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�

Abstract Group selection theory has a history of controversy. After a period of

being in disrepute, models of group selection have regained some ground, but not with-

out a renewed debate over their importance as a theoretical tool. In this paper I o�er

a simple framework for models of the evolution of altruism and cooperation that allows

us to see how and to what extent both a classi�cation with and one without group

selection terminology are insightful ways of looking at the same models. Apart from

this dualistic view, this paper contains a result that states that inclusive �tness cor-

rectly predicts the direction of selection for one class of models, represented by linear

public goods games. Equally important is that this result has a �ip side: there is a

more general, but still very realistic class of models, including models with synergies,

for which it is not possible to summarize their predictions on the basis of an evaluation

of inclusive �tness.

Keywords cooperation, altruism, group selection, inclusive �tness, linear and non-

linear public goods games.
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1 Introduction

It is safe to say that there is no consensus concerning the value of group selection

models for the explanation of the evolution of altruism and cooperation. A history of

disagreement has made the question evolve from whether group selection is probable or

even possible (Allee, 1951, Wynne-Edwards, 1962, Williams, 1966) to whether group

selection models help us understand things one would not understand without them

(Sober & Wilson, 1995, Wilson & Wilson, 2007, Traulsen & Nowak, 2006, Lehmann,

Keller, West & Roze, 2007, Killingback, Bieri & Flatt, 2006, Grafen, 2007, and West,

Gri�n & Gardner, 2007a,b, 2008). In order to show that di�erent views need not be

incompatible, I will begin with a simple but very general framework for models of the

evolution of altruism and cooperation. This general framework allows us to see how

and to what extent both an approach with and an approach without group selection

terminology are insightful ways of looking at the same models. It also allows for a

formal proof of a theorem that states that the sign of the inclusive �tness determines

the direction of selection, if the model translates to a linear public goods game. The

requirement of linearity turns out to a necessity; a simple example is given of a non-

linear public goods game for which inclusive �tness points in the wrong direction. While

a two-player situation still allows for (adjusted) formula’s that do use relatedness, a

slightly less simple example shows that with groups larger than two, relatedness can be

the wrong population characteristic to look at. This implies that the prediction of the

model cannot be given in a formula with costs, bene�ts and relatedness only.

There are at least three reasons why this formalism is useful. First of all it gives a

formal framework for a dualistic view. This can help avoid unnecessary disagreements

and helps bring out the value of both views. Second, although the �rst counterexample

for Hamilton’s rule failing is not new (see for similar counterexamples Wenseleers, 2006,

and Gardner, West & Barton, 2007, which in turn relate to work by Grafen, 1979, and

Day & Taylor, 1998), we should realise that the results in the literature concern 2 by

2 games. When we think of group selection, we tend to think of groups of any size,

not just size 2. Also when we for instance think of the transition from single-celled to

multicellular life, we tend to think of multicellular life as organisms typically consisting

of more than 2 cells. An extension from groups of 2 to groups of � - or from 2 by 2 to

� by � games - and a formal proof for when Hamilton’s rule does and when it does not

work, therefore are quite useful here. Because this goes against the intuition provided

in Hamilton (1975) for why inclusive �tness should work, this paper also provides an

2



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

intuition for why it only does so for models that translate to linear public goods games,

and not for models that translate to non-linear ones. The proof of the theorem also

provides a general recipe for determining the direction of selection if Hamilton’s rule

fails due to non-linearity in the public goods game.

The third reason why this formalism is useful is at �rst perhaps a bit more di�cult

to see. In the literature, relatedness is regularly de�ned as a statistical property. In

modelling, that would in principle be inappropriate; in a theoretical model, relatedness

should be a probabilistic property, while statistics is only involved in testing of models

or estimation of parameters using actual data. In the formal setup here, relatedness is a

proper di�erence in conditional probabilities that is to follow from model assumptions.

It fortunately does match with what we think relatedness should be in most models,

and therefore one could see it as a formal justi�cation for those cases. The formal setup

on the other hand also helps understand why in some models with groups larger than

2 relatedness is the wrong population characteristic to look at. It thereby helps us

formalise and sharpen our interpretation of relatedness.

2 Public goods games

Public goods games can be seen as the mother of all cooperation models.1 Therefore it

is useful to �rst properly de�ne and picture how di�erent situations in which selection

takes place translate to di�erent public goods games. In a selection process concerning

a trait that has an e�ect on the carrier itself as well as on other members of the group

it is in, we can write these e�ects as payo�s in a game. If the e�ects of di�erent group

members having the trait simply add up, then this results in a linear public goods game,

in which the payo�s, or (expected) numbers of o�spring, can be described as follows.

In a group that consists of � individuals, � of which have the trait, payo�s for bearers

(� ) and for non-bearers (�) of the trait are, respectively

(1)

��
� � (�� �� 	) = 1 + 
 (	) · �� � (	)

� (�� �� 	) = 1 + 
 (	) · �

Here, 	 � [0� 1] represents the frequency of the trait in the entire population. This

description matches models in for instance Hamilton (1975), Nunney (1985) and Wilson

1 In an e-mail discussion group on the topic of multilevel selection theory, Michael Doebeli described

public goods games as the mother of all cooperation models. I thought that was a nice description, so

I borrowed it here.
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& Dugatkin (1997) and is only a little more general in that it allows for 
 (	) and � (	)

to depend on the frequency of the trait in the entire population. One could also make

them depend on other overall population characteristics without changing the analysis.

The restriction that (1) imposes on the payo� function � can also be seen as a natural

generalization of “equal gains from switching” as used in Traulsen, Shoresh & Nowak

(2008), Wild & Traulsen (2007) and de�ned in Nowak & Sigmund (1990); see also

Section 5 for a discussion.

Figure 1 graphically describes behaviours for this class of models. This �gure is

perhaps not that easy to read at �rst, but I �rmly believe it is very much worth the

e�ort, as it embraces a wide variety of models.

SPITEFUL
BEYOND REASON 

SPITEFUL SELFISH 
(INEFFICIENT)

SELFISH 
(EFFICIENT)

SELECTED AGAINST IN ABSENCE OF  
ASSORTATIVE GROUP FORMATION 

SELECTED FOR IN ABSENCE OF
ASSORTATIVE GROUP FORMATION

SELECTED FOR WITH ASSORTATIVE 
GROUP FORMATION 

SELECTED AGAINST WITH 
ASSORTATIVE GROUP FORMATION 

COMPLETE CONFLICT OF INTERESTS

MUTUALISTIC STRONGLY 
    ALTRUISTIC 

OVERLY 
ALTRUISTIC 

WEAKLY
    ALTRUISTIC

EFFICIENTINEFFICIENT 
COMPLETE ALIGNMENT OF INTERESTS

b

c

Figure 1: Fitness e�ects are represented by net costs c to the acting individual on the
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horizontal axis and aggregate bene�ts to the other group members b on the vertical

axis. Please note that net costs to the acting individual are positive to the left and

negative to the right, so that the �rst quadrant consists of traits that have a positive

�tness e�ect both on the acting individual itself and on the other group members.

