
HAL Id: hal-00554604
https://hal.science/hal-00554604

Submitted on 11 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The pace of evolution across fitness valleys
Chaitanya Gokhale, Yoh Iwasa, Martin A. Nowak, Arne Traulsen

To cite this version:
Chaitanya Gokhale, Yoh Iwasa, Martin A. Nowak, Arne Traulsen. The pace of evolution across
fitness valleys. Journal of Theoretical Biology, 2009, 259 (3), pp.613. �10.1016/j.jtbi.2009.04.011�.
�hal-00554604�

https://hal.science/hal-00554604
https://hal.archives-ouvertes.fr


www.elsevier.com/locate/yjtbi

Author’s Accepted Manuscript

The pace of evolution across fitness valleys

Chaitanya Gokhale, Yoh Iwasa, Martin A. Nowak,
Arne Traulsen

PII: S0022-5193(09)00180-5
DOI: doi:10.1016/j.jtbi.2009.04.011
Reference: YJTBI5534

To appear in: Journal of Theoretical Biology

Received date: 24 January 2009
Revised date: 14 April 2009
Accepted date: 16 April 2009

Cite this article as: Chaitanya Gokhale, Yoh Iwasa, Martin A. Nowak and Arne Traulsen,
The pace of evolution across fitness valleys, Journal of Theoretical Biology (2009),
doi:10.1016/j.jtbi.2009.04.011

This is a PDF file of an unedited manuscript that has been accepted for publication. As
a service to our customers we are providing this early version of the manuscript. The
manuscript will undergo copyediting, typesetting, and review of the resulting galley proof
before it is published in its final citable form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply
to the journal pertain.

http://www.elsevier.com/locate/yjtbi
http://dx.doi.org/10.1016/j.jtbi.2009.04.011


Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

The pace of evolution across fitness valleys
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Abstract

How fast does a population evolve from one fitness peak to another? We study
the dynamics of evolving, asexually reproducing populations in which a certain
number of mutations jointly confer a fitness advantage. We consider the time until
a population has evolved from one fitness peak to another one with a higher fitness.
The order of mutations can either be fixed or random. If the order of mutations is
fixed, then the population follows a metaphorical ridge, a single path. If the order
of mutations is arbitrary, then there are many ways to evolve to the higher fitness
state. We address the time required for fixation in such scenarios and study how
it is affected by the order of mutations, the population size, the fitness values and
the mutation rate.

Key words: finite populations, stochastic tunneling, evolutionary speed

1. Introduction

Evolutionary dynamics is based on natural selection, mutation and genetic
drift (Nowak, 2006). It can be illustrated as the dynamics of a population in an ab-
stract, typically high-dimensional fitness landscape. Since individuals with higher
fitness produce more offspring, the average density of individuals is highest close
to the fitness maxima. Many such features as the stationary population density in
the fitness landscape or the mutation rate under which a population can still be
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concentrated around a fitness maximum have been addressed (Eigen and Schus-
ter, 1977; Eigen et al., 1989; Wilke, 2005; Nowak, 1992). An important question
is how a population evolves towards a fitness peak via several intermediate states.
If the intermediate states have the same fitness as the initial state, then evolution
to higher fitness states is neutral at first and thus poses no significant problems
(van Nimwegen and Crutchfield, 2000). If the intermediate states have lower fit-
ness than the initial state, then a fitness valley has to be overcome and it is more
difficult to reach the fitness peak (Weinreich et al., 2006; Poelwijk et al., 2007).
In this case, population stuck on a local peak cannot escape by natural selection
alone, because there is no evolutionary trajectory with successively advantageous
mutations. Instead, neutral genetic drift becomes important.

Here, we consider the dynamics of these systems from a different perspec-
tive. We address the average time a population needs to transfer from one peak to
another one. For small mutation rates and finite populations, we calculate this av-
erage time analytically. When mutation rates are high, we can describe the system
by a set of differential equations and obtain the relevant times from a numerical
integration of the differential equations. In this framework, the relevant question
is how fast a population evolves (Traulsen et al., 2007).

In particular, we can address the question whether a population evolves faster
from one peak to another via d mutations if

(i) mutations have to occur in a certain order, i.e. only a single evolutionary
trajectory is available or

(ii) the order of the mutations does not matter, i.e. there are d! evolutionary
paths.

In the simplest case the intermediate fitness values are identical in both the
cases and equal to that of the initial state. Thus the only difference remaining is the
number of available paths. When the order of mutations is not fixed then multiple
paths are available and the evolutionary dynamics will be faster when compared
to a single path. We can then ask the question: Does a population evolve faster
on a narrow ridge or a broad valley? This implies that we move away from the
simplest case mentioned above and decrease the fitness in the intermediate states
of the multiple paths compared to the fitness in the intermediate states of the single
path. We show how the pace of evolution depends on the depth of the valley, the
number of intermediate states and the size of the population.

