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Abstract

There is an ongoing discussion-on how bone strength could be explained from its
internal structure and composition. Reviewing recent experimental and molecular
dynamics studies, we here propose a new vision on bone material failure: mutual duc-
tile sliding of hydroxyapatite mineral crystals along layered water films is followed
by rupture of collagen crosslinks. In order to cast this vision into a mathematical
form, a multiscale continuum micromechanics theory for upscaling of elastoplas-
tic properties is developed, based on the concept of concentration and influence
tensors for eigenstressed microheterogeneous materials. The model reflects bone’s
hierarchical organization, in terms of representative volume elements for cortical
bone, for extravascular and extracellular bone material, for mineralized fibrils and
the extrafibrillar space, and for wet collagen. In order to get access to the stress
states at the interfaces between crystals, the extrafibrillar mineral is resolved into
an infinite amount of cylindrical material phases oriented in all directions in space.
The multiscale micromechanics model is shown to be able to satisfactorily predict
the strength characteristics of different bones from different species, on the basis of
their mineral/collagen content, their intercrystalline, intermolecular, lacunar, and
vascular porosities, and the elastic and strength properties of hydroxyapatite and
(molecular) collagen.
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1 Introduction

Explanation of the highly diverse mechanical properties of the material bone
from its internal structure and composition has been a biomechanician’s wish
[Fung, 2002, Martin et al., 1998], ever since the establishment of this scien-
tific field. This wish has motivated (i) comprehensive mechanical testing series
over all types of tissues and vertebrates (led by Currey and colleagues [Currey,
1959, Reilly and Burstein, 1974a, Keaveny et al., 1993]), (ii) the incorporation
of the theory of anisotropic elasticity in the framework of ultrasonic testing
(driven forward by Katz and colleagues [Katz, 1980, Ashman et al., 1984)),
and (iii) the complementation of the aforementioned two activities with chem-
ical and physical measurements revealing micro and nanostructural features
of mineralized collagenous tissues (pioneered in an unparalleled experimental
campaign by Lees and colleagues [Lees et al., 1979b,a, 1983, Lees, 1987]). The
huge experimental legacy following from the aforementioned activities was
theoretically integrated in the context of validating micromechanical mod-
els holding for bone materials across different species, ages and anatomical
locations [Hellmich and Ulm, 2002a, Hellmich et al., 2004a, Hellmich and
Ulm, 2005, Fritsch and Hellmich, 2007, Hellmich et al., 2009]. Such microme-
chanical models predict, on the basis of mechanical properties of bone ele-
mentary constituents (hydroxyapatite, collagen, water), the (poro-)elasticity
tensors at the different hierarchical levels of the material, from tissue-specific

composition data, such as porosities and mineral/collagen content. There-
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fore, morphological features such as Haversian and lacunar, intercrystalline,
and intermolecular porosities, mineralized fibrils and collagen-free extrafibril-
lar space, plate or needle-type hydroxyapatite crystals and long crosslinked
collagen molecules were represented in the framework of continuum microme-
chanics, also referred to as random homogenization theory [Hill, 1963, Su-
quet, 1997, Zaoui, 2002]. A key feature of these micromechanical models is
the explicit consideration of the extrafibrillar mineral crystals whose existence
was evidenced earlier [Lees et al., 1984a, 1994, Prostak and Lees, 1996, Pi-
daparti et al., 1996, Benezra Rosen et al., 2002], and further confirmed by
the kinetics of recent demineralization experiments [Balooch et al., 2008]. In
this sense, the challenge of micromechanics-supported, consistently upscaled
microstructure-property relationships for poroelasticity in bone has been met

quite reasonably.

However, the case of explaining bone strength from its internal structure
and composition seems to be fairly unsettled: while scaling relations for the
strength of trabecular bone as function of porosity have become classical [Gib-
son, 1985, Gibson and Ashby, 1997], the micro and nanostructural origin of
bone strength remains an open question: While several researchers favor the
idea of brittle mineral erystals embedded in a compliant ductile organic (col-
lagenous) matrix [Currey, 1969, Katz, 1980, 1981, Sasaki, 1991, Mammone
and Hudson, 1993, Jager and Fratzl, 2000, Kotha and Guzelsu, 2003] (still,
explanation of a large number of experimental data through only one model
and realistic prediction of measured stress-strain curves are somewhat out
of sight), experiments show that collagen may actually fail in a quasi-brittle
fashion [Christiansen et al., 2000, Gentleman et al., 2003], and this observa-
tion is confirmed by latest molecular dynamics simulations [Buehler, 2006a,
Bhowmik et al., 2007]. Such computations are essential tools for understand-
ing the interaction of huge numbers of molecules, but, due to computational

constraints, the largest models which can be realized nowadays are of the or-



der of some hundreds of nanometers [Buehler, 2006a], far away from the larger
length scales spanned by the material bone up to its macroscopic appearance
at the millimeter to centimeter scale. What further complicates the matter is
that once the elementary constituents mineral and collagen have failed, a com-
plex series of crack propagation events starts, spanning length scales between
tens of nanometers and ultimately several millimeters. Related toughening
strategies in bone have been intensively studied [Burr et al., 1998, Reilly and
Currey, 2000, Akkus and Rimnac, 2001, Okumura and Gennes, 2001, Taylor
et al., 2003, Ballarini et al., 2005, O’Brien et al., 2007, Koester et al., 2008],
but a consistent mathematical theory for relating them to the overall, tissue-
specific bone strength seems to be an enormously difficult task. Given this
highly challenging situation, we ask: Can continuum micromechanics help to
explain not only bone elasticity, but also bone strength from the material’s

internal structure and composition?

It is often felt that, in contrast to the elastic case, homogenization tech-
niques which often refer to strains or stresses averaged over the material’s
constituents, might not help for the explanation of bone strength, where stress
peaks are likely to govern material failure. Fortunately, this is not necessarily
true: one remedy lies in the resolution of one material constituent into an infi-
nite amount of sub-phases + e.g. the mineral phase may be split into an infinite
amount of differently oriented needles, giving access to information on local
needle-specific stress peaks. It was recently shown [Fritsch et al., 2009] that
based on such a concept, the brittle failure of various hydroxyapatite bioma-
terials characterized by different porosities could be explained from the failure
characteristics of individual crystals (quantified in terms of two strength values

only) and from the microstructure these crystals build up.

This recent micromechanics model can deliver important input, in terms of
the strength properties of single hydroxyapatite crystals, for a micromechanics

model explaining bone strength — the latter is the focus of the present paper. It



is organized as follows: Reviewing recent experimental and molecular dynamics
studies, we first propose a new vision on bone material failure: mutual ductile
sliding of mineral crystals along layered water films is followed by rupture of
collagen crosslinks. In order to cast this vision into a mathematical form, we
then present a continuum micromechanics theory for upscaling of elastoplastic
properties. Thereafter, this theory is applied to a multiscale representation of
bone materials. Conclusively, it is shown that the corresponding multiscale
model can satisfactorily predict the stress-strain curves and the strength values
of different bones from different species, on the basis of their mineral/collagen
content, their intercrystalline, intermolecular, lacunar, and vascular porosities,

and the elastic and strength properties of hydroxyapatite and collagen.

2 A new proposition for bone failure: layered water-induced ductile
sliding of minerals, followed by rupture of collagen crosslinks

(Classically, the strength of bone materials is thought to be related to the
strength properties of collagen, to the strength properties of hydroxyapatite,
and/or the interfaces between these constituents. However, more recent works
extend and modify this traditional picture, by indicating the great role of
water for the failure properties of bone. In this context, molecular dynamics
studies on collagen molecules being detached from hydroxyapatite in solvated
conditions, revealed that the interaction energies between hydroxyapatite and
water, and between collagen and water, are by orders of magnitude larger than
that between hydroxyapatite and collagen [Bhowmik et al., 2007, 2009]. This
implies that water probably plays a central role in ‘glueing’ together the ma-
terial’s elementary constituents, mineral with mineral, collagen with collagen,
and also mineral with collagen. The latter interaction was confirmed by solid
state Nuclear Magnetic Resonance (*"H NMR) studies [Wilson et al., 2006]. As
concerns the water-hydroxyapatite interactions, molecular dynamics simula-

tions of crystal systems surrounded by water molecules revealed two to three



well-organized water layers on the crystal surfaces, these structured water lay-
ers having ice-like features [Pan et al., 2007]. These features were shown to
chemically stabilize the crystals, ALONG VERY STABLE APATITE/WATER IN-
TERFACES SHOWN BY MOLECULAR DYNAMICS SIMULATIONS OF ZAHN AND
HOCHREIN [2003], ZAHN ET AL. [2007]. In the present contribution, we
will discuss the possibility that they also mechanically stabilize the interac-
tion between mineral crystals: More specifically, we consider the case when the
mineral crystals will not break or detach one from another once a critical stress
threshold is reached (as in dry conditions), but when the intra- and intercrys-
talline loads accumulated up to the elastic limit, will be maintained through
the (hydrated) crystals starting to glide upon each other, along theice-like fea-
tures, which prevent the sliding hydroxyapatite surfaces from disintegration
(see Figure 1 for a multiscale view of bone, focusing on this gliding effect). The
latter is also prevented by the collagen fibrils interweaving the extracellular
bone matrix. This vision is consistent with an elastoplastic interface behavior
between hydrated hydroxyapatite. However, from a mathematical viewpoint,
modeling interfaces between non-spherical objects is extremely expending (or
extremely complex), so that we will benefit from the recent finding [Fritsch
et al., 2009] that the effect of ‘micro’-interface behavior of elongated 1D parti-
cles, on the overall ‘macroscopic’ material can be mimicked by equivalent ‘bulk’
failure properties of the elongated phases. In case of hydroxyapatite polycrys-
tals, we even know the (brittle) failure properties of the single hydroxyapatite
crystals, and we will use them as elastic limits in the framework of full elasto-
plastic analysis of the hierarchical mineral-collagen-water composites called
‘bone’. Therefore, it is appropriate to present a continuum micromechanics
theory for elastoplasticity next. Thereby, our focus is on the plastic gliding
mechanisms between mineral crystals, and we only proceed our computations
until a critical stress in the collagen is reached. Potentially plastic behavior
or microcracking events/crack bridging occuring thereafter [Nalla et al., 2004]

are beyond our present scope. The critical stress of collagen is derived from



direct mechanical experiments on collagen, showing a brittle behavior of this
constituent [Catanese et al., 1999, Christiansen et al., 2000, Gentleman et al.,
2003], which is in agreement with some molecular dynamics studies [Buehler,
20064, 2008, Vesentini et al., 2005b]. In particular, the latter work shows that
collagen rupture is likely to be related to failure of crosslinks, such as the

decorin molecule [see Figure 1(a)].

3 Fundamentals of continuum micromechanics — random homoge-
nization of elastoplastic properties

3.1 Representative volume element

In continuum micromechanics [Hill, 1963, Suquet, 1997, Zaoui, 1997, 2002,
a material is understood as a macro-homogeneous, but micro-heterogeneous
body filling a representative volume element (RVE) with characteristic length
¢, £ > d, d standing for the characteristic length of inhomogeneities within
the RVE (see Figure 2), and ¢ < L, L standing for the characteristic lengths
of geometry or loading of a structure built up by the material defined on the

RVE.

In general, the microstructure within one RVE is so complicated that it cannot
be described in complete detail. Therefore, quasi-homogeneous subdomains
with known physical quantities (such as volume fractions or elastoplastic prop-
erties) are reasonably chosen. They are called material phases. The ‘homog-
enized’ mechanical behavior of the overall material, i.e. the relation between
homogeneous deformations acting on the boundary of the RVE and result-
ing (average) stresses, including the ultimate stresses sustainable by the RVE,
can then be estimated from the mechanical behavior of the aforementioned ho-
mogeneous phases (representing the inhomogeneities within the RVE), their

dosages within the RVE, their characteristic shapes, and their interactions.