Any choice for 
 (	) and � (	) can be associated with a point in Figure 1, which represents

the �tness e�ects of the behaviour. The horizontal axis represents the net e�ect on the

�tness of the individual itself, while the vertical axis represents the aggregate e�ect on

all other group members. From equation (1) it therefore follows that c = � (	)�
 (	) and

b = (�� 1) ·
 (	), which makes c the net cost of the behaviour to the acting individual,

and b the aggregated bene�ts to the others. Behaviour in individual interactions is

subsumed in this setting, because groups of any size are allowed, including groups of

size 2. The origin in Figure 1 is naturally associated with not displaying the behaviour

— which can be seen as a status quo.

The setting does not restrict the behaviour to whole-group or others-only traits;

all one has to do in order to translate a whole group trait to an others-only setting is

shift the bene�ts that accrue to the actor as a bene�ting member of the group from

the aggregate group bene�t to the actor itself, as we did above (see also Pepper, 2000).

The �gure also allows for frequency dependence; if �tness e�ects on the actor and on

the rest of the group change with the frequency of the trait, then the point that depicts

the di�erence between having the trait and not having it — or performing the behaviour

and not performing it — simply shifts during selection as illustrated in Figure 1.

In this �gure we can discern a few characteristic situations. The horizontal axis

represents traits that only have an e�ect on the acting individual itself, and not on

other group members. The vertical axis represents traits that only have an e�ect on

other group members, and not on the acting individual itself. The diagonal that runs

from the top-left to the bottom-right corner separates the traits that increase the ag-

gregated �tnesses of all group members (right-up from the diagonal) from the traits

that decrease the aggregated �tnesses of the group (left-down). A setting in which the

reproductive success of all group members coincides, makes all possible behaviours map

onto the diagonal that runs from bottom-left to top-right. In Figure 1, which pictures a

situation with groups of size 2, and hence represents interactions between individuals,

this diagonal makes a 45� angle (or ��4) with the horizontal axis. Groups of larger size

result in larger angles; because the vertical axis represents the aggregate �tness e�ect
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on the other group members, a group of size � would require a line through the origin

that makes an angle of arctan (�� 1) with the horizontal axis in order to represent a

situation in which the interests of all group members are perfectly aligned. (The other

diagonal is the same for all group sizes).

We can also identify di�erent regions in this �gure with di�erent quali�cations of

behaviour. The entire top-right quadrant can be quali�ed as mutualistic behaviour,

because �tness e�ects on both actor and recipients are positive. Such behaviour is also

regularly referred to as a by-product mutualism. Mutualistic behaviour from which

every recipient gains more than the actor does, is called weakly altruistic in Wilson

(1979, 1990); the �tness of the actor increases in absolute terms, but decreases relative

to the other individuals in the group. The top-left quadrant represents strongly altruistic

behaviour (see again Wilson, 1979, 1990), where behaviour for which the others gain

less than the actor loses, could be quali�ed as overly altruistic. Spiteful behaviours

map onto the bottom-left quadrant, where behaviour with which the actor even reduces

its own �tness relative to the recipients could be called spiteful beyond reason. The

sel�sh behaviour in the bottom-right quadrant can be divided in sel�sh behaviour that

is e�cient and sel�sh behaviour that is not, depending on whether or not the total

aggregated �tness e�ects — that is, the e�ect on the actor plus the e�ects on the recipients

— are positive or negative.

Whether or not we should expect a particular behaviour to be selected in a model

depends on the assumptions that are made concerning the composition of the groups.

If groups are formed randomly, then the vertical axis separates the behaviours that we

predict will be selected (right of the vertical axis) from the behaviours that we predict

will not be selected (left from it, see also Figure 3a). If groups are not formed randomly,

but assortatively, then the line that separates behaviours that will be selected from be-

haviours that will not, will be tilted counterclockwise (see also Figure 3b. The idea of

such a line being tilted by assortative matching is also present in Wilson (1975) and,

in a di�erent setting, in Rousset (2004)). If groups are formed anti-assortatively, the

line will be tilted clockwise. How far it will be tilted, depends on what the assumptions

of the model imply for a population characteristic that we can write as a di�erence in

probabilities in a hypothetical chance experiment: P (� | � )�P (� | �). If we randomly

draw a member of the population, with all individuals having equal probability, and

then randomly draw another member of the same group, with all other group members

having equal probability, then P (� | � ) is the probability that this individual has the

trait, if the �rst has it too, and P (� | �) is the probability that this individual has
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the trait, if the �rst does not. For games that �t equation (1), this di�erence in prob-

abilities times the bene�ts on the vertical axis is the di�erence between the expected

bene�ts of a carrier and the expected bene�ts of a non-carriers (see Theorem 1 below,

which implies that this holds). The expression P (� | � ) � P (� | �) can be seen as a

generalized measure of relatedness, but it is helpful to �rst of all see it as a re�ection

of the assumptions of the model concerning the population- or interaction structure.

It is important to stress that this expression is not speci�c to any model; it embraces

whatever it is that is assumed to cause the distribution of carriers and non-carriers over

the groups. Section 6 contains a precise interpretation, including a reason why it is

appropriate to call it a generalized measure of relatedness.

If there is random group formation, then P (� | � ) � P (� | �) = 0, and the line

will just coincide with the vertical axis. A probability exercise in the appendix shows

that how much it can vary, depends on group size; complete assortment always leads

to P (� | � )� P (� | �) = 1, but anti-assortment cannot make this di�erence go below

P (� | � ) � P (� | �) = � 1
��1 , where � is the group size. The angle that the line

then makes with the vertical axis is arctan [P (� | � )� P (� | �)]. The two diagonals

in Figure 1 therefore not only represent models with, respectively, complete alignment

and complete con�ict of interests, but they also give the boundaries between which this

assortment-line can be tilted. This also implies that being overly altruistic or spiteful

beyond reason will never be favoured by selection.

3 A dualistic view on group selection models

Group selection of altruistic traits is described, for instance in Sober & Wilson (1998),

as a process where selective forces work at di�erent levels and in opposite directions.

Within groups, individuals that have the trait typically have a lower �tness than indi-

viduals that do not, so that within groups, selection is said to work against the trait.

Groups with a larger share of individuals that have the trait however typically grow

larger (or faster) than groups with a smaller share of individuals that have the trait.

Selection between groups therefore is said to work in favour of the trait. Or, in the

words of Wilson & Wilson (2007): “Sel�shness beats altruism within groups. Altruistic

groups beat sel�sh groups. Everything else is commentary.”

