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Genetic biasing through cultural transmission: do simple

Bayesian models of language evolution generalize?

Dan Dediua∗

aMax Planck Institute for Psycholinguistics, Wundtlaan 1, 6500 AH Nijmegen, The Netherlands

Abstract

The recent Bayesian approaches to language evolution and change seem to suggest that

genetic biases can impact on the characteristics of language, but, at the same time, that its

cultural transmission can partially free it from these same genetic constraints. One of the

current debates centres on the striking differences between sampling and a posteriori

maximising Bayesian learners, with the first converging on the prior bias while the latter

allows a certain freedom to language evolution. The present paper shows that this difference

disappears if populations more complex than a single teacher and a single learner are

considered, with the resulting behaviours more similar to the sampler. This suggests that

generalisations based on the language produced by Bayesian agents in such homogeneous

single agent chains are not warranted. It is not clear which of the assumptions in such

models are responsible, but these findings seem to support the rising concerns on the validity

of the “acquisitionist” assumption, whereby the locus of language change and evolution is

taken to be the first language acquirers (children) as opposed to the competent language

users (the adults).

Keywords: Language evolution, Computer model, Bayesian agents.
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1 Introduction

The role of genetic biases in language evolution and change is a very important topic (Dediu,

2008b; Dediu and Ladd, 2007; Kirby et al., 2007) because, on one hand, it is generally accepted

that human language has some sort of genetic foundations but, on the other, it is not clear how

specific or strong such biases must be.

More specifically, languages across the world show striking similarities as well as an amazing

range of variation. Among these similarities are the definitional properties of language –

Hockett’s (1963) design features – which include, for example, duality of patterning

(combinantions of meaningless phonemes produce meaningful morphemes), discretness of the

basic linguistic units (for example, sounds) and arbitrariness of mapping between singal and

meaning. Also included among these similarities are language universals (Greenberg, 1966),

which are not part of the definition of language but seem to be true of all (called absolute

universals) or most (statistical universals or tendencies) attested languages (for example, the

word order universals which constrain the relations between the ordering of various constituents

like Object, Subject and Verb).

However, languages also differ in myriad ways, ranging from the number of consonants (from

6 in Rotokas to 122 in !Xóõ; Maddieson, 2008a) and vowels (from 2 in Yimas to 14 in German;

Maddieson, 2008c), the usage or not of voice pitch (fundamental frequency) to convery lexical or

grammatical distinctions (slightly more than half the world’s languages are tone languages, like

Chinese and Yoruba; Maddieson, 2008b; Yip, 2002), the conceptualisation of space (Levinson,

2003) or the canonical order of subject and verb (Dryer, 2008).

One of the fundamental questions generated by this concerns the interplay between linguistic

diversity and its fundamental constraints: what forces can produce such a bewildering variety of

languages which can all be acquired by children using essentially the same “hardware” (albeit

with large inter-individual variation in the actual implementation)? As hinted above, part of the

answer must concern genetics, part of it must concern individual learning and yet another

essential part must concern the process of cultural transmission across generations.

At one extreme of the spectrum of proposed explanations, it is suggested that genetic

mechanisms are extremely specific and strong, coding for some constrained parameter values of a

so-called “Universal Grammar” (UG) while, at the other, these influences are conceptualised as

non-specific and very weak (for an overview see, for example, Kirby et al., 2007 or Christiansen

and Chater, 2008 and associated comments).

In the first account, these genetic factors act at the scale of the individual by forcing the
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language to fit inside pre-determined constraints during language acquisition (Lightfoot, 1999), so

that both the similarities across languages and the range of possible variation are a direct result

of innate mechanisms. However, in the second account, the genetic biases act through the

cultural transmission of language across many generations (Dediu, 2008b; Dediu and Ladd, 2007;

Kirby et al., 2007), so that languages are shaped by genetic and communicative constraints

simultaneously, resulting is different solutions to similar problems, as well as contingent variation.

As a consequence, in the UG account, the nature and strength of the genetic biases can be more

or less directly inferred from the distribution of typological features, while in the second account,

the relationship between biases and distributional properties of languages is more indirect and

complex (Dediu and Ladd, 2007; Kirby et al., 2007).

In this second category falls D. Robert Ladd’s and my recent work relating tone languages and

the derived haplogroups of ASPM and Microcephalin, where we propose that a very small genetic

bias at the individual level can impact on the trajectory of language change through cultural

transmission, influencing the distribution of tone and non-tone languages across the world (Dediu

and Ladd, 2007; Ladd et al., 2008). Our proposal, thus, could allow a better understanding of the

complex interplay between weak genetic biases and the process of cultural transmission in

shaping language diversity and provide empirical arguments in favour of this account.

A popular methodology for studying the influence of cultural transmission on language

evolution and change is represented by the Iterated Learning Model or ILM (Kirby and Hurford,

2002), whereby naive agents learn their language using primary data produced by the previous

generation. This methodology has been applied mainly to simulated agents, increasing our

understanding of, for example, the emergence of compositionality (Kirby and Hurford, 2002), but

also recently to real human participants (Kirby et al., 2008) and even bird song (Feher et al.,

2008). A recent development of the ILM concerns the treatment of the agents as Bayesian

learners (Griffiths and Kalish, 2007; Kirby et al., 2007; Smith and Kirby, 2008), which holds the

promise to allow a more principled approach to modelling language change and evolution.

Such a Bayesian agent has a prior distribution over the possible languages, P (h), which is

updated according to the observed linguistic data, d, resulting in a posterior distribution, better

accounting for this data:

P (h|d) =
P (d|h)P (h)

P (d)

where h is a hypothesis (language), P (d|h) is the probability of the agent producing the observed

linguistic data, d, assuming the hypothesis h, and P (d) =
∑

h P (d|h)P (h). In this paradigm, the

prior P (h) is equated to the learning bias and is thought to reflect, at least partially, some
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genetic factors relevant for language (Griffiths and Kalish, 2007; Kirby et al., 2007; Smith and

Kirby, 2008).

P (.|d) represents the distribution of the posterior probabilities of all the possible languages,

but in this approach a single “winning” hypothesis, hw is chosen and taken to be the agent’s

knowledge of language (Griffiths and Kalish, 2007; Kirby et al., 2007). However, this assumption

is controversial, given that it can be argued that hw changes depending on time and context and,

more importantly, that language learning and innovation continues throughout life (Croft, 2000).