In general, evolutionary dynamics depends crucially on the size of the popula-
tion. In a small population a single mutation will typically reach fixation or extinc-
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tion before another mutation can arise. The population moves as a whole step by
step on the fitness landscape. For large populations, even for small mutation rates
usually multiple types arise at the same time. This results in a non-zero population
density in many states at the same time. For intermediate mutation rates, the popu-
lation can either move stepwise across the fitness landscape or move several steps
without getting concentrated in one of the intermediate states. This phenomenon
has been termed stochastic tunneling (Iwasa et al., 2004). If the mutation rates
are too small, tunneling does not occur because it is unlikely that a second mu-
tation arises before the first one has reached fixation or has gone extinct. If the
mutation rates are high, tunneling occurs trivially, because the system can be ap-
proximated by differential equations for the densities in the different states. These
different scenarios including the limiting cases of stepwise evolution (typical for
small populations) and continuos evolution (typical for large populations) can also
be observed when the population size is kept constant, but the mutation rates are
increased. For computer simulations increasing the mutation rate is more conve-
nient than simulating huge populations for moderate mutation rates.

One important example for an evolutionary process in which the timescales
are of crucial importance is the somatic evolution of cancer (Frank, 2007). Cancer
progression has been investigated mathematically since the 1950s (Fisher, 1959;
Nordling, 1953; Armitage and Doll, 1954). Of special interest are the tumor sup-
pressor genes (Knudson, 1971; Michor et al., 2004). In a normal cell, there are
two alleles of the tumor suppressor gene. The mutation in the first allele is neutral
if the second wild-type allele can sufficiently perform the function. Inactivation
of both the alleles confers a selective advantage to the cell and can lead to cancer
progression. This is an example in which the order of mutations does not matter.
Many cancers also require certain particular mutations that initiate cancer growth
and pave the way for the accumulation of further mutations (Vogelstein and Kin-
zler, 2004). Recently, it has been shown that after cancer initiation, a large num-
ber of different mutations may be involved in cancer progression (Sjöblom et al.,
2006; Wood et al., 2007; Jones et al., 2008a,b). So far, it is unclear if the mu-
tations have to occur in a specific order or if there is more variation in the order
(Beerenwinkel et al., 2007; Gerstung and Beerenwinkel, 2008).

For simplicity, we consider only very simple fitness landscapes here in which
the fitness in all the intermediate states is identical. In natural systems, these fit-
ness values will differ and also the mutation rate may not be constant. In addition,
sometimes the order of mutations will matter and sometimes, it will not. Thus,
sometimes a particular mutation will be a prerequisite to obtain a new function,
but sometimes new mutations do not require any prerequisites. For example, this
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is the case in the evolution of resistance to β lactam antibiotics studied by Weinre-
ich (2005) and Weinreich et al. (2006). However, here we focus on a very simple
model to highlight the general aspects of the dynamics by analytical and numeri-
cal considerations.

This paper is organized as follows: We begin with the description of the two
ways to order the mutations, the single path and the hypercube. We then derive an-
alytical approximations of the fixation times for small mutation rates and discuss
the effect of the different parameters on the fixation times. Next, we address the
dynamics for intermediate and high mutation rates. Finally, we explore biological
examples which can be modeled using this approach.

2. Model

To model evolutionary dynamics in a haploid population of size N, we use the
Moran process (Nowak, 2006; Moran, 1962). In each time step, one individual is
selected at random, but proportional to fitness. It produces one offspring, which
replaces a randomly chosen individual. In one generation, each individual repro-
duces on average once. During reproduction, mutations occur with probability μ.
We are interested in the time it takes until d mutations reach fixation in the pop-
ulation, starting from a homogeneous population in the initial state without any
mutants. Moreover, we aim to explore the dynamical features of this process. We
restrict ourselves to two different cases that allow the derivation of some analytical
results.

2.1. Single path
If the mutations can occur only in a particular order, we have a single evo-

lutionary path, see Fig. 1 for an illustration. Individuals in the initial state have
fitness r0 = 1 and individuals in the final state have fitness rd > 1. It is instructive
to characterize an individual by a string of d sites, which can either be wild-type
or mutated. If the order of mutations is fixed, then a particular mutation requires
another particular mutation as a prerequisite. For simplicity, we assume that all
the d − 1 intermediate states have the same fitness r j = s < rd ( j = 1, . . . , d − 1).
For s < 1, the joint effect of the set of mutations make up for the loss of fitness
caused by the individually deleterious mutations. This can be considered as a very
special case of epistasis (Weinreich et al., 2005).

2.2. Hypercube
If the order of mutations does not matter, evolutionary dynamics takes place

on a hypercube in d dimensions cf. Fig. 1. Thus, there are 2d different types of
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individuals. In the initial state, we have d possible mutations. In the next step,
d−1 mutations are available. Consequently, we have d! possible paths to fixation.
Again, we assume r0 = 1 and rd > 1. Further, all individuals with some, but not
all mutations have fitness s < rd.

