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The recent Bayesian approaches to language evolution and change seem to suggest that genetic biases can impact on the characteristics of language, but, at the same time, that its cultural transmission can partially free it from these same genetic constraints. One of the current debates centres on the striking differences between sampling and a posteriori maximising Bayesian learners, with the first converging on the prior bias while the latter allows a certain freedom to language evolution. The present paper shows that this difference disappears if populations more complex than a single teacher and a single learner are considered, with the resulting behaviours more similar to the sampler. This suggests that generalisations based on the language produced by Bayesian agents in such homogeneous single agent chains are not warranted. It is not clear which of the assumptions in such models are responsible, but these findings seem to support the rising concerns on the validity of the "acquisitionist" assumption, whereby the locus of language change and evolution is taken to be the first language acquirers (children) as opposed to the competent language users (the adults).

A c c e p t e d m a n u s c r i p t 1 Introduction

The role of genetic biases in language evolution and change is a very important topic (Dediu, 2008b;[START_REF] Dediu | From the cover: Linguistic tone is related to the population frequency of the adaptive haplogroups of two brain size genes, aspm and microcephalin[END_REF][START_REF] Kirby | Innateness and culture in the evolution of language[END_REF] because, on one hand, it is generally accepted that human language has some sort of genetic foundations but, on the other, it is not clear how specific or strong such biases must be.

More specifically, languages across the world show striking similarities as well as an amazing range of variation. Among these similarities are the definitional properties of language - [START_REF] Hockett | The problem of universals in language[END_REF] design features -which include, for example, duality of patterning (combinantions of meaningless phonemes produce meaningful morphemes), discretness of the basic linguistic units (for example, sounds) and arbitrariness of mapping between singal and meaning. Also included among these similarities are language universals [START_REF] Greenberg | Language Universals[END_REF], which are not part of the definition of language but seem to be true of all (called absolute universals) or most (statistical universals or tendencies) attested languages (for example, the word order universals which constrain the relations between the ordering of various constituents like Object, Subject and Verb).

However, languages also differ in myriad ways, ranging from the number of consonants (from 6 in Rotokas to 122 in !Xóõ; Maddieson, 2008a) and vowels (from 2 in Yimas to 14 in German; Maddieson, 2008c), the usage or not of voice pitch (fundamental frequency) to convery lexical or grammatical distinctions (slightly more than half the world's languages are tone languages, like Chinese and Yoruba; Maddieson, 2008b;[START_REF] Yip | Tone. Cambridge Textbooks in Linguistics[END_REF], the conceptualisation of space [START_REF] Levinson | Space in Language and Cognition: Explorations in Cognitive Diversity[END_REF] or the canonical order of subject and verb [START_REF] Dryer | Order of subject and verb[END_REF].

One of the fundamental questions generated by this concerns the interplay between linguistic diversity and its fundamental constraints: what forces can produce such a bewildering variety of languages which can all be acquired by children using essentially the same "hardware" (albeit with large inter-individual variation in the actual implementation)? As hinted above, part of the answer must concern genetics, part of it must concern individual learning and yet another essential part must concern the process of cultural transmission across generations.

At one extreme of the spectrum of proposed explanations, it is suggested that genetic mechanisms are extremely specific and strong, coding for some constrained parameter values of a so-called "Universal Grammar" (UG) while, at the other, these influences are conceptualised as non-specific and very weak (for an overview see, for example, Kirby et al., 2007 or Christiansen and[START_REF] Christiansen | Language as shaped by the brain[END_REF]associated comments).

In the first account, these genetic factors act at the scale of the individual by forcing the
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language to fit inside pre-determined constraints during language acquisition [START_REF] Lightfoot | The Development of Language: Acquisition, Change and Evolution[END_REF], so that both the similarities across languages and the range of possible variation are a direct result of innate mechanisms. However, in the second account, the genetic biases act through the cultural transmission of language across many generations (Dediu, 2008b;[START_REF] Dediu | From the cover: Linguistic tone is related to the population frequency of the adaptive haplogroups of two brain size genes, aspm and microcephalin[END_REF][START_REF] Kirby | Innateness and culture in the evolution of language[END_REF], so that languages are shaped by genetic and communicative constraints simultaneously, resulting is different solutions to similar problems, as well as contingent variation.

