ E (8)
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3.3 Matrix-inclusion based estimation of concentration and influence tensors

We estimate the concentration and influence tensors from matrix-inclusion

problems, as it is standardly done in the field of elasticity homogenization.

However, we consider not only elastic, but also free (plastic) strains in both

the inclusion (with stiffness �inc) and surrounding infinite matrix (with stiffness

�0); these plastic strains are denoted by ε
p
inc and E

0,p. At its infinite boundary,

the infinite matrix is subjected to homogeneous strains E
∞. Then, the strains

in the inhomogeneity can be given in the form [Zaoui, 2002]

εinc = [� + �
0
inc : (�inc − �

0)]−1 : [E∞ + �
0
inc : (�inc : ε

p
inc − �

0 : E
0,p)] (9)

We estimate the strains in phase r, εr, as those of an inclusion of the same

shape as the phase, i.e. we identify εinc = εr in (9), and insert this result into

the strain average rule (3), which yields a relation between E
∞ and E,

E
∞ =

{∑
r

fr[� + �
0
r : (�r − �

0)]−1

}
−1

:

{
E −

∑
s

fs[� + �
0
s : (�s − �

0)]−1 : �0
s : (�s : ε

p
s − �

0 : E
0,p)

}
(10)

Use of Eq. (10) in (9) specified for ε = εr yields

εr = [� + �
0
r : (�r − �

0)]−1 :

⎧⎨
⎩

{∑
i

fi[� + �
0
i : (�i − �

0)]−1

}
−1

:

{
E −

∑
s

fs[� + �
0
s : (�s − �

0)]−1 : �0
s : (�s : ε

p
s − �

0 : E
0,p)

}

+�
0
r : (�r : ε

p
r − �

0 : E
0,p)

}
(11)

In (11), the properties of the fictitious matrix, �0 and E
0,p, still need to be

chosen. As regards �0, its choice governs the interactions between the phases

inside the RVE: �0 = �hom relates to a dispersed arrangement of phases

where all phases ‘feel’ the overall homogenized material, and the correspond-
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ing homogenization scheme is standardly called self-consistent [Hershey, 1954,

Kröner, 1958], well-suited for polycrystalline materials. On the other hand,

the matrix may be identified as a phase M itself, �0 = �M , which relates

to a matrix-inclusion-type composite, and the corresponding homogenization

scheme is standardly referred to as Mori-Tanaka scheme [Mori and Tanaka,

1973, Benveniste, 1987]. Herein, we have to make an additional choice, relating

to the plastic (free) strains in the fictitious matrix, E
0,p. For a matrix-inclusion

composite (Mori-Tanaka scheme), it seems natural to identify E
0,p with the

free strain in the matrix phase, ε
p
M . In case of the self-consistent scheme, how-

ever, we have to remember that the fictitious matrix does not exhibit any

volume fractions – therefore, it cannot host any free strains, and E
0,p is set

zero in that case. In particular, one is not allowed to set E
0,p equal to the

macroscopic plastic strains prevailing at the RVE level, since this would be in

conflict with the concentration relation (5).

Concentration relation (5) remains to be specified for the polycrystals and

matrix-inclusion composites: For the former (self-consistent scheme, �0 =

�hom, E
0,p = 0), (11) reads as

εr = [� + �
0
r : (�r − �

hom)]−1 :

⎧⎨
⎩

{∑
i

fi[� + �
0
i : (�i − �

hom)]−1

}
−1

:

{
E −

∑
s

fs[� + �
0
s : (�s − �

hom)]−1 : �0
s : �s : ε

p
s

}
+ �

0
r : �r : ε

p
r

}
(12)

Comparing (12) with (5), we can identify the concentration and influence

tensors as

�r =
[
� + �

0
r : (�r − �

hom)
]
−1

:

{∑
s

fs
[
� + �

0
s : (�s − �

hom)
]
−1

}
−1

(13)

and
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�rs = �rr = (−fr�r + �) : (�∞r : �0
r : �r) if r = s (14)

otherwise

�rs = −fs�r : �∞s : �0
s : �s (15)

whereby

�
∞

r = [� + �
0
r : (�r − �

hom)]−1 (16)

For the Mori-Tanaka case (�0 = �M , E
0,p = ε

p
M), (11) reads as

εr = [� + �
0
r : (�r − �M)]−1 :

⎧⎨
⎩

{∑
i

fi[� + �
0
i : (�i − �M)]−1

}
−1

:

{
E −

∑
s

fs[� + �
0
s : (�s − �M)]−1 : [�0

s : (�s : ε
p
s − �M : ε

p
M)]

}

+�
0
r : (�r : ε

p
r − �M : ε

p
M)

}
(17)

Comparing (17) with (5), we can identify the concentration and influence

tensors as

�r =
[
� + �

0
r : (�r − �M)

]
−1

:

{∑
s

fs
[
� + �

0
s : (�s − �M)

]
−1

}
−1

(18)

and

�rs = �rr = (−fr�r + �) : (�∞r : �0
r : �r) if r = s (19)

�rs = �rM = �r : (−fM�
∞

M : �0
M : �M +∑

i

fi�
∞

i : �0
i : �M)−−�∞r : �0

r : �M if s = M (20)

otherwise

�rs = −fs�r : �∞s : �0
s : �s (21)

4 Application of microelastoplastic theory to bone

In the following, we will apply the above developed microelastoplastic theory

to the material ‘cortical bone’. Therefore, we will employ a slight adaptation of
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a recently proposed and validated multiscale material model for bone elasticity

[Fritsch and Hellmich, 2007], see Figure 3. The adaptation lies in considering

different orientations of non-spherical mineral crystals, as this precision of

morphological resolution is mandatory for the appropriate prediction of the

material’s strength properties, as has been shown for other materials such as

hydroxyapatite biomaterials [Fritsch et al., 2009], concrete [Pichler et al., 2009,

2008], or gypsum [Sanahuja et al., 2008]. As the basis for such a multiscale

micromechanics model, the mechanical properties of the elementary compo-

nents, of hydroxyapatite, of collagen, and of water, are required. They will be

discussed first.

4.1 Elastic properties of hydroxyapatite, collagen, and water

Concerning the tissue-independent (‘universal’) phase properties of the ele-

mentary constituents of bone, being the same for all tissues discussed herein,

we consider the following experiments (see also [Fritsch and Hellmich, 2007]):

Tests with an ultrasonic interferometer coupled with a solid media pressure

apparatus [Katz and Ukraincik, 1971, Gilmore and Katz, 1982] reveal the

isotropic elastic properties of hydroxyapatite powder (Table 1), which, in view

of the largely disordered arrangement of poorly crystalline minerals [Lees

et al., 1994, Fratzl et al., 1996, Peters et al., 2000, Epple, 2001, Hellmich and

Ulm, 2002a, 2003, Hellmich et al., 2004a], are sufficient for the characterization

of the mineral phase [Hellmich and Ulm, 2002b, Hellmich et al., 2004b, Fritsch

et al., 2006]. Given the absence of direct measurements of (molecular) colla-

gen, the elastic properties of (molecular) collagen are approximated by those

of dry rat tail tendon, a tissue consisting almost exclusively of collagen. By

means of Brillouin light scattering, Cusack and Miller [1979] have determined

the respective five independent elastic constants of a transversely isotropic

material (Table 1). We assign the standard bulk modulus of water (Table 1)

to phases comprising water with mechanically insignificant non-collagenous
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organic matter.

4.2 Failure properties of hydroxyapatite crystals and collagen

Recent work on porous hydroxyapatite biomaterials [Fritsch et al., 2009] has

revealed that the elastic limit of single (needle-type) hydroxyapatite crystals

can be appropriately characterized through a criterion of the form:

ψ = 0, . . . , 2π : fHAϕϑ(σHAϕϑ) = β max
ψ
|σNnHA|+ σNNHA − σult,tHA = 0 (22)

with spherical coordinates ϕ and ϑ defining the crystal needle orientation

vector N=er in the reference frame (e1, e2, e3), and with ψ defining the ori-

entation of vector n related to shear stresses (see Figure 4). β = σult,tHA /σ
ult,s
HA

is the ratio between the uniaxial tensile strength σult,tHA and the shear strength

σult,sHA of pure hydroxyapatite (abbreviated ‘HA’), and σNnHA = N · σHAϕϑ · n

and σNNHA = N · σHAϕϑ · N are the normal and shear stress components re-

lated to a surface with normal N(ϕ, ϑ). These strength values can be gained

from experiments of Akao et al. [1981] and Shareef et al. [1993], see [Fritsch

et al., 2009] for further details, and they amount to 52.2 MPa and 80.3 MPa,

respectively (see also Table 2). Beyond the elastic regime, we consider associ-

ated ideal plasticity according to Eq. (2) - having in mind a mathematically

feasible strategy for mimicking layered water-induced ductile sliding between

crystals, which maintains the crystals’ stress levels reached at the elastic limit.

Use of (22) in (2) yields the flow and consistency rules as

ε̇
p
HAϕϑ = λ̇HA [N ⊗N + β sgn(σNnHA)(N ⊗ n+ n⊗N)],

λ̇HA

(
β max

ψ
|σNnHA|+ σNNHA − σult,tHA

)
= 0,

λ̇HA ≥ 0,

β max
ψ
|σNnHA|+ σNNHA − σult,tHA ≤ 0, (23)

Experiments on collagen fibrils have evidenced the quasi-brittle failure char-
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acteristics of this material [Christiansen et al., 2000, Gentleman et al., 2003].

Failure of the crosslinks between the cylindrical collagen molecules is stan-

dardly agreed upon as the primary cause of collagen failure in the longitudinal

direction of the molecules (fibrils) [Buehler, 2006a, Vesentini et al., 2005b]. We

here represent this fact by a failure criterion of the form

fcol(σcol) = |e3 · σcol · e3| − σultcol ≤ 0 (24)

where the direction three coincides with the principal orientation direction of

collagen (see Figure 3). Once the equal sign holds in criterion (24), we consider

that the strengths of both the collagenous phase and of the overall bone mate-

rials are reached, while any potential plastic or, more probably, microcracking

and crack bridging events leading to toughening in the post-peak regime [Nalla

et al., 2004], are beyond the scope of the present manuscript. Given the afore-

mentioned role of the collagen crosslinks for the strength of molecular collagen,

a non-mineralized collagenous tissue with crosslinking characteristics close to

that of bone is the favorable access to the strength of molecular collagen. As

before, we will rely on rat tail tendon, which, under wet conditions, exhibits

a strength of 106.1 MPa (Table 2 in [Gentleman et al., 2003]). Again, we

have to consider close packing of collagen as to get access to properties of

molecular collagen. It is known from neutron diffraction studies [Lees et al.,

1984a, Lees, 1987] that diffractional spacing (a measure for the lateral dis-

tance of collagen molecules) reduces from 1.5 nm (for wet collagen) to 1.1 nm

(for maximally packed (dry) collagen). Accordingly, the cross sectional area of

a tensile specimen would reduce by the ratio 1.5/1.1, so that the strength of

molecular collagen follows to be 1.5/1.1 times higher than that of wet collagen,

i.e. 144.7 MPa (see Table 2).

15



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

4.3 Homogenization over wet collagen

An RVE of wet collagen [see Figure 3(a)] hosts cylindrical intermolecular pores

(labeled by suffix ‘im’) being embedded into a matrix of crosslinked molec-

ular collagen (labeled by suffix ‘col’), which is suitably considered through

a Mori-Tanaka scheme. Unless collagen rupture criterion (24) is fulfilled, the

RVE behaves purely elastically (εpcol=ε
p
im=0), with a homogenized stiffness

�MT
wetcol following from specification of (6) for r=[col, im]. Thereby, the volume

fractions fulfill f̊im + f̊col = 1, and the concentration tensors �col and �im,

respectively, are given through specification of (18) for �0
im=�colcyl, �M=�col, as

well as for �r= �col and �r = �im = 3kH2O�, respectively. Jijkl = 1/3δijδkl is the

volumetric part of the fourth order unity tensor �; see Table 1 for kH2O. Ac-

cording to the aforementioned specifications, the concentration relation (17)

for the matrix of molecular collagen within an RVE of wet collagen reads as

εcol =
{
(1− f̊im)� + f̊im

[
� + �

col
cyl : (�im − �col)

]
−1

}
−1

: Ewetcol (25)

whereby the components of morphology tensor �colcyl are given in the Appendix.