Picking this unique hw is not trivial and seems to profoundly affect the outcomes of language

evolution. Griffiths and Kalish (2007) propose two such learning algorithms, namely the sampling

learner (henceforth SAM ), where hw is randomly chosen according to its posterior probability,

P (hw|d), and the maximum a posteriori (or MAP) learner, where hw has the maximum posterior

probability, hw = argmaxhP (h|d). Kirby et al. (2007) extends this scheme to a continuous

spectrum of intermediate learning algorithms, whereby hw is chosen with probability

(P (d|h)P (h))r , so that for r = 1 the learner is a SAM, while for r →∞ the learner is a MAP.

Language is transmitted across discrete generations, with the agents in the current generation,

t, acting as language models for those in the next generation, t + 1, by producing data d using

their hw. The agents in the first generation, having no teachers, produce utterances dictated only

by their innate biases. In all subsequent generations, the learners use these produced data, d, to

arrive at their own posterior and chose their own hw, and they themselves will become language

models in generation t + 1. Even if, theoretically, there can be many teachers with different priors

and learning algorithms producing learner-dependent aggregate data for many different learners,

the cases usually treated in the literature assume either a chain composed of a single teacher and

a single learner (Griffiths and Kalish, 2007; Kirby et al., 2007), a pool of homogeneous teachers

and learners with each learner using the data generated by a single teacher (Griffiths and Kalish,

2007), or homogeneous pools of teachers tested against invasion by a different type of learner

(Smith and Kirby, 2008).

It has been shown that for chains of identical agents, iterated learning with SAM (r = 1)

agents is equivalent to a Gibbs sampler and always converges to the prior, while for MAP

(r →∞) agents it is equivalent to an expectation-maximisation algorithm, and the behaviour is

more complex but still largely influenced by the prior (Griffiths and Kalish, 2007; Kirby et al.,

2007). Crucially, however, while for SAM chains the resulting distribution of languages can be

directly and transparently used to infer the genetic biases (because they are identical), for MAP

chains this inference is at best partial (concerning, for example, the order of the hypotheses in

the prior; Kirby et al., 2007). Smith and Kirby (2008) shows that SAM is not an evolutionarily
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stable strategy, being open to invasion by MAP learners, and suggests that “maximising is

always preferred over sampling” (p. 289) in an evolutionary context. Moreover, Kirby et al.

(2007) show that while SAM chains are “uninteresting” by always converging to the prior, chains

of MAP agents (or generally, learning algorithms with r > 1) can display complex dynamics,

whereby the strength of the bias can be totally obscured by the cultural transmission process. In

infinite homogeneous populations where each learner picks a teacher at random, Griffiths and

Kalish (2007) show that the results for single agent chains hold when translated in terms of

population frequency of the languages h.

Together, these findings have been interpreting as suggesting that MAP (or r > 1), as

opposed to SAM, agents could develop cultural systems largely free from genetic constraints, in

the sense that very weak biases can produce very strong cultural universals, that the actual

strength of the bias is largely irrelevant and that evolution prefers such systems (Kirby et al.,

2007; Smith and Kirby, 2008). However, it is unclear how robust these results are to violations of

the various assumptions (discussed in Griffiths and Kalish, 2007, p. 472) and how warranted is

the transfer of these conclusions to natural human language. One of the goals of this paper is to

explore the effects of altering some of the assumptions implicit in this work, especially those

concerning the nature and structure of the populations of agents.

A related question concerns the nature of the impact of genetic biases on the trajectory of

language change across generations and its detectability. This is motivated by our recent finding

of a correlation between the geographic distribution of linguistic tone and the derived haplogroups

of two brain growth and development-related human genes, ASPM and Microcephalin (Dediu

and Ladd, 2007; Ladd et al., 2008). This correlation does not seem to be explained by the

standard factors of shared ancestry and contact and, thus, we suggested that it represents the

first case of a causal influence of genetic structure on the properties of language. It is not yet

clear how such a bias works at the individual level and how is amplified by the cultural

transmission of language, but we give some theoretical suggestions in Dediu and Ladd (2007) and

especially in Ladd et al. (2008).

I have previously (Dediu, 2008b) investigated three possible operationalisations of such a

genetic bias in a heterogeneous, spatially structured population of agents. The biases

implemented are non-Bayesian and I found that only one of them, namely the rate of learning

bias, can influence language in a manner similar to that suggested by the empirical data on tone,

ASPM and Microcephalin. Given the importance of Bayesian models for language change,

another goal of the present paper is to investigate the capacity of Bayesian agents to produce

results compatible to those suggested by the currently available data (this was in part suggested
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by one anonymous reviewer of Dediu, 2008b, who wondered what would happen if Bayesian

learners were allowed to bias language transmission in such a complex population).

2 The agents, their language and genetic bias

In this paper, I will use the framework the I introduced and described in details elsewhere

(Dediu, 2008b). The genome of an agent consists of two independent genes, G1 and G2, each

having two alleles (one denoted *), which are selectively neutral. The language is described by

two linguistic features, F1 and F2, each with two possible values, one also denoted by *. G1 can

influence the language of the agents by coding specific linguistic biases which may affect F1 only;

therefore, G2 and F2 evolve independently and without biasing, acting as controls. An agent’s

internal representation of the language is given by the probabilities that each feature has value *,

p1 and p2, as well as the joint probability that both have this value simultaneously, p1·2.

Language production involves the generation of utterances containing F ∗i with probability pi, and

F ∗1 ∧ F ∗2 with probability p1·2.

During language learning, the agent is presented with a sample of utterances from which the

frequencies fi and f1·2 of the utterances containing F ∗i and F ∗1 ∧ F ∗2 are computed. These

frequencies represent the observed data, d, which are used to update the agent’s internal

linguistic representation, pi and p1·2 depending on the current update rule. There are 3

non-Bayesian and 2 Bayesian update rules.

2.1 The Non-Bayesian agents

The difference between the observed frequency, f t
i (with i ∈ {1, 2, 1·2}), and the agent’s internal

probability, pt
i, at time t is used to update the latter:

pt+1
i =

⎧⎪⎨
⎪⎩

pt
i + Δt

i · r+
i if pt

i ≤ f t
i

pt
i −Δt

i · r−i otherwise

where Δt
i = |pt

i − f t
i |, and the parameters 0 ≤ r+

i , r−i ≤ 1 are the learning rates adjusting the

weight of the evidence in favour of or against F ∗i . Depending on the parameters r+
i and r−i and

the initial internal probabilities p0
i , the three models are defined as:

• M0 (No Genetic Bias): r+
1 = r−1 = r+

2 = r−2 = r+
1·2 = r−1·2 = 1 and p0

1 = p0
2 = p0

1·2 = 1
2 .