If a single phase exhibits a heterogeneous microstructure itself, its mechani-
cal behavior can be estimated by introduction of an RVE within this phase,
with dimensions ¢, < d, comprising again smaller phases with characteristic
length dy < f5, and so on, leading to a multistep homogenization scheme (see

Figure 2).
3.2 Upscaling of elastoplastic properties

We consider an RVE consisting of n, material phases, r = 1, ..., n,., exhibiting
elastoplastic material behavior, i.e. following the constitutive laws of ideal

associated elastoplasticity,

o, =c,: (e, —€P) (1)

I Me(o) =0, A\ >0, f.(0,)<0 (2)

el =\, ,
oo,

In Eq. (2), o, and &, are the stress and (linearized) strain tensors averaged
over phase r with elasticity tensor c,; € are the average plastic strains in
phase r, A, is the plastic multiplier of phase r, and f,(o,) is the yield function
describing the (ideally) plastic characteristics of phase r. The RVE is subjected
to Hashin boundary conditions, i.e. to ‘homogeneous’ (‘macroscopic’) strains
FE at its boundary, so that the kinematically compatible phase strains €, inside

the RVE fulfill the average condition

E=) fe (3)

with f,. as the volume fraction of phase r. In a similar way, the equilibrated

phase stresses o, fulfill the stress average condition

3= Zfra'r (4)

with X as the ‘macroscopic’ stresses.



The superposition principle (following from linear elasticity and linearized
strain) implies that the phase strains e, are linearly related to both the
macroscopic strains F, and to the free strains e? (which can be considered

as independent loading parameters),

ET:AT:E+Z®TS:€§ (5)

with A, as the fourth-order concentration tensor [Hill, 1965], and @, as the
fourth-order influence tensors [Dvorak, 1992]. The latter quantify the phase
strains €, resulting from plastic strains €?, while the overall RVE is free from

deformation, E = 0.

In absence of plastic strains [f, < 0, €2 = 0 in Egs. (1)-(2)], the RVE behaves
fully elastically, so that (5), (4), (3), and (1) yield a macroscopic elastic law

of the form

X=C"":E with C"" =Y fc 14 (6)

as the homogenized elastic stiffness tensor characterizing the material within
the RVE. In case of non-zero ’free’ plastic strains e, (6) can be extended to

the form

> =Cchm . (E - EP) (7)

(7), together with (1), (4), (5), and (6) gives access to the macroscopic plastic

strains E?, reading as

E?P = — [Z fre, Ar] B :
{Zfrcr: [(AT:E+ZGTSZE§)—E£]}+E (8)



3.8 Matriz-inclusion based estimation of concentration and influence tensors

We estimate the concentration and influence tensors from matrix-inclusion
problems, as it is standardly done in the field of elasticity homogenization.
However, we consider not only elastic, but also free (plastic) strains in both
the inclusion (with stiffness ¢;,,.) and surrounding infinite matrix (with stiffness
C°); these plastic strains are denoted by €%, and E°?. At its infinite boundary,
the infinite matrix is subjected to homogeneous strains E*°. Then, the strains
in the inhomogeneity can be given in the form [Zaoui, 2002]

Eine = [1+PY i (Cine —CO] T [E®° +PY . : (Cine : €5, — C Eo’p)] (9)

nc mnc inc

We estimate the strains in phase r, €,, as those of an inclusion of the same
shape as the phase, i.e. we identify €;,. = €, in (9), and insert this result into

the strain average rule (3), which yields a relation between E* and E,

E> = {Z fl+P°: (¢, — CO)]—l}_l :
{E - ;fs[[' + P2 (e, —CO P (cy i e? - C EO”’)} (10)

Use of Eq. (10) in (9) specified for € = e, yields

e, =[1+P: (e, —CO': {{Z fill+PY (¢ — CO)]_l}_ :

(=% 20452 -0 P ez - €0 8|

+P): (c, s €2 = C°: E°P)} (11)

In (11), the properties of the fictitious matrix, C® and E°?, still need to be
chosen. As regards C, its choice governs the interactions between the phases
inside the RVE: C° = C"™ relates to a dispersed arrangement of phases

where all phases ‘feel’ the overall homogenized material, and the correspond-

10



ing homogenization scheme is standardly called self-consistent [Hershey, 1954,
Kroner, 1958], well-suited for polycrystalline materials. On the other hand,
the matrix may be identified as a phase M itself, C° = c,;, which relates
to a matrix-inclusion-type composite, and the corresponding homogenization
scheme is standardly referred to as Mori-Tanaka scheme [Mori and Tanaka,
1973, Benveniste, 1987]. Herein, we have to make an additional choice, relating
to the plastic (free) strains in the fictitious matrix, E°”. For a matrix-inclusion
composite (Mori-Tanaka scheme), it seems natural to identify E°? with the
free strain in the matrix phase, €},. In case of the self-consistent scheme, how-
ever, we have to remember that the fictitious matrix does not exhibit any
volume fractions — therefore, it cannot host any free strains, and E%P is set
zero in that case. In particular, one is not allowed to set E®? equal to the
macroscopic plastic strains prevailing at the RVE level, since this would be in

conflict with the concentration relation (5).

Concentration relation (5) remains to be specified for the polycrystals and
matrix-inclusion composites: For the former (self-consistent scheme, C° =

Chom E® = 0), (11) reads as

=[+F: (e —CM)) {{Zfz 1+ P2 (Z-—a:homﬂ—l}_l;

{E — S LI+ PY: (o —C™)] T PY ey sg} +P:c,: sff} (12)

Comparing (12) with (5), we can identify the concentration and influence

tensors as

AR ) R F Y B BT ) G
and
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Ops = Opp = (—frh + 1) : (AP i) if r=s (14)
otherwise

= —foh, : AP P i ¢, (15)

whereby

A° =1+ P°: (¢, — Chom)) (16)

For the Mori-Tanaka case (C° = ¢j;, E*? = €},), (11) reads as

= (14 PY: (e — o)) {{Zfz 1+ P <4_@M>]—1}_1:

(B3 £+ P2 (60—l 5 P2 (0 2 —cur s

+P%: (¢, i el —ep sﬁ/[)} (17)

Comparing (17) with (5), we can identify the concentration and influence

tensors as

A, = [ﬂ—i—[Pg:(a:T—CM} {Zfs{ I+ P _CM)}—l}_ (18)

and
Ops = Opp = (—fplbp +0) : (A° P :g,) if r=3s (19)
Ops = Oppg = Apo: (— S5 - PY, ear +
ZfiAfo.HD?.@M)——A,?O:PQ.M if s=M (20)
otherwise
= —foh, : AP P i g, (21)

4 Application of microelastoplastic theory to bone

In the following, we will apply the above developed microelastoplastic theory

to the material ‘cortical bone’. Therefore, we will employ a slight adaptation of

12



a recently proposed and validated multiscale material model for bone elasticity
[Fritsch and Hellmich, 2007], see Figure 3. The adaptation lies in considering
different orientations of non-spherical mineral crystals, as this precision of
morphological resolution is mandatory for the appropriate prediction of the
material’s strength properties, as has been shown for other materials such as
hydroxyapatite biomaterials [Fritsch et al., 2009], concrete [Pichler et al., 2009,
2008], or gypsum [Sanahuja et al., 2008]. As the basis for such a multiscale
micromechanics model, the mechanical properties of the elementary compo-
nents, of hydroxyapatite, of collagen, and of water, are required. They will be

discussed first.

4.1 FElastic properties of hydroxyapatite, collagen, and water

Concerning the tissue-independent (‘universal’) phase properties of the ele-
mentary constituents of bone, being the same for all tissues discussed herein,
we consider the following experiments (see also [Fritsch and Hellmich, 2007]):
Tests with an ultrasonic interferometer coupled with a solid media pressure
apparatus [Katz and Ukraincik, 1971, Gilmore and Katz, 1982] reveal the
isotropic elastic properties of hydroxyapatite powder (Table 1), which, in view
of the largely disordered arrangement of POORLY CRYSTALLINE minerals [Lees
et al., 1994, Fratzl et al., 1996, Peters et al., 2000, Epple, 2001, Hellmich and
Ulm, 2002a, 2003, Hellmich et al., 2004a], are sufficient for the characterization
of the mineral phase [Hellmich and Ulm, 2002b, Hellmich et al., 2004b, Fritsch
et al., 2006]. Given the absence of direct measurements of (molecular) colla-
gen, the elastic properties of (molecular) collagen are approximated by those
of dry rat tail tendon, a tissue consisting almost exclusively of collagen. By
means of Brillouin light scattering, Cusack and Miller [1979] have determined
the respective five independent elastic constants of a transversely isotropic
material (Table 1). We assign the standard bulk modulus of water (Table 1)

to phases comprising water with mechanically insignificant non-collagenous

13



organic matter.

4.2 Failure properties of hydrozyapatite crystals and collagen

Recent work on porous hydroxyapatite biomaterials [Fritsch et al., 2009] has
revealed that the elastic limit of single (needle-type) hydroxyapatite crystals

can be appropriately characterized through a criterion of the form:

Y=0,...,27 : fram(OHaw) = ﬁm$x|a m oM Ut =0 (22)

with spherical coordinates ¢ and v defining the crystal needle orientation
vector N=e, in the reference frame (e;, ey, €3), and with 1 defining the ori-
entation of vector n related to shear stresses (see Figure 4). § = 44t /ol
is the ratio between the uniaxial tensile strength o3 and the shear strength
o’ of pure hydroxyapatite (abbreviated ‘HA’), and oN% = N - 0 gaps - 1
and oY = N - oy Apv - IV are the normal and shear stress components re-
lated to a surface with normal N (p, ). These strength values can be gained
from experiments of Akao et al. [1981] and Shareef et al. [1993], see [Fritsch
et al., 2009] for further details, and they amount to 52.2 MPa and 80.3 MPa,
respectively (see also Table 2). Beyond the elastic regime, we consider associ-
ated ideal plasticity according to Eq. (2) - having in mind a mathematically
feasible strategy for mimicking layered water-induced ductile sliding between

crystals, which maintains the crystals’ stress levels reached at the elastic limit.

Use of (22) in (2) yields the flow and consistency rules as

Elapy = Ana [N @ N+ B sgn(oi)(N @ n+n @ N),
a (8 max o] + ol - o?}ff) o,

j\HA > 07
g max o] + oMY — g¥ht <0, (23)

Experiments on collagen fibrils have evidenced the quasi-brittle failure char-
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acteristics of this material [Christiansen et al., 2000, Gentleman et al., 2003].
Failure of the crosslinks between the cylindrical collagen molecules is stan-
dardly agreed upon as the primary cause of collagen failure in the longitudinal
direction of the molecules (fibrils) [Buehler, 2006a, Vesentini et al., 2005b]. We

here represent this fact by a failure criterion of the form

fcol(o-col) = |Q3 *Ocol " €3] — Ucug S O (24)

where the direction three coincides with the principal orientation direction of
collagen (see Figure 3). Once the equal sign holds in criterion (24), we consider
that the strengths of both the collagenous phase and of the overall bone mate-
rials are reached, while any potential plastic or, more probably, microcracking
and crack bridging events leading to toughening in the post-peak regime [Nalla
et al., 2004, are beyond the scope of the present manuscript. Given the afore-
mentioned role of the collagen crosslinks for the strength of molecular collagen,
a non-mineralized collagenous tissue with crosslinking characteristics close to
that of bone is the favorable access to the strength of molecular collagen. As
before, we will rely on rat tail tendon, which, under wet conditions, exhibits
a strength of 106.1 MPa (Table 2 in [Gentleman et al., 2003]). Again, we
have to consider close packing of collagen as to get access to properties of
molecular collagen. It is known from neutron diffraction studies [Lees et al.,
1984a, Lees, 1987] that diffractional spacing (a measure for the lateral dis-
tance of collagen molecules) reduces from 1.5 nm (for wet collagen) to 1.1 nm
(for maximally packed (dry) collagen). Accordingly, the cross sectional area of
a tensile specimen would reduce by the ratio 1.5/1.1, so that the strength of
molecular collagen follows to be 1.5/1.1 times higher than that of wet collagen,

i.e. 144.7 MPa (see Table 2).
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4.3 Homogenization over wet collagen

An RVE of wet collagen [see Figure 3(a)] hosts cylindrical intermolecular pores
(labeled by suffix ‘“m’) being embedded into a matrix of crosslinked molec-
ular collagen (labeled by suffix ‘col’), which is suitably considered through

a Mori-Tanaka scheme. Unless collagen rupture criterion (24) is fulfilled, the

p

b =eb =0), with a homogenized stiffness

RVE behaves purely elastically (e

CMT'  following from specification of (6) for r=|col, im]. Thereby, the volume
fractions fulfill fzm + faol = 1, and the concentration tensors A.,; and Ay,

col

respectively, are given through specification of (18) for P), =P,

CAM=Cqol, aS
well as for ¢, = c.q and ¢, = ¢, = 3km,0J, respectively. J;j = 1/30;;0; is the
volumetric part of the fourth order unity tensor [; see Table 1 for kp,o. Ac-
cording to the aforementioned specifications, the concentration relation (17)

for the matrix of molecular collagen within an RVE of wet collagen reads as

. . 1y -1
Ecol = {(1 - fzm)l] + fzm [ﬂ + [Pé% . (Cim TN Ccol)} } . Ewetcol (25)

whereby the components of morphology tensor P¢? are given in the Appendix.