4.4 Homogenization over mineralized collagen fibril

An RVE of mineralized collagen fibrils [see Figure 3(b)] hosts crystal clus-

ters (represented through spherical hydroxyapatite inclusions, labeled by suffix

‘HA’) and cylindrical microfibrils of wet collagen (labeled by suffix ‘wetcol’),

which are mutually intertwingled. In order to consider this morphology, a self-

consistent scheme is appropriate. Unless the wet collagen phase does not fail

[see Subsections 4.3 and 4.2, in particular Eq. (24)], the RVE behaves purely

elastically (εpHA=ε
p
wetcol=0), with a homogenized stiffness �SCSfib following from

specification of (6), for r=[HA, wetcol]. Thereby, the volume fractions fulfill

f̆wetcol + f̆HA = 1, and the concentration tensors �HA and �wetcol, respec-
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tively, are given through specification of (13) for �hom=�SCSfib , for �0
HA=�fibsph

and �
0
wetcol=�

fib
cyl , respectively, as well as for �r=�HA = 3kHA� + 2μHA�, and

�r=�
MT
wetcol, respectively. � = � − � is the deviatoric part of the fourth or-

der unity tensor �; see Table 1 for kHA and μHA. According to the afore-

mentioned specifications, the concentration relation (12) for the phase ‘wet

collagen’ within an RVE of mineralized collagen fibril reads as

εwetcol =
[
� + �

fib
cyl :

(
�
MT
wetcol − �

SCS
fib

)]
−1

:{
f̆wetcol

[
� + �

fib
cyl :

(
�
MT
wetcol − �

SCS
fib

)]
−1

+

f̆HA
[
� + �

fib
sph :

(
�HA − �

SCS
fib

)]
−1

}
−1

: Efib (26)

whereby the components of �fibsph and �
fib
cyl are given in the Appendix – and

εwetcol (here the ‘microscopic’ strain) is identical to Ewetcol of Eq. (25), there

being the ‘macroscopic’ strain.

4.5 Homogenization over extrafibrillar space (hydroxyapatite foam)

An RVE of extrafibrillar space [see Figure 3(c)] hosts crystal needles (repre-

sented through cylindrical hydroxyapatite inclusions, labeled by suffix ‘HA’)

being oriented in all space directions, and spherical, water-filled pores (inter-

crystalline space, labeled by suffix ‘ic’). The corresponding polycrystal-type

morphology is appropriately represented through a self-consistent scheme.

Sliding between crystals is modeled through criterion (23), leading to plas-

tic strains ε
p
HA, and no plasticity occurs in the intercrystalline space (εpic=0).

The homogenized stiffness of an RVE of extrafibrillar space, �SCSIIef , follows

from specification of (6) for r=[HA, ic]. Thereby, the volume fractions fulfill

f̌HA + f̌ic = 1, and the concentration tensors �HAϕϑ and �ic, respectively, are

given through specification of (13) for �hom=�SCSIIef , for �0
HA=�efcyl(ϑ, ϕ) and

�0
ic=�

ef
sph, respectively, as well as for �r=�HA and �r = �ic = 3kH2O� (see Ta-

ble 1), respectively. Thereby, summation over all crystal orientations is done
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by integration over angles ϑ = 0, . . . , π and ϕ = 0, . . . , 2π. Accordingly, the

concentration-influence relation (17) for the hydroxyapatite phase oriented in

a specific direction (ϑ, ϕ) within an RVE of extrafibrillar space reads as

εHAϕϑ = [� + �
ef
cyl(ϑ, ϕ) : (�HA − �

SCSII
ef )]−1 :⎧⎪⎨

⎪⎩
⎧⎪⎨
⎪⎩f̌HA

2π∫
φ=0

π∫
θ=0

[� + �
ef
cyl(θ, φ) : (�HA − �

SCSII
ef )]−1 sin θ dθ dφ

4π
+

+f̌ic[� + �
ef
sph : (�ic − �

SCSII
ef )]−1

}
−1

:⎧⎪⎨
⎪⎩Eef − f̌HA

2π∫
φ=0

π∫
θ=0

[� + �
ef
cyl(θ, φ) : (�HA − �

SCSII
ef )]−1 :

�
ef
cyl(θ, φ) : �HA : ε

p
HAϑϕ

sin θ dθ dφ

4π

}
+ �

ef
cyl(ϑ, ϕ) : �HA : ε

p
HAϑϕ

}
(27)

whereby the components of �efsph and �
ef
cyl are given in the Appendix. According

to (8) applied to the present homogenization step, plastic strains ε
p
HA in the

hydroxyapatite phases imply a plastic strain E
p
ef at the level of the RVE of

extrafibrillar space.

4.6 Homogenization over extracellular bone matrix

An RVE of extracellular bone matrix or ultrastructure [see Figure 3(d)] hosts

cylindrical mineralized fibrils (labeled by suffix ‘fib’) being embedded into

a matrix of extrafibrillar space (labeled by suffix ‘ef ’). This morphology is

suitably modeled by means of a Mori-Tanaka scheme. As discussed in the

previous Subsection 4.5, the extrafibrillar matrix may be subjected to plas-

tic strains, while we do not consider plastic strains in the mineralized fibrils

(εpfib = 0). The homogenized stiffness of an RVE of extracellular bone matrix,

�
MTII
excel , follows from specification of (6) for r=[fib, ef ]. Thereby, the volume

fractions fulfill f̄fib + f̄ef = 1, and the concentration tensors �fib and �ef ,

respectively, follow from specification of (18) for �M=�SCSIIef , for �0
fib=�

ef
cyl, as

well as for �r=�SCSfib and �r=�SCSIIef , respectively. Accordingly, the concentra-
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tion influence relation (17) for the phase extrafibrillar space within an RVE

of extracellular bone matrix reads as

εef =
{
f̄ef � + f̄fib[� + �

ef
cyl : (�SCSfib − �

SCSII
ef )]−1

}
−1

:{
Eexcel − f̄fib[� + �

ef
cyl : (�SCSfib − �

SCSII
ef )]−1 : �efcyl : (−�SCSIIef : ε

p
ef)

}
(28)

whereby the components of �efcyl are given in the Appendix. According to (8)

applied to the present homogenization step, plastic strains in the extrafibrillar

space (see Subsection 4.5, ε
p
ef=E

p
ef) imply a plastic strain E

p
excel at the level

of the RVE of the extracellular bone matrix.

4.7 Homogenization over extravascular bone material

An RVE of extravascular bone material [see Figure 3(e)] hosts spherical empty

pores called lacunae (labeled by suffix ‘lac’) being embedded into a matrix of

extracellular bone matrix (labeled by suffix ‘excel’). This morphology is suit-

ably modeled by means of a Mori-Tanaka scheme. As discussed in the previ-

ous Subsection 4.6, the extracellular bone matrix may be subjected to plastic

strains while we do not consider plastic strains in the lacunae (εplac = 0).

The homogenized stiffness of an RVE of extravascular bone material, �MTIII
exvas ,

follows from specification of (6) for r=[lac, excel]. Thereby, the volume frac-

tions fulfill f̃lac + f̃excel = 1, and the concentration tensors �lac and �excel,

respectively, follow from specification of (18) for �M=�MTII
excel , for �0

lac=�
excel
sph ,

as well as for �r=�lac=� and �r=�
MTII
excel , respectively. �lac = � relates to the fact

that the lacunar pores are empty (drained) in all experiments considered in

Section 6 – for undrained situations, �lac = 3kH2O� would be appropriate, see

[Fritsch and Hellmich, 2007] for details. According to the aforementioned spec-

ifications, the concentration-influence relation (17) for the phase ‘extrafibrillar

space’ within an RVE of extracellular bone matrix reads as
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εexcel =
{
f̃excel� + f̃lac[�− �

excel
sph : �MTII

excel ]−1
}
−1

:{
Eexvas − f̃lac[�− �

excel
sph : �MTII

excel ]−1 : �excelsph : (−�MTII
excel : ε

p
excel)

}
(29)

whereby the components of �excelsph are given in the Appendix. According to (8)

applied to the present homogenization step, plastic strains in the extracellular

bone matrix (see Subsection 4.6, ε
p
excel=E

p
excel) imply a plastic strain E

p
exvas

at the level of the RVE of the extravascular bone material.

4.8 Homogenization over cortical bone material

An RVE of cortical bone material [see Figure 3(f)] hosts cylindrical empty

pores called Haversian canals or vascular space (labeled by suffix ‘vas’) be-

ing embedded into a matrix of extravascular bone material (labeled by suffix

‘exvas’). This morphology is suitably modeled by means of a Mori-Tanaka

scheme. As discussed in the previous Subsection 4.7, the extravascular bone

material may be subjected to plastic strains, while we do not consider plastic

strains in the Haversian canals (εpvas = 0). The homogenized stiffness of an

RVE of cortical bone material, �MTIV
cort , follows from specification of (6) for

r=[vas, exvas]. Thereby, the volume fractions fulfill fvas + fexvas = 1, and

the concentration tensors �vas and �exvas, respectively, follow from specifica-

tion of (18) for �M=�
MTIII
exvas , for �

0
vas=�

exvas
cyl , as well as for �r=�vas=� and

�r=�MTIII
exvas , respectively. �vas = � relates to the fact that the Haversian canals

are empty (drained) in all experiments considered in Section 6. According

to the aforementioned specifications, the concentration-influence relation (17)

for the phase ‘extravascular bone material’ within an RVE of cortical bone

material reads as

εexvas =
{
fexvas� + fvas[�− �

exvas
cyl : �MTIII

exvas ]−1
}
−1

:{
Ecort − fvas[�− �

exvas
cyl : �MTIII

exvas ]−1 : �exvascyl : (−�MTIII
exvas : ε

p
exvas)

}
(30)
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whereby the components of �exvascyl are given in the Appendix. According to (8)

applied to the present homogenization step, plastic strains in the extravascular

bone material (see Subsection 4.7, ε
p
exvas=E

p
exvas) imply a plastic strain E

p
cort

at the level of the RVE of the cortical bone material.

5 Algorithmic aspects

We are left with using the partially incremental constitutive relations de-

veloped in Sections 3 and 4 for computation of stress-strain relations. This

requires some algorithmic deliberations which we will describe in view of a

stress-strain curve for uniaxial stress applied to an RVE of cortical bone,

Σcort = Σ33e3 ⊗ e3, the loading direction e3 coinciding with the longitudinal

(axial) direction of the bone material (see Figure 3). This stress is applied in

load increments labeled by n, starting at Σ33 = 0, and being accumulated up

to failure of the material. Accordingly, flow rule (2) and (23) is considered in

a discretized fashion: It is evaluated for a finite number of needle orientation

directions (‘families’), and it is integrated over the n-th load step,

Δε
p
HAϕϑ,n+1 = ΔλHA,n+1[N ⊗N + β sgn(σNnHA)(N ⊗ n+ n⊗N)] (31)

with

ε
p
HAϕϑ,n+1 = ε

p
HAϕϑ,n + Δε

p
HAϕϑ,n+1 (32)

At the beginning of the very first load step, there are neither plastic strains

(Ep
cort,0 = 0) nor total strains (Ecort,0 = 0); at the end of an arbitrary later

load step with label n, there may be plastic strains E
p
cort,n and total strains

Ecort,n, both related to stresses Σcort,n = Σ33,ne3⊗e3. Then, the general task is

to compute the strain increments ΔE
p
cort,n+1 and ΔEcort,n+1, leading to total

strains E
p
cort,n+1 = E

p
cort,n + ΔE

p
cort,n+1 and Ecort,n+1 = Ecort,n + ΔEcort,n+1,

following from the stress increment ΔΣcort,n+1 = ΔΣ33,n+1e3 ⊗ e3.
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To fulfill this task, an iterative procedure is applied: First, the macroscopic

strains are estimated from specification of (7) for an RVE of cortical bone,

on the assumption that no plastic strains would occur during the (n + 1)-st

load step, which may be referred to as a ‘trial step’ in the line of classical

computational elastoplasticity [Simo and Taylor, 1985],

E
trial
cort,n+1 = �

MTIV
cort : Σcort,n+1 + E

p
cort,n (33)