In Figure 2 these two opposing forces are visualized. The �rst characteristic — within

groups, carriers of the trait do worse — implies that the �tness e�ects lie up-left from the

“complete alignment of interests” line. The second characteristic — groups with many
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carriers of the trait do better — implies that the �tness e�ects lay up-right from the line

that separates e�cient from ine�cient behaviours. This implies that such models lie in

the area north of the V-shaped boundary that consists of the two diagonals.

MUTUALISTICSTRONGLY
    ALTRUISTIC

OVERLY
ALTRUISTIC 

WEAKLY 
    ALTRUISTIC

b

c

MUTUALISTICSTRONGLY
    ALTRUISTIC

OVERLY
ALTRUISTIC 

WEAKLY 
    ALTRUISTIC

b

c

Figure 2a: “Sel�shness beats

altruism within groups.”

Figure 2b: “Altruistic groups

beat sel�sh groups”

MUTUALISTICSTRONGLY 
    ALTRUISTIC

OVERLY
ALTRUISTIC 

WEAKLY 
    ALTRUISTIC

b

c

Figure 2c: Group selection models

map onto points in this area.

It is important to see that if a trait in this area is selected, there are two ways of

understanding why it is. Both are correct, and both contain a part of the insight that
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the other does not capture. The classic group selection view is that if such a trait

is selected, then between group selection is stronger than within group selection; see,

again, Sober & Wilson (1998) and Wilson & Wilson (2007). Whether or not it indeed

is, of course has to follow, one way or another, from the assumptions of the model, but

it is undeniably true that on the border between traits that do and traits that do not

get selected within a certain model, these two forces must cancel each other out. These

two opposing selection pressures are a characteristic of the whole region north of the

V-shaped boundary.

We can, on the other hand, also make a very relevant distinction between two parts

of this region. If a weakly altruistic trait is selected, as in Figure 3a, then the reason

that it is selected is that the �tness e�ect on the actor itself is positive. If a strongly

altruistic trait is selected, as in Figure 3b, then the explanation can only be that the

assumptions of the model imply that groups, in expectation, are composed assortatively

enough, tilting the dotted line counter-clockwise.

SELFISHSPITEFUL 

MUTUALISTIC

STRONGLY 
    ALTRUISTIC 

b

c

SELFISHSPITEFUL

MUTUALISTIC

STRONGLY 
   ALTRUISTIC 

b

c

Figure 3a: Group selection by shared interests.

The dashed line being vertical

represents random group formation.

Figure 3b: Group selection by shared genes /

assortment. The dashed line being tilted

represents assortative group formation.

A few useful insights already follow directly from this dualistic view on group selection

models. The �rst is that not all group selection models are the same. Group selection

models with random group formation, in which weakly altruistic traits are selected, are

fundamentally di�erent from group selection models in which strongly altruistic traits

9



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

are selected. Also, some group selection models can be understood as kin selection

models, but not all: only those in which strongly altruistic traits are selected. They

do however all �t within an inclusive �tness setting; for weakly altruistic traits, by

de�nition c  0 and b � 0 and hence, trivially, �b� c � 0.

4 Not all group selection models can be reformulated in

terms of inclusive �tness

While equation (1) implies that costs and bene�ts of individual behaviour do not depend

on the composition of the remainder of the group, there are examples of realistic models,

both with random and with assortative or non-random matching that do not share

this characteristic. Examples are Avilés (1999, 2002), Avilés, Abbot & Cutter (2002),

Avilés, Fletcher & Cutter (2004), Bowles, Choi & Hopfensitz (2003) - see also Van

Veelen & Hopfensitz (2007) - and Hauert, Michor, Nowak & Doebeli (2006). In fact,

one could argue that (1) de�nes only a small subset of all public goods games, excluding

for instance all models that contain synergies. In order to capture all group selection

models, we will therefore have to let go of the linearity in the public goods game that

(1) imposes, and allow for all possible functions � (�� �� 	) and � (�� �� 	).

Without restrictions on the payo� functions, it is natural to ask ourselves whether or

not we can still arrive at a description of costs, bene�ts and relatedness that makes all

group selection models map onto Figure 1. More precisely, we would like to �nd out if the

direction of selection in a group selection model can always be determined by computing

inclusive �tness, which is also a question that emerges from the recent literature; see

for instance Traulsen & Nowak (2006) and the kin-selection reinterpretation of that

model by Lehmann, Keller, West & Roze (2007) as well as Killingback, Bieri & Flatt

(2006) and a similar reinterpretation by Grafen (2007). The following theorem provides

a positive answer for linear public goods games.

Theorem 1 If the payo� function satis�es equation (1), then the direction of selec-

tion follows from Hamilton’s rule, with c = � (	) � 
 (	), b = (�� 1) · 
 (	) and

� = P (� | � )� P (� | �).

Proof. The division of the population in groups is given by values for 	�� � = 1� ���� �.

Here 	� is the frequency of groups that have � carriers of the trait, and naturally we

assume that
P�

�=0 	� = 1 and we de�ne � =
��
�=0 �·��
� , or

P�
�=0 � · 	� = ��. The frequency

of the trait goes up if
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��
�=1 �·��·�(�����)

�� �
���1
�=0 (���)·��·�(	����)

�(1��)

If we �ll in the �tness / payo� function from (1), this is

P�
�=0 � · 	� · {1 + 
 (	) · �� � (	)}

��
�

P�
�=0 (�� �) · 	� · {1 + 
 (	) · �}

� (1� �)

(1� � (	))
P�

�=0 � · 	� + 
 (	)
P�

�=0 �2 · 	�
��

�
��P�

�=0 � · 	� + 
 (	)
P�

�=0 (�� �) · 	� · �
� (1� �)

1� � (	) + 
 (	)

P�
�=0 �2 · 	�

��
� 1 + 
 (	)

P�
�=0 (�� �) · 	� · �

� (1� �)

�� (	) + 
 (	) + 
 (	)

P�
�=0 � · 	� · (�� 1)

��
� 
 (	)

P�
�=0 (�� �) · 	� · �

� (1� �)

�� (	) + 
 (	) + (�� 1) 
 (	)

P�
�=0 � · 	� · ��1��1

��
� (�� 1) 
 (	)

P�
�=0 (�� �) · 	� · �

��1
� (1� �)���

��
(�� 1) 
 (	)

μ��
�=0 �·��· ��1��1

�� �
��
�=0(���)·��· �

��1
�(1��)

¶
�� (	) + 
 (	)

���
�� � 0

If we randomly draw a carrier of the trait from the whole population, with all carriers of

the trait having equal probability, and P (� | � ) is the probability that a randomly cho-

sen other group member, with all other group members having equal probability, is a car-

rier, then it follows that P (� | � ) =
��
�=0 �·��· ��1��1

�� and that P (� | �) =
��
�=0(���)·��· �

��1
�(1��) .

Hence, we can rewrite the inequality as follows: the frequency of carriers of the trait

increases if

(2)

(�� 1) 
 (	) (P (� | � )� P (� | �))� � (	) + 
 (	) � 0

� · b (	)� c (	) � 0

which is Hamilton’s rule, if we de�ne the net costs as c = � (	) � 
 (	), the total

bene�t conferred to the other group members as b = (�� 1) 
 (	) and relatedness as

P (� | � )� P (� | �).