Thus, there is no influence of the genes on the agent’s language, allowing language to evolve

in a purely cultural manner;
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• M1 (Genes Bias the Initial Expectation): the allele G∗1 determines p0
1 = 1, while the other

allele determines p0
1 = 0; the other parameters are as for M0. In this case, the genes bias

language acquisition by coding for different initial starting points, in the sense that the G∗1

allele very strongly “predisposes” the agent to expect a language of type F ∗1 , while the

other allele very strongly “predisposes” against such a language;

• M2 (Genes Bias the Rate of Learning): the G∗1 allele encodes an asymmetric rate of

learning bias, β, given by r−1 = β; the other parameters are as for M0. For this, genes bias

language acquisition by coding for preferential rates of learning, in the sense that the G∗1

allele makes the agent evaluate evidence favouring F ∗1 as stronger than equivalent evidence

against it; the strength of the bias is measured by β between 0.0 (extremely strong

tendency towards F ∗1 ) to 1.0 (neutral).

2.2 The Bayesian agents

As described above, an utterance has the form u = v1v2, where vi is the value of the linguistic

feature Fi. Therefore, there are four possible utterances (where 1 means that the * value is

present and 0 that it is absent): 00, 01, 10 and 11. Let p = (p00, p01, p10, p11) be the vector of

probabilities of the four utterances and n = (n00, n01, n10, n11) the vector of their frequencies of

occurrence in a particular set of utterances.

Thus, an agent’s internal representation of language as given by {p1, p2, p1·2} is entirely

equivalent to the vector p because:

p00 = 1− p1 − p2 + p1·2; p01 = p2 − p1·2; p10 = p1 − p1·2

p11 = p1·2

p1 = p10 + p11; p2 = p01 + p11

and it produces utterances following a multinomial distribution, n ∼ Multinom(p) with the

probability mass function:

f(n;p) =
(n00 + n01 + n10 + n11)!

n00! n01! n10! n11!
pn00
00 pn01

01 pn10
10 pn11

11

Assuming, as detailed in Griffiths and Kalish (2007), that an agent has full access to its own

learning mechanism and that the best model for production it can have is its own (of course, all

of these assumptions are open to debate), the conjugate Dirichlet prior distribution was used for
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the language, p ∼ Dirichlet(α), having the probability density function:

f(p; α) =
1

B(α)
pα00−1
00 pα01−1

01 pα10−1
10 pα11−1

11

where α = (α00, α01, α10, α11) > 0 are parameters and B(α) is the beta function (Press, 2003).

Therefore, given p ∼ Dirichlet(α) and n ∼Multinom(p), we have that after the application of

Bayes’ rule, p|n ∼ Dirichlet(α + n).

With these, the genetic bias of a Bayesian agent is given by the parameters

α0 = (α0
00, α

0
01, α

0
10, α

0
11) of the distribution of p0 = (p0

00, p
0
01, p

0
10, p

0
11) ∼ Dirichlet(α0) with which

the agent is born (to simplify the notation, in the following, the 0 superscript will be understood).

These initial probabilities, p0, are assigned deterministically with the following constraints:

i) F1 and F2 are genetically independent, and

ii) F2 is fully genetically unbiased.

Condition (i) means that p1·2 = p1p2, equivalent to p2
11 + p11(p10 + p01 − 1) + p10p01 = 0, which is

satisfied iff (p01 − 1)2 + (p10 − 1)2 ≥ 1, giving two solutions p±11 = (1−p10−p01)±√Δ
2 .

Condition (ii) can be understood as requiring E[p2] = 1
2 and Var[p2] very large. The first

implies E[p01] + E[p11] = 1
2 , but because E[p01] = α01

αsum
and E[p11] = α11

αsum
, we have

α01 + α11 = αsum

2 . Because Var[p2] = (α01+α11)(αsum−α01−α11)
α2

sum(αsum+1) = 1
4(αsum+1) , the second condition

requires αsum small. Moreover, by requiring that α > 1, we have that αsum > 4 and

Var[p2] < 1
20 .

E[p1] = μ and Var[p1] = σ define the genetic bias of F1 and, using the previous results, we

have α10+α11
αsum

= μ and μ(1−μ)
αsum+1 = σ. As αsum > 4, μ(1− μ) > 5σ and given μ ∈ (0, 1) and

maxμ(μ(1 − μ)) = 1
4 for μ = 1

2 , we have that σ ∈ (0, 1
20 ). Therefore, the genetic bias is described

by the two parameters μ ∈ (0, 1) (the location) and σ ∈ (0, 1
20 ) (the strength).

Taking μ and σ as given, we have αsum = μ(1−μ)
σ − 1, α10 + α11 = μαsum, α01 + α11 = αsum

2

and, by requiring that initially p = E[p], we have that (αsum − α01)2 + (αsum − α10)2 ≥ α2
sum, in

which case α±11 = (αsum−α01−α10)±
√

(αsum−α01−α10)2−4α01α01

2 , with solution α11 = αsumμ
2 .

Furthermore, by requiring α11 > 1, we have σ < μ2(1−μ)
2+μ . For function f(μ) = μ2(1−μ)

2+μ the

equation 0 = ∂f
∂μ = 2μ(1−μ)−μ2

2+μ − μ2(1−μ)
(2+μ)2 has two real roots μ± = −5±√57

4 , of which only

μ+ ≈ 0.6375 ∈ (0, 1) and f(μ+) = maxx∈(0,1) f(x) ≈ 0.0558.

Therefore, the two parameters describing the genetic bias, its location μ and its strength σ are

not independent, with σ < min
{

μ(1−μ)
5 , μ2(1−μ)

2+μ

}
, μ ∈ (0, 1) and σ ∈ (

0, 1
20

)
. Given the

symmetry of the model with regard to the direction of the bias (i.e., towards or against F ∗1 ), only
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the absolute deviation from unbiasedness,
∣∣μ− 1

2

∣∣ matters: therefore, only biases towards F ∗1 will

be considered (i.e., μ > 1
2 ) and μ will denote the deviation from unbiasedness,

∣∣μ− 1
2

∣∣.
To sum up, the Bayesian update rules are the sampler, SAM, and the maximum a posteriori,

MAP, and their genetic bias can be described using just two non-independent parameters: the

bias location, μ (given relative to the unbiasedness 1
2 ), and the bias strength, σ. In the following,

we will denote a sampler with bias (μ, σ) as SAMμ
σ, a maximum a posteriori with the same bias

as MAPμ
σ, or, when the exact update rule is irrelevant, simply as Bμ

σ. Computationally,

sampling from a Dirichlet distribution, as required by SAM agents, was implemented using the

GNU Scientific Library (Galassi et al., 2006).