Then, these trial strains are concentrated into the lower-scale RVEs, by means

of Eqs. (25)-(30), all specified for Ecort = E
trial
cort,n+1; ε

p
exvas = ε

p
exvas,n, εexvas =

Eexvas = ε
trial
exvas,n+1 = E

trial
exvas,n+1; ε

p
excel = ε

p
excel,n, εexcel = Eexcel = ε

trial
excel,n+1 =

E
trial
excel,n+1; ε

p
ef = ε

p
ef,n, εef = Eef = ε

trial
ef,n+1 = E

trial
ef,n+1; ε

p
HAϕϑ = ε

p
HAϕϑ,n,

εHAϕϑ = ε
trial
HAϕϑ,n+1. Within the RVE of extrafibrillar material, the trial stress

states in hydroxyapatite phases follow to be

σ
trial
HAϕϑ,n+1 = �HA : [εtrialHAϕϑ,n+1 − ε

p
HAϕϑ,n] (34)

and this trial stress allows one to identify the plasticizing mineral phases in

load step n+ 1:

fHAϕϑ(σ
trial
HAϕϑ,n+1) ≤ 0 ↔ ΔλHAϕϑ,n+1 = 0

fHAϕϑ(σ
trial
HAϕϑ,n+1) > 0 ↔ ΔλHAϕϑ,n+1 > 0 (35)

In the first case, the load step is elastic, ΔE
p
cort,n+1 = 0 and E

trial
cort,n+1 =

Ecort,n+1, and the computation can proceed to the next load step, n+2. In the

second case, the load step is elastoplastic, the plastic multiplier ΔλHAϕϑ,n+1

and the plastic strain increment Δε
p
HAϕϑ,n+1 need to be determined. In the

line of classical computational elastoplasticity, this is done by means of the

so-called return map algorithm, also called projection algorithm [Simo and

Taylor, 1985]: A trial stress state σ
trial
HAϕϑ,n+1 which lies outside the elastic

domain has to be projected back onto the failure surface fHAϕϑ = f1 in Figure 5,

which gives a first approximation of the stresses in the HA phase,
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σ
(1)
HAϕϑ,n+1 = σ

trial
HAϕϑ,n+1 − �HA : ΔλHAϕϑ,n+1[N ⊗N +

+β sgn(σNnHA)(N ⊗ n+ n⊗N)],

f(σ
(1)
HA,n+1) = 0

→ ΔλHAϕϑ,n+1 =

=
(3kHA − 2μHA)ε̄11 + (3kHA − 2μHA)ε̄22 + (3kHA + 4μHA)ε̄33

3kHA + 4μHA + 6β2μ
+

+
sgn(σNnHA)6β μ ε̄13 − 3σult,tHA

3kHA + 4μHA + 6β2μ
(36)

whereby the components of the difference (εHAϕϑ,n+1−ε
p
HAϕϑ,n), ε̄ij, are given

in a local base frame (er, eϑ, eϕ), see Figure 4.

Use of ΔλHAϕϑ,n+1 in (31), and insertion of the result into (8) specified for the

extrafibrillar RVE, for the extracellular RVE, for the extravascular RVE, and

for the cortical RVE, yields a first approximation of E
p(1)
cort,n+1 and ΔE

p(1)
cort,n+1.

These plastic strains are inserted into (33) where E
p
cort,n is replaced by E

p(1)
cort,n+1,

and the aforementioned procedure is repeated, leading to strains ΔE
p(2)
cort,n+1

and E
p(2)
cort,n+1. Further repetitions of the aforementioned procedure are per-

formed, the k-th performance yielding strains E
p(k)
cort,n+1; and this is done until

ΔE
p(k)
cort,n+1 approaches zero up to a prescribed tolerance so that satisfactorily

precise values for E
p
cort,n+1 and Ecort,n+1 have been attained. Then, the next

load step, (n+ 2), is tackled.

A particular case deserves further discussion: If the trial stress state σ
trial
HAϕϑ,n+1

lies within the gray shaded area of Figure 5, projection step (36) may deliver

negative values for |σNn|, which is not admissible. In this case, a two-surface

failure criterion is employed, the second surface being defined through

f2,HAϕϑ(σHAϕϑ,n+1) = σNNHA − σult,tNN,HA = 0, (37)

and Eq. (31) is extended according to Koiter’s flow rule [Koiter, 1960]

Δε
p
HAϕϑ,n+1 = Δλ1,HAϕϑ,n+1

∂f1,HAϕϑ
∂σHAϕϑ,n+1

+ Δλ2,HAϕϑ,n+1
∂f2,HAϕϑ

∂σHAϕϑ,n+1
(38)
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with f1,HAϕϑ = fHAϕϑ = 0 from Eq. (22). This leads to plastic multipliers

reading as

Δλ1,HAϕϑ,n+1 = sgn(σNnHA)
ε̄13

β
Δλ2,HAϕϑ,n+1 =

(3kHA − 2μHA)βε̄11 + (3kHA − 2μHA)βε̄22 + (3kHA + 4μHA)βε̄33+

(3kHA + 4μHA)β
+

+
sgn(σNnHA)(3kHA + 4μHA)ε̄13 − 3βσult,tHA

(3kHA + 4μHA)β

(39)

6 Experimental validation of multiscale model for bone strength

The mathematical model developed in Sections 4 and 5 is based on experimen-

tally determined elasticity and strength properties of the elementary compo-

nents hydroxyapatite, (molecular) collagen, and water. This model predicts,

for each set of tissue-specific volume fractions f̊col, f̆wetcol, f̌HA, f̄fib, f̃excel, and

fexvas (see Figure 3), the corresponding tissue-specific elasticity and strength

properties at all observation scales of Figure 3. Thus, a strict experimental

validation of the mathematical model is realized as follows: (i) different sets

of volume fractions are determined from composition experiments on different

bone samples with different ages, from different species and different anatom-

ical locations (micrographs, weighing tests on demineralized/dehydrated tis-

sues, neutron diffraction tests; see Subsection 6.1); (ii) these volume fractions

are used as model input, and (iii) corresponding model-predicted strength val-

ues (model output) are compared to results from strength experiments on the

same or very similar bone samples. We here refrain from validation of model-

predicted elastic values, since these are reported, in great detail, in [Fritsch

and Hellmich, 2007].
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6.1 Experimental set providing tissue-specific volume fractions as model input

Experimental validation of the six-step upscaling procedure [Eqs. (22) to (39)]

requires determination of the phase volume fractions within the six considered

RVEs (Figure 3).

Within an RVE of cortical bone [Figure 3(f)], the extravascular volume frac-

tion fexvas is primarily driven by the interplay of osteoblastic and osteoclastic

action in the vascular pore space. We here have access to typical mammalian

cortical bone under physiological conditions, for which fexvas does not exceed

5% [Sietsema, 1995], and the microradiographs of bovine tibia provided by

Lees et al. [1979a] yield fexvas=3% (see [Fritsch and Hellmich, 2007] for de-

tails); we will adopt this value throughout this validation section.

Within an RVE of extravascular bone material [Figure 3(e)], the lacunar vol-

ume fraction f̃lac relates to the way osteoblasts work: when laying down os-

teoid, a typical fraction of osteoblasts become buried in this newly formed

ultrastructure, leading to the formation of lacunae. Hence, f̃lac always lies in a

narrow range of values, around f̃lac=2% (see [Fritsch and Hellmich, 2007] for

details); we will adopt this value for the remainder of this validation section.

As regards hydroxyapatite and collagen contents, Lees [1987] has provided the

weight fractions of mineral and organic components within cortical bone sam-

ples, WF cort
HA and WF cort

org , for several mammalian species and organs, including

human and bovine bone samples, together with their mass densities ρcort (see

Table 3). These values give access to the weight fractions at the extracellular

(ultrastructural) scale [Figure 3(d)], through
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WF excel
HA =

WF cort
HA

1−
ρH2O×[fvas+(1−fvas)f̃lac]

ρcort

(40)

WF excel
org =

WF cort
org

1−
ρH2O×[fvas+(1−fvas)f̃lac]

ρcort

(41)

with ρH2O = 1 kg/dm3 as the mass density of water filling the vascular and

lacunar pores spaces. Since 90% of mass of organic matter in bone is collagen

[Urist et al., 1983, Lees, 1987, Weiner and Wagner, 1998], the weight fraction

of collagen within the extracellular matrix follows to be

WF excel
col = 0.9×WF excel

org , (42)

These weight fractions, together with the tissue mass density at the extracel-

lular scale (the pores of specimens discussed in Table 3 are filled with water,

see [Fritsch and Hellmich, 2007] for details),

ρexcel =
ρcort − ρH2O[fvas + (1− fvas)f̃lac]

1− fvas − (1− fvas)f̃lac
(43)

give access to the mineral and collagen volume fractions at the extracellular

observation scale,

f̄HA =
ρexcel
ρHA

×WF excel
HA (44)

f̄col =
ρexcel
ρcol

×WF excel
col (45)

where ρHA=3.00 kg/dm3 [Lees, 1987, Hellmich, 2004] and ρcol = 1.41 kg/dm3

[Katz and Li, 1973, Lees, 1987] (see Table 3 for values of f̄HA and f̄col used

for the validation of the herein proposed strength model).

The dehydration–demineralization tests of Lees et al. [1979b], Lees [1987],

Lees et al. [1995] show that, throughout samples from the entire vertebrate

animal kingdom, the extracellular volume fraction f̄HA depends linearly on

the extracellular mass density ρexcel,

Ff̄HA
= A× ρexcel + B (46)
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with A = 0.59 ml/g and B = −0.75, see [Fritsch and Hellmich, 2007] for

details. Combination of (46) with

ρexcel = f̄H2O ρH2O + f̄org ρorg + f̄HA ρHA (47)

with ρorg ≈ ρcol, with 1 = f̄org + f̄H2O + f̄HA, and with f̄col = 0.9× f̄org, yields

the collagen content as a function of the extracellular mass density,

Ff̄col
(ρexcel) =

0.9

ρH2O − ρorg
×

{
Ff̄HA

(ρexcel)× [ρHA − ρH2O]− ρexcel + ρH2O

}
(48)

see Table 3 for values based on these functions, used for the validation of the

herein proposed strength model.

The extracellular volume fractions of the fibrils and the extracellular space,

f̄fib and f̄ef [Figure 3(d)], can be quantified on the basis of the generalized

packing model of Lees et al. [1984b], Lees [1987], through

f̄fib = f̄col ×
vfib
vcol

, vfib = b ds 5D (49)

where f̄col is determined according to (45) and (42), or according to (48) and

(46), respectively. vcol = 335.6 nm3 is the volume of a single collagen molecule

[Lees, 1987]. vfib is the volume of one rhomboidal fibrillar unit with length

5D, width b, and height ds. b=1.47 nm is an average (rigid) collagen crosslink

length valid for all mineralized tissues [Lees et al., 1984b], D ≈ 64 nm is the

axial macroperiod of staggered assemblies of type I collagen, and ds is the

tissue-specific neutron diffraction spacing between collagen molecules, which

depends on the mineralization and the hydration state of the tissue [Lees et al.,

1984a, Bonar et al., 1985, Lees et al., 1994]. For wet tissues, ds can be given in

a dimensionless form [Hellmich and Ulm, 2003], as a function of ρexcel only. For

the rather narrow range of tissue mass densities considered here, this function
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can be linearly approximated through

ds = C × ρexcel +D (50)

where C = −0.2000 nm/(g cm−3) and D = 1.6580 nm.

The volume fractions for scales below the extracellular bone matrix can be

derived directly from f̄fib and f̄col, on the basis of the finding of Hellmich and

Ulm [2001, 2003] that the average hydroxyapatite concentration in the extra-

collagenous space of the extracellular bone matrix of wet mineralized tissues

is the same inside and outside the fibrils. Accordingly, the relative amount of

hydroxyapatite in the extrafibrillar space reads as [Hellmich and Ulm, 2001,

2003]

φHA,ef =
1− f̄fib
1− f̄col

(51)

With this value at hand, the mineral volume fractions in the fibrillar [Fig-

ure 3(b)] and the extrafibrillar space [Figure 3(c)] are,

f̆HA =
f̄HA(1− φHA,ef)

f̄fib
(52)

f̌HA =
φHA,ef f̄HA

f̄ef
(53)

see Table 3 for values used to validate the herein proposed strength model.