If the mutation probability is small, we do not need to make specific assump-
tions on the mutation process. But when the mutation probability increases, we
can no longer be certain that only a single mutation occurs during reproduction.
For simplicity, we do not consider the possibility of backward mutations. Al-
though back mutations are often relevant, especially to escape from evolutionary
dead ends (DePristo et al., 2007), it is not straightforward to define the speed of
evolution in a system with backward mutations. This is due to the fact that for suf-
ficiently high mutation rates, fixation in the final state might never occur. Other
definitions of the end state of the system become arbitrary to a certain extend. The
probability um→m+k that the offspring of an individual with m mutations has m + k
mutations (m ≤ m + k ≤ d) is

um→m+k =

(
d − m

k

)
μk(1 − μ)d−m−k. (1)

This equation is valid for the hypercube, where the order of mutations does not
matter. Here,

(
d−m

k

)
is the number of different types of mutants with k additional

mutations, μk is the probability that mutations occur at k sites and (1−μ)d−m−k is the
probability that no mutation occurs at the remaining d−m− k sites. For the single
path, there is only one possibility to arrange the m + k mutations. Thus, for k > 0,
um→m+k is identical to Eq. (1), except that the binomial factor has to be dropped.
The probability um→m that no mutation occurs follows from normalization, um→m =

1−∑d−m
k=1 um→m+k. Our analytical calculations for small mutation rates as well as the

considerations for high mutation rates are independent of the precise form of the
mutation rates. However, we need to specify the form of the mutation probabilities
to perform our numerical simulations for intermediate and high mutation rates.

3. Small mutation rates

3.1. The pace of evolution for small mutation rates
For small mutation probabilities, double mutations can be neglected. Since

mutations occur rarely, we can calculate the average time until d mutations are
fixed in the population analytically. Let us first address the evolutionary dynamics
when mutants with fitness rm are already present in a resident population of fitness
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rw, but no new mutations occur. This scenario is relevant when mutation rates are
sufficiently small. The probability to increase the number of mutants from j to
j + 1 is

T+j =
rm j

rm j + rw(N − j)
N − j

N
. (2)

Similarly, the number of mutants decreases from j to j − 1 with probability

T−
j =

rw(N − j)
rm j + rw(N − j)

j
N
. (3)

The probability that k mutants take over the entire population is given by (Nowak,
2006; Karlin and Taylor, 1975; Ewens, 2004; Crow and Kimura, 1970)

φk

(
rm

rw

)
=

1 +
∑k−1

i=1

∏i
j=1

T−
j

T+j

1 +
∑N−1

i=1

∏i
j=1

T−
j

T+j

=
1 −

(
rw
rm

)k

1 −
(

rw
rm

)N . (4)

If a mutant reaches fixation, the average number of generations this process takes
is given by (Goel and Richter-Dyn, 1974; Antal and Scheuring, 2006)

τfix

(
rm

rw

)
=

1
N

N−1∑
k=1

k∑
l=1

φl

T+l

k∏
m=l+1

T−
m

T+m
. (5)

For a neutral process with rm = rw, this reduces to τfix = N − 1. For sufficiently
large N, this is the maximum conditional fixation time of a mutant. Even for
disadvantageous mutants (rm < rw) the conditional fixation time is smaller than
N − 1 (Antal and Scheuring, 2006). Since there are μN mutations per generation,
the time between two mutations is 1

μN . Thus, for μ � N−2 a mutant reaches
fixation before the next one arises and mutations will not occur when a mutant
is already present. Thus the population evolves by a process where the mutations
occur one after the other, which has been termed periodic selection (Atwood et al.,
1951) and theoretically described as the strong-selection weak-mutation regime
(Gillespie, 1983, 2004 (2nd edition).

The total time τ until a mutation reaches fixation in a population is the sum
of the waiting time until a successful mutant occurs and the fixation time of the
mutant τ = τwait + τfix. The waiting time is the inverse of the mutation rate divided
by the probability that a particular mutant is successful,

τwait

(
rm

rw

)
=

1
μN

1

φ1

(
rm
rw

) . (6)
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For μ→ 0, we have τwait →∞, but τfix remains approximately constant. Thus, τ ≈
τwait for small mutation rates. In principle, we could calculate τfix in the presence
of mutations. But since our approximation is only valid for small mutation rates,
this will be a minor correction.

For μ � N−2, the population is homogeneous most of the time. Only occa-
sionally, a mutant arises and reaches fixation or goes to extinction. The total time
until d mutations are fixed in the population is the sum of the waiting times for the
successful mutants plus the time of the d fixation events. For a single path with
initial fitness 1, intermediate fitness s and final fitness r, we find for the total time
τS

τS = τwait (s) + (d − 2)τwait (1) + τwait (r/s) (7)

+ τfix (s) + (d − 2)τfix (1) + τfix (r/s) .

For small μ, we have τ f ix � τwait and hence the total time can be approximated by

τS =
1
μ

[
1

Nφ1(s)
+ d − 2 +

1
Nφ1(r/s)

]
(8)

Consider now a “fitness valley”, in which the intermediate states have fitness s <
1, but the final state has fitness r > 1. To move from the fitness peak in the initial
state to the fitness state in the final state, first a disadvantageous mutation has to
be fixed in the population. Since φ1(s < 1) � 1

N , the waiting time of such an event
is very long. The waiting time for the neutral mutations, τwait (1) = 1

μ
and the

waiting time for a successful mutation, τwait (r/s) are significantly shorter. Thus,
τS is dominated by 1

μNφ1(s) for s < 1 and sufficiently high N in a fitness valley. Fig.
2 shows a good agreement between exact numerical simulations and our analytical
approximation for small mutation rates Eq. (8).