cyl

4.4 Homogenization over mineralized collagen fibril

An RVE of mineralized collagen fibrils [see Figure 3(b)] hosts crystal clus-
ters (represented through spherical hydroxyapatite inclusions, labeled by suffix
‘HA’) and cylindrical microfibrils of wet collagen (labeled by suffix ‘wetcol’),
which are mutually intertwingled. In order to consider this morphology, a self-
consistent scheme is appropriate. Unless the wet collagen phase does not fail
[see Subsections 4.3 and 4.2, in particular Eq. (24)], the RVE behaves purely

sSCS

b 0), with a homogenized stiffness C;~ following from

elastically (e, ,=€> ,...=

specification of (6), for r=[H A, wetcol]. Thereby, the volume fractions fulfill

fwetcot + fHa = 1, and the concentration tensors Ags and Ayeico, Tespec-
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tively, are given through specification of (13) for a:hom:ajﬁgs , for PY, ,=P/®

sph
and PY

=CM

_pfib

eyls respectively, as well as for ¢,=cya = 3kgad + 2ugaK, and

wetcol ™

MT' . respectively. K = [ — J is the deviatoric part of the fourth or-
der unity tensor [; see Table 1 for kg and pga. According to the afore-
mentioned specifications, the concentration relation (12) for the phase ‘wet

collagen” within an RVE of mineralized collagen fibril reads as

Ewetcol = [I] + IPZ;II) : ((]:wetcol ?ZCI;S)}
{fwetcol [l] + ”DZ? : (Cwetcol C?Z%‘S)} +

fHA [I] + IPiC;Z : (q:HA — ([:Jspicbs)}_l}_l ¥ (26)

whereby the components of [Psph and [Pcyl are given in the Appendix — and
Ewetcor (here the ‘microscopic’ strain) is identical to E ereor of Eq. (25), there

being the ‘macroscopic’ strain.

4.5 Homogenization over extrafibrillar space (hydroxyapatite foam)

An RVE of extrafibrillar space [see Figure 3(c)] hosts crystal needles (repre-
sented through cylindrical hydroxyapatite inclusions, labeled by suffix ‘HA’)
being oriented in all space directions, and spherical, water-filled pores (inter-
crystalline space, labeled by suffix ‘ic’). The corresponding polycrystal-type
morphology is appropriately represented through a self-consistent scheme.
Sliding between crystals is modeled through criterion (23), leading to plas-
tic strains €%, 4, and no plasticity occurs in the intercrystalline space (e?.=0).
The homogenized stiffness of an RVE of extrafibrillar space, CZf*'!, follows
from specification of (6) for r=[H A, ic|. Thereby, the volume fractions fulfill

fra+ fie = 1, and the concentration tensors Ay Apv and A, respectively, are

given through specification of (13) for C*m=CJF5!", for P} A—IPcyl(ﬁ, ©) and
[PO IPSZ,L, respectively, as well as for ¢,=cy and ¢, = ¢;. = 3ky,0J (see Ta-

ble 1), respectively. Thereby, summation over all crystal orientations is done
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by integration over angles ¥ = 0,..., 7 and ¢ = 0,...,27. Accordingly, the
concentration-influence relation (17) for the hydroxyapatite phase oriented in

a specific direction (¥, ¢) within an RVE of extrafibrillar space reads as

EHApY = [0+ Cyl(ﬁ ©) : (cga — CSCSH)]
2T T
: infddfd
fra / /[ﬂ+ﬂ°cyl(9 }): (cga — CSCSH>] 1sm47¢+
¢=06=0 -
‘l‘fzc[ sph (Czc CSCSII)] }_1 .
2T
E.f— fua / /[l] + [Pcyl(é d) : (cha — CSCSII)]
¢=06=0

sinf# df d¢
[Pcyl(e }) 1eha: sp}{AmpM} cyl(19 ¢):cHa: 51.;{,419@} (27)
whereby the components of IPsph and [Pcyl are given in the Appendix. According
to (8) applied to the present homogenization step, plastic strains €%, 4 in the
hydroxyapatite phases imply a plastic strain E’e’f at the level of the RVE of

extrafibrillar space.

4.6 Homogenization over extracellular bone matriz

An RVE of extracellular bone matrix or ultrastructure [see Figure 3(d)] hosts
cylindrical mineralized fibrils (labeled by suffix ‘fib’) being embedded into
a matrix of extrafibrillar space (labeled by suffix ‘ef’). This morphology is
suitably modeled by means of a Mori-Tanaka scheme. As discussed in the
previous Subsection 4.5, the extrafibrillar matrix may be subjected to plas-
tic strains, while we do not consider plastic strains in the mineralized fibrils

(% = 0). The homogenized stiffness of an RVE of extracellular bone matrix,

MTII
Cemcel )

follows from specification of (6) for r=[fib, ef]. Thereby, the volume
fractions fulfill ffib + fef = 1, and the concentration tensors Ay and Ay,

respectively, follow from specification of (18) for €3 =C5¢S!!, for P4, =P/

eyls 8

CSCS

%% and Cp= CSCSII

well as for ¢, = respectively. Accordingly, the concentra-
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tion influence relation (17) for the phase extrafibrillar space within an RVE

of extracellular bone matrix reads as

-1
eop = {Jefl + Frall + PEy - (€555 — €579 } :
{Ee:pcel ffzb[ _'_I]Dcyl (C?gs CSCSII)] l ( (]:SCSII‘ ef)} (28)

cy

whereby the components of [Pcyl are given in the Appendix. According to (8)
applied to the present homogenization step, plastic strains in the extrafibrillar
space (see Subsection 4.5, e/ ,=FE{;) imply a plastic strain E?, ., at the level
of the RVE of the extracellular bone matrix.

4.7  Homogenization over extravascular bone material

An RVE of extravascular bone material [see Figure 3(e)] hosts spherical empty
pores called lacunae (labeled by suffix ‘lac’) being embedded into a matrix of
extracellular bone matrix (labeled by suffix ‘excel’). This morphology is suit-
ably modeled by means of a Mori-Tanaka scheme. As discussed in the previ-
ous Subsection 4.6, the extracellular bone matrix may be subjected to plastic

strains while we do not consider plastic strains in the lacunae (e}, = 0).

MTIII

exvas

The homogenized stiffness of an RVE of extravascular bone material, C
follows from specification of (6) for r=[lac, excel]. Thereby, the volume frac-
tions fulfill flac + fexcel = 1, and the concentration tensors A;,. and A....,

respectively, follow from specification of (18) for ¢y =C}Z}’, for P}, =P,

MTII

as well as for ¢,=¢;,.=0 and ¢, =C_. ",

respectively. ¢;,. = 0 relates to the fact
that the lacunar pores are empty (drained) in all experiments considered in
Section 6 — for undrained situations, ¢;,. = 3kpy,0J would be appropriate, see
[Fritsch and Hellmich, 2007] for details. According to the aforementioned spec-

ifications, the concentration-influence relation (17) for the phase ‘extrafibrillar

space’ within an RVE of extracellular bone matrix reads as
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~ ~ 1
e:ccel MTII .
€excel = {fexcelﬂ + flac[l] sph Cexcel ] } :

{ ovas flac[ _ [peacel (]:MTH]— . [peacel (= CMTII . emcel)} (29)

sph excel sph excel

excel

on are given in the Appendix. According to (8)

whereby the components of P

applied to the present homogenization step, plastic strains in the extracellular

Egmcel)

bone matrix (see Subsection 4.6, €” imply a plastic strain E?

excel exvas

at the level of the RVE of the extravascular bone material.

4.8 Homogenization over cortical bone material

An RVE of cortical bone material [see Figure 3(f)] hosts cylindrical empty
pores called Haversian canals or vascular space (labeled by suffix ‘vas’) be-
ing embedded into a matrix of extravascular bone material (labeled by suffix
‘exvas’). This morphology is suitably modeled by means of a Mori-Tanaka
scheme. As discussed in the previous Subsection 4.7, the extravascular bone
material may be subjected to plastic strains, while we do not consider plastic

strains in the Haversian canals (e%,, = 0). The homogenized stiffness of an

vas

RVE of cortical bone material, CMZIV  follows from specification of (6) for

r=[vas, exvas]. Thereby, the volume fractions fulfill f,.s + fezvas = 1, and

the concentration tensors A,,s and A...qs, respectively, follow from specifica-

tion of (18) for cy=C LT, for P, ,=P5*, as well as for ¢,=tyus=0 and
,=CMTIII “regpectively. €,qs = O relates to the fact that the Haversian canals

are empty (drained) in all experiments considered in Section 6. According
to the aforementioned specifications, the concentration-influence relation (17)
for the phase ‘extravascular bone material’ within an RVE of cortical bone

material reads as

1
€exvas = {f@mvasl] + fvas[” - i;clvas C%ZZQII] 1} :
. rMTIIT . MTIII
{ cort — fvas[ [Pz;jlvas Cemvas ] [Pz;jlvas : ( Cemvas Egmvas)} (30)

20



whereby the components of P¢7** are given in the Appendix. According to (8)
applied to the present homogenization step, plastic strains in the extravascular
bone material (see Subsection 4.7, el =FP ) imply a plastic strain E% .,

exvas exvas

at the level of the RVE of the cortical bone material.

5 Algorithmic aspects

We are left with using the partially incremental constitutive relations de-
veloped in Sections 3 and 4 for computation of stress-strain relations. This
requires some algorithmic deliberations which we will describe in view of a
stress-strain curve for uniaxial stress applied to an RVE of cortical bone,
Yeort = 233e3 @ es, the loading direction es coinciding with the longitudinal
(axial) direction of the bone material (see Figure 3). This stress is applied in
load increments labeled by n, starting at 33 = 0, and being accumulated up
to failure of the material. Accordingly, flow rule (2) and (23) is considered in
a discretized fashion: It is evaluated for a finite number of needle orientation

directions (‘families’), and it is integrated over the n-th load step,

A app i1 = AAganiilN @ N + 3 sgn(oy i) (N @n+no N) (31)

with

D __ b p
En Aol = EHApon T DER A nt1 (32)

At the beginning of the very first load step, there are neither plastic strains
(Elyni0 = 0) nor total strains (E.no = 0); at the end of an arbitrary later
load step with label n, there may be plastic strains E%,,,,, and total strains
E iy, both related to stresses Yot = 233 ne3®es. Then, the general task is
to compute the strain increments AE?,,, . and AE 41, leading to total
strains Elc)ort,n—i-l = Elgort,n + AEZort,n—i-l and Ecortni1 = Ecoptn + AE copp py1,

following from the stress increment AX ;.41 = Adsg 163 @ e3.
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To fulfill this task, an iterative procedure is applied: First, the macroscopic
strains are estimated from specification of (7) for an RVE of cortical bone,
on the assumption that no plastic strains would occur during the (n + 1)-st
load step, which may be referred to as a ‘trial step’ in the line of classical
computational elastoplasticity [Simo and Taylor, 1985],

trial _ ~MTIV P
Ecort,n—l—l =C : ECOTtJH-l + Ecort,n (33)

cort

Then, these trial strains are concentrated into the lower-scale RVEs, by means

: trial . _ W

of Egs. (25)-(30), all specified for Ecors = E 1115 €0vas = €nvasimy Ecavas =
_ trial __ ptrial . 2P _ P _ __ trial _
EEIUGS - Ee:cvas,n-‘,—l - Ee:cvas,n-l—l’ 8eaccel - Eexcel,n’ €excel = EEZ’CEl - €e:ccel,n+1 -

trial . b _ P _ __ trial _ trial . _p _ P
Eexcel,n—i—l? Eef - Eef,n? E8f - Eef - Eef,n-l—l - Eef,n-‘,—l? EHAapﬁ — EHAgoﬁ,n?