Within the fibril, comprising the phases hydroxyapatite and wet collagen, the

volume fraction of the latter reads as

f̆wetcol = 1− f̆HA (54)

Finally, the volume fraction of (molecular) collagen at the wet collagen level

[Figure 3(a)] can be calculated from f̄col, through

f̊col =
f̄col

f̆wetcol
(55)

see Table 3 for values used for validating the proposed strength model.
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6.2 Experimental set providing tissue-specific strength values for model test-
ing

In most cases, strength of bone is quantified in terms of uniaxial, compressive

or tensile mechanical tests, under quasi-static conditions (i.e. with a strain rate

well below one). To show the relevance of our model approach, we consider

various experimental results from various laboratories and various test setups,

on various different bone samples (see Table 4 for specimen geometries, em-

ployed machines, and strain rates, and Table 5 for tissue-specific experimental

results).

6.3 Comparison between tissue-specific strength predictions and correspond-
ing experiments

The strength values predicted by the six-step homogenization scheme (Fig-

ure 3) for tissue-specific volume fractions (experimental set of Subsection 6.1)

on the basis of tissue-independent ‘universal’ phase stiffness and strength

properties (experimental set of Tables 1 and 2) are compared to correspond-

ing experimentally determined tissue-specific uniaxial tensile and compressive

strength values from the experimental set of Subsection 6.2. The experimental

strength values of Subsection 6.2 are grouped into types of tissues (e.g. hu-

man tibia), and their corresponding weighted mean and standard deviation is

considered (see Tables 6 and 7 as well as Figure 6).

To quantify the model’s predictive capabilities, we consider the mean and

the standard deviation of the relative error between strength predictions and

experiments,

ē=
1

n

∑
ei =

1

n

∑ Σult
cort − Σult

exp

Σult
cort

(56)

eS =
[

1

n− 1

∑
(ei − ē)2

] 1

2

(57)
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The satisfactory agreement between model predictions and experiments is

quantified by prediction errors of +2.61± 24.7% for uniaxial tensile strength,

and of −4.00 ± 8.42% for uniaxial compressive strength [ē ± eS according to

Eqs. (56) and (57)].

7 Discussion of model characteristics

7.1 Sliding events in the extrafibrillar space

Having successfully shown the predictive capabilities of the proposed model

for various cortical bone tissues tested in uniaxial tension and compression,

it is interesting to study the sequence of plastic (interfacial) events in the

extrafibrillar space, in terms of the orientations of involved hydroxyapatite

crystals.

Under uniaxial tensile loading of cortical bone in axial (longitudinal) direc-

tion (ϑ = 0◦), longitudinally oriented crystals are the first to undergo inelastic

deformation. In the course of further loading, inelastic deformations spread

relatively quickly over the range defined by orientation angles ϑ between zero

and 30 degrees [see Figure 7(c)-(e) for Ecort,33 below 0.1%]. Afterwards, the

spreading of plasticity slows off, and stops at an orientation angle of about 65

degrees, see Figure 7(d)-(e) for plastic strains, and Figure 7(c) for orientation

ϑ = 74.25◦ remaining in the elastic regime. Thereby, crystals with longitu-

dinal orientation carry tensile normal stresses at a constant level throughout

the plastic loading stage, whereas the normal stresses in inclined crystals are

declining, while increasing shear stresses build up [see Figure 7(a)-(b)].

Under uniaxial compressive loading of cortical bone material in axial (longi-

tudinal) direction (ϑ = 0◦), transversely oriented crystals (i.e. such oriented

perpendicular to the longitudinal direction) are the first to undergo inelastic
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deformation. In the course of further loading, inelastic deformations spread

relatively quickly over the range defined by orientation angles between 90

and 70 degrees [see Figure 8(c)-(e) for Ecort,33 below 0.1%]. Afterwards, the

spreading of plasticity slows off, and stops at an orientation angle of about 60

degrees, see Figure 8(d)-(e) for plastic strains, and Figure 8(c) for orientation

ϑ < 60◦ remaining in the elastic regime. Thereby, transversely oriented crys-

tals and crystals with slight inclination from the transverse directions (which

are first associated with plasticity) carry normal tensile stresses, while more

inclined crystals are loaded in normal compression. Throughout the plastic

loading stage, all these crystals, whether loaded normally in tension or in

compression, carry increasing shear stresses [see Figure 8(a)-(b)].

This sequence of plastic events leads to distinctive stress-strain relationships at

the level of cortical bone (see Figure 9): Elastoplastic behavior associated to

longitudinal extrafibrillar crystals under tensile loading provokes a decrease

of slope in the stress-strain curve, which is more pronounced than that re-

lated to elastoplastic behavior in transverse crystal clusters under compres-

sion. Thereby, Figure 9 illustrates the stress-strain curves until the failure

stress in the collagen according to (24) is reached - this agrees well with the

investigations of Pidaparti et al. [1997], Morgan et al. [2005], showing a rather

(quasi-)brittle behavior of cortical bone under uniaxial loading. On the other

hand, several investigators [Currey, 1959, Reilly and Burstein, 1974b, Kotha

and Guzelsu, 2002] report increasing cortical strains at a constant cortical

stress level close to the ultimate strength level, i.e. the occurrence of (macro-

scopically apparent) ‘plastic’ events also beyond the point when the collagen

failure criterion (24) is reached in the framework of our model. The microme-

chanical consideration of respective plastic or microcracking/crack bridging

events (as dealt with by various researchers [Burr et al., 1998, Reilly and Cur-

rey, 2000, Akkus and Rimnac, 2001, Okumura and Gennes, 2001, Taylor, 2003,

Ballarini et al., 2005, O’Brien et al., 2007, Koester et al., 2008]) is beyond the
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scope of this manuscript, where we focus on a model which can predict, as

function of the bone sample’s composition, the ultimate stress which is bear-

able by that sample.

Finally, there could seem to be a contradiction between the ductile behavior of

interfaces between the hydroxyapatite crystals as part of natural collagenous

bone tissue considered in this paper, and the brittle behavior of the interfaces

between crystals of man-made hydroxyapatite biomaterials [Akao et al., 1981,

Fritsch et al., 2009]. The reason for the different behaviors may well lie in

the characteristic size of the crystals, and hence of the nature of their contact

surfaces, the crystals in collagenous bone tissue being much smaller than the

biomaterial crystals. In the same sense, in low or non-collagenous tissues,

such as specific whale bones [Zioupos et al., 1997], the minerals grow larger,

and also these tissues exhibit a brittle failure behavior. The idea of increased

ductility due to increased activity of layered water films is also supported by

the fact [Nyman et al., 2008] that bound water content is correlated to bone

toughness; and this idea fits well with the suggestions of Boskey [2003], that

larger crystals (implying less layered water films per crystal content) would

lead to a more brittle behavior of bone materials.

7.2 Effects of porosity and mineralization

It is also interesting to study the effect of species, individual, and organ-

specific bone microstructures, on the cortical strength of corresponding bone

materials: In healthy mammalian cortical bone, the vascular porosity varies

typically between 2 and 8%, while osteoporosis may lead to porosities up to

27% [Bousson et al., 2000]. Influence of vascular porosity increase on cortical

strength is illustrated in Figures 10 and 11, it is of linear nature.

Within the extravascular matrix of a specific organ of an adult mammal, the

average chemical composition is constant in space and time [Hellmich et al.,
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2008], as can be seen from experimental results from computerized contact mi-

croradiography [Boivin and Meunier, 2002], quantitative backscattered elec-

tron imaging [Roschger et al., 2003], Raman microscopy [Akkus et al., 2003],

and Synchrotron Micro Computer Tomography [Bossy et al., 2004]. Therefore,

effects of (varying) extravascular mineral content [while the collagen content

follows (48)] on different resulting cortical strength values (see Figure 11), re-

flect inter-organ and inter-species variations from one bone sample to another,

with mineral contents between 30% (typical for deer antler) and 70% (typical

for equine metacarpus): the mineralization varying by a factor of two, implies

a strength variation by a factor of two in tension, and by a factor of three in

compression (Figure 11). In contrast to the extravascular porosity, the mineral

content has a nonlinear influence on cortical strength - this qualitative model

feature is in perfect agreement with a wealth of experimental data [Currey,

1984, 1988, Hernandez et al., 2001].

7.3 Concentration relation and X-ray measurements

A key feature of our model are the concentration tensors in-

troduced in Section 3.2 and given in detail in Section 3.3, which

assign macroscopic strains to strains and stresses at the scale

of individual mineral crystals, which are relevant for material

failure through ductile sliding processes. While a direct exper-

imental determination of all components of the fourth-order

strain concentration tensor seems to be out of sight for the

moment, we may remember that experimental determination of

concentration relations in bone has been discussed in the bone

biomechanical and structural biology communities for a while:

Thereby, experimentalists focussed on relating one macroscopic

stress or strain component (typically at the tissue scale and de-

rived from a classical mechanical test) to one stress or strain
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component in the mineral or collagen phases (estimated from

X-ray diffraction pattern changes due to external forces act-

ing on the piece of bone). While Eq. (5) directly shows that,

rigorously speaking, such a ratio relates to none of the com-

ponents of the concentration tensor, it seems interesting to

compare the X-ray-estimated strains to predictions from our

micromechanical model. More specifically, we will consider the

tissue-to-(intrafibrillar) mineral strain ratio of 0.16 (reported

by Gupta et al. [2006]) to the ratio predicted by our model for

a uniaxial stress experiment Σexp = Σ33 e3⊗e3, namely ε̆HA,33/Ecort,33,

with Ecort = �MTIV
cort : Σcort = Ecort,11e1⊗ e1 +Ecort,22e2⊗ e2 +Ecort,33e3⊗ e3

and ε̆HA = �HA,fib : �fib : �excel : �exvas : Ecort = ε̆HA,11e1 ⊗ e1 + ε̆HA,22e2 ⊗

e2 + ε̆HA,33e3 ⊗ e3; the predicted ratio amounts to 0.20. The high

scatter of such X-ray experiments (strain concentration fac-

tors vary between 0.16 and 0.7 [Gupta et al., 2006, Fujisaki and

Tadano, 2006]; and stress concentration factors vary between

1.5 and 2.8 [Borsato and Sasaki, 1997, Almer and Stock, 2005,

Gupta et al., 2006]) and the fact that the values of Gupta et

al. lie at the lower end of the range of experimentally esti-

mated concentration values, support the statement that our

model is in very good agreement with X-ray diffraction-based

concentration estimates.

7.4 Experimental sources for ‘universal’ mechanical properties of bone’s ele-
mentary components: hydroxyapatite and molecular collagen

The question might arise why we prefer to take Katz and Ukrain-

cik’s directly measured isotropic elasticity values for hydroxyap-

atite rather than the anisotropic values given in that paper,

which were recently retrieved through molecular dynamics sim-
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ulations of Mostafa and Brown [2007]. The reason for that

is threefold: (i) the anisotropic properties of stoichiometric

hydroxyapatite have not been directly measured, but inferred

from those measured on fluorapatite and from the similarities

in the crystal structures of fluorapatite and stoichiometric

hydroxayapatite (see [Katz and Ukraincik, 1971] for details); (ii)

bone mineral is not stoichiometric hydroxyapatite, but char-

acterized by impurities and lower crystallinity [Epple, 2001]

– hence, by a more isotropic material behavior than that of

stoichiometric hydroxyapatite; (iii) the extent of anisotropy

of hydroxyapatite (somewhere between the isotropic and the

fluorapatite-derived anisotropic limit cases) does virtually not

affect the overall homogenized elastic behavior of the extrafib-

rillar porous polycrystal (with largely disordered mineral ori-

entations) of Figure 3(c), as we have shown in [Fritsch et al.,

2006].