2.3 The parameter values

Obviously, most of the parameters used in the model are continuous, but due to computational

constraints, this continuous range was discretised. For the learning biases of the various models,

the discretisation is as follows:

• for the M0, M1 agents: there are no parameters;

• for the M2 agents: the bias strength β took the values {0.0001 (extremely strong), 0.1, 0.2,

0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99, 0.999, 0.99925, 0.9995, 0.99975, 0.9999, 0.99999

(extremely weak)} for the single agent chain and pair chain conditions, but only {0.10, 0.50,

0.80, 0.85, 0.90, 0.95, 0.99} for complex populations, as detailed in Dediu (2008b);

• for the Bayesian agents, SAM and MAP: the bias location, μ, and bias strength, σ, are

given in Table 1 below (the extreme values have been approximated due to computational

rounding errors).

Table 1: The bias parameters for the Bayesian learners (Bσ
μ; B stands for both SAM and MAP).

σ
μ 0.00 0.01 0.02 0.03 0.04 0.05

0.50 B0.45
0.001

0.40 B0.40
0.002

0.30 B0.30
0.002 B0.30

0.010 B0.30
0.014

0.20 B0.20
0.002 B0.20

0.010 B0.20
0.020 B0.20

0.027

0.10 B0.10
0.002 B0.10

0.010 B0.10
0.020 B0.10

0.030 B0.10
0.039

0.00 B0.00
0.002 B0.00

0.010 B0.00
0.020 B0.00

0.030 B0.00
0.040 B0.00

0.049

For all cases and for each parameter combination tested, I executed 20 independent runs, each

lasting for 10,000 generations. Preliminary runs, testing the robustness of the model, were done

as described in Dediu (2008b). All the statistical analyses use R (R Development Core Team,
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2007) and I applied Holm’s (1979) multiple testing correction where appropriate, in which case I

report adjusted p-values.

In the following sections, I will study in detail three cases: the case of homogeneous chains

composed of single agents, which represents the standard model used in the literature and serves

as a test for the current implementation, the case of heterogeneous chains composed of pairs of

agents violates some assumptions of the standard model, while the case of the heterogeneous,

spatially structured populations with overallping generations violates most of those assumptions.

3 Chains of single agents

This represents the standard model in the literature (Griffiths and Kalish, 2007; Kirby and

Hurford, 2002; Kirby et al., 2007) and feature discrete, non-overlapping generations, the

population in each generation being reduced to a single agent learning from the agent in the

previous generation. Moreover, these chains of single agents are homogenenous in the sense that

the agents in all generations are “born the same”, all having identical genetic biases and learning

algorithms. Therefore, there are five such types of chains, composed respectively of M0, M1,

M2, SAM and MAP agents respectively, and the following describes their behaviour.

For M0, the probability p1 goes very quickly to fixation at either 0 or 1 in on average 1516.5

generations, with no preference for 0 or 1 (7 vs 13 cases, χ2(1) = 1.8, p = 0.179) and no difference

in speed when converging to either (t(17.16) = 1.56, p = 0.137). This confirms that M0 is indeed

unbiased and language evolves through cultural drift towards fixation at a uniform language

featuring F ∗1 or not. As expected, p2 behaves in the same manner: it converges to 0 or 1 in on

average 1379.5 generations, with no difference in speed (t(8.26) = 0.35, p = 0.731) and no

preferences for either (χ2(1) = 3.2, p = 0.073).

For M1, p1 is constantly 1, suggesting that this bias invariably and immediately forces the

languages to converge towards the biased value, F ∗1 , while p2 behaves as for M0, as expected.

For M2 and all biases β, p2 behaves as for M0, as expected. However, p1 invariably converges

to 1 in on average 1395.3 generations, for all biases β < 0.99, with a speed independent of β

(one-way ANOVA F (10, 209) = 1.31, p = 0.226). However, when β ≥ 0.999, as the bias weakens

(as for M2, weaker biases mean higher βs), more and more runs fail to converge to 1 and, when

the bias is extremely weak (β = 0.999999), p1 behaves very similar to M0, suggesting that,

indeed, very weak M2 biases converge to no bias at all. For this range, 0.999 ≤ β < 1.0, the

number of runs converging to 1 (notated n→1) or to 0 (n→0) do depend on β (Pearson’s

rn→1 = −0.90, p = 0.005 and rn→0 = 0.93, p = 0.002), as does the speed of convergence to 1

9



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

(Spearman’s ρ = −0.24, p = 0.017). Taken together, these suggest that M2 behaves as intuitively

expected, with the biases stronger than the threshold bias β ≈ 0.999 invariably producing the

biased language, while weaker biases gradually converge towards unbiasedness.

For SAM, the language maintains the location of the bias, μ, across generations, and the

variation around this value is controlled by the bias strength, σ. The regression

mean(p1) ∼ 0.50 + 0.998μ (1)

has an adjusted R2 = 0.978 and all p < 2 · 10−16. These confirm the claim in the literature

(Griffiths and Kalish, 2007; Kirby et al., 2007) that chains of samplers converge on their prior.

For MAP however, the languages produced by very strong biases (σ = 0.002) cluster tightly

around μ, but for more relaxed biases (σ > 0.002) they tend to spread around higher locations,

depending on σ:

mean(p1) ∼ 0.430 + 1.397μ + 4.974σ (2)

with adjusted R2 = 0.705 and all p < 10−12. Therefore, in this case, the actual biasing of

language depends on both the bias location, μ and its strength, σ, and supports the findings in

Griffiths and Kalish (2007); Kirby et al. (2007) that MAP learners can amplify weak biases, but

the mechanism is complex and strong biases are stable.

Figure 1 represents the average internal representation of language to which the agents arrive,

mean(p1), function of the bias location, μ, for MAP and SAM single-agent chains. It can be

clearly seen that sampler chains tightly track their prior (genetic bias), while MAP learner chains

tend to be more scattered around higher values, showing that they have a more complex and

unpredictable dynamics around an - on average - amplified bias.