EHApY = sﬁgﬁfoﬂ,n +1- Within the RVE of extrafibrillar material, the trial stress
states in hydroxyapatite phases follow to be

trial . . trial D
O HAp9n+1 — CHA - [EHAw,nH - EHAgm?,n] (34)

and this trial stress allows one to identify the plasticizing mineral phases in

load step n + 1:

trial
frraeo (O Ao ns1) S0 Algagsnin =0

trial

FrA09 (T g9 nia) > 04 AXgagsni >0 (35)

In the first case, the load step is elastic, AE,,,, ., = 0 and Ei’;ﬂln 41 =
E .t 41, and the computation can proceed to the next load step, n+2. In the
second case, the load step is elastoplastic, the plastic multiplier ANy au9,n+1
and the plastic strain increment A4, 4,,,; need to be determined. In the
line of classical computational elastoplasticity, this is done by means of the
so-called return map algorithm, also called projection algorithm [Simo and
Taylor, 1985]: A trial stress state a%@‘ﬁw,n 41 Wwhich lies outside the elastic
domain has to be projected back onto the failure surface fga,9 = f1 in Figure 5,

which gives a first approximation of the stresses in the HA phase,
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0-511724@79 n+l — UZ%M n+1 —CHA® AAHAapﬂ,n—l—l [ﬂ & ﬁ +
+Osgn(oga)(N @n+n® N,

f(ag)fl,n—l—l) =0

- A)\HAgoﬂ,n—l—l =

~ (Bkga —2upa)gin + (Bkya — 2upa)gan + (3kga + 4lpa)éss

= +
3kpa+ 4pma + 6520

sgn(oN)66 &1z — 304

3kpa+4pma+ 6520

(36)

whereby the components of the difference (€ ap0.n+1— €% ap9.0)s Eij> are given

in a local base frame (e,, ey, ¢,), see Figure 4.

Use of ANgag9nt1 in (31), and insertion of the result into (8) specified for the
extrafibrillar RVE, for the extracellular RVE, for the extravascular RVE, and

for the cortical RVE, yields a first approximation of Ecm n+1-and AEi’g,{t -

These plastic strains are inserted into (33) where E?,., , is replaced by Eﬁ(ﬁ,{t 1

and the aforementioned procedure is repeated, leading to strains AEWI)e ntl
and Ecm n+1- Further repetitions of the aforementioned procedure are per-
formed, the k-th performance yielding strains Eférz nt1; and this is done until
AECO” n+1 approaches zero up to a prescribed tolerance so that satisfactorily
precise values for EY,. ., and E i1 have been attained. Then, the next

load step, (n + 2), is tackled.

A particular case deserves further discussion: If the trial stress state O'fo{foﬂ,n I

lies within the gray shaded area of Figure 5, projection step (36) may deliver
negative values for |oy,|, which is not admissible. In this case, a two-surface

failure criterion is employed, the second surface being defined through

fo,ira00 (T HApons1) = ONA — Onstma =0, (37)

and Eq. (31) is extended according to Koiter’s flow rule [Koiter, 1960]

Of1.HA of
P _ HApY 2,HApY
A€l apgni1 = DA\ rago 15— + Do magontig————— (38)

00 H A9 n+1 00 H A9 n+1
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with fi gaps = frages = 0 from Eq. (22). This leads to plastic multipliers

reading as

g

g
AN Ao n+1 = Sgn(oh ) R
Ao HApont1 =
(Bkpa —2pma)Benn + (Bkma — 2pma) B + (3kma + 4t a)Bess+ n

(Bkma + 4pma)p

sgn(oN%) (3kpa + Apa)éis — 3803

(Bkpa +4pma)s

6 Experimental validation of multiscale model for bone strength

The mathematical model developed in Sections 4 and 5 is based on experimen-
tally determined elasticity and strength properties of the elementary compo-
nents hydroxyapatite, (molecular) collagen, and water. This model predicts,
for each set of tissue-specific volume fractions fwl, fwetcoz, fH A, ffib, fe;pcez, and
fexvas (see Figure 3), the corresponding tissue-specific elasticity and strength
properties at all observation scales of Figure 3. Thus, a strict experimental
validation of the mathematical model is realized as follows: (i) different sets
of volume fractions are determined from composition experiments on different
bone samples with different ages, from different species and different anatom-
ical locations (micrographs, weighing tests on demineralized /dehydrated tis-
sues, neutron diffraction tests; see Subsection 6.1); (ii) these volume fractions
are used as model input, and (iii) corresponding model-predicted strength val-
ues (model output) are compared to results from strength experiments on the
same or very similar bone samples. We here refrain from validation of model-
predicted elastic values, since these are reported, in great detail, in [Fritsch

and Hellmich, 2007].
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6.1 FExperimental set providing tissue-specific volume fractions as model input

Experimental validation of the six-step upscaling procedure [Egs. (22) to (39)]
requires determination of the phase volume fractions within the six considered

RVEs (Figure 3).

Within an RVE of cortical bone [Figure 3(f)], the extravascular volume frac-
tion fezvaes 1S primarily driven by the interplay of osteoblastic and osteoclastic
action in the vascular pore space. We here have access to typical mammalian
cortical bone under physiological conditions, for which f.,,qs does not exceed
5% [Sietsema, 1995], and the microradiographs of bovine tibia provided by
Lees et al. [1979a] yield fervas=3% (see [Fritsch and Hellmich, 2007] for de-

tails); we will adopt this value throughout this validation section.

Within an RVE of extravascular bone material [Figure 3(e)], the lacunar vol-
ume fraction fzac relates to the way osteoblasts work: when laying down os-
teoid, a typical fraction of osteoblasts become buried in this newly formed
ultrastructure, leading to the formation of lacunae. Hence, fi.. always lies in a
narrow range of values, around f,.=2% (see [Fritsch and Hellmich, 2007] for

details); we will adopt this value for the remainder of this validation section.

As regards hydroxyapatite and collagen contents, Lees [1987] has provided the
weight fractions of mineral and organic components within cortical bone sam-
ples, Wyt and WFg%t, for several mammalian species and organs, including
human and bovine bone samples, together with their mass densities peo- (see

Table 3). These values give access to the weight fractions at the extracellular

(ultrastructural) scale [Figure 3(d)], through
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WFcort

excel __ HA
WFHA - 1 _ pH2o><[ffuas+(l_fU‘lS)flaC} (40)

Pcort

t
WFe:pcel — WFOCS;, - (41)
org 1 _ pH2O><[fvas+(1_fUas)flac}
Pcort

with pg,0 = 1 kg/dm? as the mass density of water filling the vascular and
lacunar pores spaces. Since 90% of mass of organic matter in bone is collagen
[Urist et al., 1983, Lees, 1987, Weiner and Wagner, 1998], the weight fraction

of collagen within the extracellular matrix follows to be

WEFgeh = 0.9 x Wk (42)

col org

These weight fractions, together with the tissue mass density at the extracel-
lular scale (the pores of specimens discussed in Table 3 are filled with water,

see [Fritsch and Hellmich, 2007] for details),

P = Pcort — szO[.fvas + (]- - fvas)flac]
1— fvas — (1 — fvas)flac

give access to the mineral and collagen volume fractions at the extracellular

(43)

observation scale,

Frua =L e W gt (44)
PHA

.fcol = Peacel X WFceozlcel (45)
Pcol

where pg4=3.00 kg/dm? [Lees, 1987, Hellmich, 2004] and p.,; = 1.41 kg/dm?
[Katz and Li, 1973, Lees, 1987] (see Table 3 for values of fia and f.,; used

for the validation of the herein proposed strength model).

The dehydration-demineralization tests of Lees et al. [1979b], Lees [1987],
Lees et al. [1995] show that, throughout samples from the entire vertebrate
animal kingdom, the extracellular volume fraction fy4 depends linearly on

the extracellular mass density pegcer,

ffHA =Ax Pexcel T B (46)
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with A = 0.59 ml/g and B = —0.75, see [Fritsch and Hellmich, 2007] for
details. Combination of (46) with

Pexcel = fHQO PH>0 + .]?org Porg + .]EHA PHA (47)

with porg & peor, With 1 = forg + fHQO + fra, and with f.,; = 0.9 x forg, yields

the collagen content as a function of the extracellular mass density,

0.9
Fr (pemcel) = — X
Jeo PH20 — Porg
{ffHA (pemcel) X [pHA - szO] — Pexcel + szO} (48)

see Table 3 for values based on these functions, used for the validation of the

herein proposed strength model.

The extracellular volume fractions of the fibrils and the extracellular space,
frip and fo; [Figure 3(d)], can be quantified on the basis of the generalized
packing model of Lees et al. [1984b], Lees [1987], through

friv = feot X Ufib, Vpp = bds 5D (49)

col

where f.o is determined according to (45) and (42), or according to (48) and
(46), respectively. vy = 335.6 nm? is the volume of a single collagen molecule
[Lees, 1987]. vg is the volume of one rhomboidal fibrillar unit with length
5D, width b, and height ds. b=1.47 nm is an average (rigid) collagen crosslink
length valid for all mineralized tissues [Lees et al., 1984b], D ~ 64 nm is the
axial macroperiod of staggered assemblies of type I collagen, and d is the
tissue-specific neutron diffraction spacing between collagen molecules, which
depends on the mineralization and the hydration state of the tissue [Lees et al.,
1984a, Bonar et al., 1985, Lees et al., 1994]. For wet tissues, d, can be given in
a dimensionless form [Hellmich and Ulm, 2003], as a function of pege; only. For

the rather narrow range of tissue mass densities considered here, this function
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can be linearly approximated through
ds =C x Peacel T D (50)
where C = —0.2000 nm/(gcm™3) and D = 1.6580 nm.

The volume fractions for scales below the extracellular bone matrix can be
derived directly from ffib and f.o, on the basis of the finding of Hellmich and
Ulm [2001, 2003] that the average hydroxyapatite concentration in the extra-
collagenous space of the extracellular bone matrix of wet mineralized tissues
is the same inside and outside the fibrils. Accordingly, the relative amount of
hydroxyapatite in the extrafibrillar space reads as [Hellmich and Ulm, 2001,
2003|

1— fran
PHAer = 1= ffz (51)

With this value at hand, the mineral volume fractions in the fibrillar [Fig-

ure 3(b)] and the extrafibrillar space [Figure 3(¢)] are,
v fua(l— dpacr)
fua= =
friv

JEHAZM (53)
fef

see Table 3 for values used to validate the herein proposed strength model.

(52)

Within the fibril, comprising the phases hydroxyapatite and wet collagen, the

volume fraction of the latter reads as
fwetcol =1- fHA (54)

Finally, the volume fraction of (molecular) collagen at the wet collagen level

[Figure 3(a)] can be calculated from f.o;, through

] .]?col
Jeo = 3 (55)
fwetcol

see Table 3 for values used for validating the proposed strength model.
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6.2 Ezxperimental set providing tissue-specific strength values for model test-
mg

In most cases, strength of bone is quantified in terms of uniaxial, compressive
or tensile mechanical tests, under quasi-static conditions (i.e. with a strain rate
well below one). To show the relevance of our model approach, we consider
various experimental results from various laboratories and various test setups,
on various different bone samples (see Table 4 for specimen geometries, em-
ployed machines, and strain rates, and Table 5 for tissue-specific experimental

results).

6.3 Comparison between tissue-specific strength predictions and correspond-
g experiments

The strength values predicted by the six-step homogenization scheme (Fig-
ure 3) for tissue-specific volume fractions (experimental set of Subsection 6.1)
on the basis of tissue-independent ‘universal’ phase stiffness and strength
properties (experimental set of Tables 1 and 2) are compared to correspond-
ing experimentally determined tissue-specific uniaxial tensile and compressive
strength values from the experimental set of Subsection 6.2. The experimental
strength values of Subsection 6.2 are grouped into types of tissues (e.g. hu-
man tibia), and their corresponding weighted mean and standard deviation is

considered (see Tables 6 and 7 as well as Figure 6).

To quantify the model’s predictive capabilities, we consider the mean and

the standard deviation of the relative error between strength predictions and

experiments,
1 1 Zultt _ Zultp
E=— =y Tt _Tew (56)
n Z n Z Ecéﬁ’t
1 ,®
o5 = [n_ (e —e)} (57)
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The satisfactory agreement between model predictions and experiments is
quantified by prediction errors of +2.61 £ 24.7% for uniaxial tensile strength,
and of —4.00 £ 8.42% for uniaxial compressive strength [é &+ eg according to

Egs. (56) and (57)].

7 Discussion of model characteristics

7.1 Sliding events in the extrafibrillar space

Having successfully shown the predictive capabilities of the proposed model
for various cortical bone tissues tested in uniaxial tension and compression,
it is interesting to study the sequence of plastic (interfacial) events in the
extrafibrillar space, in terms of the orientations of involved hydroxyapatite

crystals.