While numerous steered molecular dynamics simulations aimed

at estimation of the stiffness of one single collagen molecule – or more

precisely, of a somehow characteristic portion of such a very long molecule

with an aspect ratio of 1:300 [Lorenzo and Caffarena, 2005, Vesen-

tini et al., 2005a, Buehler, 2006b, 2007, Gautieri et al., 2008,

Buehler, 2008, Gautieri et al., 2009], the ’molecular collagen’

phase introduced in the RVE of wet collagen [Figure 3(a)] does

neither relate to a single collagen molecule (nor to portions

of such a molecule), but to the material building up the col-

lagen networks in the microfibril [which are beautifully de-

picted in the electron density maps of Orgel et al. [2006], see

Figure 1(a)]. Accordingly, we need experimental access to the

stiffness of the entity of collagen molecules inclusive of the
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crosslinks binding them together, but exclusive of the inter-

molecular space (which is modelled as separate material phase).

Therefore, we remember Lees’s result [Lees et al., 1984a, Bonar

et al., 1985, Lees, 1987], that dried collagen is very densely

packed, reducing the intermolecular space to a negligible size.

Accordingly, dried collageneous tissues are the prime candi-

dates for delivering the elasticity of the material phase ’molec-

ular collagen’. Such tissues (namely dried rat tail tendon) were

tested in 3D by Cusack and Miller [1979]: They sent waves with

wave lengths of several hundred nanometers through the tis-

sues, and therefore measured continuum properties at a scale of

several tens of nanometers (rather than properties of one sin-

gle collagen molecule). These experiments come the closest to

our modeling approach, so that their results (given in Table 1)

are the basis for our micromechanical model, as they were for

its purely (poro-)elastic predecessors [Hellmich et al., 2004b,a,

Hellmich and Ulm, 2005, Fritsch and Hellmich, 2007, Hellmich

et al., 2009].

7.5 Model limitations and potential model extensions

It is also appropriate to state the limitations of the proposed

model: while it satisfactory predicts bone strength values from

tissue-specific composition, it makes no predictions for tough-

ness. Consequently, it may become a well-suited tool for safety

assessment of skeletal structures in health and disease (con-

tributing to answer questions such as ‘How far is the bone ma-

terial from failure?’ or ‘Do the applied loads induce danger-

ous failure risk?’), whereas, in its present form, it does not

contribute to answer questions like ‘How long does the mate-
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rial sustain loads in the post peak regime?’. Possible extensions

of the model in this direction would probably need to explic-

itly consider ‘sliding-type’ mechanisms relative to the molecu-

lar collagen phase. In a rather qualitative than strictly quan-

titative way, a similar ‘slipping at the interface between hy-

droxyapatite and tropocollagen’ has recently been suggested

as toughness-governing feature in mineralized collagen fibrils

[Buehler, 2007]. Corresponding simulations were performed for

solvated collagen molecules, which seems to underline the role

of water in such slipping/gliding mechanisms, which was key to

the performance of the micromechanics model presented herein.

Toughness-increasing gliding mechanisms have been also suggested

in the form of ‘sacrificial bonds’ between or within collagen

molecules [Thompson et al., 2001, Fantner et al., 2006, Hansma

et al., 2007].

Potential future modeling of inelastic behavior of the molec-

ular collagen phase also evokes the question on the brittle-

ness of this phase (quasi-brittle experimental results were re-

ferred to in Section 4.2): It was shown experimentally [Torp

et al., 1975, Bailey et al., 1998] and computationally [Buehler,

2008] that collagen brittleness increases with crosslink den-

sity, with a soft and ductile gel at the lower crosslink density

limit. An even more detailled model for bone’s post-peak behav-

ior could also distinguish between intermolecular crosslinks

(between different collagen molecules) and crosslinks between

different fibrils.
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8 Conclusion and Perspectives

We have proposed a first multiscale micromechanics model for bone strength,

extending earlier developments in the realm of elasticity [Hellmich et al.,

2004a, Fritsch and Hellmich, 2007]. Thereby, the explanation of bone strength

across different species and ages required resolution of the mineral phase into

an infinite amount of non-spherical phases, and definition of an elastoplastic

failure criterion for the mineral crystals, reflecting layered water-induced duc-

tile sliding between these mineral crystals. The multiscale material model was

validated through independent experimental results: Tissue-specific strength

values predicted by the micromechanical model on the basis of tissue-independent

(‘universal’) stiffnesses and strengths of the elementary components (mineral,

collagen, water), for tissue-specific composition data (volume fractions) were

compared to corresponding experimentally determined tissue-specific strength

values. Mean relative errors between stiffness experiments and model estimates

were well below 10%, which, given remarkable experimental scattering, is con-

sidered satisfactory.

This renders the model ready for supporting various future scientific as well

as application-oriented activities:

(1) As was already shown for elasticity [Hellmich et al., 2008], the model is

expected to be combined with computer tomographic images: Based on

average relations from X-ray physics, the voxel-specific X-ray attenuation

information would be translated to voxel-specific material composition;

and the latter would serve as input for the micromechanical model, which

would then deliver voxel-specific (anisotropic and inhomogeneous) stiff-

ness and strength values. In this way, the current activities concerning

the virtual physiological human [Taylor et al., 2002, Yosibash et al., 2007,

Viceconti et al., 2008], could be extended from the realm of elasticity to

that of full elastoplasticity, resulting in patient-specific fracture risk as-
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sessment of whole organs in both healthy and pathological conditions.

(2) The proposed model could also support the design of tissue engineering

scaffolds, through predictions of the failure properties of bone tissue-

engineering scaffolds with tissue-engineered bone, by feeding recently de-

veloped multiscale representations [Bertrand and Hellmich, 2009] not only

with an elastic, but with the present elastoplastic micromechanical rep-

resentation of the extracellular bone material.

(3) Since the proposed model is linked to the hierarchical organization of

bone and to its elementary components, it is ready to be combined with

most recent developments in theoretical and computational biochemistry

and biology, which quantify the well-tuned interplay of biological cells

via biochemical signaling pathways [Lemaire et al., 2004, Pivonka et al.,

2008] – giving as output the volume fraction of newly deposited or re-

sorbed extravascular bone, which may serve as input for the proposed

multiscale strength model. That is expected to open the way to transla-

tion of biochemical remodeling events to associated changes in mechanical

competence.
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Appendices

A Hill tensors �

A.1 Hill tensor for homogenization over wet collagen

�
col
cyl refers to a cylindrical inclusion in a transversely isotropic matrix with

stiffness �col, where the plane of isotropy is oriented perpendicular to the long

axis of the cylinder. The non-zero components of the symmetric tensor �
col
cyl

read as follows [Hellmich et al., 2004a, Levin et al., 2000]:

P col
cyl,1111 = P col

cyl,2222 = 1/8 (5 ccol,1111 − 3 ccol,1122)/ccol,1111/D2 , (A.1)

P col
cyl,1122 = P col

cyl,2211 = −1/8 (ccol,1111 + ccol,1122)/ccol,1111/D2 , (A.2)

P col
cyl,2323 = P col

cyl,1313 = 1/(8 ccol,2323) , (A.3)

P col
cyl,1212 = 1/8 (3 ccol,1111 − ccol,1122)/ccol,1111/D2 , (A.4)

whereby

D2 = ccol,1111 − ccol,1122 (A.5)

A.2 Hill tensors for homogenization over mineralized collagen fibril

The non-zero components of �fibcyl follow from substitution of ‘ccol,ijkl’ by ‘CSCS
fib,ijkl’

in (A.1)-(A.5). The non-zero components of �fibsph for spherical inclusions in a

transversely isotropic matrix follow from substitution of ‘C0
ijkl’ by ‘CSCS

fib,ijkl’ in
the following equations:

P 0
sph,1111 =

1

16

∫ 1

−1
−(−5C0

1111x
4C0

3333 − 3C0
1122x

2C0
3333 − 3C0

1122x
4C0

2323

+3C0
1122x

4C0
3333 + 5C0

1111x
4C0

2323 − 10C0
1111C

0
2323x

2 + 2x4C0,2
1133

+8C0
2323x

4C0
3333 − 6C0,2

2323x
4 + 4C0

2323x
4C0

1133 + 6C0
1122C

0
2323x

2

+5C0
1111C

0
2323 + 5C0

1111x
2C0

3333 − 4C0
2323x

2C0
1133 + 6C0,2

2323x
2

−2x2C0,2
1133 − 3C0

1122C
0
2323)(−1 + x2)/D1dx (A.6)
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P 0
sph,1122 = P 0

sph,2211 =
1

16

∫ 1

−1
(C0

1111C
0
2323 − 2C0

1111C
0
2323x

2 + C0
1111x

2C0
3333

+C0
1122C

0
2323 − 2C0

1122C
0
2323x

2 + C0
1122x

2C0
3333 + C0

1111x
4C0

2323 − C0
1111x

4C0
3333

+C0
1122x

4C0
2323 − C0

1122x
4C0

3333 − 2C0,2
2323x

2 + 2C0,2
2323x

4 − 4C0
2323x

2C0
1133

+4C0
2323x

4C0
1133 − 2x2C0,2

1133 + 2x4C0,2
1133)(−1 + x2)/D1dx (A.7)

P 0
sph,1133 = P 0

sph,3311 =
1

4

∫ 1

−1
(−1 + x2)x2(C0

2323 + C0
1133)/D2dx (A.8)

P 0
sph,2323 =

1

16

∫ 1

−1
(4C0

1111C
0
2323x

2 − 8C0
2323x

4C0
1133 − 2x4C0,2

1133 − C0
1122x

4C0
3333

−8C0
1111x

4C0
2323 + 3C0

1111x
4C0

3333 + 4C0
1111x

4C0
1133 − 4C0

1122x
4C0

1133

+2C0
1122x

6C0
1133 − 2C0

1111x
6C0

1133 + C0
1122x

6C0
1111 − 3C0

1122x
4C0

1111

+3C0
1122C

0
1111x

2 − 2C0
1111x

2C0
1133 + 2C0

1122x
2C0

1133 + 8x6C0
2323C

0
1133

−3x6C0
1111C

0
3333 + 4x6C0

2323C
0
3333 + 4C0

1111x
6C0

2323 + C0
1122x

6C0
3333 + 3C0,2

1111x
4

−C0,2
1111x

6 + 2C0,2
1133x

6 − 3C0,2
1111x

2 + C0,2
1111 − C0

1122C
0
1111)/D1dx (A.9)

P 0
sph,3333 =

1

2

∫ 1

−1
x2(x2C0

2323 − C0
1111x

2 + C0
1111)/D2dx (A.10)

whereby

D1 = −2C0,2
1111x

4C0
3333 + 2C0,2

2323x
6C0

3333 − 4C0
1111C

0,2
2323x

4 − 3C0,2
1111C

0
2323x

2 + C0,2
1111x

2C0
3333 +

2C0
1111C

0,2
2323x

2 − 2C0
2323x

4C0,2
1133 − C0

1111C
0,2
1133x

6 + 2C0
1111C

0,2
1133x

4 + 4C0,2
2323x

6C0
1133

−2C0
1122C

0,2
1133x

4 + 2C0
2323x

6C0,2
1133 + 3C0,2

1111x
4C0

2323 + C0
1122C

0,2
1133x

6 − C0,2
1111x

6C0
2323

+2C0
1111x

6C0,2
2323 + C0,2

1111x
6C0

3333 − C0
1111C

0,2
1133x

2 − 4C0,2
2323x

4C0
1133 + C0

1122C
0,2
1133x

2

+C0,2
1111C

0
2323 − C0

1122C
0
1111C

0
2323 − C0

1122x
6C0

1111C
0
3333 + 4C0

1111x
4C0

2323C
0
1133 − 2C0

1111x
2C0

2323C
0
1133

−4C0
1122x

4C0
2323C

0
1133 + 2C0

1122x
2C0

2323C
0
1133 + 2C0

1122x
6C0

2323C
0
1133 − 2C0

1111x
6C0

2323C
0
1133

−3C0
1111x

6C0
2323C

0
3333 + 2C0

1122C
0
1111x

4C0
3333 − C0

1122C
0
2323x

4C0
3333 − 3C0

1122C
0
1111x

4C0
2323

−C0
1122C

0
1111x

2C0
3333 + 3C0

1122C
0
1111C

0
2323x

2 + 3C0
1111C

0
2323x

4C0
3333 + C0

1122x
6C0

1111C
0
2323

+C0
1122x

6C0
2323C

0
3333 (A.11)

and

D2 = 2C0
2323x

4C0
1133 + C0

2323x
4C0

3333 + C0
1111x

4C0
2323 − 2C0

2323x
2C0

1133 − 2C0
1111C

0
2323x

2

+C0
1111C

0
2323 + x4C0,2

1133 −C0
1111x

4C0
3333 − x2C0,2

1133 + C0
1111x

2C0
3333 (A.12)
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A.3 Hill tensors for homogenization over extrafibrillar space