If the order of mutations is arbitrary, evolutionary dynamics occurs on a hyper-
cube. In this case, the whole process will be faster, as we have d! possible paths
instead of a single one. Now, the waiting times in the different states depend on
the number of mutations that are still available. For the total time τH, we obtain,

τH =
1
d
τwait (s) +

d−2∑
k=1

1
d − k

τwait (1) + τwait

(r
s

)
(9)

+ τfix (s) + (d − 2)τfix (1) + τfix

(r
s

)
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Note that the time of the fixations alone is identical for the hypercube and the
single path. Neglecting these fixation times for small μ ( as τ f ix � τwait) yields

τH =
1
μ

⎡⎢⎢⎢⎢⎢⎣ 1
dNφ1(s)

+

d−2∑
k=1

1
d − k

+
1

Nφ1( r
s )

⎤⎥⎥⎥⎥⎥⎦ . (10)

Since 1
dNφ1(s) <

1
Nφ1(s) and

∑d−2
k=1

1
d−k <

∑d−2
k=1 1 = d − 2 it is obvious that τH < τS , i.e.

evolutionary dynamics is faster if the order of mutations is arbitrary. For fitness
valleys with s < 1 and a large population size, τH is dominated by 1

dμNφ1(s) . As d
more mutations are available, this is always faster than the corresponding equation
for a single path, see Fig. 2.

3.2. Thresholds of the waiting times
Next, we derive expressions for some interesting thresholds of the waiting

times in the limit of small mutation rates. Since evolutionary dynamics is always
faster if many paths are available, we now compare a fitness valley in which many
paths are available to a single path in which the order of mutations is important, but
fitness does not decrease in the course of evolution. The basic question we address
here is, whether it is faster to cross a broad valley or a narrow ridge in fitness space.
In other words, we compare τS (s = 1) to τH(s < 1). Since we consider only small
mutation rates μ, we neglect the fixation times τfix here, although they will not be
identical in the two scenarios. For s = 1, the single path is neutral. We decrease
s in the hypercube until we have identical waiting times. This yields an implicit
expression for s,

d − 1 +
1
N

1 − 1
rN

1 − 1
r

=
1

dN
1 − 1

sN

1 − 1
s

+

d−2∑
k=1

1
d − k

+
1
N

1 − ( s
r )

N

1 − s
r

(11)

From this equation, we can numerically determine s for any given N. For large N,
Eq. (11) simplifies to

d(d − 1) −
d−2∑
k=1

d
d − k

=
1
N

1 − 1
sN

1 − 1
s

≈ eN(1−s)−1

N(1 − s)
, (12)

where we used (1− x/N)−N → ex for large N. Thus, the quantity N(1− s) becomes
constant for large N, see Fig. 3. Thus, we can now say how broad and deep a
fitness valley has to be to lead to the same cumulative waiting time as a single
neutral path.
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Next, we address the effect of the intermediate fitness s, which has an impor-
tant influence on the cumulative waiting time τ. Fig. 2 shows how the waiting
time decreases with increasing fitness in the intermediate states s. If s comes very
close to the fitness in the final state, the waiting time increases. This increase is
seen both in the single path and the hypercube. An increase in the intermediate
state fitness will not always lead to a reduction in waiting times. Instead, the fixa-
tion times reach a minimum when the fitness growth is constant between any two
consecutive states (Weinreich and Chao, 2005; Traulsen et al., 2007). For the hy-
percube, the fastest trajectory will be steeper than on a single path: At first, many
mutations are available and a big fitness increase is not necessary. Later, fewer
mutations are available and thus, the fitness should increase faster. The precise
form of the trajectory will in this case depend on the number of mutations d and
the population size N. We note that a similar reasoning can be applied to construct
a fitness landscape that allows to cross a fitness valley fastest: Because the fastest
trajectory has the same form regardless if a fitness peak is approached (r > 1) or
a fitness minimum is approached (r < 1). Thus, the fastest way to cross a fitness
valley is to descend to the minimum with exponentially decreasing fitness and to
increase from the minimum again with exponentially increasing fitness.

Now, we turn to the effect of the intermediate fitness s on the individual wait-
ing times. Eq. (8) and Eq. (10) both consist of three terms each. The first term
denotes the time required to leave the initial state. The second term is the time
spent in moving through all the intermediate states. This second term is inde-
pendent of s, because the transitions are neutral. The last term denotes the time
required to reach the ultimate state from the penultimate state. For small values of
s, the probability to fixate the disadvantageous mutation is very small. Thus, the
total time is dominated by the first term. When s is increased to a threshold value
s1, then the time for leaving the first state is identical to the waiting time in the in-
termediate states. For the hypercube, s1 is given by 1

dτwait (s1) =
∑d−2

k=1
1

d−kτwait (1),
which reduces to

1 − 1
sN
1

1 − 1
s1

= dN
d−2∑
k=1

1
d − k

. (13)

This equation can be solved numerically for specific values of N and d. For the
single path, the right hand side of this equation has to be replaced by N(d − 2).
For s > s1, the time to cross the intermediate states is larger than the waiting time
in the first state. On the hypercube, we can define a second threshold for which
the waiting time in the first state is the same as the time required to reach the final
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state from the penultimate state. This arises because the effective mutation rate in
state 0 is d times larger than the effective mutation rate in state d−1. The threshold
s2 is given by 1

dτwait (s2) = τwait

(
r
s2

)
or

1
d

1 − 1
sN
2

1 − 1
s1
2

=
1 −

(
s2
r

)N

1 − s2
r

(14)

Again, s2 has to be determined numerically. For a single path, the factor d−1 in
Eq. (14) has to be dropped. Thus, the threshold s2 occurs for s > 1 and is simply
given by s2 =

√
r.