Under uniaxial tensile loading of cortical bone in axial (longitudinal) direc-
tion (¢ = 0°), longitudinally oriented crystals are the first to undergo inelastic
deformation. In the course of further loading, inelastic deformations spread
relatively quickly over the range defined by orientation angles ¥ between zero
and 30 degrees [see Figure 7(c)-(e) for E.y33 below 0.1%]. Afterwards, the
spreading of plasticity slows off, and stops at an orientation angle of about 65
degrees, see Figure 7(d)-(e) for plastic strains, and Figure 7(c) for orientation
¥ = 74.25° remaining in the elastic regime. Thereby, crystals with longitu-
dinal orientation carry tensile normal stresses at a constant level throughout
the plastic loading stage, whereas the normal stresses in inclined crystals are

declining, while increasing shear stresses build up [see Figure 7(a)-(b)].

Under uniaxial compressive loading of cortical bone material in axial (longi-
tudinal) direction (9 = 0°), transversely oriented crystals (i.e. such oriented

perpendicular to the longitudinal direction) are the first to undergo inelastic
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deformation. In the course of further loading, inelastic deformations spread
relatively quickly over the range defined by orientation angles between 90
and 70 degrees [see Figure 8(c)-(e) for E.y33 below 0.1%]. Afterwards, the
spreading of plasticity slows off, and stops at an orientation angle of about 60
degrees, see Figure 8(d)-(e) for plastic strains, and Figure 8(c) for orientation
¥ < 60° remaining in the elastic regime. Thereby, transversely oriented crys-
tals and crystals with slight inclination from the transverse directions (which
are first associated with plasticity) carry normal tensile stresses, while more
inclined crystals are loaded in normal compression. Throughout the plastic
loading stage, all these crystals, whether loaded normally in tension or in

compression, carry increasing shear stresses [see Figure 8(a)-(b)].

This sequence of plastic events leads to distinctive stress-strain relationships at
the level of cortical bone (see Figure 9): Elastoplastic behavior associated to
longitudinal extrafibrillar crystals under tensile loading provokes a decrease
of slope in the stress-strain curve, which is more pronounced than that re-
lated to elastoplastic behavior in transverse crystal clusters under compres-
sion. Thereby, Figure 9 illustrates the stress-strain curves until the failure
stress in the collagen according to (24) is reached - this agrees well with the
investigations of Pidaparti et al. [1997], Morgan et al. [2005], showing a rather
(quasi-)brittle behavior of cortical bone under uniaxial loading. On the other
hand, several investigators [Currey, 1959, Reilly and Burstein, 1974b, Kotha
and Guzelsu, 2002] report increasing cortical strains at a constant cortical
stress level close to the ultimate strength level, i.e. the occurrence of (macro-
scopically apparent) ‘plastic’ events also beyond the point when the collagen
failure criterion (24) is reached in the framework of our model. The microme-
chanical consideration of respective plastic or microcracking/crack bridging
events (as dealt with by various researchers [Burr et al., 1998, Reilly and Cur-
rey, 2000, Akkus and Rimnac, 2001, Okumura and Gennes, 2001, Taylor, 2003,
Ballarini et al., 2005, O’Brien et al., 2007, Koester et al., 2008]) is beyond the
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scope of this manuscript, where we focus on a model which can predict, as
function of the bone sample’s composition, the ultimate stress which is bear-

able by that sample.

Finally, there could seem to be a contradiction between the ductile behavior of
interfaces between the hydroxyapatite crystals as part of natural collagenous
bone tissue considered in this paper, and the brittle behavior of the interfaces
between crystals of man-made hydroxyapatite biomaterials [Akao et al., 1981,
Fritsch et al., 2009]. The reason for the different behaviors may well lie in
the characteristic size of the crystals, and hence of the nature of their contact
surfaces, the crystals in collagenous bone tissue being much smaller than the
biomaterial crystals. In the same sense, in low or non-collagenous tissues,
such as specific whale bones [Zioupos et al., 1997], the minerals grow larger,
and also these tissues exhibit a brittle failure behavior. The idea of increased
ductility due to increased activity of layered water films is also supported by
the fact [Nyman et al., 2008] that bound water content is correlated to bone
toughness; and this idea fits well with the suggestions of Boskey [2003], that
larger crystals (implying less layered water films per crystal content) would

lead to a more brittle behavior of bone materials.

7.2 Effects of porosity and mineralization

It is also interesting to study the effect of species, individual, and organ-
specific bone microstructures, on the cortical strength of corresponding bone
materials: In healthy mammalian cortical bone, the vascular porosity varies
typically between 2 and 8%, while osteoporosis may lead to porosities up to
27% [Bousson et al., 2000]. Influence of vascular porosity increase on cortical

strength is illustrated in Figures 10 and 11, it is of linear nature.

Within the extravascular matrix of a specific organ of an adult mammal, the

average chemical composition is constant in space and time [Hellmich et al.,
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2008], as can be seen from experimental results from computerized contact mi-
croradiography [Boivin and Meunier, 2002], quantitative backscattered elec-
tron imaging [Roschger et al., 2003|, Raman microscopy [Akkus et al., 2003],
and Synchrotron Micro Computer Tomography [Bossy et al., 2004]. Therefore,
effects of (varying) extravascular mineral content [while the collagen content
follows (48)] on different resulting cortical strength values (see Figure 11), re-
flect inter-organ and inter-species variations from one bone sample to another,
with mineral contents between 30% (typical for deer antler) and 70% (typical
for equine metacarpus): the mineralization varying by a factor of two, implies
a strength variation by a factor of two in tension, and by a factor of three in
compression (Figure 11). In contrast to the extravascular porosity, the mineral
content has a nonlinear influence on cortical strength - this qualitative model
feature is in perfect agreement with a wealth of experimental data [Currey,

1984, 1988, Hernandez et al., 2001].

7.8 Concentration relation and X-ray measurements

A KEY FEATURE OF OUR MODEL ARE THE CONCENTRATION TENSORS IN-
TRODUCED IN SECTION 3.2 AND GIVEN IN DETAIL IN SECTION 3.3, WHICH
ASSIGN MACROSCOPIC STRAINS TO STRAINS AND STRESSES AT THE SCALE
OF INDIVIDUAL MINERAL CRYSTALS, WHICH ARE RELEVANT FOR MATERIAL
FAILURE THROUGH DUCTILE SLIDING PROCESSES. WHILE A DIRECT EXPER-
IMENTAL DETERMINATION OF ALL COMPONENTS OF THE FOURTH-ORDER
STRAIN CONCENTRATION TENSOR SEEMS TO BE OUT OF SIGHT FOR THE
MOMENT, WE MAY REMEMBER THAT EXPERIMENTAL DETERMINATION OF
CONCENTRATION RELATIONS IN BONE HAS BEEN DISCUSSED IN THE BONE
BIOMECHANICAL AND STRUCTURAL BIOLOGY COMMUNITIES FOR A WHILE:
THEREBY, EXPERIMENTALISTS FOCUSSED ON RELATING ONE MACROSCOPIC
STRESS OR STRAIN COMPONENT (TYPICALLY AT THE TISSUE SCALE AND DE-

RIVED FROM A CLASSICAL MECHANICAL TEST) TO ONE STRESS OR STRAIN
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COMPONENT IN THE MINERAL OR COLLAGEN PHASES (ESTIMATED FROM
X-RAY DIFFRACTION PATTERN CHANGES DUE TO EXTERNAL FORCES ACT-
ING ON THE PIECE OF BONE). WHILE EQ. (5) DIRECTLY SHOWS THAT,
RIGOROUSLY SPEAKING, SUCH A RATIO RELATES TO NONE OF THE COM-
PONENTS OF THE CONCENTRATION TENSOR, IT SEEMS INTERESTING TO
COMPARE THE X-RAY-ESTIMATED STRAINS TO PREDICTIONS FROM OUR
MICROMECHANICAL MODEL. MORE SPECIFICALLY, WE WILL CONSIDER THE
TISSUE-TO-(INTRAFIBRILLAR) MINERAL STRAIN RATIO OF 0.16 (REPORTED
BY GUPTA ET AL. [2006]) TO THE RATIO PREDICTED BY OUR MODEL FOR
A UNIAXIAL STRESS EXPERIMENT X“P = Y33 e5®e3, NAMELY £ 33/ Ecort 33,
WITH E. . = CMTIV .3, = Ecort,11€1 @ €1 + Feort,22€9 @ €9 + Eiori 3363 @ €3
AND Epa = Apgafiv : Apip * Acgcer  Pegvas * Eeort = Emaniey @ €+ Emgane; ®
€y + €mas3e; ® e3; THE PREDICTED RATIO AMOUNTS TO 0.20. THE HIGH
SCATTER OF SUCH X-RAY EXPERIMENTS (STRAIN CONCENTRATION FAC-
TORS VARY BETWEEN 0.16 AND 0.7 [GUPTA ET AL., 2006, FUJISAKI AND
TADANO, 2006]; AND STRESS CONCENTRATION FACTORS VARY BETWEEN
1.5 AND 2.8 [BORSATO AND SASAKI, 1997, ALMER AND STOCK, 2005,
GUPTA ET AL., 2006]) AND THE FACT THAT THE VALUES OF GUPTA ET
AL. LIE AT THE LOWER END OF THE RANGE OF EXPERIMENTALLY ESTI-
MATED CONCENTRATION VALUES, SUPPORT THE STATEMENT THAT OUR
MODEL IS IN VERY GOOD AGREEMENT WITH X-RAY DIFFRACTION-BASED

CONCENTRATION ESTIMATES.

7.4 Ezrperimental sources for ‘universal” mechanical properties of bone’s ele-
mentary components: hydroxyapatite and molecular collagen

THE QUESTION MIGHT ARISE WHY WE PREFER TO TAKE KATZ AND UKRAIN-
CIK’S directly measured ISOTROPIC ELASTICITY VALUES FOR HYDROXYAP-
ATITE RATHER THAN THE ANISOTROPIC VALUES GIVEN IN THAT PAPER,

WHICH WERE RECENTLY RETRIEVED THROUGH MOLECULAR DYNAMICS SIM-
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ULATIONS OF MOSTAFA AND BROWN [2007]. THE REASON FOR THAT
IS THREEFOLD: (I) THE ANISOTROPIC PROPERTIES OF STOICHIOMETRIC
HYDROXYAPATITE HAVE NOT BEEN DIRECTLY MEASURED, BUT INFERRED
FROM THOSE MEASURED ON FLUORAPATITE AND FROM THE SIMILARITIES
IN THE CRYSTAL STRUCTURES OF FLUORAPATITE AND STOICHIOMETRIC
HYDROXAYAPATITE (SEE [KATZ AND UKRAINCIK, 1971] FOR DETAILS); (II)
BONE MINERAL IS NOT STOICHIOMETRIC HYDROXYAPATITE, BUT CHAR-
ACTERIZED BY IMPURITIES AND LOWER CRYSTALLINITY [EPPLE, 2001]
— HENCE, BY A MORE ISOTROPIC MATERIAL BEHAVIOR THAN THAT OF
STOICHIOMETRIC HYDROXYAPATITE; (III) THE EXTENT OF ANISOTROPY
OF HYDROXYAPATITE (SOMEWHERE BETWEEN THE ISOTROPIC AND THE
FLUORAPATITE-DERIVED ANISOTROPIC LIMIT CASES) DOES VIRTUALLY NOT
AFFECT THE OVERALL HOMOGENIZED ELASTIC BEHAVIOR OF THE EXTRAFIB-
RILLAR POROUS POLYCRYSTAL (WITH LARGELY DISORDERED MINERAL ORI-
ENTATIONS) OF FIGURE 3(C), AS WE HAVE SHOWN IN [FRITSCH ET AL.,

2006].