�
ef
sph, the Hill tensor for a spherical inclusion in an isotropic matrix of stiffness

�
SCSII
ef , is of the form [Eshelby, 1957, Zaoui, 1997]

�
ef
sph =�

esh,ef
sph : �SCSII,−1

ef , (A.13)

�
esh,ef
sph =αSCSIIef �+ βSCSIIef � (A.14)

with

αSCSIIef =
3 kSCSIIef

3 kSCSIIef + 4μSCSIIef

βSCSIIef =
6 (kSCSIIef + 2μSCSIIef )

5 (3 kSCSIIef + 4μSCSIIef )
(A.15)

�
ef
cyl, the Hill tensor for a cylindrical inclusion in an isotropic matrix, is of the

form

�
ef
cyl = �

esh
cyl : �SCSII,−1

ef (A.16)

The non-zero components of the Eshelby tensor �eshcyl corresponding to cylin-

drical inclusions read as

Seshcyl,1111 = Seshcyl,2222 =
5− 4νSCSIIef

8(1− νSCSIIef )

Seshcyl,1122 = Seshcyl,2211 =
−1 + 4νSCSIIef

8(1− νSCSIIef )

Seshcyl,1133 = Seshcyl,2233 =
νSCSIIef

2(1− νSCSIIef )

Seshcyl,2323 = Seshcyl,3232 = Seshcyl,3223 = Seshcyl,2332 =

= Seshcyl,3131 = Seshcyl,1313 = Seshcyl,1331 = Seshcyl,3113 =
1

4

Seshcyl,1212 = Seshcyl,2121 = Seshcyl,2112 = Seshcyl,1221 =
3− 4νSCSIIef

8(1− νSCSIIef )
(A.17)
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where principal directions 1, 2, and 3 follow Figure 3, and with νSCSIIef as

Poisson’s ratio of the extrafibrillar space,

νef =
3kSCSIIef − 2μSCSIIef

6kSCSIIef + 2μSCSIIef

(A.18)

Following standard tensor calculus [Salencon, 2001], the tensor components

of �efcyl(ϑ, ϕ), being related to differently oriented inclusions, are transformed

into one, single base frame (e1, e2, e3), in order to evaluate the integrals in

Eq. (27).

A.4 Hill tensor for homogenization over extracellular bone matrix

�
ef
cyl, the Hill tensor for a cylindrical inclusion in an isotropic matrix, is given

in Eq. A.16.

A.5 Hill tensor for homogenization over extravascular bone material

The non-zero components of �excelsph for spherical inclusions in a transversely

isotropic matrix follow from substitution of ‘c0ijkl’ by ‘CMTII
excel,ijkl’ in Eqs (A.6)-

(A.12).

A.6 Hill tensor for homogenization over cortical bone material

The non-zero components of �exvascyl for cylindrical inclusions in a transversely

isotropic matrix follow from substitution of ‘ccol,ijkl’ by ‘CMTIII
exvas,ijkl’ in Eqs (A.1)-

(A.5).
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Nomenclature

acs side length of reduced cross section of a bone specimen

�rs fourth-order influence tensor

A constant in the linear relationship between ρexcel and f̄HA

�r fourth-order strain concentration tensor of phase r

b width of a volume of one rhomboidal fibrillar unit

B constant in the linear relationship between ρexcel and f̄HA

�col fourth-order stiffness tensor of molecular collagen

ccol,ijkl component of fourth-order stiffness tensor of molecular collagen

C constant in the linear relationship between ρexcel and ds

�
MTIV
cort homogenized fourth-order stiffness tensor of cortical bone material

�SCSIIef homogenized fourth-order stiffness tensor of extrafibrillar space

�MTII
excel homogenized fourth-order stiffness tensor of extracellular bone matrix

�MTIII
exvas homogenized fourth-order stiffness tensor of extravascular bone material

�SCSfib homogenized fourth-order stiffness tensor of mineralized collagen fibril

�HA fourth-order stiffness tensor of hydroxyapatite

�ic fourth-order stiffness tensor of intercrystalline space

�im fourth-order stiffness tensor of intermolecular water

�inc fourth-order stiffness tensor of an inclusion embedded in a matrix

with stiffness �0

�lac fourth-order stiffness tensor of lacunae

�M fourth-order stiffness tensor of the matrix phase

�r fourth-order stiffness tensor of phase r

�vas fourth-order stiffness tensor of Haversian canals

�
MT
wetcol homogenized fourth-order stiffness tensor of wet collagen

�hom homogenized fourth-order stiffness tensor

�0 fourth-order stiffness tensor of an infinite matrix surrounding an

ellipsoidal inclusion

d characteristic length of the inhomogeneities within an RVE
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dcs diameter of reduced cross section of a bone specimen

ds neutron diffraction spacing between collagen molecules

dS diameter of a bone specimen

D 1/5 of length of a volume of one rhomboidal fibrillar unit

D constant in the linear relationship between ρexcel and ds

E second-order ‘macroscopic’ strain tensor

Er second-order ‘macroscopic’ strain tensor of phase r

Er,n, Er,n+1 second-order ‘macroscopic’ strain tensors of phase r for load steps n

and n + 1, respectively

E
p
r,n, E

p
r,n+1 second-order ‘macroscopic’ plastic strain tensors of phase r for load

steps n and n + 1, respectively

E
p(k)
r,n+1 k-th approximation of second-order ‘macroscopic’ plastic strain tensor

of phase r for load step n + 1

E
trial
r,n+1 second-order ‘macroscopic’ trial strain tensor of phase r for load

step n + 1

E
p second-order ‘macroscopic’ plastic strain tensor

E
0,p uniform ‘macroscopic’ plastic strain in matrix of a matrix-inclusion problem

E
∞ uniform ‘macroscopic’ strain at infinity of a matrix-inclusion problem

e1, e2, e3 unit base vectors of Cartesian reference base frame

eϑ, eϕ, er unit base vectors of Cartesian local base frame of a single crystal of

hydroxyapatite within extrafibrillar space

fr(σr) boundary r of elastic domain of phase r in space of microstresses

f̄col volume fraction of collagen within an RVE V̄excel

f̊col volume fraction of molecular collagen within an RVE V̊wetcol

f̄ef volume fraction of extrafibrillar space within an RVE V̄excel

f̃excel volume fraction of extracellular bone matrix within an RVE Ṽexvas

fexvas volume fraction of extravascular bone material within an RVE Vcort

f̄fib volume fraction of mineralized collagen fibril within an RVE V̄excel

f̄HA volume fraction of hydroxyapatite within an RVE V̄excel

f̆HA volume fraction of hydroxyapatite within an RVE V̆fib
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f̌HA volume fraction of hydroxyapatite within an RVE V̌ef

f̄H2O volume fraction of water within an RVE V̄excel

f̌ic volume fraction of intercrystalline space within an RVE V̌ef

f̊im volume fraction of intermolecular water within an RVE V̊wetcol

f̃lac volume fraction of lacunae within an RVE Ṽexvas

f̄org volume fraction of organic matter within an RVE V̄excel

fr volume fraction of phase r

fvas volume fraction of Haversian canals within an RVE Vcort

f̆wetcol volume fraction of wet collagen within an RVE V̆fib

HA hydroxyapatite

� fourth-order identity tensor

� volumetric part of fourth-order identity tensor �

� deviatoric part of fourth-order identity tensor �

kHA bulk modulus of hydroxyapatite

kH2O bulk modulus of water

L characteristic lengths of geometry or loading of a structure built up by

the material defined on the RVE

lS length of a bone specimen

� characteristic length of an RVE

�cort characteristic length of an RVE Vcort of cortical bone material

�ef characteristic length of an RVE V̌ef of extrafibrillar space

�excel characteristic length of an RVE V̄excel of extracellular bone matrix

�exvas characteristic length of an RVE Ṽexvas of extravascular bone material

�fib characteristic length of an RVE V̆fib of mineralized collagen fibril

�wetcol characteristic length of an RVE V̊col of wet collagen

M index denoting a material phase being the matrix

N orientation vector aligned with longitudinal axis of hydroxyapatite needle

nr number of material phases within an RVE

n orientation vector perpendicular to N

RVE representative volume element
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r index denoting a material phase

�
0
inc fourth-order Hill tensor characterizing the interaction between the inclusion

inc and the matrix �0

�0
r fourth-order Hill tensor characterizing the interaction between the phase r

and the matrix �0

sgn(.) signum function of quantity (.)

� fourth-order Eshelby tensor for spherical inclusions

vcol volume of a single collagen molecule

vfib volume of one rhomboidal fibrillar unit

V̊col volume of molecular collagen within an RVE V̊wetcol

Vcort volume of RVE ‘cortical bone material’

V̌ef volume of RVE ‘extrafibrillar space’

V̄ef volume of extrafibrillar space within an RVE V̄excel

V̄excel volume of RVE ‘extracellular bone matrix’

Ṽexcel volume of extracellular bone matrix within an RVE Ṽexvas

Ṽexvas volume of RVE ‘extravascular bone material’

Vexvas volume of extravascular bone material within an RVE Vcort

V̆fib volume of RVE ‘mineralized collagen fibril’

V̄fib volume of mineralized collagen fibril within an RVE V̄excel

V̆HA volume of hydroxyapatite within an RVE V̆fib

V̌HA volume of hydroxyapatite within an RVE V̌ef

V̌ic volume of intercrystalline space within an RVE V̌ef

V̊im volume of intermolecular water within an RVE V̊wetcol

Ṽlac volume of lacunae within an RVE Ṽexvas

Vvas volume of Haversian canals within an RVE Vcort

V̊wetcol volume of RVE ‘wet collagen’

V̆wetcol volume of wet collagen within an RVE V̆fib

WF cort
HA weight fraction of hydroxyapatite at the scale of cortical bone material

WF excel
HA weight fraction of hydroxyapatite at the extracellular scale

WF cort
org weight fraction of organic matter at the scale of cortical bone material
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WF excel
org weight fraction of organic matter at the extracellular scale

β ratio between uniaxial tensile strength and shear strength of pure HA

ΔEr,n+1 incremental second-order ‘macroscopic’ strain tensor of phase r for load

step n + 1

ΔE
p
r,n+1 incremental second-order ‘macroscopic’ plastic strain tensor of phase r

for load step n+ 1

ΔE
p(k)
r,n+1 k-th approximation of incremental second-order ‘macroscopic’ plastic

strain tensor of phase r for load step n + 1

Δε
p
n+1 incrmental plastic strain of n + 1-st load increment

ΔλHA,n+1 incrmental plastic multiplier of n + 1-st load increment

εcol second-order strain tensor field within molecular collagen

εef second-order strain tensor field within an RVE V̌ef of extrafibrillar space

εexcel second-order strain tensor field within an RVE V̄excel of extracellular

bone matrix

εexvas second-order strain tensor field within an RVE Ṽexvas of extravascular

bone material

εfib second-order strain tensor field within an RVE V̆fib of mineralized

collagen fibril

εHAϑϕ second-order strain tensor field within oriented hydroxyapatite

needles in extrafibrillar space

εinc second-order strain tensor field within an inclusion embedded in matrix �0

ε
p
inc second-order plastic strain tensor field within an inclusion embedded

in matrix �0

ε̄ij tensor component of difference (εHAϕϑ,n+1 − ε
p
HAϕϑ,n), given

in a local base frame

ε
p
M second-order plastic strain tensor field within the matrix phase

ε
p
n, ε

p
n+1 second-order strain tensor fields for load steps n and n+ 1, respectively

εr second-order ‘microscopic’ strain tensor field within phase r

ε̇r incremental ‘microscopic’ second-order strain tensor field within phase r
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ε
p
r second-order ‘microscopic’ plastic strain tensor field within phase r