As a consequence, in the UG account, the nature and strength of the genetic biases can be more or less directly inferred from the distribution of typological features, while in the second account, the relationship between biases and distributional properties of languages is more indirect and complex [START_REF] Dediu | From the cover: Linguistic tone is related to the population frequency of the adaptive haplogroups of two brain size genes, aspm and microcephalin[END_REF][START_REF] Kirby | Innateness and culture in the evolution of language[END_REF].

In this second category falls D. Robert Ladd's and my recent work relating tone languages and the derived haplogroups of ASPM and Microcephalin, where we propose that a very small genetic bias at the individual level can impact on the trajectory of language change through cultural transmission, influencing the distribution of tone and non-tone languages across the world [START_REF] Dediu | From the cover: Linguistic tone is related to the population frequency of the adaptive haplogroups of two brain size genes, aspm and microcephalin[END_REF]Ladd et al., 2008). Our proposal, thus, could allow a better understanding of the complex interplay between weak genetic biases and the process of cultural transmission in shaping language diversity and provide empirical arguments in favour of this account.

A popular methodology for studying the influence of cultural transmission on language evolution and change is represented by the Iterated Learning Model or ILM [START_REF] Kirby | The emergence of linguistic structure: An overview of the iterated learning model[END_REF], whereby naive agents learn their language using primary data produced by the previous generation. This methodology has been applied mainly to simulated agents, increasing our understanding of, for example, the emergence of compositionality [START_REF] Kirby | The emergence of linguistic structure: An overview of the iterated learning model[END_REF], but also recently to real human participants [START_REF] Kirby | Cumulative cultural evolution in the laboratory: an experimental approach to the origins of structure in human language[END_REF] and even bird song [START_REF] Feher | Evolution of song culture in the zebra finch[END_REF]. A recent development of the ILM concerns the treatment of the agents as Bayesian learners [START_REF] Griffiths | Language evolution by iterated learning with bayesian agents[END_REF][START_REF] Kirby | Innateness and culture in the evolution of language[END_REF][START_REF] Smith | Cultural evolution: implications for understanding the human language faculty and its evolution[END_REF], which holds the promise to allow a more principled approach to modelling language change and evolution.

Such a Bayesian agent has a prior distribution over the possible languages, P (h), which is updated according to the observed linguistic data, d, resulting in a posterior distribution, better accounting for this data:

P (h|d) = P (d|h)P (h) P (d)
where h is a hypothesis (language), P (d|h) is the probability of the agent producing the observed linguistic data, d, assuming the hypothesis h, and P (d) = h P (d|h)P (h). In this paradigm, the prior P (h) is equated to the learning bias and is thought to reflect, at least partially, some
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genetic factors relevant for language [START_REF] Griffiths | Language evolution by iterated learning with bayesian agents[END_REF][START_REF] Kirby | Innateness and culture in the evolution of language[END_REF][START_REF] Smith | Cultural evolution: implications for understanding the human language faculty and its evolution[END_REF].

P (.|d) represents the distribution of the posterior probabilities of all the possible languages, but in this approach a single "winning" hypothesis, h w is chosen and taken to be the agent's knowledge of language [START_REF] Griffiths | Language evolution by iterated learning with bayesian agents[END_REF][START_REF] Kirby | Innateness and culture in the evolution of language[END_REF]. However, this assumption is controversial, given that it can be argued that h w changes depending on time and context and, more importantly, that language learning and innovation continues throughout life [START_REF] Croft | Explaining language change: An evolutionary approach[END_REF].