0.0 0.1 0.2 0.3 0.4 0.5
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8

Figure 1: The average of the internal representation of language, mean(p1) (vertical axis), function
of the bias location, μ (horizontal axis), for chains of single MAP (gray) and SAM (black;
displaced to the right by 0.015 for display purposes) agents. (Please, note that the actual value of
μ is μ + 0.5)
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4 Chains of pairs of agents

This represents a slight modification of the standard, single-agent homogeneous chain model, in

the sense that now there are two agents (one pair) per generation and they are not necessarily

“born the same”, meaning that the chain is potentially in-homogeneous. More exactly, if we let

the two agents in generation t be denoted At
1 and At

2, then we can have that At
1 �= At

2. However,

the two lineages are identical, namely, for any two generations, t1, t2, we have that At1
1 = At2

1 and

At1
2 = At2

2 .

The language models for generation t + 1, At
1 and At

2, produce n utterances each, u1
i and u2

i

respectively, i = 1, n, which are used by the current learners, At+1
1 and At+1

2 , to learn a language

from exactly the same mixed primary data. This alteration is small but still a step towards

increased realism, and any disagreements with the standard model are potentially important for

the latter’s generalisability.

In the following I will presented the behaviour of the resulting shared language and individual

language representations function of the pair’s composition. I tested all possible pairs between all

possible agent types and parameter values, leading to 931 cases.

4.1 The shared language

The pairs of agents managed to always converge on a shared language, with only 6 cases showing

significant differences between the agents’ internal representations and their common language:

M1-B0.00
0.002 and B0.10

0.002-B0.40
0.002, where B stands for any type of Bayesian learner. These failures

to agree are due to the widely different starting points of the Bayesian agents, μ, and their very

strong biases, σ, suggesting that, in general, even agents with strong and very incongruous

genetic biases can still learn the language of their community.

The following subsections will analyse the effects model X has on model Y when paired

together, by comparing the internal representations of language, pY
1 , pY

2 and pY
1·2, of the Y agent

in the single and paired conditions. Moreover, unless specified, these comparisons will focus on

the biased feature, F1.

4.2 The effects of M0

M0 does not have any major effects when paired with itself. However, it does alter M1 by

making it very similar to M0 (t(37.89) = −0.66, p = 0.51). By contrast, M2 is mostly unaffected,

except for the extremely strong bias β = 0.0001, which seems to be slightly buffered by this

pairing, slowing down its convergence towards 1 (mean 3223.8 generations).
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Interestingly, both Bayesian models are profoundly affected by their pairing with M0, by

becoming very similar to each other and by having their biases atenutated, as shown by the

regression of their internal representation of language on their bias:

SAM : mean(p1) ∼ 0.506 + 0.569μ− 0.338σ

MAP : mean(p1) ∼ 0.507 + 0.573μ− 0.357σ

with adjusted R2 = 0.950 and 0.951 respectively, and all p < 10−5. The correlation between the

mean(p1) of SAM and the mean(p1) of MAP is very strong and positive when they are paired

with M0 (Pearson’s r = 0.958, p < 2.2 · 10−16), but is negative and small when in single chains

(r = −0.157, p = 0.0015). These show that even if they are very different when alone, the two

Bayesian types of agents become indistinguishable when paired with the non-biased model, M0,

throwing some doubt on the generalisability of their different behaviour in the standard model.

4.3 The effects of M1

M1 does not have any effects on itself, and M2 is only slightly affected by pairing it with M1,

but still behaving in a similar manner to its single condition.

However, both Bayesian agents change radically in the sense that they become very similar to

each other and have their bias amplified, as shown by the regression of their internal

representation of language on their bias

SAM : mean(p1) ∼ 0.680 + 0.638μ + 1.639σ

MAP : mean(p1) ∼ 0.684 + 0.652μ + 1.680σ

adjusted R2 = 0.946 and 0.942, respectively and all p < 10−16. As for the paring with M0

discussed above, the correlation between the mean(p1) of SAM and the mean(p1) of MAP is

very strong and positive when they are paired with M1 (r = 0.981, p < 2.2 · 10−16).

4.4 The effects of M2

Pairing M2 with itself has only the effect of slightly lowering the convergence speed.

Interestingly, the bias strength β does not make any difference when paired with Bayesian agents

(one-way ANOVAs are ns), and there are no differences between SAM and MAP

(t(3197.56) = 0.346, p = 0.729). Moreover, paring M2 with a Bayesian agent is similar to pairing

that agent with M0 (all t -tests are ns). This suggests that the Bayesian and M2 types of genetic
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bias are somehow orthogonal, referring to profoundly different manners of being biased and that,

from the point of view of a Bayesian agent, all M2s are just a sort of M0, while for M2, both

types of Bayesian agents are the same thing.

4.5 The effects of the Bayesian agents

Pairing two identical Bayesian agents (either both MAP or both SAM and both having the

same bias location, μ, and strength, σ) does not impact significantly on their behaviour. More

specifically, the pairs MAP-MAP behave effectively identical to single MAP chains of the same

bias, and the pairs SAM-SAM behave like single SAM chains of the same bias, except that

they tend to “be more on target” (they have smaller standard deviations around the mean).

However, pairs of identically biased SAM-MAP agents behave very much like the corresponding

(same bias) single SAM chains (all t -tests are ns), but different from single same bias MAP

chains (14 out of 20 runs have t -tests significant at α-level 0.05).

Figure 2 shows these results as the mean of the internal representation of language of the

agents, mean(p1) across runs, as a function of the (common) bias location μ. Comparing this

with the behaviour of single agent chains represented in figure 1, it can be seen that, indeed, pairs

of identically biased MAP agents (light gray in fig. 2) behave like single MAP agents (gray in

fig. 1), pairs of identically biased SAM agents (dark gray in fig. 2) behave similar to single

SAM agents (black in fig. 1), but pairs of identically biased MAP and SAM agents (black in

fig. 2) are very similar to pairs of identical SAM agents and, thus, to single SAM chains.
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Figure 2: The average of the internal representation of language, mean(p1) (vertical axis), function
of the bias location, μ (horizontal axis), for chains of pairs of Bayesian agents with identical biases:
MAP-MAP (light gray, leftmost dots), SAM-MAP (black; middle dots, displaced by 0.015) and
SAM-SAM (dark gray, rightmost dots, displaced by 0.030). Compare with Fig 1.