ε
trial
r second-order ‘microscopic’ trial strain tensor field within phase r

εwetcol second-order strain tensor field within an RVE V̊col of wet collagen

λ̇r incremental plastic multiplier

ϑ latitudinal coordinate of spherical coordinate system

θ integration variable, θ = 0 . . . π

μHA shear modulus of hydroxyapatite

μH2O shear modulus of water

ρcol mass density of molecular collagen

ρcort mass density of cortical bone material

ρexcel mass density of the extracellular bone matrix

ρHA mass density of hydroxyapatite

ρH2O mass density of water

ρorg mass density of organic matter

σcol second-order stress tensor field within molecular collagen

σultcol uniaxial tensile or compressive strength of molecular collagen

σef second-order stress tensor field within an RVE V̌ef of extrafibrillar space

σexcel second-order stress tensor field within an RVE V̄excel of extracellular

bone matrix

σexvas second-order stress tensor field within an RVE Ṽexvas of extravascular

bone material

σfib second-order stress tensor field within an RVE V̆fib of mineralized

collagen fibril

σHAϑ,ϕ second-order stress tensor field within oriented hydroxyapatite needle

in extrafibrillar space

σNNHA normal component of stress tensor σHAϑϕ in needle direction

σNnHA shear component of stress tensor σHAϑϕ in planes orthogonal to the

needle direction

σ
trial
HAϑϕ,n+1 second-order trial stress tensor field within oriented HA needle for
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load step n+ 1

σult,sHA uniaxial shear strength of pure HA

σult,tHA uniaxial tensile strength of pure HA

σr second-order stress tensor field within phase r

σ
(k)
r k-th approximation of stress field within phase r

σwetcol second-order stress tensor field within an RVE V̊col of wet collagen

Σ second-order ‘macroscopic’ stress tensor

Σcort second-order stress tensor within an RVE Vcort of cortical bone material

Σult
cort model-predicted uniaxial strength of cortical bone material

Σult
exp experimental uniaxial strength of cortical bone material

ϕ longitudinal coordinate of spherical coordinate system

φ integration variable, φ = 0..2π

φHA,ef relative amount of hydroxyapatite in the extrafibrillar space

ψ longitudinal coordinate of vector n

· first-order tensor contraction

: second-order tensor contraction

⊗ dyadic product of tensors

50



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

References

M. Akao, H. Aoki, and K. Kato. Mechanical properties of sintered hydrox-

yapatite for prosthetic applications. Journal of Materials Science, 16:809 –

812, 1981.

O. Akkus and C.M. Rimnac. Cortical bone tissue resists fatigue fracture by

deceleration and arrest of microcrack growth. Journal of Biomechanics, 34:

757 – 764, 2001.

O. Akkus, A. Polyakova-Akkus, F. Adar, and M.B. Schaffler. Aging of mi-

crostructural compartments in human compact bone. Journal of Bone and

Mineral Research, 18(6):1012 – 1019, 2003.

J.D. Almer and S.R. Stock. Internal strains and stresses measured in cortical

bone via high-energy X-ray diffraction. Journal of Structural Biology, 152:

14 – 27, 2005.

R.B. Ashman, S.C. Cowin, W.C. van Buskirk, and J.C. Rice. A continuous

wave technique for the measurement of the elastic properties of cortical

bone. Journal of Biomechanics, 17(5):349 – 361, 1984.

A.J. Bailey, R.G. Paul, and L. Knott. Mechanisms of maturation and ageing

of collagen. Mechanisms of Ageing and Development, 106:1 – 56, 1998.

R. Ballarini, R. Kayacan, F.J. Ulm, T. Belytschko, and A.H. Heuer. Bio-

logical structures mitigate catastrophic fracture through various strategies.

International Journal of Fracture, 135:187 – 197, 2005.

M. Balooch, S. Habelitz, J.H. Kinney, S.J. Marshall, and G.W. Marshall. Me-

chanical properties of mineralized collagen fibrils as influenced by deminer-

alization. Journal of Structural Biology, 162:404 – 410, 2008.

V. Benezra Rosen, L.W. Hobbs, and M. Spector. The ultrastructure of anor-

ganic bovine bone and selected synthetic hydroxyapatites used as bone graft

substitute material. Biomaterials, 23:921 – 928, 2002.

Y. Benveniste. A new approach to the application of Mori-Tanaka’s theory in

composite materials. Mechanics of Materials, 6:147 – 157, 1987.

51



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

E. Bertrand and Ch. Hellmich. Multiscale elasticity of tissue engineering scaf-

folds with tissue-engineered bone: a continuum micromechanics approach.

Journal of Engineering Mechanics, 135:395 – 412, 2009.

R. Bhowmik, K.S. Katti, and D.R. Katti. Mechanics of molecular collagen is

influenced by hydroxyapatite in natural bone. Journal of Materials Science,

42:8795 – 8803, 2007.

R. Bhowmik, K.S. Katti, and D.R. Katti. Mechanisms of load-deformation

behavior of molecular collagen in hydroxyapatite-tropocollagen molecular

system: Steered molecular dynamics study. Journal of Engineering Me-

chanics, 135(5):413 – 421, 2009.

G. Boivin and P.J. Meunier. The degree of mineralization of bone tissue

measured by computerized quantitative contact microradiography. Calcified

Tissue International, 70:503 – 511, 2002.

L.C. Bonar, S. Lees, and H.A. Mook. Neutron diffraction studies of collagen in

fully mineralized bone. Journal of Molecular Biology, 181:265 – 270, 1985.

K.S. Borsato and N. Sasaki. Measurement of partition of stress between min-

eral and collagen phases in bone using X-ray diffraction techniques. Journal

of Biomechanics, 30:955 – 957, 1997.

A. Boskey. Bone mineral crystal size. Osteoporosis International, 14(Suppl 5):

S16 – S21, 2003.

E. Bossy, M. Talmant, F. Peyrin, L. Akrout, P. Cloetens, and P. Laugier. In

in vitro study of the ultrasonic axial transmission technique at the radius:

1 MHz velocity measurements are sensitive to both mineralization and in-

trocortical porosity. Journal of Bone and Mineral Research, 19(9):1548 –

1556, 2004.

V. Bousson, C. Bergot, A. Meunier, F. Barbot, C. Parlier-Cuau, A.-M. Laval-

Jeantet, and J.-D. Laredo. CT of the middiaphyseal femur: Cortical bone

mineral density and relation to porosity. Radiology, 217:179–187, 2000.

M.J. Buehler. Nature designs tough collagen: Explaining the nanostructure

of collagen fibrils. Proceedings of the National Academy of Sciences of the

52



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

United States of America (PNAS), 103(33):12285 – 12290, 2006a.

M.J. Buehler. Atomistic and continuum modeling of mechanical properties

of collagen: Elasticity, fracture, and self-assembly. Journal of Materials

Research, 21:1947 – 1961, 2006b.

M.J. Buehler. Molecular nanomechanics of nascent bone: fibrillar toughening

by mineralization. Nanotechnology, 18(29):295102, 2007.

M.J. Buehler. Nanomechanics of collagen fibrils under varying cross-link den-

sities: Atomistic and continuum studies. Journal of the Mechanical Behavior

of Biomedical Materials, 1:59 – 67, 2008.

D.B. Burr, C.H. Turner, P. Naick, M.R. Forwood, W. Ambrosius, M.S. Hasan,

and R. Pidaparti. Does microdamage accumulation affect the mechanical

properties of bone. Journal of Biomechanics, 31:337 – 345, 1998.

J. Catanese, E.P. Iverson, R.K. Ng, and T.M. Keaveny. Heterogeneity of the

mechanical properties of demineralized bone. Journal of Biomechanics, 32:

1365 – 1369, 1999.

D.L. Christiansen, E.K. Huang, and F.H. Silver. Assembly of type I collagen:

fusion of fibril subunits and the influence of fibril diameter on mechanical

properties. Matrix Biology, 19:409 – 420, 2000.

J.D. Currey. Differences in the tensile strength of bone of different histological

types. Journal of Anatomy, 93:87 – 95, 1959.

J.D. Currey. The relationship between the stiffness and the mineral content

of bone. Journal of Biomechanics, 2:477 – 480, 1969.

J.D. Currey. Effects of differences in mineralization on the mechanical prop-

erties of bone. Philosophical Transactions of the Royal Society of London,

Series B, 304:509 – 518, 1984.

J.D. Currey. Strain rate and mineral content in fracture models of bone.

Journal of Orthopaedic Research, 6(1):32 – 38, 1988.

S. Cusack and A. Miller. Determination of the elastic constants of collagen by

Brillouin light scattering. Journal of Molecular Biology, 135:39 – 51, 1979.

G.J. Dvorak. Transformation field analysis of inelastic composite materials.

53



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

Proceedings of the Royal Society London, Series A, 437:311 – 327, 1992.

M. Epple. Solid-state chemical methods to investigate the nature of calcified

deposits. Zeitschrift für Kardiologie, 90(Suppl. 3):III/64 – III/67, 2001.

J.D. Eshelby. The determination of the elastic field of an ellipsoidal inclusion,

and related problems. Proceedings of the Royal Society London, Series A,

241:376 – 396, 1957.

G.E. Fantner, E. Oroudjev, G. Schitter, L.S. Golde, P. Thurner, M.M. Finch,

P. Turner, T. Gutsmann, D.E. Morse, H. Hansma, and P.K. Hansma. Sac-

rificial bonds and hidden length: Unraveling molecular mesostructures in

tough materials. Biophysical Journal, 90:1411 – 1418, 2006.

P. Fratzl, S. Schreiber, and K. Klaushofer. Bone mineralization as studied by

small-angle X-ray scattering. Connective Tissue Research, 34(4):247 – 254,

1996.

A. Fritsch and Ch. Hellmich. ‘Universal’ microstructural patterns in

cortical and trabecular, extracellular and extravascular bone materials:

Micromechanics-based prediction of anisotropic elasticity. Journal of The-

oretical Biology, 244(4):597 – 620, 2007.

A. Fritsch, L. Dormieux, and Ch. Hellmich. Porous polycrystals built up by

uniformly and axisymmetrically oriented needles: Homogenization of elastic

properties. Comptes Rendus Mécanique, 334(3):151 – 157, 2006.

A. Fritsch, L. Dormieux, Ch. Hellmich, and J. Sanahuja. Mechanical behaviour

of hydroxyapatite biomaterials: An experimentally validated micromechan-

ical model for elasticity and strength. Journal of Biomedical Materials Re-

search Part A, 88A:149 – 161, 2009.

K. Fujisaki and S. Tadano. Relationship between bone tissue strain and lattice

strain of HAp crystals in bovine cortical bone under tensile loading. Journal

of Biomechanics, 40:1832 – 1838, 2006.

Y.C. Fung. Celebrating the inauguration of the journal: Biomechanics and

Modeling in Mechanobiology. Biomechanics and Modeling in Mechanobiol-

ogy, 1:3 – 4, 2002.

54



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

A. Gautieri, S. Vesentini, F.M. Montevecchi, and A. Redaelli. Mechanical

properties of physiological and pathological models of collagen peptides in-

vestigated via steered molecular dynamics simulations. Journal of Biome-

chanics, 41:3073 – 3077, 2008.

A. Gautieri, M.J. Buehler, and A. Redaelli. Deformation rate controls elas-

ticity and unfolding pathway of single tropocollagen molecules. Journal of

the Mechanical Behavior of Biomedical Materials, 2:130 – 137, 2009.

E. Gentleman, A.N. Lay, D.A. Dickerson, E.A. Nauman, G.A. Livesay, and

K.C. Dee. Mechanical characterization of collagen fibers and scaffolds for

tissue engineering. Biomaterials, 24:3805 – 3813, 2003.

L. Gibson. The mechanical behavior of cancellous bone. Journal of Biome-

chanics, 18:317 – 28, 1985.

L.J. Gibson and M.F. Ashby. Cellular Solids: Structure and Properties. Cam-

bridge University Press, Cambridge, UK, 2 edition, 1997.

R.S. Gilmore and J.L. Katz. Elastic properties of apatites. Journal of Mate-

rials Science, 17:1131 – 1141, 1982.

H.S. Gupta, J. Seto, W. Wagermaier, P. Zaslansky, P. Boesecke, and P. Fratzl.

Cooperative deformation of mineral and collagen in bone at the nanoscale.