WHILE NUMEROUS STEERED MOLECULAR DYNAMICS SIMULATIONS AIMED
AT ESTIMATION OF THE STIFFNESS OF one single collagen molecule — or more
precisely, of a somehow characteristic portion of such a very long molecule
with an aspect ratio of 1:300 [LORENZO AND CAFFARENA, 2005, VESEN-
TINI ET AL., 2005A, BUEHLER, 2006B, 2007, GAUTIERI ET AL., 2008,
BUEHLER, 2008, GAUTIERI ET AL., 2009], THE 'MOLECULAR COLLAGEN’
PHASE INTRODUCED IN THE RVE OF WET COLLAGEN [FIGURE 3(A)] DOES
NEITHER RELATE TO A SINGLE COLLAGEN MOLECULE (NOR TO PORTIONS
OF SUCH A MOLECULE), BUT TO THE MATERIAL BUILDING UP THE COL-
LAGEN NETWORKS IN THE MICROFIBRIL [WHICH ARE BEAUTIFULLY DE-
PICTED IN THE ELECTRON DENSITY MAPS OF ORGEL ET AL. [2006], SEE
FIGURE 1(A)]. ACCORDINGLY, WE NEED EXPERIMENTAL ACCESS TO THE

STIFFNESS OF THE ENTITY OF COLLAGEN MOLECULES INCLUSIVE OF THE
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CROSSLINKS BINDING THEM TOGETHER, BUT EXCLUSIVE OF THE INTER-
MOLECULAR SPACE (WHICH IS MODELLED AS SEPARATE MATERIAL PHASE).
THEREFORE, WE REMEMBER LEES’S RESULT [LEES ET AL., 1984A, BONAR
ET AL., 1985, LEES, 1987], THAT DRIED COLLAGEN IS VERY DENSELY
PACKED, REDUCING THE INTERMOLECULAR SPACE TO A NEGLIGIBLE SIZE.
ACCORDINGLY, DRIED COLLAGENEOUS TISSUES ARE THE PRIME CANDI-
DATES FOR DELIVERING THE ELASTICITY OF THE MATERIAL PHASE '"MOLEC-
ULAR COLLAGEN’. SUCH TISSUES (NAMELY DRIED RAT TAIL TENDON) WERE
TESTED IN 3D BY CUSACK AND MILLER [1979]: THEY SENT WAVES WITH
WAVE LENGTHS OF SEVERAL HUNDRED NANOMETERS THROUGH. THE TIS-
SUES, AND THEREFORE MEASURED CONTINUUM PROPERTIES AT A SCALE OF
SEVERAL TENS OF NANOMETERS (RATHER THAN PROPERTIES OF ONE SIN-
GLE COLLAGEN MOLECULE). THESE EXPERIMENTS COME THE CLOSEST TO
OUR MODELING APPROACH, SO THAT THEIR RESULTS (GIVEN IN TABLE 1)
ARE THE BASIS FOR OUR MICROMECHANICAL MODEL, AS THEY WERE FOR
ITS PURELY (PORO-)ELASTIC PREDECESSORS [HELLMICH ET AL., 2004B,A,
HeLLMmicH AND ULM, 2005, FrITSCH AND HELLMICH, 2007, HELLMICH

ET AL., 2009].

7.5  Model limitations and potential model extensions

IT IS ALSO. APPROPRIATE TO STATE THE LIMITATIONS OF THE PROPOSED
MODEL: WHILE IT SATISFACTORY PREDICTS BONE STRENGTH VALUES FROM
TISSUE-SPECIFIC COMPOSITION, IT MAKES NO PREDICTIONS FOR TOUGH-
NESS. CONSEQUENTLY, IT MAY BECOME A WELL-SUITED TOOL FOR SAFETY
ASSESSMENT OF SKELETAL STRUCTURES IN HEALTH AND DISEASE (CON-
TRIBUTING TO ANSWER QUESTIONS SUCH AS ‘HOW FAR IS THE BONE MA-
TERIAL FROM FAILURE?’ OR ‘DO THE APPLIED LOADS INDUCE DANGER-
OUS FAILURE RISK?’), WHEREAS, IN ITS PRESENT FORM, IT DOES NOT

CONTRIBUTE TO ANSWER QUESTIONS LIKE ‘HOW LONG DOES THE MATE-
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RIAL SUSTAIN LOADS IN THE POST PEAK REGIME?’. POSSIBLE EXTENSIONS
OF THE MODEL IN THIS DIRECTION WOULD PROBABLY NEED TO EXPLIC-
ITLY CONSIDER ‘SLIDING-TYPE’ MECHANISMS RELATIVE TO THE MOLECU-
LAR COLLAGEN PHASE. IN A RATHER QUALITATIVE THAN STRICTLY QUAN-
TITATIVE WAY, A SIMILAR ‘SLIPPING AT THE INTERFACE BETWEEN HY-
DROXYAPATITE AND TROPOCOLLAGEN’ HAS RECENTLY BEEN SUGGESTED
AS TOUGHNESS-GOVERNING FEATURE IN MINERALIZED COLLAGEN FIBRILS
[BUEHLER, 2007]. CORRESPONDING SIMULATIONS WERE PERFORMED FOR
SOLVATED COLLAGEN MOLECULES, WHICH SEEMS TO UNDERLINE THE ROLE
OF WATER IN SUCH SLIPPING/GLIDING MECHANISMS, WHICH WAS KEY TO
THE PERFORMANCE OF THE MICROMECHANICS MODEL PRESENTED HEREIN.
TOUGHNESS-INCREASING GLIDING MECHANISMS HAVE BEEN ALSO SUGGESTED
IN THE FORM OF ‘SACRIFICIAL BONDS’ BETWEEN OR WITHIN COLLAGEN
MOLECULES [THOMPSON ET AL., 2001, FANTNER ET AL., 2006, HANSMA

ET AL., 2007].

POTENTIAL FUTURE MODELING OF INELASTIC BEHAVIOR OF THE MOLEC-
ULAR COLLAGEN PHASE ALSO EVOKES THE QUESTION ON THE BRITTLE-
NESS OF THIS PHASE (QUASI-BRITTLE EXPERIMENTAL RESULTS WERE RE-
FERRED TO IN SECTION 4.2): IT WAS SHOWN EXPERIMENTALLY [TORP
ET AL., 1975, BAILEY ET AL., 1998] AND COMPUTATIONALLY [BUEHLER,
2008] THAT COLLAGEN BRITTLENESS INCREASES WITH CROSSLINK DEN-
SITY, WITH A SOFT AND DUCTILE GEL AT THE LOWER CROSSLINK DENSITY
LIMIT. AN EVEN MORE DETAILLED MODEL FOR BONE’S POST-PEAK BEHAV-
IOR COULD ALSO DISTINGUISH BETWEEN INTERMOLECULAR CROSSLINKS
(BETWEEN DIFFERENT COLLAGEN MOLECULES) AND CROSSLINKS BETWEEN

DIFFERENT FIBRILS.
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8 Conclusion and Perspectives

We have proposed a first multiscale micromechanics model for bone strength,
extending earlier developments in the realm of elasticity [Hellmich et al.,
20044, Fritsch and Hellmich, 2007]. Thereby, the explanation of bone strength
across different species and ages required resolution of the mineral phase into
an infinite amount of non-spherical phases, and definition of an elastoplastic
failure criterion for the mineral crystals, reflecting layered water-induced duc-
tile sliding between these mineral crystals. The multiscale material model was
validated through independent experimental results: Tissue-specific _strength
values predicted by the micromechanical model on the basis of tissue-independent
(‘universal’) stiffnesses and strengths of the elementary components (mineral,
collagen, water), for tissue-specific composition data (volume fractions) were
compared to corresponding experimentally determined tissue-specific strength
values. Mean relative errors between stiffness experiments and model estimates
were well below 10%, which, given remarkable experimental scattering, is con-

sidered satisfactory.

This renders the model ready for supporting various future scientific as well

as application-oriented activities:

(1) As was already shown for elasticity [Hellmich et al., 2008], the model is
expected to be combined with computer tomographic images: Based on
average relations from X-ray physics, the voxel-specific X-ray attenuation
information would be translated to voxel-specific material composition;
and the latter would serve as input for the micromechanical model, which
would then deliver voxel-specific (anisotropic and inhomogeneous) stiff-
ness and strength values. In this way, the current activities concerning
the virtual physiological human [Taylor et al., 2002, Yosibash et al., 2007,
Viceconti et al., 2008], could be extended from the realm of elasticity to

that of full elastoplasticity, resulting in patient-specific fracture risk as-
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sessment of whole organs in both healthy and pathological conditions.
The proposed model could also support the design of tissue engineering
scaffolds, through predictions of the failure properties of bone tissue-
engineering scaffolds with tissue-engineered bone, by feeding recently de-
veloped multiscale representations [Bertrand and Hellmich, 2009] not only
with an elastic, but with the present elastoplastic micromechanical rep-
resentation of the extracellular bone material.

Since the proposed model is linked to the hierarchical organization of
bone and to its elementary components, it is ready to be combined with
most recent developments in theoretical and computational biochemistry
and biology, which quantify the well-tuned interplay of biological cells
via biochemical signaling pathways [Lemaire et al., 2004, Pivonka et al.,
2008] — giving as output the volume fraction of newly deposited or re-
sorbed extravascular bone, which may serve as input for the proposed
multiscale strength model. That is expected to open the way to transla-
tion of biochemical remodeling events to associated changes in mechanical

competence.
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Appendices
A Hill tensors P

A.1  Hill tensor for homogenization over wet collagen

ngﬁ refers to a cylindrical inclusion in a transversely isotropic matrix with
stiffness c..;, where the plane of isotropy is oriented perpendicular to the long
axis of the cylinder. The non-zero components of the symmetric tensor P

cyl
read as follows [Hellmich et al., 2004a, Levin et al., 2000]:

Pccyozl,nn = Pccgjll,2222 = 1/8 (5 Ceot,1111 — 3 Ceot,1122)/ Ceol, 1111/ P2 (A.1)
Pccyoll,1122 = Pccgjll,2211 = —1/8 (Ceot,1111 + Ceot1122)/ Ceol 1111/ D2, (A.2)
Pccyoll,2323 = Pccgj)ll,1313 = 1/(8 ceot,2323) , (A.3)
Pccyoll,1212 = 1/8 (3 Ceot,1111 — Ceot1122)/ Ceot, 1111/ D3, (A.4)

whereby

D, = Ceol,1111 — Ccol,1122 (A-5)

A.2  Hill tensors for homogenization over mineralized collagen fibril

ib . .
The non-zero components of [Pf;l follow from substitution of ‘ccijx’ by ‘C fg% Kl

ib . . . .
it for spherical inclusions in a

sph
transversely isotropic matrix follow from substitution of ‘CY;,,” by ‘C75 54, in

7
the following equations:

in (A.1)-(A.5). The non-zero components of P

1/t

0 _ 0 4,0 0 2 0 0 4 0

Psph,llll ~ 16 —(=5C71112" C3333 — 3CT1207°C3335 — 3CT 1927 C303
-1

0,2

+3CT1222 " C333 + 5CY111 2" Oy — 1007111 Coiaza® + 22 Cliy

+8C 823" Cazs — 6CH5550" + 40353 O35 + 6C1 59 Cza”

+5CT111 C303 + 5CT11127 Clagg — 4030307 Cli 35 + 6Ch505

—22%Ci33 — 3CT129C%303) (—1 + 27) /Dy da (A.6)
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1 1
0 _ po _ 0 0 0 0 2 0 2 ~0
Psph,1122 - Psph,2211 - TG 1(0111102323 - 2011110232333 + Cllllx 03333

+C1122C9393 — 2CP195C932° + C?122952C??333 + CP1117* C393 — CP11 2 Chass

+C?122$4CS323 - 0912251340:9333 202323 02323$ - 408323$2C?133
+4C5932 Oy 33 — 202 C'1133 +2$401133)(—1 +2%)/Dyda (A7)
0 0 1! 24,20 0
Pooh 133 = Psphzsi1 = 1 /1(—1 + 27)27(Ca393 + Cy33) /Dad (A.8)

1 1
0 _ 0 0 2 0 40 4,~0,2 0 4.0
Psph,2323 =16 1(401111023235” — 8093932  Cl133 — 227 (33 — Cli992" Cs33
0 4,0 0 4.0 0 ) 0 4,0
—8CT1117 Ca393 + 301110 Cga33 + 40711127 Cizg — 40719977 Clzg
0 6 0 0 6,0 0 6,0 0 4 0
+2C7 19027 Cly33 — 20111127 Clysg + Crioe® Chiq1 — 3CT1902" Cypy
+3CT195CT111 2% — 20711122 CY 35 + 2071992 Cly353 + 82°C05CF
1122411117 11112 L1133 11227 L1133 L L232301133
6,0 0 6 0 0 0 6,0 0 6 0 02 _4
=327 C1111C3333 + 427 Ca393C5333 + 4C71112° Caze3 + C1990° C3gss + 3C 171 @