This theorem therefore implies that the (tilted) dotted line in Figure 1 indeed separates

traits that are selected from traits that are not, if the public goods game is linear.

Or, in other words, if the �tness function satis�es (1), then the direction of selection

is given by (2). This linearity however is crucial. Below I will provide a simple non-

linear counterexample with � = 2 — which turns public goods games into prisoners
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dilemma’s — for which Hamilton’s rule does not give the correct prediction. In order

to see why this counterexample is not some constructed rarity, but a general problem

for non-linear public goods games, it is useful to �rst read the proof of Theorem 1

in reverse too. Therefore we need to realize again that what inclusive �tness does,

is separate the population- or interaction structure from the �tness e�ects, or (the

payo�s of) the game. The �rst implies an �, the second is re�ected by b and c. That

means that we can do two things. We can keep the �tness e�ects (the game) constant,

and vary the population- or interaction structure. This changes the � and separates

population- or interaction structures in those for which the � is high enough, and the

behaviour is selected, and those for which the � is not high enough, and the behaviour

is not selected. On the other hand, Theorem 1 also shows that within the set of games

that satisfy (1), we can also keep the population- or interaction structure constant,

and distinguish between games for which the cooperative behaviour is selected (bc is

high enough) and games for which the cooperative behaviour is not selected (bc is not

high enough). Therefore, if we want to extend Theorem 1 from linear public goods

games to all public goods games, this would imply that the � should still only re�ect

the population- or interaction structure, and should not change between games. This

implies that when we generalize, Theorem 1 restricts the choice for � to this di�erence

in probabilities that works for linear public goods games. Reading the proof in reverse,

we see that if we indeed stick to � = P (� | � )� P (� | �), we can follow every step on

the way back up again, apart from the last one (or the �rst one on the way down), in

which 1+
 (	) ·��� (	) is replaced by � (�� �� 	) and 1+
 (	) ·� is replaced by � (�� �� 	).

This means that it really is the linearity of the payo� function that ties the direction

of selection to Hamilton’s rule. In other words, one could say that linearity is the only

real ingredient of the proof; the rest is just rewriting of the inequality. Any divergence

from linearity therefore means that a wedge is driven between the direction of selection

and Hamilton’s rule.

Therefore it is generally the case that as soon as a group selection model implies a

public goods game that is not linear, inclusive �tness can give the wrong prediction. If

costs and bene�ts of the trait do indeed depend on how many other bearers of the trait

the group contains, and hence the functions � (�� �� 	) and � (�� �� 	) no longer �t in the

structure of equation (1), then one can also no longer distill measures of (expected) costs

and bene�ts — neither marginal nor aggregated or averaged — that combine with some

measure of relatedness or assortativity to a concise prediction of the form: the trait will

be selected if and only if �b�c � 0, where b and c characterize a �tness transfer, and �
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characterizes the composition of the groups. This is an important conclusion, because

it shows that not all group selection models can be translated to a prediction in the

form of an expression of inclusive �tness, as is sometimes suggested.

4.1 Counterexample I

The �rst, simple counterexample is similar to examples given in Wenseleers (2006) and

Gardner, West & Barton (2007) and is related to examples given in Day & Taylor

(1998). Here, the example is given in a way that directly �ts Theorem 1. Section 7

discusses how Theorem 1 and the counterexample relate to existing results.

With groups of size 2, we can represent the �tnesses as payo�s in a 2 x 2 game. We

will also assume that T � R � P � S, which makes it a prisoners’ dilemma

� �

� P�P T�S

� S�T R�R

Here we can easily see that this �ts within equation (1) if and only if 
 (	) = R� S =
T�P and � (	) = T�S. (Nowak & Sigmund (1990) introduced the term “equal gains

from switching” to indicate a situation where R� S = T�P.)

The division of the population in groups is given by values for 			 � 		� and 	�� ,

which are the frequencies of groups with 0, 1 and 2 carriers of the trait in them, re-

spectively. Naturally, we assume that 			 + 		� + 	�� = 1. Selection favours the

trait if the average payo� of the carriers of the trait is larger than the average payo� of

individuals that do not carry the trait:

(3)
	�� ·R · 2 + 		� · S · 1

2�
�

		� ·T · 1 + 			 ·P · 2
2 (1� �)

where the groups are weighted by the number of � -players resp. � -players in them,

and � is the frequency of the trait in the overall population; � = 2���+���
2 . Natural

de�nitions of the probabilities for being matched to the di�erent types are P (� | � ) =
���
� and P (� | �) = ���

2(1��) , with the implication that P (� | � ) = 1 � P (� | � ) =

1� ���
� = ���

2� and P (� | �) = 1�P (� | �) = 1� ���
2(1��) =

���
1�� . Then we can rewrite

(3) as

13
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(4)

P (� | � ) ·R+ P (� | � ) · S � P (� | �) ·T+ P (� | �) ·P�
P (� | � ) ·R+ (1� P (� | � )) · S � P (� | �) ·T+ (1� P (� | �)) ·P�

P (� | � ) · (R� S) + S � P (� | �) · (T�P) + P���
� P (� | � ) · (R� S)� P (� | �) · (T�P)

+ (S�P)

��
� � 0

If (R� S) = (T�P), then one can replace (R� S) and (T�P) with b, replace

(P� S) with c, and P (� | � )�P (� | �) with �, which leads to a well-known expression

with inclusive �tness:

� · b� c � 0

If however (R� S) 6= (T�P), then it is not possible to rewrite (4) in a way that

separates P (� | � ) · (R� S) � P (� | �) · (T�P) in a product of a term that only

depends on the composition of the population and something that only depends on the

�tness function.

For the counterexample, we choose values such that (R� S) 6= (T�P), which

implies the game does not satisfy the condition for Theorem 1 to apply; T = 3�R =

2�5�P = 1 and S = 0. Figures 5 and 6 in Section 5 depict these payo�s and can be

helpful to visualize the game.

With groups of size 2, the composition of the population is uniquely determined by

the frequency � of the trait, and a parameter of assortment �, that we will see below

equals relatedness.