Proceedings of the National Academy of Sciences of the United States of

America, 103(47):17741 – 17746, 2006.

P.K. Hansma, P.J. Turner, and R.S. Ruoff. Optimized adhesives for strong,

lightweight, damage-resistant, nanocomposite materials: new insights from

natural materials. Nanotechnology, 18(4):044026, 2007.

Ch. Hellmich. Microelasticity of bone. In L. Dormieux and F.-J. Ulm, editors,

CISM Courses and Lectures, vol. 480. Applied Micromechanics of Porous

Media, pages 289 – 332. Springer, Wien – New York, 2004.

Ch. Hellmich and F.-J. Ulm. Average hydroxyapatite concentration is uniform

in extracollageneous ultrastructure of mineralized tissue. Biomechanics and

Modeling in Mechanobiology, 2:21 – 36, 2003.

Ch. Hellmich and F.-J. Ulm. Are mineralized tissues open crystal foams rein-

55



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

forced by crosslinked collagen? – some energy arguments. Journal of Biome-

chanics, 35:1199 – 1212, 2002a.

Ch. Hellmich and F.-J. Ulm. A micromechanical model for the ultrastructural

stiffness of mineralized tissues. Journal of Engineering Mechanics (ASCE),

128(8):898 – 908, 2002b.

Ch. Hellmich and F.-J. Ulm. Hydroxyapatite is uniformly concentrated in

the extracollagenous ultrastructure of mineralized tissue. In J. Middleton,

N.G. Shrive, and M.L. Jones, editors, Proceedings of the Fifth International

Symposium on Computer Methods in Biomechanics and Biomedical Engi-

neering, Rome, Italy, 2001.

Ch. Hellmich and F.-J. Ulm. Drained and undrained poroelastic properties

of healthy and pathological bone: a poro-micromechanical investigation.

Transport in Porous Media, 58:243 – 268, 2005.
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Figure Captions

Figure 1: Multiscale view of bone structure, with key physical effects con-

sidered in micromechanics representation of Figure 3: (a) wet collagen; re-

produced from [Orgel et al., 2006], Copyright National Academy of Sciences,

U.S.A.; (b) mineralized collagen fibril; schematic sketch after [Landis et al.,

1993]; (c) extrafibrillar porous polycrystal; (d) extracellular bone matrix; re-

produced with kind permission from Spinger Science+Business Media: [Prostak

and Lees, 1996], Fig. 5; (e) extravascular bone matrix [zoomed out of image

(f)]; (f) cortical bone; reprinted from [Lees et al., 1979a], with permission from

American Institute of Physics, c©1979.

Figure 2: Multistep homogenization: Properties of phases (with characteristic

lengths of d and d2, respectively) inside RVEs with characteristic lengths of

� or �2, respectively, are determined from homogenization over smaller RVEs

with characteristic lengths of �2 ≤ d and �3 ≤ d2, respectively.

Figure 3: Micromechanical representation of bone material by means of a six-

step homogenization procedure.

Figure 4: Cylindrical (needle-like) HA inclusion oriented along vector N and

inclined by angles ϑ and ϕ with respect to the reference frame (e1, e2, e3);

local base frame er, eϑ, eϕ is attached to the needle.

Figure 5: Schematic representation of the loading surfaces f1 = f1,HAϕϑ and

f2 = f2,HAϕϑ, for a specific needle family with orientation given through ϕ and

ϑ, in the σNN -σNn stress space.

Figure 6: Comparison between model predictions and experiments at the

macroscopic scale [cortical bone material, Figure 3(f)]. Mean and standard

deviation are depicted for experimental tensile strength (dark color) and ex-

perimental compressive strength (light color).
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Figure 7: Plastic mechanisms associated to differently oriented crystals in ex-

trafibrillar space, provoked by uniaxial tensile loading of cortical bone material

(human femur, see Table 3, line 1): (a) normal stress and (b) shear stress; (c)

value of yield function; (d) normal plastic strain and (e) shear plastic strain.

Figure 8: Plastic mechanisms associated to differently oriented crystals in ex-

trafibrillar space, provoked by uniaxial compressive loading of cortical bone

material (human femur, see Table 3, line 1): (a) normal stress and (b) shear

stress; (c) value of yield function; (d) normal plastic strain and (e) shear plastic

strain.

Figure 9: Macrosopic stress-strain diagram for human femur in uniaxial tension

and compression.

Figure 10: Model predicted macroscopic uniaxial tensile (a) and compressive

(b) strength as function of vascular porosity fvas, for f̄HA = 46% (human

femur).

Figure 11: Model predicted macroscopic uniaxial tensile (a) and compressive

(b) strength as function of ultrastructural mineral volume fraction f̄HA, for

different vascular porosities fvas.
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Table Captions

Table 1: ‘Universal’ (tissue and location-independent) isotropic (or trans-

versely isotropic) phase stiffness values.

Table 2: ‘Universal’ (tissue and location-independent) phase strength values.

Table 3: Tissue-specific composition values.

Table 4: Specimen geometry, employed testing machines, and strain rate of

the tensile and compressive tests, see also Table 5. dS is the diameter of the

sample with length lS, ‘rcs’ stands for reduced cross section with diameter dcs

or side length acs.

Table 5: Tissue-specific experimental uniaxial tensile and compressive mean

strength values. n denotes the number of samples tested.

Table 6: Predicted and experimental strength values for different tissues tested

in uniaxial tension.

Table 7: Predicted and experimental strength values for different tissues tested

in uniaxial compression.
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Phase Bulk Shear Experimental source

modulus modulus

k [GPa] μ [GPa]

Hydroxyapatite kHA = 82.6 μHA = 44.9 [Katz and Ukraincik, 1971]

Water containing

non-collagenous

organics or osteocytes kH2O = 2.3 μH2O = 0

cijkl cijkl

[GPa] [GPa]

Collagen ccol,3333 = 17.9 ccol,1133 = 7.1 [Cusack and Miller, 1979]

ccol,1111 = 11.7 ccol,1122 = 5.1

ccol,1313 = 3.3

5. Table 1
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Phase Uniaxial tensile Uniaxial shear Experimental source

strength [MPa] strength [MPa]

Hydroxyapatite σ
ult,t

HA
= 52.2 σ

ult,s

HA
= 80.3 [Akao et al., 1981, Shareef et al., 1993]

Collagen σult

col
= 144.7 [Gentleman et al., 2003, Lees et al., 1984]

5. Table 2
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tissue ρcort WF cort

HA
WF cort

org f̄HA f̄col ds f̄fib f̌HA f̆HA f̊col

[g/cm3] [-] [-] [-] [-] [nm] [-] [-] [-] [-]

given given given Eqs. (39), Eqs. (40)- Eqs. (42), Eq. Eqs. (50), Eqs. (50), Eqs. (53),

(42), (43) (42), (44) (49) (48) (52) (51) (54)

human femur 1.98a 0.655a 0.227a 0.46 0.30 1.25 0.53 0.65 0.28 0.42

human tibia 1.98a 0.659a 0.228a 0.46 0.30 1.25 0.53 0.66 0.28 0.42

bovine femur 2.105a 0.717a 0.180a 0.53 0.25 1.23 0.44 0.71 0.30 0.36

bovine tibia 2.02a 0.667a 0.209a 0.47 0.28 1.24 0.49 0.66 0.28 0.39

equine radius 2.015b - - 0.47c 0.27c 1.25 0.48 0.65 0.28 0.38

a
experimental data: [Lees, 1987], Table 2

b
experimental data: [Riggs et al., 1993]

c
calculated with Eqs. (45)-(47)

5. Table 3
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literature source specimen geometry machine strain rate

[mm] [1/s]

[Burstein et al., 1972] cylindrical (dS=5) with rcs not given not given

(dcs=2.9)

[Burstein et al., 1975] cuboidal (≈15x5x5) with rcs (a=2) not given not given

[Burstein et al., 1976] cuboidal (≈15x5x5) with rcs (a=2) not given 0.05

[Cezayirlioglu et al., 1985] cuboidal (4-5x4x45) with rcs Instron 1230 0.01-0.06

(dcs=2.5-3)

[Currey, 1959] cylindrical (lS=28) not given not given

with rcs (dcs=1.9-2.7)

[Currey, 1975] cuboidal with rcs (acs=1.8) Instron table model 1.3x10−4-0.16

[Currey, 1990] cuboidal with rcs (acs=1.8) Instron 1122 0.2

[Currey, 2004] cuboidal with rcs (acs=1.8) Instron 1122 0.2

[Dickenson et al., 1981] cylindrical (l=30, dS=5.5) hydraulic servo-controlled not given

with rcs (dcs=2.4)

[Hellmich et al., 2006] cylindrical (lS=10, dS=5) LFM 150, Wille 0.001

Geotechnik

[Kotha and Guzelsu, 2002] cuboidal with rcs (2x5) Instron 0.0005

[Lee et al., 1997] cylindrical (lS=40, dS=4.5) Instron 1331 0.5

with rcs (dcs=3)

[Martin and Ishida, 1989] cuboidal (45x18x5) with rcs Instron 1122 0.004

(acs=5)

[McCalden et al., 1993] cuboidal (32x5x5) with rcs J.J. Lloyd M30K 0.03

(acs=2)

[Reilly and Burstein, 1974] cuboidal (≈15x5x5) with rcs (a=2) not given 0.05

[Reilly and Burstein, 1975] cuboidal (≈15x5x5) with rcs (a=2) not given 0.02-0.05

[Riggs et al., 1993] cuboidal (lS<10) with rcs (tension), Instron 6025 0.001

cubes (lS=8, compression)

[Sedlin and Hirsch, 1966] cuboidal (≈50x5x2) with rcs Instron TT-CM not given

5. Table 4
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literature source tissue tension compression

n Σult,t
exp n Σult,c

exp

[MPa] [MPa]

[Burstein et al., 1972] bovine femur 25 172 ? 283

[Burstein et al., 1975] bovine tibia 10 188

[Burstein et al., 1976] human femur 178 132 95 192

[Burstein et al., 1976] human tibia 123 155 38 192

[Cezayirlioglu et al., 1985] human femur 37 136 19 206

[Cezayirlioglu et al., 1985] human tibia 13 158 9 213

[Cezayirlioglu et al., 1985] bovine femur 27 162 25 217

[Currey, 1959] bovine femur 46 106.0

[Currey, 1975] bovine femur 35 124.5

[Currey, 1990] bovine femur 4 148

[Currey, 1990] bovine tibia 4 146

[Currey, 2004] human femur 4 165.7

[Currey, 2004] bovine femur 10 142.4

[Dickenson et al., 1981] human femur 29 117

[Hellmich et al., 2006] bovine tibia 3 180

[Kotha and Guzelsu, 2002] bovine femur 9 106.6

[Lee et al., 1997] human tibia 11 77.0

[Martin and Ishida, 1989] bovine femur 10 112

[McCalden et al., 1993] human femur 38 91.6

[Reilly and Burstein, 1974] human femur 101 128.5 95 192.5

[Reilly and Burstein, 1974] bovine femur 11 133.1 10 249.6

[Reilly and Burstein, 1974] bovine tibia 152 228

[Reilly and Burstein, 1975] human femur 21 135 20 205

[Reilly and Burstein, 1975] bovine femur 3 144 3 272

[Riggs et al., 1993] equine radius 40 161 13 185

[Riggs et al., 1993] equine radius 40 105 13 217

[Sedlin and Hirsch, 1966] human femur 52 87.5

5. Table 5
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tissue model experiments

Σult,t

cort
Σult,t

exp

mean±std.dev.

[MPa] [MPa]

human femur 122.59 122.59 ± 17.28

human tibia 124.82 149.43 ± 20.69

bovine femur 147.69 132.77 ± 24.75

bovine tibia 125.00 164.00 ± 18.33

equine radius 118.91 133.00 ± 28.18

5. Table 6
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tissue model experiments

Σult,c

cort
Σult,c

exp

mean±std.dev.

[MPa] [MPa]

human femur -187.60 -194.50 ± 5.00

human tibia -190.84 -196.02 ± 8.35

bovine femur -246.57 -231.28 ± 20.59

bovine tibia -197.83 -214.91 ± 22.42

equine radius -190.19 -201.00 ± 10.81

5. Table 7