—C’an +201133$ 30111133 +01111 CP19C11)/Drda (A.9)
0 1ty 50 0 2 0
Py 3333 = 2/, 27(2°Ca303 — Cyipy 2™ + Chyq1)/Dadx (A.10)
whereby
0,2 40 0,2 60 0 02 4 02 ~0 2 02 20
Dy = —2C {117 C3333 + 2053931° C3335 — 407111 Coog1™ — 3CT 171 Cg3037” + C11127Clgas +

and

4 0,2 6,0
2C11110232333 202323$ C'1133 011110113333 +2C11110113333 + 4053532 Cl33
6 4 6,0
2011220113395 + 2C232333' C1133 + 3C111133 02323 + C1122C1133$ 0111133 3323
2 s 4 , 2
+201111$ C'2323 + 01111$ 03333 0111101133x - 40232:@ 01133 + 0112201133x
0 0 0 4,0 0 0 2 ~0 0
0111102323 011220111102323 - anﬂ 0111103333 + 40711177 Ca393CT133 — 20711177 C393CT 133
0 0 2 0 0 0 6,0 0 0 6 0 0
—40112233 0232301133 + 20719977 Co393C 133 + 20719977 Co393CT 133 — 20711177 Ch393CT 133
-3¢0 600500 %00 4 2CY, 0 C 109,00 — CV,, O 109, — 3C%,,,CY 400
1111% C23230L 3333 1122411117 U333 11224232327 L3333 1122411117 U233
— 11220111127 Cz33 + 3CT120C7111 Cososa? + 3CT111 O35 Cllzs + CF002°CYy 1, C
1122411117 L3333 112241111 V23238 11114232327 L3333 11227 L1111 02323
0 6 0 0
+C11227" C9303C5333 (A.11)

_ o0 4,~0 0 4,~0 0 4.0 0 20 0 0 2

Dy = 2053937  Cly33 + Cs937 Cgg33 + C11117" Cg393 — 20539377 Cly33 — 207111 Cg393
4 0 4,0 0 2 0

+C1111C9393 + @ 01133 Ci1112"C333 — 01133 + Cr1112°C3333 (A.12)
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A.8  Hill tensors for homogenization over extrafibrillar space

IPsph, the Hill tensor for a spherical inclusion in an isotropic matrix of stiffness

C3F91 is of the form [Eshelby, 1957, Zaoui, 1997]

esh,e SCSII,—1
P, =Sor C2f , (A.13)
Si;}ﬁ ef_aeSfCSIIJ] + /gscsn (A.14)
with
— 3 kscsn
Qef T3 ]SOSTT | 4 1, SOSTT
sesir_ 6 ( kscsn +9 uscsn) N
ef (3 k,SCSH + 4,uscsn) ( -15)
[Pcyl, the Hill tensor for a cylindrical inclusion in an isotropic matrix, is of the
form
Peh = S €O (A.16)

esh

The non-zero components of the Eshelby tensor SgJ

corresponding to cylin-

drical inclusions read as

cyl, 1111 — ~eyl,2222 — 8(]. . SCSII)
f

. . 14+ 4VSCSII
Scyl,1122 = Scyl,2211 8(1 SCSII)
Vef

VSCSII
Sesh — Sesh — ef

cyl,1133 cyl,2233 2(1 - foCSII)
Sesh __ qesh __ qesh o Sesh _
cyl,2323 T Meyl,3232 T Meyl, 3223 T Meyl, 2332 T
1

esh esh esh esh o
Scyl 3131 — Scyl 1313 — Scyl 1331 — Scyl,3113 - Z

3 — 4I/SfCSII
esh __ qesh __ qesh __ qesh o e
Scyl,1212 - Scyl,2121 - Scyl,2112 - Scyl,1221 - 8(1 . VSCSII) (A17)
ef
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where principal directions 1, 2, and 3 follow Figure 3, and with v as

Poisson’s ratio of the extrafibrillar space,

3]{;@5}0511 _ 2/J“§fCSII
Vef: 6k§FSII+2M§fSII (A18)

Following standard tensor calculus [Salencon, 2001], the tensor components
of I]Digl(ﬁ, ¢), being related to differently oriented inclusions, are transformed

into one, single base frame (e;, €5, €3), in order to evaluate the integrals in

Eq. (27).

A.4  Hill tensor for homogenization over extracellular bone matrix

I]Dig;l, the Hill tensor for a cylindrical inclusion in an isotropic matrix, is given

in Eq. A.16.

A.5 Hill tensor for homogenization over extravascular bone material

excel

The non-zero components of P{7i¢ for spherical inclusions in a transversely

isotropic matrix follow from substitution of ‘c{;,,” by ‘CHZL/T, " in Eqgs (A.6)-

excel,ijkl
(A.12).
A.6  Hill tensor for homogenization over cortical bone material

ExVAS

The non-zero components of P¢/** for cylindrical inclusions in a transversely

isotropic matrix follow from substitution of ‘cee i1 by ‘CMIIL, > in Eqs (A.1)-

exvas,ijkl
(A.5).
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Nomenclature

Ceol

Ceol,ijkl

C

MTIV
Ccort

SCSII
Cer

MTII
(Demcel

MTIII
(De:cvas

scs
Ctin

CHA

q:’l)(],S

MT
C wetcol

C hom

(DO

side length of reduced cross section of a bone specimen

fourth-order influence tensor

constant in the linear relationship between p....; and fH A
fourth-order strain concentration tensor of phase r

width of a volume of one rhomboidal fibrillar unit

constant in the linear relationship between pezce; and fra
fourth-order stiffness tensor of molecular collagen

component of fourth-order stiffness tensor of molecular collagen
constant in the linear relationship between pegce; and dg

homogenized fourth-order stiffness tensor of cortical bone material
homogenized fourth-order stiffness tensor of extrafibrillar space
homogenized fourth-order stiffness tensor of extracellular bone matrix
homogenized fourth-order stiffness tensor of extravascular bone material
homogenized fourth-order stiffness tensor of mineralized collagen fibril
fourth-order stiffness tensor of hydroxyapatite

fourth-order stiffness tensor of intercrystalline space

fourth-order stiffness tensor of intermolecular water

fourth-order stiffness tensor of an inclusion embedded in a matrix
with stiffness C°

fourth-order stiffness tensor of lacunae

fourth-order stiffness tensor of the matrix phase

fourth-order stiffness tensor of phase r

fourth-order stiffness tensor of Haversian canals

homogenized fourth-order stiffness tensor of wet collagen
homogenized fourth-order stiffness tensor

fourth-order stiffness tensor of an infinite matrix surrounding an
ellipsoidal inclusion

characteristic length of the inhomogeneities within an RVE

44



E,
Er,na Er,n-{—l

P P
E Er,n-{—l

r,n?

EP

E°?
E°
€1,€2,€3
€y, €4 E
fr(or)
feo

Jeo

fer
feweer
Jewvas
Fra

.fHA

fHA

diameter of reduced cross section of a bone specimen

neutron diffraction spacing between collagen molecules

diameter of a bone specimen

1/5 of length of a volume of one rhomboidal fibrillar unit

constant in the linear relationship between peyc.; and dg

second-order ‘macroscopic’ strain tensor

second-order ‘macroscopic’ strain tensor of phase r

second-order ‘macroscopic’ strain tensors of phase r for load steps n
and n + 1, respectively

second-order ‘macroscopic’ plastic strain tensors of phase 7 for load
steps n and n + 1, respectively

k-th approximation of second-order ‘macroscopic’ plastic strain tensor
of phase r for load step n + 1

second-order ‘macroscopic’ trial strain tensor of phase r for load
stepn +1

second-order ‘macroscopic’ plastic strain tensor

uniform ‘macroscopic” plastic strain in matrix of a matrix-inclusion problem
uniform ‘macroscopic’ strain at infinity of a matrix-inclusion problem
unit base vectors of Cartesian reference base frame

unit base vectors of Cartesian local base frame of a single crystal of
hydroxyapatite within extrafibrillar space

boundary r of elastic domain of phase r in space of microstresses
volume fraction of collagen within an RVE Vg

volume fraction of molecular collagen within an RVE f/wetcol

volume fraction of extrafibrillar space within an RVE V.,

volume fraction of extracellular bone matrix within an RVE V. pas
volume fraction of extravascular bone material within an RVE V.
volume fraction of mineralized collagen fibril within an RVE V...
volume fraction of hydroxyapatite within an RVE Vg

volume fraction of hydroxyapatite within an RVE szb
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f HA
fi.0
i
fom
fiac
forg
fi
foas
Fueteo

HA

ls

l

Ceort
ley
Cegcel
Corvas
Crip
Cuetcol
M

N

IS

RVE

volume fraction of hydroxyapatite within an RVE V, ¥

volume fraction of water within an RVE V,,.

volume fraction of intercrystalline space within an RVE V,;

volume fraction of intermolecular water within an RVE f/wetcol
volume fraction of lacunae within an RVE V. pus

volume fraction of organic matter within an RVE V,g..;

volume fraction of phase r

volume fraction of Haversian canals within an RVE V.

volume fraction of wet collagen within an RVE szb

hydroxyapatite

fourth-order identity tensor

volumetric part of fourth-order identity tensor I

deviatoric part of fourth-order identity tensor I

bulk modulus of hydroxyapatite

bulk modulus of water

characteristic lengths of geometry or loading of a structure built up by
the material defined on the RVE

length of a bone specimen

characteristic length of an RVE

characteristic length of an RVE V,,,; of cortical bone material
characteristic length of an RVE V, ¢ of extrafibrillar space
characteristic length of an RVE V., of extracellular bone matrix
characteristic length of an RVE Vi.svas Of extravascular bone material
characteristic length of an RVE \u/fib of mineralized collagen fibril
characteristic length of an RVE ‘O/col of wet collagen

index denoting a material phase being the matrix

orientation vector aligned with longitudinal axis of hydroxyapatite needle
number of material phases within an RVE

orientation vector perpendicular to N

representative volume element
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r index denoting a material phase

PY . fourth-order Hill tensor characterizing the interaction between the inclusion
inc and the matrix C°

P° fourth-order Hill tensor characterizing the interaction between the phase r
and the matrix C°

sgn(.) signum function of quantity (.)

S fourth-order Eshelby tensor for spherical inclusions

Veol volume of a single collagen molecule

Vfip volume of one rhomboidal fibrillar unit

f/col volume of molecular collagen within an RVE f/wetcol

Vieort volume of RVE ‘cortical bone material’

/. f volume of RVE ‘extrafibrillar space’

A f volume of extrafibrillar space within an RVE V...

V. veel volume of RVE ‘extracellular bone matrix’

~e:ccel volume of extracellular bone matrix within an RVE f/emas

‘szas volume of RVE ‘extravascular bone material’

Vervas volume of extravascular bone material within an RVE V_,,¢

Vfib volume of RVE ‘mineralized collagen fibril’

Vfib volume of mineralized collagen fibril within an RVE V..

VH A volume of hydroxyapatite within an RVE Vfib

Via volume of hydroxyapatite within an RVE V, ¥

Vie volume of intercrystalline space within an RVE V, ¥

‘o/im volume of intermolecular water within an RVE ‘o/weml

V}ac volume of lacunae within an RVE f/exms

Vias volume of Haversian canals within an RVE V.,

‘o/weml volume of RVE ‘wet collagen’

Vwetcol volume of wet collagen within an RVE szb

WERt | weight fraction of hydroxyapatite at the scale of cortical bone material

W Fgreel | weight fraction of hydroxyapatite at the extracellular scale

Wt | weight fraction of organic matter at the scale of cortical bone material
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W Femcel

ok
AE, 1
AN
AEY,

Aer iy
A)\HA,n-i-l
€col

Eef

Eexcel
€ezvas
Erib

EH AV

D p
Env En-l—l
€y

Er

weight fraction of organic matter at the extracellular scale

ratio between uniaxial tensile strength and shear strength of pure HA
incremental second-order ‘macroscopic’ strain tensor of phase r for load
stepn +1

incremental second-order ‘macroscopic’ plastic strain tensor of phase r
for load step n + 1

k-th approximation of incremental second-order ‘macroscopic’ plastic
strain tensor of phase r for load step n + 1

incrmental plastic strain of n + 1-st load increment

incrmental plastic multiplier of n 4 1-st load increment

second-order strain tensor field within molecular collagen

second-order strain tensor field within an RVEV, ¢ of extrafibrillar space
second-order strain tensor field within an RVE V.,..; of extracellular
bone matrix

second-order strain tensor field within an RVE V,,.. of extravascular
bone material

second-order strain tensor field within an RVE \u/fib of mineralized
collagen fibril

second-order strain tensor field within oriented hydroxyapatite

needles in extrafibrillar space

second-order strain tensor field within an inclusion embedded in matrix C°
second-order plastic strain tensor field within an inclusion embedded

in matrix C°

tensor component of difference (€mapomni1 — Efrapsn)s given

in a local base frame

second-order plastic strain tensor field within the matrix phase
second-order strain tensor fields for load steps n and n + 1, respectively
second-order ‘microscopic’ strain tensor field within phase r

incremental ‘microscopic’ second-order strain tensor field within phase r
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ep second-order ‘microscopic’ plastic strain tensor field within phase r

glrial second-order ‘microscopic’ trial strain tensor field within phase r
Ewetcol second-order strain tensor field within an RVE f/col of wet collagen
A incremental plastic multiplier