In the general case, when pairing any two Bayesian agents, each having any of all the possible

biases, an interesting behaviour emerges: pairs of MAP-MAP agents differ from both pairs of

SAM-MAP agents and pairs of SAM-SAM agents, but pairs of SAM-MAP agents behave in

the same manner as pairs of SAM-SAM agents (one-way ANOVA F (2, 12597) = 241.03,

p < 2.2 · 10−16, post-hoc adjusted pairwise comparisons respectively p = 0.000, p = 0.000 and

p = 0.913). Briefly put in a symbolic form, (SAM-SAM ≈ SAM-MAP) �= MAP-MAP.
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Unfortunately, directly comparing the behaviour of chains of pairs of agents to the behaviour

of chains of single agents is hindered by the different dimensionalities of the results (single bias

versus two biases), but from visually inspecting the language function of the bias location (μ1, μ2

for pairs of agents and μ for single agents), it can be observed that the behaviour of MAP-MAP

pairs is similar to the single MAPs, while the pairs SAM-MAP and SAM-SAM resemble the

single SAMs. Taken together, these suggest that when SAM and MAP agents are mixed, the

winning strategy is SAM.

This can also be seen from the linear regression of the shared language, mean(f1), on the

biases of MAP-MAP, SAM-MAP and SAM-SAM pairs:

mean(f1) ∼ 0.408 + 0.668μ1 + 0.730μ2 + 4.726σ1 + 0.510σ2

mean(f1) ∼ 0.488 + 0.478μ1 + 0.550μ2 + 2.120σ1 − 1.494σ2

mean(f1) ∼ 0.489 + 0.481μ1 + 0.549μ2 + 2.066σ1 − 1.551σ2

with adjusted R2 of 0.811, 0.889 and 0.887, respectively, and all p < 2.2 · 10−5. These suggest

that while MAP-MAP pairs always amplify their individual biases (mean(f1) > max(μ1, μ2) in

98.73% cases, strongly reminiscent the behaviour of single MAP chains), the pairs involving at

least a SAM behave in a different manner, by tending to settle on an average bias location. In a

symbolic notation, (SAM-SAM ≈ SAM-MAP ≈ SAM) �= (MAP-MAP ≈MAP). However,

it is clear that in this general case, the bias(es) cannot be directly and transparently inferred

from the resulting distribution of languages.

5 Complex populations

Here I extend my previous model of complex populations (described in detail in Dediu, 2008b) to

the Bayesian case. The world is composed of a square grid of 10× 10 regions, each region being

able to support a population. The optimal population size is fixed for each region, and the actual

population size fluctuates around it through birth, death and migration. The time is discretised

in years, generations are desynchronised (overlapping) and each agent has a limited

non-deterministic lifespan. Language acquisition takes place during the critical period, with most

utterances learned from the agent’s mother, followed by members of the agent’s own group and

with some influence from members of neighboring groups. After reaching sexual maturity, there

is mating and reproduction. All demographic and linguistic processes depend on space (through

Moore neighbourhoods), and the genes are exposed to drift, there being no natural selection.
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Following the procedure described in Dediu (2008b), I tested the model against various settings

of these parameters and I found found it to be robust.

The biasing allele, G∗1, has initial frequency ν in the population, and this, together with the

biasing mechanism (M0, M1, M2, SAM or MAP) and the appropriate bias parameters (β, or μ

and σ) identify such a complex population model (see Dediu, 2008b for more details on the

procedure). For all cases and for each parameter combination tested, 20 independent runs were

executed, each lasting for 10,000 simulation years (Dediu, 2008b). Preliminary runs, testing the

robustness of the model, were done as described in Dediu (2008b).

The following sections will focus on two goals:

• the description of the emerging language function of the composition of the population and

its comparison with the simpler pair and single agent chains, and

• the analysis of the resulting spatial pattern of biased language and the detectability of this

bias.

5.1 The language

In this case, the language is represented by the global (world-wide) frequency of the starred value

F ∗i , denoted fi, and the genetics by the global frequency of starred allele, G∗i , denoted gi, for

i ∈ {1, 2, 1 · 2}. As expected, f2, g1 and g2 do not depend on the model or its parameters,

fluctuating around 1
2 , with f2 being globally very stable (see Dediu, 2008b, for details). However,

f1 – the frequency of the biased linguistic value – does depend on the parameter values and the

following will study this dependency. Due to computational constraints, the initial population

frequency of the biasing allele G∗1, ν, takes the values {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.
For M0 (meaning that the population is entirely composed of unbiased agents), as expected,

f1 is constant across generations for each individual run, and does not depend on ν, the initial

frequency of the biasing allele. The mean(f1) ≈ 1
2 , and the standard deviation, sd(f1) ≈ 0.004,

showing that, indeed, M0 does not bias the language.

When M1 agents form part of the population, f1 increases with their increasing frequency, ν,

in a non-linear fashion:

mean(f1) ∼ 1.992ν − 0.990ν2

with adjusted R2 = 0.999 and all p < 2.2 · 10−16. Moreover, the variation, sd(f1), declines with

increasing population frequency, ν: Pearson’s r = −0.67, p < 2.2 · 10−16.

As opposed to all other models (M0, M1, MAP or SAM), where f1 tends to be relatively

constant across time (except for very slight random fluctuations), for M2 it follows an
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asymptotic growth curve, modeled here as a linear rise possibly followed by a plateau at the

maximum possible value of 1.0 (see fig. 3).

Given that the rise always starts at 1
2 and the plateau at 1 is not always reached during the

time allowed for the run, a valid measure of the dynamics of f1 is represented by the actual

maximum value M1 = max(f1) and the moment it was first realized, Mx1 = min(argmax(f1)).

From these, the speed of the rise in the frequency of the biased linguistic value, F ∗1 , can be

estimated by the angle of the rising part, α = atan(M1 − 1
2 , Mx1) (measured in degrees, ◦). The

speed of rise α and, consequently, the maximum reached in the allowed time, M1, are higher for

stronger biases and higher initial frequencies of the biasing allele:

α(◦) ∼ 43.85◦ + 22.92◦ν − 48.43◦β

with adjusted R2 = 0.839 and all p < 2.2 · 10−16.
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Figure 3: The trajectory through time (horizontal axis, in simulation years) of the frequency of the
biased linguistic value, f1, (solid lines) and the global frequency of the biasing allele, g1, (dotted
lines) for representative runs of M2 (β=0.5, ν=0.6, black) and MAP (μ=0.2, σ=0.027, ν=0.2,
gray). g1 changes by random drift around its initial value, ν, irrespective of the model, while f1

behaves dramatically different for the two models.