(5)

	�� = (1� �) �2 + ��

		� = (1� �) 2� (1� �)

			 = (1� �) (1� �)2 + � (1� �)

This makes � = 2���+���
2 the frequency of the trait in the population and 0 � � � 1 a

parameter of assortment; P (� | � )� P (� | �) = ���
� � ���

2(1��) = �. From (4) we know

that the trait is selected if
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(6)

P (� | � ) · (R� S)� P (� | �) · (T�P) + (S�P) � 0

	��
�
· 2�5� 		�

2 (1� �)
· 2� 1 � 0

2�5 ((1� �) �+ �)� 2 (1� �) �� 1 � 0

0�5 (1� �) �+ 2�5�� 1 � 0

If � = 0, then that implies that the trait can invade if � � 2
5 . If on the other end

� = 1, then the trait is stable if � � 1
4 . Hence, for 1

4  �  2
5 there is bi-stability

(see also Hauert, Michor, Nowak & Doebeli, 2006). The dynamics for di�erent values

of assortativity parameter � are given in Figure 4 below.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

p_old

p_new

Figure 4: Dynamics for di�erent values of assortment parameter �. The frequency in

the next period is plotted as a function of the frequency in the current period for � = 0

(blue), � = 1
4 (dark green), � = 2

5 (light green) and � = 1 (yellow).

If we now take for instance � = 0�22  1
4 , then we know that at � = 1 the population

can be invaded and will be replaced by � -players. Yet, if we would take an inclusive

�tness approach and compute the bene�t that players confer on their partners (which

is R�S, because all carriers of the trait meet individuals that also carry the trait), the

net costs they make (which is T�R for the same reason), and relatedness, then we get:

(7)

� · b� c = 0�22 · 2�5� 0�5 = 0�05 � 0
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suggesting, incorrectly, that this behaviour is stable. This indicates that, when �tnesses

no longer �t (1), computing inclusive �tnesses no longer correctly indicate the direction

of selection correctly. The intuition is provided below.

The values chosen for (R� S) � (T�P) and (S�P) can also be replaced with

� · (R� S) � � · (T�P) and � · (S�P), respectively. Letting � be small would then

imply w -weak selection (small �tness contribution of the game; see Wild & Traulsen,

2007), but the results above would still hold; the direction of selection in (6) and the

sign of the inclusive �tness in (7) remain unchanged. In section 7 we will also discuss

�-weak selection (small distance in phenotype; see again Wild & Traulsen, 2007).

5 Intuition

The fact that linearity of the public goods game is needed in Theorem 1 can at �rst

sight be perceived as counterintuitive. In order to get an intuition why linearity is

indeed needed, we can think of how Hamilton (1975) motivated the �b part of his rule.

The idea is that there is a �xed bene�t to be gained from an individual that has the

trait, and that it is received, in expectation, for a (1� �) share by a random sample

from the population, and for an � share by carriers of the trait other than the individual

itself. However, when the payo�s of individuals no longer �t within (1), then the bene�t

that one individual receives from another individual having the trait, depends on the

composition of the remainder of the group, including the receiving individual itself. In

the simple counterexample given in the appendix, with groups of size 2, that means

that what phenotype the receiver is, determines the size of costs and bene�ts. This is

pictured in Figure 5; the �tness transfer if the receiver is a carrier of the trait is not the

same as the �tness transfer if the receiver is not a carrier. This implies that one can no

longer characterize the �tness e�ect of the trait as a �tness transfer that is �xed — b —

or that is �xed for a given frequency in the population. Hence one can also no longer

break down a �xed bene�t into a part that goes to other carriers and a part that goes

to non-carriers of the trait, because these two do not receive the same bene�ts from it.
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0 1 2 3
0

1

2

3

payoff player 1

payoff player 2

Figure 5: In the counterexample, costs and bene�ts depend on the phenotype of the

receiver. Here we identify player 1 as the donor, or the acting individual, and player 2

as the receiver. The grey circle at (2�5� 2�5) represents the payo�s when both individuals

are carriers of the trait, and the grey circle at (3� 0) represents the payo�s when player

2 has the trait and player 1 does not. The line between them therefore represents the

�tness transfer by player 1 if player 2 is a carrier. Similarly, the other line, to the left,

represents the �tness transfer if player 2 is not a carrier. Costs and bene�ts of the

�tness transfer by player 1 now depend on the phenotype of player 2.

Another way of forming an intuition for this result can be to realize that the marginal

�tness transfers in a situation with all carriers of the trait, measure e�ects of one-step

deviations. These however do not add up to the true combined e�ect of deviations

(in the grey circle in Figure 6 below). With a positive value for P (� | � ) � P (� | �)

inclusive �tness therefore underestimates how well a mutant non-carrier does for this

particular payo�s.
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0 1 2 3
0

1

2

3

payoff player 1

payoff player 2

Figure 6: Another way to describe the payo�s of the counterexample is to say that

marginal e�ects of deviations do not add up.

From a close reading of the proof of Theorem 1 and the derivations for the counterex-

ample we have also learned that this cannot be mended by (sophisticated) averaging

of cost and bene�ts, nor by assuming w-weak selection. The sign of inclusive �tness as

well as the direction of selection remain what they are when � (�� �� 	) is scaled down,

and hence the divergence between them does not disappear with w-weak selection. If

we allow for a continuum of strategies, and assume population states to be monomor-

phous and moving according to the derivative taken with respect to player’s deviations

- that is, we examine �-weak selection - then Hamilton’s rule will be restored for this

two-player example (see Grafen, 1979, Day & Taylor, 1998, and Wild & Traulsen, 2007.

In Grafen (1979) the analysis is done for the Hawk-Dove game; see Appendix C for how

this carries over to more general 2 by 2 games). The counterexample in subsection 6.1

shows that for three or more players, this is in general not possible anymore.

6 Relatedness

Above we have de�ned relatedness as a di�erence in conditional probabilities: P (� | � )�
P (� | �). It should be stressed though that it only summarizes the state of the pop-

ulation, because it is de�ned as a di�erence in probabilities in a hypothetical chance

experiment; if we would randomly choose a carrier of the trait from the whole pop-

ulation, with all carriers of the trait having equal probability, and then compute the
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probability that a randomly chosen other group member, with all other group members

having equal probability, is a carrier too, then that can be written as P (� | � ). The

second term, P (� | �), is found in an analogous way. These probabilities then still are

only a characteristic of a population; they are functions of the distribution of carriers

over the groups. This di�erence is therefore only a measure for the unevenness of the

distribution of carriers of the trait over groups (doing the calculations of the bounds on

relatedness in Appendix A really helps to form an intuition).

We can think of many evolutionary processes as Markov chains, where states are

populations, and transition probabilities between states re�ect a combination of popu-

lation structure and �tnesses (see for instance Chapters 6 to 8 in Nowak, 2006, or Van

Veelen & Hopfensitz, 2007, for a Markov chain where states indeed are subdivided pop-

ulations). For a Markov process, one can �rst compute P (� | � )� P (� | �) for every

state in the support of the invariant distribution. Then we can weight these measures

by their probability in the invariant distribution. For this Markov chain, we can think

of a new chance experiment. Suppose the population follows this model, and we can

assume that looking at it today is like taking a draw from the invariant distribution

(that is, it has been running for a long time). Then we take a random group, and from

that group we pick two random group members, without replacement. The di�erence

in conditional probabilities with which the second group member is a carrier - that

is, the di�erence between the conditional probability for carriers and the conditional

probability for non-carriers - equals this weighted average.