The fixation time is also strongly influenced by the number of mutations d. A
larger d increases the length of the path and usually also the fixation times. For
the single path, this increase results only from the increase in the time required
to cross the intermediate states, because the time for leaving the initial state and
the time to reach the final state from the penultimate state are independent of d.
The time required to reach the ultimate state from the penultimate state is also
independent of d for the hypercube, but the time required to leave the initial state
decreases with increasing d. This is because as d increases, there are more states
available in the first error class and thus the effective rate of mutation out of the
initial state increases. As for the single path, the time to cross the intermediate
states increases with d in the hypercube. For the hypercube, this interplay can
lead to a non-monotonic dependence of the fixation time on d. For example, for
N = 100 and s = 0.95, the fixation time τH decreases with d for d < 31, but
it increases with d for d > 31. In contrast, the fixation time always increases
monotonically with d for the single path.

Increasing the fitness of the final state r increases the advantage of the final
state over the intermediate states. This will result in the decrease in the time
required for the population to make the last move. Increasing r has no effect on
the time required to cross the intermediate states or the time required to move
away from the initial state. As a result, those two times remain constant even as r
increases, both in the single path and the hypercube.

4. Intermediate mutation rates

The analytical approach is only valid as long as the mutation rate is small,
μ � N−2. For higher mutation rates, the population does not have to consist of
at most two different types at any time. Instead, d mutations can be fixed in the
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population without sequentially fixing one after the other. This process has been
termed stochastic tunneling and is of great importance in the context of cancer
initiation (Iwasa et al., 2004; Michor et al., 2004; Nowak et al., 2004; Beeren-
winkel et al., 2007). Tunneling across fitness valleys is more likely than tunneling
across a flat fitness landscape (see Fig. 4). Even for d = 2, the evolutionary dy-
namics is characterized by a doubly stochastic process, which makes analytical
approaches tedious (Iwasa et al., 2004). As discussed above, for μN2 � 1 the
population usually contains at most two different types. In this case, the proba-
bility of stochastic tunneling will be very small. On the other hand, for μN > 1,
at least one mutant is produced per generation. Thus, the probability of stochas-
tic tunneling approaches 1. For N−2 < μ < N−1, the mutations are sometimes
fixed sequentially and sometimes via stochastic tunneling. Fig. 5 shows how the
tunneling probability increases from 0 to 1 in this interval.

For intermediate mutation rates, it is likely that the population contains more
than two different types. The types with beneficial mutations will compete for
fixation. This process is termed clonal interference (Crow and Kimura, 1970;
Fisher, 1930; Muller, 1932; Gerrish and Lenski, 1998; Park and Krug, 2007).
Clonal interference has been considered to slow down adaptation, but recently it
has been shown that it can have a positive influence on a rugged fitness landscape
(Gerrish and Lenski, 1998; Wilke, 2004; Jain and Krug, 2007).

The states in a single path can be characterized by the number of mutations.
In the hypercube, the states are characterized by the types of mutations that have
already occurred. Thus, there are many different types that have undergone a
specific number of mutations. However, all types that have already accumulated
k mutations can be pooled into the error class k. The number of different types in
the error class k is given by

(
d
k

)
= d!

k!(d−k)! .
In a single path, a population is said to tunnel across a state if it passes through

a state without ever reaching fixation in that state. Analogously, in a hypercube a
population said to tunnel across an error class if it passes through that error class
without ever reaching fixation in it. Within the error classes, tunneling can occur
across individual states, but also across several states at once. This means that the
whole population passes only across that particular state and not across any other,
without ever reaching fixation in that particular state. Tunneling across an error
class can also occur in a second way: The population can use all of the available
states in the error class, but the total number of individuals in the error class never
reaches N. Thus, the probability of tunneling via the individual states is always
lower than the probability of tunneling across the error classes. Fig. 6 shows
the relation between the different probabilities of tunneling in the hypercube with
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respect to the rate of mutation μ for the special case d = 2.
Due to higher effective rates of mutation, the probability of tunneling across a

hypercube is expected to be greater than or equal to the probability of tunneling
across a single path. However, numerical simulations reveal that for d = 2 the
probability of tunneling in a single path is higher than in the hypercube. This is
a special case: For d = 2 in a hypercube, the number of states into which the
initial state can mutate into is 2. The effective rate of mutations is thus twice
as much as in the single path. The number of states which can be mutated into
next is one, both in the single path and the hypercube. Thus the rate at which
the individuals are pushed into the first state is higher in hypercube than in the
single path while the rate of individuals being pushed out is the same. Thus there
is a higher probability of reaching fixation in the first error class in a hypercube
(see Fig. 6). We only observe this effect for d = 2, for d > 2, the probability of
tunneling is higher in a hypercube than in a single path, as expected (see Fig. 4).