When the biased agents in the population are Bayesian learners (MAP or SAM), the

language is also more or less constant across time for each run (as for the other non-Bayesian

agents except M2). Moreover, it is indistinguishable between the two models (t(7993.66) = 1.004,

p = 0.32) and depends on all three parameters in a complex and non-transparent manner:

mean(f1) ∼ 0.40 + 0.31ν + 0.73μ− 0.64σ − 0.16ν2 + 11.35σ2

with adjusted R2 = 0.905, all p < 10−6.

However, in order to allow the comparison with the languages produced by the single agent

chains, mean(f1) was regressed linearly just on μ and σ:

mean(f1) ∼ 0.502 + 0.734μ
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with adjusted R2 = 0.789 and all p < 2.2 · 10−16; it can be seen that this is much more similar to

single SAM chains than to single MAP chains (compare with eqn. 1 and 2).
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Figure 4: The average of the internal representation of language, mean(p1) (vertical axis), function
of the bias location, μ (horizontal axis), for complex populations of MAP agents for three initial
frequencies of the biasing allele, ν: 0.1 (light gray, leftmost dots), 0.5 (black; middle dots, displaced
by 0.015) and 0.9 (dark gray, rightmost dots, displaced by 0.030). The same happens also for SAM
agents. It can be seen by comparing with figs. 1 and 2 that this is more similar to single SAM
chains.

Focusing on the extreme case of homogeneous Bayesian populations (ν = 1.0), SAM and

MAP are again identical (t(797.57) = 0.35, p = 0.72) and very similar to the single SAM

(compare to eqn. 1):

mean(f1) ∼ 0.50 + 1.024μ

with adjusted R2 = 0.999 and all p < 2.2 · 10−16. Therefore, it is again clear that populations of

samplers and MAP learners more complex than the homogeneous single agent chains do not show

any differences in the language produced and behave more similar to single SAM chains than to

single MAP chains, calling into question the generality of the results in Kirby et al. (2007) (see

also fig. 4).

5.2 Correlations between linguistics, genetics and geography

As briefly described in the Introduction, our recent discovery of a correlations between the

geographical distributions of tone languages and the derived haplogroups of ASPM and

Microcephalin, correlation which apparently cannot be entirely explained by contact and shared

ancestry, has lead us to propose that a genetic bias causes language to change in a certain

direction when transmitted across generations in a population containing enough such biased

individuals. Methodologically, we used Mantel (partial) correlations (Mantel, 1967) (computed

using the ZT software Bonnet and Van de Peer, 2002) between geographical, genetic, historical

linguistic and typological distances to control for these factors, where historical linguistic

distances encode the degree of relatedness due to sharing a common ancestor, while the

typological distances reflect the degree of structural similarity between languages (for details,

please see Dediu and Ladd, 2007). For a detailed discussion of the assumptions, earlier proposals
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and implications for language change see Ladd et al. (2008), and for language evolution, see

Dediu (2008a).

In Dediu (2008b) I implemented a computer model designed to test the conditions under

which such a genetic biasing of language can be detected using the methodology we proposed in

Dediu and Ladd (2007) using non-Bayesian learners and the type of complex populations

described above. There, I found that while M1 agents cannot produce such a bias, M2 agents

can and, moreover, the region of the parameter space allowing this bias to be detected is quite

large. Here I extend this work for the two types of Bayesian learners and investigate their

capacity to induce a detectable genetic biasing of language of the type we reported for tone and

ASPM and Microcephalin.

The relationships between (structural) linguistic, genetic and geographic distances between

populations are measured using (partial) Mantel correlations, where GenGeo is the correlation

between genes and geography, LingGeo the correlation between linguistics and geography,

GenLing is the relationship between genetic and linguistic distances and GenLingGeo is the

residual correlation between genes and languages after controlling for geography. Also, we

measure the Pearson correlations between the population frequencies of the starred allele, G∗j ,

and starred linguistic feature, F ∗i , denoted FiGj , for i, j ∈ {1, 2}. In order to capture the

dynamics of a series of such correlations through time (simulation years), ρ was defined in Dediu

(2008b) to represent the proportion of significant correlations for a given α-level.

The first finding is that the behaviour of the correlations produced by the two Bayesian

learners, SAM and MAP, in such complex populations is almost indistinguishable:

randomisation ANOVAs (Edgington, 1987) are ns after multiple testing correction (Holm, 1979).

Therefore, only MAP learners will be analysed in the following.

Concerning the separate correlations of linguistic and genetic distances with geography,

GenGeo and LingGeo are both very high, confirming that the model is behaving as expected

(Dediu, 2008b). Moreover, GenGeo depends very slightly only on ν – the initial frequency of of

the biasing allele, G∗1, in the population which – in an inverted “U” shape, being highest either

for very rare or very common biasing agents. However, LingGeo is higher for lower ν

(Spearman’s ρ = −0.17, p < 2.2 · 10−16), higher μ (ρ = 0.26, p < 2.2 · 10−16) and small σ

(ρ = −0.084, p = 3.33 · 10−7), suggesting that the correlation between linguistics and geography

is most detectable for rare but strongly biased agents.

The correlation between genetics and linguistic structure, GenLing, is moderately strong and

depends in an inverted “U” shape on ν (ρ = −0.21, p < 2.2 · 10−16), and gets stronger for higher

μ (ρ = 0.30, p < 2.2 · 10−16) and lower σ (ρ = −0.19, p < 2.2 · 10−16), being most detectable for
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rare or common strongly biased agents. Moreover, controlling for geography by using

GenLingGeo, diminishes the values of the correlations but does not alter their pattern, suggesting

that geography does not fully explain the similarity between genes and language structures.

In order to understand the nature and detectability of the genetic biases, we need to focus on

the correlations between individual alleles and linguistic features. As expected, F1F2 (the

correlation between the two linguistic features), F1G2, F2G1 and F2G2 are constantly very low,

reflecting their mutual independence (built in the simulation). The correlation between the two

genes, G1G2, is a bit higher, reflecting the slower peace of genetic drift. However, the correlation

between the biasing allele and the biased feature, F1G1, is very low for small biases and high

population frequencies, but extremely high for strong (small σ), marked (large μ) infrequent (low

ν) biases:

F1G1 ∼ 0.257− 0.266ν + 0.663μ− 1.903σ

with adjusted R2 = 0.411 and all p < 2 · 10−16. This function has a maximum for ν = 0, μ = 1
2

and σ = 0, suggesting that it is easiest to detect very strong infrequent Bayesian biases as

opposed to moderately strong and relatively frequent M2 biases, as was found in Dediu (2008b).