Luckily, this matches our general idea of what relatedness should be. In Appendix

B we show that indeed:

(8)

P (� | � ) = � + (1� �) �

where � = P (� | � )� P (� | �), and � is the frequency of carriers in the overall popu-

lation. That is, the probability of someone in my group being a carrier, conditional on

me being one, is � plus (1� �) times the frequency of carriers in the overall population.

This matches for instance Grafen’s (1985) geometrical view of relatedness. We should

be aware though that if we write relatedness as a regression with error terms, then

that suggests that we are doing statistics. Statistics is meant to estimate values or test

hypotheses concerning the true model. Doing statistics therefore would imply that we

do not know the real value, and that we actually carry out this hypothetical chance ex-

periment on an unknown Markov chain in order to �nd out more about the true model.
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Our de�nition of relatedness on the other hand implies that relatedness simply is to

follow from model assumptions. We should therefore realise that an assumed model -

or the true underlying model - can have many interesting properties other than just

P (� | � )�P (� | �). The variance of this P (� | � )�P (� | �) across states might for

instance di�er a lot. But it is also possible, as we will see in the counterexample below,

that there are models for which relatedness is the wrong population characteristic to

look at.

6.1 Counterexample II

Two players. We begin with the following two player stag-hunt game (following the

parable by Rousseau, 1973), which does not satisfy linearity, but where relatedness still

helps �nding the dynamics:

� �

� 0� 0 0��1
� �1� 0 1� 1

In a picture this looks as follows:

-1 1

-1

1

payoff player 1

payoff player 2

Figure 7: A stag-hunt game with two players. Without players being related, this is a

coordination game with two symmetric pure equilibria.

It is not too hard to see that the whole population playing � and the whole population

playing � are the two candidates for stability. In order to �nd their basins of attraction,

we compute the (unstable) mixed equilibrium in between, that is, we look for a frequency

� of carriers of the trait for which the payo�s of both coincide:
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P (� | � ) · 1+ P (� | � ) · �1 = P (� | �) · 0+ P (� | �) · 0 �
P (� | � ) · 1+ {1� P (� | � )} · �1 = 0 �

P (� | � ) · 2 = 1 �
P (� | � ) =

1

2

By (8) we can rewrite that as

� + (1� �) � =
1

2

� =
1� 2�
2� 2�

For frequencies lower than 1�2

2�2
 , the dynamics will take the population to � = 0, and

for frequencies that are higher, the dynamics will take the population to � = 0. Please

note that, even though the game is not a linear public goods game, and indeed the

prediction does not follow Hamilton’s rule, the prediction still uses a formula in which

� features. The same applies to the �rst counterexample, where we have shown that

the parameter that matters - � - equals relatedness. When we go to games with more

than two players, we will see that this no longer holds.

Three players. With three players, we can de�ne a stag-hunt game as pictured

below. Again, the candidates for stability are all playing � , with payo�s (0� 0� 0) and

all playing � , with payo�s (1� 1� 1)

0, 0,-1 -1, 0,-1 

0, 0, 0 -1, 0, 0 

0, -1,-1 1, 1, 1 

0,-1, 0 -1,-1, 0 

player 1

player 3

player 2

Figure 8: A stag-hunt game with three players. With random matching, this is again

a coordination game with two symmetric pure equilibria.
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In order to �nd their basins of attraction, we again compute the (unstable) mixed

equilibrium in between, that is, we look for a frequency � of carriers of the trait for

which the payo�s of both types coincide. We now denote the probability of facing

two more carriers in the group of three, given that an individual is a carrier itself, as

P (�� | � ). If we realise that the payo� is 0 regardless of the others in the group, if an

individual itself is not a carrier, we can write that as follows:

P (�� | � ) · 1+ {1� P (�� | � )} · �1 = 0 �
P (�� | � ) · 2 = 1 �
P (�� | � ) =

1

2

The last probability can generally not be expressed in terms of � and �. In order to

see why, we should realise that for groups of 2, choosing of 			 � 		� and 	�� (or,

alternatively, 	0� 	1 and 	2) gives us two degrees of freedom; because 			 � 		� and

	�� have to add up to one, choosing two of them determines the third. That implies

that a distribution of carriers over groups - that is, a choice for 			 � 		� and 	�� - is

completely determined by a choice of � and �. In other words, any combination of � and �

allows for only one combination of group-frequencies such that � = P (� | � )�P (� | �)

and � = 1
2 (		� + 2	�� ). With groups of three players, the choice of 	0� 	1� 	2 and 	3

gives us three degrees of freedom. One combination of values of � and � therefore

can summarize di�erent underlying distributions of carriers over the groups. For our

example, that means that the same combination of values for � and � can come with

di�erent values for 	3, and hence with di�erent values of P (�� | � ) = �3
� .

For this game, relatedness would therefore not be the accurate population charac-

teristic to look at. What matters is not � = P (� | � )� P (� | �) but P (�� | � ), and

there is no one-to-one mapping between the two of them. We should also realize that

P (�� | � ) also in no way re�ects an alternative de�nition of relatedness in the litera-

ture. For groups larger than 3, the degrees of freedom for choosing 	0� ���� 	� obviously

only increase with �.

For 2 by 2 games, we know that Hamilton’s rule does make the correct prediction

if the players can choose from a continuum of actions, rather than from a �nite set

(see Grafen, 1979, Day & Taylor, 1998). For the three player stag-hunt game, however,

�lling up the interval between 0 and 1 and examining �-weak selection does not do the

same. This is shown in Appendix C, but it is not hard to imagine that this indeed is
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unavoidable, since also there what matters is how an individual’s change in strategy

changes P (�� | � ), and knowing � is not enough to determine that.

7 Relation to existing results

As mentioned before, the �rst counterexample is similar to examples given in Wenseleers

(2006) and Gardner, West & Barton (2007). The di�erence found between models

with a discrete strategy space (cooperate or not cooperate) and possibly heterogeneous,

mixed populations on the one hand and a continuous strategy space and monomorphic

populations on the other hand is documented in Grafen (1979) - who responds to Hines

& Maynard Smith (1979) - and also in Day & Taylor (1998) and, slightly di�erently, in

Wild & Traulsen (2007). What is di�erent though, is that those results all concern 2

by 2 games. When we think of group selection, we naturally want to consider groups

of any size, and when we think of cooperation, we also want to implicate cooperative

e�orts done with 3 individuals or more. So while the 2 by 2 counterexample is not new,

the formal result that Hamilton’s rule does work for groups of any size when the game

is a linear public goods game is. What is also new is the 3 by 3 counterexample, and its

two implications. When the game is not a linear public goods game, one can, for groups

of size two, still make a prediction for the direction of selection in which relatedness

features. This allows for an adjusted version of Hamilton’s rule, with alternative 


and �, for invasion (at � = 0). The counterexample shows that with groups of sizes

larger than 2, this is not possible. Also, in the 2 by 2 case, changing from a binary

to a continuous strategy space guarantees that Hamilton’s rule works, even when the

game is not a linear public goods game (or, since it is a 2 by 2 game: when it is not a

prisoners dilemma with equal gains from switching). This also is no longer true with

groups larger than 2.