5. High mutation rates

For μN > 1, the stochastic features of the dynamics become less important. In
this case, the system can be described by a set of d + 1 deterministic differential
equations for the fraction xk(t) of the population that has k mutations (Jain and
Krug, 2007). Obviously, we have

∑d
k=0 xk(t) = 1. Transitions out of state 0 occur

with probability T0→ = (1 − x0
φ

u0→0)x0, where φ = x0 + (1 − x0 − xd) s + xd r is
the average fitness of the population. This includes all the reproductive events
except for the one where a type 0 is produced. Transitions into state 0 occur with
probability T→0 =

x0
φ

u0→0(1 − x0). Thus, the fraction of individuals in the initial
state follows the differential equation

ẋ0(t) =
1
N

[
x0

φ
u0→0(1 − x0) − (1 − x0

φ
u0→0)x0

]
. (15)

The probability that an offspring is of type k is given by λk =
∑k

j=0
xjr j
φ

uj→k. The
difference between the hypercube and the single path only occurs in the quantity
uj→k, which is given above for both cases. The sum in λk is over all individuals
with k or less mutations and r j is the fitness of individuals with j mutations. This
leads to the differential equation for the fraction of individuals with k mutations,

ẋk(t) =
1
N

[λk(1 − xk) − (1 − λk)xk] , (16)
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where k = 0, . . . , d. Of course, the special case k = 0 recovers Eq. (15). This set
of d + 1 differential equations describes how the system moves from state k = 0
to state k = d. In general, only a numerical solution of this system of equations is
feasible. While this allows us to infer details of the dynamics, our main interest
is the time required for fixation of d number of mutations. Thus, we solve the
differential equation numerically using a standard Runge-Kutta algorithm (Press
et al., 2007). To find an equivalent to the fixation time in a stochastic simulation,
we average between fixation (xd = 1) and the time when there are on average less
than 1 individuals outside the final state (xd = 1 − 1

N ). Thus, the fixation time is
the time when the solution of the differential equation crosses xd = 1 − 1

2N .
Fig. 7 shows an overview of the fixation times, covering the full range of

mutation rates. For small mutation rates, we have sequential fixation of mutations
and the time can be well approximated by Eqs. (8) and (10). For high mutation
rates, the numerical solution of Eq. (16) leads to a good approximation for the
fixation times.

6. Discussion

We have determined the average time during which a population moves from
a certain initial state to a final state of higher fitness. The initial and the final
states are separated by a fixed number of mutations d. The mutations jointly
confer a fitness advantage to the final mutant which can be represented by a peak
in the fitness landscape. If the intermediate mutations need to occur in a specific
order for the evolution of the final mutant then it corresponds to the single path.
Otherwise, evolution occurs on a hypercube and there are d! ways of reaching the
final state.

We have explored the simplest system in which the fitness in all intermediate
states is the same. As expected, the fixation times on a hypercube are shorter than
on a single path, due to the presence of multiple paths available in a hypercube.
This observation leads to the question: For which parameters does the hypercube
show shorter fixation times than the single path, even with an added disadvantage?
The fitness in the intermediate states was then set to lower values than the ones in
the single path. Up to a certain threshold value of the fitness of the the intermediate
states, the hypercube shows shorter fixation times than in the single path. The
value of the threshold depends on the population size, total number of required
mutations and the fitness in the final state.

The fixation times for large populations largely depend on the fitness function
and are qualitatively independent of the order of mutations. Let us first focus on a
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flat landscape: When the intermediate states have a fitness equal to the fitness of
the initial wild-type, then for small mutation rates large populations have shorter
fixation times than small populations. This is because the neutral rate of evolution
does not depend on the population size. But the waiting time for fixation of the last
mutation becomes shorter with larger population size. For intermediate mutation
rates, tunneling starts earlier in larger populations. This leads to a marked decrease
in the fixation time with larger population size. For high mutation rates, the time
to fixation is no longer dominated by the time for the first mutant to reach the final
state, but by the time until all individuals are in that state. Due to this, for high
mutation rates the time required for fixation can be shorter in smaller population
as compared to larger populations. Next, we focus on fitness valley: If the fitness
landscape consists of a valley with reduced fitness of the intermediate states, small
populations have an advantage for small mutation rates, as they can easily leave
the initial state and enter the valley. But for high mutation rates, large populations
reach fixation faster, because they can explore states within and beyond the fitness
valley more easily.

Our numerical simulations reveal that tunneling can be neglected even when
the mutation rate exceeds N−2, at least by one order of magnitude. Thus, Eqs. (8)
and (10) provide good estimates for the fixation times even in relatively large pop-
ulations. Concrete values for fixation times are collected in Table 1. They reveal
that even in long-term studies of experimental evolution (Cooper et al., 2003), it is
difficult to observe the consecutive fixation of neutral mutants. Consecutive fixa-
tion of advantageous mutants, however, is significantly faster. For example, while
Table 1 reveals a fixation time of ∼ 1011 generations on a single path for d = 10,
s = 1 and N = 106, an optimal choice of the intermediate fitness values (Traulsen
et al., 2007) would lead to a fixation time of ∼ 107 generations.