It can be concluded that such non-homogeneous, spatially structured complex populations

with overlapping generations confirm the results of chains of pairs of agents, of which probably

the most important is that the two types of Bayesian learners behave in the same way and

similar to single chains of samplers. Moreover, the biases generated by such Bayesian learners in

a complex population can be detected using the methodology of Dediu and Ladd (2007), but

probably only for very strong infrequent biases.

6 Discussion

Despite their low realism, homogeneous chains of single agents probably represent the standard

model of language evolution, both theoretically, through mathematical and computational

modelling (Griffiths and Kalish, 2007; Kirby et al., 2007), and experimentally (Kirby et al.,

2008). This is primarily due to the fact that such homogeneous single agent chains are well

understood thanks to a relatively long history of computational studies in the Iterated Learning

Model tradition, focused mainly on the emergence of compositionality (Kirby and Hurford, 2002)

but also to the recent seminal approach of Griffiths and Kalish (2007). Moreover, they are also

relatively easy to implement and study in the laboratory using real human subjects, as recently

shown by Kirby et al. (2008). However, these models present a series of potential pitfalls and the

following enumeration is not intended to be exhaustive:
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• they abstract away from horizontal and oblique social interactions (by having a single agent

in each generation), assuming that their impact is not dramatic;

• the assumption of “acquisitionism” (Honeybone, 2003) – the view of language change and

evolution as due to children acquiring a different language because of the reinterpretation of

data produced by adults (Kirby and Hurford, 2002) – a position prevalent in certain views

of historical linguistics (Lightfoot, 1999), but largely contradicted by a number of empirical

observations suggesting that actually it is the adults that have the active role in language

change (Croft, 2000);

• they also assume that the (degenerate) population is homogeneous, which is not warranted

by the data on inter-individual diversity, both at the genetic and cultural levels (e.g.,

Plomin et al., 2001; Stromswold, 2001).

Moreover, the Bayesian approach to these models carries with it a supplementary set of

assumption, including the fact that human language learning is validly approximated by Bayes’

rule, that a single fixed hypothesis is selected from the posterior after the learning has ceased,

and that learners have extensive access to their own learning algorithm so that they can use it to

measure the likelihood that the observed data was produced by a given hypothesis (for a larger

list and discussion see Griffiths and Kalish, 2007).

While I do not want to imply that all of these assumptions are wrong, I want to suggest that

most are empirical questions not currently well supported by the data available, and that the

effects of their violation for the validity of theoretical results obtained in the homogeneous single

agent chains tradition was not investigated in proportion to its importance. The present study

has attempted to explore the effects of changing some of these assumptions.

First, with all assumptions is place, the present model succeeded in confirming the theoretical

and computational results in Griffiths and Kalish (2007) and Kirby et al. (2007), namely that

chains of samplers, SAM, converge to the “pure” genetic bias, while the language of chains of a

posteriori maximisers, MAP, depends in a complex manner on their genetic bias.

Second, when enlarging the population to two agents and allowing the homogeneity

assumption to be dropped, I found that, in general, even learners with very different genetic

biases do converge on a common language. However, Bayesian agents involved in heterogeneous

pair chains behave in the same manner, with the strong differences between SAM and MAP

learners in the single chain condition being totally lost. Moreover, chains composed of

SAM-MAP pairs tend to behave like single chains of SAM.
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Third, in the case of complex, spatially-structured populations with overlapping generations,

the resulting language is largely influenced by the frequency, nature and strength of the genetic

biases. The two Bayesian learners are behaving indistinguishably from each other and similar to

single chains of samplers, SAM, even in the case of populations composed entirely of a single

agent type.

Taken together, these results suggest that the stark differences between the two types of

Bayesian learners when in single agent chains disappear for more complex settings, both

behaving similar to Bayesian samplers. Therefore, the language resulting from Bayesian biased

cultural transmission is very much influenced by the characteristics of the bias (the prior).

However, the resulting distribution of languages does not allow the direct and transparent

inference of these same genetic biases, supporting the view that the process of cultural

transmission plays a very important mediating role (Kirby et al., 2007).

Moreover, I found that the methods we have previously used to find the correlation between

the geographical distributions of tone, ASPM and Microcephalin (Dediu and Ladd, 2007) can

indeed detect such Bayesian biases, especially when they are rare in the population and strong.

However, it seems that the type of bias produced by the non-Bayesian M2 (Dediu, 2008b) better

fits the intuitive notion of a genetic bias for tone (Dediu and Ladd, 2007; Ladd et al., 2008), but

this fit is still far from perfect.

For now, the ultimate source(s) of this imperfection in modelling the notion of such a genetic

bias is not known but it seems probable that it stems, at least partially, from the acquisitionist

assumption. As extensively discussed in the language change literature (see Croft, 2000 for a

good review), the theory that first language acquirers (children) determine language change by

reanalysing the language they hear as being produced by a slightly different grammar

(“acquisitionism”) fails to explain most of the empirical data available. Likewise, in the type of

models discussed in this paper, after the acquisition period is over and the single winning

grammar, hw, is chosen, it becomes frozen in the adults. However, probably a more realistic

alternative would be to allow adults not only to change their grammar through time and social

conext but to be active innovators. This would certainly add extra complexity to our models but

it would make them more plausible, as well. The kind of genetic biases discussed throughout this

paper can act in the children as well as competent adult language users, but their action in the

second condition has so far been neglected, representing a promissing direction for future research.

In conclusion, it seems premature to draw any general conclusions concerning the process of

language evolution and the specific interplay between nature (genetic biases) and nurture

(cultural transmission) based on models of first language acquisition in homogeneous chains of
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single Bayesian agents. However, these models do seem to suggest that when the structure of the

language community is more complex, the relationship between the distribution of languages and

the genetic bias(es) depends less on the particular type of language learner, and is complex and

non-transparent. Therefore, they support the view that theories which explain the similarities

and differences between languages as direct consequences of a genetically endowed “Universal

Grammar” are probably wrong. The alternative view, that language variation and its constraints

are due to a complex interaction between genetics, individual learning and cultural transmission

across generations in populations is, in my view, better as describing the empirical data we have.

I hope that further refining our models to include more complex communicative contexts and

groups, and shifting the focus towards the competent language users as the agents of change will

provide a better account of the complex phenomena involving the expression of genetic factors

mediated by cultural transmission (Dediu and Ladd, 2007; Ladd et al., 2008).
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