Another recent article is Traulsen, Shoresh & Nowak (2008), where analytical results

are derived for �xation probabilities in a Moran process where �tness is an exponential

function of payo�. These can be seen as to imply something similar, in the sense

that also there, the ratio of �xation probabilities in a kin selection framework only

coincides with the ratio of �xation probabilities in their setting when there is equal

gains from switching. Their model, however, and thereby also the model in Traulsen

& Nowak (2006), is di�erent from the model here. In their model, pairs of individuals

are matched within their group to play a 2 x 2 game, while here the entire group plays

an � player game, which, again, is what one can imagine is an appropriate model for
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collective action within human groups or for cells within multi-cellular organisms, for

instance. Theorem 1, the central result in this paper, can furthermore be understood

without reference to the Moran process - which could be a good or a bad thing - and

gives a formal proof of a general result that remains relatively close to basic game theory

as well as to Hamilton’s (1964, 1975) justi�cation for his rule.

The framework is also di�erent than most. Everything is exact here; there are no �rst

order approximations involved. It also does not use the Price equation, the limitations

of which I have discussed in Van Veelen (2005). That does not mean there are no great

similarities with the existing literature. Section 6 for instance derives that this setting

also justi�es the geometrical view of relatedness by Grafen (1985). This similarity, I

think, is a good thing. But the way relatedness is built up in this framework from

a population characteristic, is not super�uous; it gives the geometrical view a proper

fundament. Generally, this de�nition for relatedness gives the statistical idea we tend

to have about relatedness its proper probabilistic basis.

Furthermore Figure 1 looks similar to Figure 7.2 in Rousset. Again, this similarity

is not at all a bad thing. We should realize, however, that the model setup here is so

basic and simple, that everything in Figure 1 gets a geometric meaning. Again, this

formalism does not use approximations, everything is exact, and the setup allows for

formal proofs of exact statements about the validity, and the limits to the validity of

inclusive �tness.

8 Discussion

Although Theorem 1 shows that the representation in Figure 1 only applies to mod-

els that translate to linear public goods games, one of its main insights nonetheless

does carry over to the general model. Also with more general functions � (�� �� 	) and

� (�� �� 	) there is merit in two ways of looking at the same models. On the one hand

there is a whole continuum of models that are similar in the sense that within groups,

bearers of the trait do worse, while between groups, groups with many bearers do better.

On the other hand these same models can also be distinguished into two fundamentally

di�erent types, namely models that do and models that do not need assortative group

formation in order to get selection of the group bene�cial trait. The reasons why (sim-

ilar) group selection models can work, can therefore be quite di�erent; they can work

because individuals in groups have shared genes or because they have shared interests

(or both, see Van Veelen & Hopfensitz, 2007).
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The theorem formally shows that deriving the direction of selection in a group

selection model by computing inclusive �tness does work if a models translates to a

linear public goods game. This linearity is needed; when a model translates to a non-

linear public goods game, it is no longer true that inclusive �tness gives the direction of

selection. It should also be stressed that the class of models that translate to non-linear

public goods games is large and contains realistic models from the existing literature, as

well as models that have potential for explaining phenomena ranging from the evolution

of multi-cellular life to human sociality. Counterexamples also show that the size of

the group makes a qualitative di�erence. While groups of size 2, or 2 by 2 games, the

prediction of the direction of selection can be given with a formula that uses relatedness,

this is not possible for groups of 3 or more individuals. Something similar is also true

for the alternative model with a continuous action space; Hamilton’s rule does hold

there for 2 by 2 games, but not for games with more than 2 players, unless, of course,

the game is a linear public goods game.
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A Appendix: Bounds on P (� | � )� P (� | �)
Suppose there are � groups each consisting of � individuals, adding up to a total of

� ·� individuals, � of which have the trait. In group �, �� individuals have the trait.

This naturally implies that 0 � �� � � and
P�

�=1 �� = �, which makes � the total

number of carriers. Now consider the following expression:

(9)

�X
�=1

��
�

�� � 1
�� 1 �

�X
�=1

�� ��
����

��
�� 1

This expression is a measure for the unevenness of the distribution of carriers the trait

over groups. In order to see how, it can help to read this expression, for a given com-

position of the groups, as a di�erence between two probabilities that follow from a
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hypothetical chance experiment. If we randomly choose a carrier of the trait from the

whole population, with all carriers of the trait having equal probability, then the �rst

term in expression (2) is the probability that a randomly chosen other group member,

with all other group members having equal probability, is a carrier too, of course con-

ditional on the �rst one being a carrier. This can be written shortly as P (� | � ). The

second term can, in an analogous way, be written as P (� | �). This makes expression

(9) equal P (� | � )�P (� | �). It should be stressed though that this only summarizes

the state of the population, and writing it as a di�erence in probabilities in a hypothet-

ical chance experiment is for the moment only done for practical reasons (see also Van

Veelen, 2005).

We can rewrite this expression as follows:

Ã
�X
�=1

�� � �
�

�

�� � 1
�� 1 +

�X
�=1

�
�

�

�� � 1
�� 1

!
�
Ã

�X
�=1

(�� ��)� ����
�

����

��
�� 1 +

�X
�=1

����
�

����

��
�� 1

!

=

Ã
�X
�=1

�� � �
�

�

�� � 1
�� 1 +

�X
�=1

1

�

�� � 1
�� 1

!
�
Ã

�X
�=1

(�� ��)� ����
�

����

��
�� 1 +

�X
�=1

1

�

��
�� 1

!

=
�X
�=1

�� � �
�

�

�� � 1
�� 1 �

�X
�=1

(�� ��)� ����
�

����

��
�� 1 +

�X
�=1

1

�

�� � 1
�� 1 �

�X
�=1

1

�

��
�� 1

=
�X
�=1

�� � �
�

�

�� � 1
�� 1 �

�X
�=1

(�� ��)� ����
�

����

��
�� 1 +

�1
�� 1

=
�X
�=1

�� � �
�

�

�� � 1
�

�

�� 1 �
�X
�=1

(�� ��)� ����
�

����

��
����

����

�� 1 � 1

�� 1

Because
�P
�=1

���
�

� = 0 and
�P
�=1

(���)�����
�

���� = 0, we can add any constant to the terms

��1
��1 and �

��1 , respectively, and hence rewrite this as:

=
�X
�=1

�� � �
�

�

�� � �
�

�

�

�� 1 +
�X
�=1

(�� ��)� ����
�

����

(�� ��)� ����
�

����

����

�� 1 � 1

�� 1

=
�

�� 1
�X
�=1

Ã
�� � �

�

�

!2
+

����

�� 1
�X
�=1

Ã
(�� ��)� ����

�

����

!2
� 1

�� 1 � � 1

�� 1

It is clear that the above calculations imply that this measure for the unevenness of the

distribution of carriers the trait over groups should be bounded from below by � 1
��1 .