While we have focused on the simplest possible system which allows analyt-
ical approximations, experimental studies reveal of course a much higher com-
plexity. Weinreich et al. (2006) studied experimentally the point mutations in the
β-lactamase gene of bacteria. β lactam antibiotics are commonly used, but the bac-
teria can develop resistance to the drugs. Five point mutations in a particular allele
of the β-lactamase gene increases the resistance of the bacteria to cefotaxime by a
factor of ∼ 100, 000. Theoretically the mutations leading from the wild-type allele
to the resistant allele can occur in 5! = 120 ways. These can be represented by a
hypercube of d = 5. But in only 18 of the 120 trajectories, the intermediate muta-
tions are either neutral with respect to the initial state or beneficial. Weinreich and
colleagues have shown that these have the highest probability of realization. For
all beneficial intermediates the fastest way to reach the final state would be when
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the relative fitness increase between any two consecutive mutations is constant
(Traulsen et al., 2007), but usually in nature several different mutations are avail-
able and the population first evolves to states that provide the highest selective
advantage.

In another experimental study the sequence space of the 5s rRNA of a marine
bacterium, Vibrio proteolyticus was explored (Lee et al., 1997). The sequences
from Vibrio proteolyticus and Vibrio alginolyticus differ in only four positions.
All the possible intermediates were constructed by the authors and the fitness of
each was calculated (Chao and McBroom, 1985). Two of the valid intermediates
have a fitness lower than the initial wild-type. We have shown how such fitness
valleys can be crossed by exploring the phenomenon of tunneling or multiple
mutations (for high mutation rates). Thus, the population does not need to move
in a Wrightian fashion (the whole population moving as a whole across the valley).

The theory discussed herein deals with basic evolutionary concepts which are
important to the kind of biological examples described above. More complex
properties of the experimental studies like more general cases of epistasis and
compensatory mutations can easily be incorporated, but there is a huge number
of possibilities. Even if we are only interested in the ordering of fitness values,
we can have up to 2d! distinct epistatic patterns. Thus, one should rather focus
on concrete systems instead. For example, one could simulate the dynamics in
a system with experimentally derived fitness values and mutation rates. Not all
the paths of a hypercube might be accessible for selection, but still some of them
might prove to be significant depending upon the particular values of the param-
eters, as fitness values and population size. Our goal here was to characterize the
simplest features of the dynamics of a population crossing a fitness valley. This
approach can be helpful when more realistic scenarios are addressed.
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Sjöblom, T., Jones, S., Wood, L., Parsons, D., Lin, J., Barber, T., Mandelker, D.,
Leary, R., Ptak, J., Silliman, N., Szabo, S., Buckhaults, P., Farrell, C., Meeh, P.,
Markowitz, S., Willis, J., Dawson, D., Willson, J., Gazdar, A., Hartigan, J., Wu,
L., Liu, C., Parmigiani, G., Park, B., Bachman, K., Papadopoulos, N., Vogel-
stein, B., Kinzler, K., Velculescu, V., 2006. The consensus coding sequences of
human breast and colorectal cancers. Science 314, 268–274.

18



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

Traulsen, A., Iwasa, Y., Nowak, M. A., 2007. The fastest evolutionary trajectory.
J Theor Biol 249 (3), 617–623.

van Nimwegen, E., Crutchfield, J., 2000. Metastable evolutionary dynamics:
crossing fitness barriers or escaping via neutral paths? Bull. Math. Biol. 62,
799–848.

Vogelstein, B., Kinzler, K., 2004. Cancer genes and the pathways they control.
Nature Medicine 10, 789–799.

Weinreich, D., 2005. The rank ordering of genotypic fitness values predicts ge-
netic constraint on natural selection on landscapes lacking sign epistasis. Ge-
netics 171, 1397–1405.

Weinreich, D., Delaney, N., DePristo, M., Hartl, D., 2006. Darwinian evolution
can follow only very few mutational paths to fitter proteins. Science 312, 111–
114.

Weinreich, D. M., Chao, L., 2005. Rapid evolutionary escape by large populations
from local fitness peaks is likely in nature. Evolution 59, 1175–1182.

Weinreich, D. M., Watson, R., Chao, L., 2005. Perspective: Sign epistasis and
genetic constraint on evolutionary trajectories. Evolution 56 (6), 1165–1174.

Wilke, C., 2004. The speed of adaptation in large asexual populations. Genetics
167, 2045–2053.

Wilke, C., 2005. Quasispecies theory in the context of population genetics. BMC
Evolutionary Biology 5, 44.

Wood, L. D., Parsons, D. W., Jones, S., Lin, J., Sjoblom, T., Leary, R. J., Shen, D.,
Boca, S. M., Barber, T., Ptak, J., Silliman, N., Szabo, S., Dezso, Z., Ustyanksky,
V., Nikolskaya, T., Nikolsky, Y., Karchin, R., Wilson, P. A., Kaminker, J. S.,
Zhang, Z., Croshaw, R., Willis, J., Dawson, D., Shipitsin, M., Willson, J.
K. V., Sukumar, S., Polyak, K., Park, B. H., Pethiyagoda, C. L., Pant, P. V. K.,
Ballinger, D. G., Sparks, A. B., Hartigan, J., Smith, D. R., Suh, E., Papadopou-
los, N., Buckhaults, P., Markowitz, S. D., Parmigiani, G., Kinzler, K. W., Vel-
culescu, V. E., Vogelstein, B., 2007. The genomic landscapes of human breast
and colorectal cancers. Science 318 (5853), 1108–1113.