U latitudinal coordinate of spherical coordinate system

0 integration variable, # =0...7

JLH A shear modulus of hydroxyapatite

HH>0 shear modulus of water

Peol mass density of molecular collagen

Peort mass density of cortical bone material

Pexcel mass density of the extracellular bone matrix

PHA mass density of hydroxyapatite

PH>0 mass density of water

Porg mass density of organic matter

O ol second-order stress tensor field within molecular collagen

ot uniaxial tensile or compressive strength of molecular collagen

O second-order stress tensor field within an RVE V., ¢ of extrafibrillar space
Lo S second-order stress tensor field within an RVE V,,..; of extracellular

bone matrix

O crvas second-order stress tensor field within an RVE ‘mes of extravascular
bone material

O fiv second-order stress tensor field within an RVE Vfib of mineralized
collagen fibril

O H A, second-order stress tensor field within oriented hydroxyapatite needle

in extrafibrillar space

oY normal component of stress tensor o a9, in needle direction
Uﬁﬁ shear component of stress tensor o g9, in planes orthogonal to the

needle direction

oo mi1 | second-order trial stress tensor field within oriented HA needle for
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ult,s

cort

erp

qu{/Lef

load step n + 1

uniaxial shear strength of pure HA

uniaxial tensile strength of pure HA

second-order stress tensor field within phase r

k-th approximation of stress field within phase r

second-order stress tensor field within an RVE ‘o/;ol of wet collagen
second-order ‘macroscopic’ stress tensor

second-order stress tensor within an RVE V,,,; of cortical bone material
model-predicted uniaxial strength of cortical bone material
experimental uniaxial strength of cortical bone material
longitudinal coordinate of spherical coordinate system

integration variable, ¢ = 0..27

relative amount of hydroxyapatite in the extrafibrillar space
longitudinal coordinate of vector n

first-order tensor contraction

second-order tensor contraction

dyadic product of tensors
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Figure Captions

Figure 1: Multiscale view of bone structure, with key physical effects con-
sidered in micromechanics representation of Figure 3: (a) wet collagen; re-
produced from [Orgel et al., 2006], Copyright National Academy of Sciences,
U.S.A.; (b) mineralized collagen fibril; schematic sketch after [Landis et al.,
1993]; (c) extrafibrillar porous polycrystal; (d) extracellular bone matrix; re-
produced with kind permission from Spinger Science+Business Media: [Prostak
and Lees, 1996], Fig. 5; (e) extravascular bone matrix [zoomed out of image
(f)]; (f) cortical bone; reprinted from [Lees et al., 1979a], with permission from

American Institute of Physics, (©)1979.

Figure 2: Multistep homogenization: Properties of phases (with characteristic
lengths of d and ds, respectively) inside RVEs with characteristic lengths of
¢ or U5, respectively, are determined from homogenization over smaller RVEs

with characteristic lengths of ¢, < d and /3 < ds, respectively.

Figure 3: Micromechanical representation of bone material by means of a six-

step homogenization procedure.

Figure 4: Cylindrical (needle-like) HA inclusion oriented along vector N and
inclined by angles ¥-and ¢ with respect to the reference frame (e;, e,, €3);

local base frame e, ey, €, 18 attached to the needle.

Figure 5: Schematic representation of the loading surfaces f; = fi ma,9 and
fo = fa2,mApv, for a specific needle family with orientation given through ¢ and

¥, in the oy y-0N, stress space.

Figure 6: Comparison between model predictions and experiments at the
macroscopic scale [cortical bone material, Figure 3(f)]. Mean and standard
deviation are depicted for experimental tensile strength (dark color) and ex-

perimental compressive strength (light color).
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Figure 7: Plastic mechanisms associated to differently oriented crystals in ex-
trafibrillar space, provoked by uniaxial tensile loading of cortical bone material
(human femur, see Table 3, line 1): (a) normal stress and (b) shear stress; (c)

value of yield function; (d) normal plastic strain and (e) shear plastic strain.

Figure 8: Plastic mechanisms associated to differently oriented crystals in ex-
trafibrillar space, provoked by uniaxial compressive loading of cortical bone
material (human femur, see Table 3, line 1): (a) normal stress and (b) shear
stress; (c¢) value of yield function; (d) normal plastic strain and (e) shear plastic

strain.

Figure 9: Macrosopic stress-strain diagram for human femur in uniaxial tension

and compression.

Figure 10: Model predicted macroscopic uniaxial tensile (a) and compressive
(b) strength as function of vascular porosity fsas, for fga = 46% (human

femur).

Figure 11: Model predicted macroscopic uniaxial tensile (a) and compressive
(b) strength as function of ultrastructural mineral volume fraction fg4, for

different vascular porosities fyq-
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Table Captions

Table 1: ‘Universal’ (tissue and location-independent) isotropic (or trans-

versely isotropic) phase stiffness values.
Table 2: ‘Universal’ (tissue and location-independent) phase strength values.
Table 3: Tissue-specific composition values.

Table 4: Specimen geometry, employed testing machines, and strain rate of
the tensile and compressive tests, see also Table 5. dg is the diameter of the
sample with length g, ‘rcs’ stands for reduced cross section with diameter d.,

or side length a,.

Table 5: Tissue-specific experimental uniaxial tensile and ecompressive mean

strength values. n denotes the number of samples tested.

Table 6: Predicted and experimental strength values for different tissues tested

in uniaxial tension.

Table 7: Predicted and experimental strength values for different tissues tested

in uniaxial compression.
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5. Table 1

Phase Bulk Shear Experimental source
modulus modulus
k |GPa] 1 [GPa)
Hydroxyapatite kga =826 wEA =449 [Katz and Ukraincik, 1971]
Water containing
non-collagenous
organics or osteocytes | kg,o = 2.3 pH0 =0
Cijkl Cijkl
[GPa] [GPa

Collagen

Ceol,3333 = 17.9

Ceol,1111 = 11.7

Ceol, 1133 = 7.1
Ceol,1122 = 5.1

Ceol,1313 = 3.3

[Cusack and Miller, 1979]




5. Table 2

ACCEDTED MANLISCRIDT

Phase Uniaxial tensile | Uniaxial shear Experimental source

strength [MPa] | strength [MPa]

Hydroxyapatite ‘ a}‘llzt =52.2 a}‘llzs =80.3 ‘ [Akao et al., 1981, Shareef et al., 1993]
Collagen ‘ agﬁ = 144.7 ‘ [Gentleman et al., 2003, Lees et al., 1984]




5. Table 3

tissue peort WEFgRt  WESSrt fua Feol ds friv  fua fra feol
[g/em?®]  [] [l [ [ [nm] [ [ [ [
given given given Eqgs. (39), Egs. (40)- Egs. (42), Eq. Egs. (50), Egs. (50), Egs. (53),
(42), (43) (42), (44) (49) (48) (52) (51) (54)
human femur  1.98% 0.655% 0.227¢ 0.46 0.30 1.25 0.53 0.65 0.28 0.42
human tibia 1.98% 0.659¢ 0.228% 0.46 0.30 1.25 0.53 0.66 0.28 0.42
bovine femur 2.105% 0.717¢ 0.180¢ 0.53 0.25 1.23 0.44 0.71 0.30 0.36
bovine tibia 2.02¢ 0.667¢ 0.209¢ 0.47 0.28 1.24 0.49 0.66 0.28 0.39
equine radius  2.015° - - 0.47¢ 0.27¢ 1.25 0.48 0.65 0.28 0.38

o

o

experimental data: [Lees, 1987], Table 2

experimental data: [Riggs et al., 1993]

calculated with Eqs. (45)-(47)



5. Table 4

literature source specimen geometry machine strain rate
[mum] (1/s]

[Burstein et al., 1972] cylindrical (dg=5) with rcs not given not given
(des=2.9)

[Burstein et al., 1975] cuboidal (~15x5x5) with rcs (a=2) not given not given

[Burstein et al., 1976] cuboidal (~15x5x5) with rcs (a=2) not given 0.05

[Cezayirlioglu et al., 1985]  cuboidal (4-5x4x45) with rcs Instron 1230 0.01-0.06
(des=2.5-3)

[Currey, 1959] cylindrical (l5=28) not given not given
with res (des=1.9-2.7)

[Currey, 1975] cuboidal with rcs (acs=1.8) Instron table model 1.3x1074-0.16

[Currey, 1990] cuboidal with rcs (acs=1.8) Instron 1122 0.2

[Currey, 2004] cuboidal with rcs (acs=1.8) Instron 1122 0.2

[Dickenson et al., 1981] cylindrical (1=30, dg=5.5) hydraulic servo-controlled  not given
with res (des=2.4)

[Hellmich et al., 2006] cylindrical (1g=10, dg=5) LFM 150, Wille 0.001

Geotechnik

[Kotha and Guzelsu, 2002]  cuboidal with rcs (2x5) Instron 0.0005

[Lee et al., 1997] cylindrical (=40, dg=4.5) Instron 1331 0.5
with res (des=3)

[Martin and Ishida, 1989] cuboidal (45x18x5) with rcs Instron 1122 0.004
(acs=5)

[McCalden et al., 1993] cuboidal (32x5x5) with rcs J.J. Lloyd M30K 0.03
(acs=2)

[Reilly and Burstein, 1974]  cuboidal (x15x5x5) with rcs (a=2) not given 0.05

[Reilly and Burstein, 1975]  cuboidal (x15x5x5) with rcs (a=2) not given 0.02-0.05

[Riggs et al., 1993] cuboidal (g <10) with rcs (tension), Instron 6025 0.001
cubes (lg=8, compression)

[Sedlin and Hirsch, 1966] cuboidal (~50x5x2) with rcs Instron TT-CM not given




5. Table 5

literature source tissue tension compression

n Sy Teop®
[MPal] [MPa]

[Burstein et al., 1972] bovine femur 25 172 ? 283

[Burstein et al., 1975] bovine tibia 10 188

[Burstein et al., 1976] human femur 178 132 95 192

[Burstein et al., 1976] human tibia 123 155 38 192

[Cezayirlioglu et al., 1985] human femur 37 136 19 206

[Cezayirlioglu et al., 1985] human tibia 13 158 9 213

[Cezayirlioglu et al., 1985] bovine femur 27 162 25 217

[Currey, 1959] bovine femur 46 106.0

[Currey, 1975] bovine femur 35 124.5

[Currey, 1990] bovine femur 4 148

[Currey, 1990] bovine tibia 4 146

[Currey, 2004] human femur 4 165.7

[Currey, 2004] bovine femur 10 142.4

[Dickenson et al., 1981] human femur 29 117

[Hellmich et al., 2006] bovine tibia 3 180

[Kotha and Guzelsu, 2002]  bovine femur 9 106.6

[Lee et al., 1997] human tibia 11 77.0

[Martin and Ishida, 1989] bovine femur 10 112

[McCalden et al., 1993] human femur 38 91.6

[Reilly and Burstein, 1974]  human femur 101 1285 95 1925

[Reilly and Burstein, 1974]  bovine femur 11 133.1 10 249.6

[Reilly and Burstein, 1974]  bovine tibia 152 228

[Reilly and Burstein, 1975]  human femur = 21 135 20 205

[Reilly and Burstein, 1975]  bovine femur 3 144 3 272

[Riggs et al., 1993] equine radius 40 161 13 185

[Riggs et al., 1993] equine radius 40 105 13 217

[Sedlin and Hirsch, 1966] human femur 52 87.5




5. Table 6

AMUSCRIPT
tissue model | experiments
ult,t ult,t
z:cort 2693137

meantstd.dev.

[MPa] | [MPa]

human femur | 122.59 | 122.59 £ 17.28
human tibia 124.82 | 149.43 + 20.69
bovine femur | 147.69 | 132.77 4+ 24.75
bovine tibia 125.00 | 164.00 + 18.33
equine radius | 118.91 | 133.00 4+ 28.18




5. Table 7

ACCEPTED MAMUSCRIPT

tissue model experiments
ult,c ult,c
z:cort EEZP

mean-tstd.dev.

[MPa] [MPa]

human femur | -187.60 | -194.50 4 5.00
human tibia -190.84 | -196.02 £ 8.35
bovine femur | -246.57 | -231.28 4+ 20.59
bovine tibia -197.83 | -214.91 +22.42
equine radius | -190.19 | -201.00 + 10.81