An obvious upper bound is 1, because P (� | � ) cannot be larger than 1 and P (� | �)
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cannot be smaller that 0. We can however also think of a process of selection as a

Markov chain, with transition probabilities between states. These transition probabil-

ities then re�ect a combination of population structure and �tnesses. For this Markov

process, one can �rst compute P (� | � ) � P (� | �) for every state in the support of

the invariant distribution, and then weight these measures by their probability in the

invariant distribution. The resulting weighted average can then properly be interpreted

as a generalized measure of relatedness for the population- or interaction structure; if

one observes a population that indeed follows the model, and we compare the prob-

ability with which a random other group member is a carrier between carriers and

non-carriers, the weighted average tells us how large the di�erence is between them.

Also � 1
��1 would again be the lower bound and 1 would be the upper bound, as they

are lower and upper bound, respectively, for all states over which the weighted average

is taken.

Please note that P (� | � )�P (� | �) = [P (� | � )� 1]�[P (� | �)� 1] = P (� | �)�
P (� | � ) which is a symmetry that we would expect.

B Appendix: Relatedness

Before doing the actual computations, it is useful to introduce some notation. The

hypothetical chance experiment involves drawing two individuals from the same group,

without replacement. The probability with which the second is a � , conditional on that

the �rst one is a � , is written as P (� | �). The probabilities P (� | � ), P (� | �) and

P (� | � ) are de�ned in an analogous way. Also, obviously, P (� | � ) = 1 � P (� | � )

and P (� | �) = 1� P (� | �).

The probability that �rst an � is drawn, and then a � , is P (�� ). Analogously we

de�ne P (��), P (��) and P (�� ). Obviously, P (�� ) + P (��) = � and P (�� ) +

P (��) = 1 � �. By Bayes rule we also know that for instance P (� | �) equals
P(	� )

P(	� )+P(		) . Note that drawing without replacement implies that P (�� ) = P (��)

- or, to put it di�erently, P (�)P (� | �) = P (� )P (� | � ) - as we can see using the

formula’s from the proof of Theorem 1:

P (�� ) = P (�) · P (� | �) = (1� �)

P�
�=0 (�� �) · 	� · �

��1
� (1� �)

=

= � ·
P�

�=0 � · 	� · �����1
��

= P (� ) · P (� | � ) = P (��)
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This, together with P (�) = 1� P (� ), implies the following:2

P (�)P (� | �) = P (� )P (� | � ) �
(1� P (� ))P (� | �) = P (� )P (� | � ) �

P (� | �) = P (� ) (P (� | � ) + P (� | �))

which prepares us for the proof of equation (8), which states that P (� | � ) = � +

(1� �) �, with � = P (� | � )� P (� | �).

P (� | � ) = P (� | � )� P (� | �) + P (� | �)

= � + P (� ) (P (� | � ) + P (� | �))

= � + P (� ) (1� P (� | � ) + P (� | �))

= � + � (1� �) ������

C Appendix: �-weak selection with a continuum of phe-

notypes

Two players. Following Grafen (1979), we �rst consider the �tness function � (�� �),

where � and � are mixed strategies that play � with probability � and � respectively.

The de�nition of relatedness naturally carries over to � being a di�erence in probabilities

concerning what type of player - a � or an � - one is matched with. In slightly abusive,

but short notation, that is: � = P (� | �) � P (� | �). The function � now evaluates the

�tness of a mutant � in a monomorphic population of incumbent �. Because playing �

always gives 0, we have

� (�� �) = P (� | �)
©

�2 · 1 + � (1� �) · �1ª+ P (� | �) {�� · 1 + � (1� �) · �1}
= P (� | �)

©
2�2 � �

ª
+ P (� | �) {2��� �}

Examining the success of a mutant � implies that it starts at frequency � = 0, by which

(8) implies that at invasion P (� | �) = � and P (� | �) = 1 � � (or, rephrased directly;

assuming that the frequency is very small implies that P (� | �) = 0.) Therefore, taking

the derivative with respect to �, we get

�� (�� �)

��
= � (4�� 1) + (1� �) (2�� 1)

2 This (shorter) version of the proof was suggested by an anonymous referee.
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and hence

�� (�� �)

��

¯̄̄
¯
�=�

= (2�� 1) + 2�� = 2� (1 + �)� 1

so that

�� (�� �)

��

¯̄̄
¯
�=�

= 0� � =
1

2 (1 + �)

Looking at the derivative again, we note that � � 1
2(1+
) implies that �� (���)

��

¯̄̄
�=�

� 0,

while �  1
2(1+
) implies that �� (���)��

¯̄̄
�=�

 0. This � = 1
2(1+
) therefore separates the

basins of attraction of the two pure equilibria. It is understood that the larger the �,

the smaller 1
2(1+
) , so the larger the basin of attraction of playing � with probability 1.

Three players. Again we consider the �tness function, which now equals

� (�� �) = P (�� | �)
©

�3 · 1 + �
¡
1� �2

¢ · �1ª+
+P (�� | �)

©
�2� · 1 + � (1� ��) · �1ª+

+P (�� | �)
©

��2 · 1 + �
¡
1� �2

¢ · �1ª
= P (�� | �)

©
2�3 � �

ª
+ P (�� | �)

©
2�2�� �

ª
+ P (�� | �)

©
2��2 � �

ª
= ��+ 2�3P (�� | �) + 2�2�P (�� | �) + 2��2P (�� | �)

Taking the derivative with respect to � we get

�� (�� �)

��
= �1 + 6�2P (�� | �) + 4��P (�� | �) + 2�2P (�� | �)

and hence

�� (�� �)

��

¯̄̄
¯
�=�

= �1 + 6�2P (�� | �) + 4�2P (�� | �) + 2�2P (�� | �)

Note �rst that P (� | �) = �2+3·�3
3� and P (� | �) = �1+�2

3(1��) . If � goes to 0, then 	1� 	2

and 	3 must go to 0 too, and so must P (� | �). Relatedness at lim � � 0 is there-

fore � = lim��0 P (� | �) � P (� | �) = lim��0 �2+3·�33� � 0 = lim��0 �2+3·�33� . If we realize

that P (�� | �) = �3
� , P (�� | �) = 2

3
�2
� and P (�� | �) = 1

3
�1
� , then it is clear that be-

ing able to choose these three variables, being restricted by only two equations - that

is, �� (���)
��

¯̄̄
�=�

= 0 for �nding the value � that separates the basins of attractions and

� = �2+3·�3
3� for relatedness - allows us to shift the point that separates the basins of
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attraction, without a�ecting the �. This implies that in order to determine whether or

not � = 0 can be invaded, it is typically not be enough to know �.
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