19



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

Figure Captions

Figure 1
The order of mutations determines the geometry for evolutionary dynamics,

shown here for d = 3 sites (eg. genes, nucleotide sites etc.). If mutations can only
occur in a particular order, only a single path is available (left). If the order of
mutations is arbitrary, evolutionary dynamics occurs on a hypercube (right). The
initial states have fitness 1 and the final states fitness r � 1. All intermediate states
are assumed to have the same fitness s < r. States are labeled by bit-strings, 0 is
an wild-type site and 1 is a mutated site.

Figure 2
Fixation time for a single path (squares) and a hypercube (circles) with small

mutation rates (μ � N−2) for different intermediate fitness values. Evolutionary
dynamics is always faster in the hypercube. Solid lines show the analytical ap-
proximation for small mutation rates, Eqs. (8) and (10). Numerical simulations
shown by symbols agree well with the analytical approximation (population size
N = 100, mutation rate μ = 10−5, d = 5, r = 1.1, simulations averaged over a
1000 realizations).

Figure 3
The figure shows the threshold values for which evolution on a hypercube with

fitness s < 1 in the intermediate states proceeds as fast as on a single neutral path
with s = 1. Full lines show N(1 − s) based on the numerical solution of Eq. 11.
Above the lines, evolution proceeds faster on the hypercube. Below them, the
neutral single path is faster. For N → ∞, the lines converge to a constant, see
Eq. (12). The symbols show the results from numerical simulations for N = 5
and d = 10 (triangles), N = 20 and d = 5 (circles) as well as N = 80 and d = 2
(squares). Symbols are open (red) when the single path is faster and filled (blue)
when the hypercube is faster (μ = 10−5, r = 1.1, simulations averaged over a 1000
realizations).

Figure 4
The probability of tunneling across the hypercube (circles, blue) is larger than

in the single path (squares, red) due to the higher effective mutation rate. The tun-
neling across the valley denoted by the filled symbols (s = 0.9) is always larger
than the probability of tunneling across a flat fitness landscape denoted by open
symbols (s = 1.0). This arises from the fact that the stepwise accumulation of
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mutations would involve the fixation of a disadvantageous mutation in the first
step. All symbols show the probabilities that the population tunnels at least across
one state for the single path or at least one error class for the hypercube (N = 100,
d = 5, r = 1.1, averaged over a 1000 realizations).

Figure 5
The probability of tunneling across a neutral hypercube (circles) is always

higher than the probability of tunneling across a neutral single path (squares).
Here, the probability that the system tunnels across at least one state or one error
class is shown for d = 5 and N = 1000. As expected, for Nμ > 1 the probability
of tunneling approaches 1. In contrast to our conservative estimate that tunneling
can be neglected only as long as the mutation rate is below N−2, even for muta-
tion rates as large as 100N−2 the probability of tunneling remains close to zero
(s = 1.0, r = 1.1, averaged over a 1000 realizations).

Figure 6
For d = 2, the probability of tunneling across the intermediate state is slightly

higher in the single path (squares) than in the hypercube (open circles), shown for
N = 100 here. This is because the effective mutation rate into the intermediate
state is twice as big in the hypercube, leading to a higher probability of fixation.
Filled circles show the probability to tunnel across individual states of the hyper-
cube. For μN > 1, the system always tunnels. In the hypercube, both states are
used for this. As expected, we need μ � N−2 for the tunneling probability to
vanish (s = 1.0, r = 1.1, averaged over a 1000 realizations).

Figure 7
The fixation times decrease with increasing mutation rate. Fixation always

occurs faster on the hypercube (circles) than in the single path (squares). For
small mutation rates, mutations fixate sequentially and the fixation time can be
well approximated by Eqs. (8) and (10). Here, the fixation times decrease as μ−1.
For high mutation rates, the system can be approximated by a set of determinis-
tic differential equations and the simulation results for the fixation times can be
approximated based on the numerical solution of Eq. (16). In this case, fixation
times decrease in general slower than μ−1 with increasing mutation rate (popula-
tion size N = 1000, d = 5, s = 1, r = 1.1, averages over 1000 realizations).
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N d = 3 d = 10
Single Path Hypercube Single Path Hypercube

102 2.10999 0.943325 9.10999 2.03896
104 2.0011 0.834433 9.0011 1.93007
106 2.00001 0.833344 9.00001 1.92898

Table 1: The time required for fixation of d mutations in units of 1010 gen-
erations for a mutation rate of μ = 10−10 based on Eqs. 8 and 10. The
intermediate mutations are neutral, s = 1. For small mutation rates, the
fixation times scale linearly with μ−1. For N →∞, the fixation time on the
single path approaches μ−1(d − 1) and the fixation time on the hypercube
approaches μ−1

∑d−2
k=0(d−k)−1. However, the mutation rates have to decrease

with increasing N to make the approximation for the fixation times valid.
(initial fitness 1.0 and final fitness r = 1.1).

Table 1