Picking this unique h w is not trivial and seems to profoundly affect the outcomes of language evolution. [START_REF] Griffiths | Language evolution by iterated learning with bayesian agents[END_REF] propose two such learning algorithms, namely the sampling learner (henceforth SAM ), where h w is randomly chosen according to its posterior probability, P (h w |d), and the maximum a posteriori (or MAP ) learner, where h w has the maximum posterior probability, h w = argmax h P (h|d). [START_REF] Kirby | Innateness and culture in the evolution of language[END_REF] extends this scheme to a continuous spectrum of intermediate learning algorithms, whereby h w is chosen with probability (P (d|h)P (h)) r , so that for r = 1 the learner is a SAM, while for r → ∞ the learner is a MAP.

Language is transmitted across discrete generations, with the agents in the current generation, t, acting as language models for those in the next generation, t + 1, by producing data d using their h w . The agents in the first generation, having no teachers, produce utterances dictated only by their innate biases. In all subsequent generations, the learners use these produced data, d, to arrive at their own posterior and chose their own h w , and they themselves will become language models in generation t + 1. Even if, theoretically, there can be many teachers with different priors and learning algorithms producing learner-dependent aggregate data for many different learners, the cases usually treated in the literature assume either a chain composed of a single teacher and a single learner [START_REF] Griffiths | Language evolution by iterated learning with bayesian agents[END_REF][START_REF] Kirby | Innateness and culture in the evolution of language[END_REF], a pool of homogeneous teachers and learners with each learner using the data generated by a single teacher [START_REF] Griffiths | Language evolution by iterated learning with bayesian agents[END_REF], or homogeneous pools of teachers tested against invasion by a different type of learner [START_REF] Smith | Cultural evolution: implications for understanding the human language faculty and its evolution[END_REF].

It has been shown that for chains of identical agents, iterated learning with SAM (r = 1)

agents is equivalent to a Gibbs sampler and always converges to the prior, while for MAP (r → ∞) agents it is equivalent to an expectation-maximisation algorithm, and the behaviour is more complex but still largely influenced by the prior [START_REF] Griffiths | Language evolution by iterated learning with bayesian agents[END_REF][START_REF] Kirby | Innateness and culture in the evolution of language[END_REF]. Crucially, however, while for SAM chains the resulting distribution of languages can be directly and transparently used to infer the genetic biases (because they are identical), for MAP chains this inference is at best partial (concerning, for example, the order of the hypotheses in the prior; [START_REF] Kirby | Innateness and culture in the evolution of language[END_REF]. [START_REF] Smith | Cultural evolution: implications for understanding the human language faculty and its evolution[END_REF] shows that SAM is not an evolutionarily (2007) show that while SAM chains are "uninteresting" by always converging to the prior, chains of MAP agents (or generally, learning algorithms with r > 1) can display complex dynamics, whereby the strength of the bias can be totally obscured by the cultural transmission process. In infinite homogeneous populations where each learner picks a teacher at random, [START_REF] Griffiths | Language evolution by iterated learning with bayesian agents[END_REF] show that the results for single agent chains hold when translated in terms of population frequency of the languages h.

Together, these findings have been interpreting as suggesting that MAP (or r > 1), as opposed to SAM, agents could develop cultural systems largely free from genetic constraints, in the sense that very weak biases can produce very strong cultural universals, that the actual strength of the bias is largely irrelevant and that evolution prefers such systems [START_REF] Kirby | Innateness and culture in the evolution of language[END_REF][START_REF] Smith | Cultural evolution: implications for understanding the human language faculty and its evolution[END_REF]. However, it is unclear how robust these results are to violations of the various assumptions (discussed in Griffiths and Kalish, 2007, p. 472) and how warranted is the transfer of these conclusions to natural human language. One of the goals of this paper is to explore the effects of altering some of the assumptions implicit in this work, especially those concerning the nature and structure of the populations of agents.

A related question concerns the nature of the impact of genetic biases on the trajectory of language change across generations and its detectability. This is motivated by our recent finding of a correlation between the geographic distribution of linguistic tone and the derived haplogroups of two brain growth and development-related human genes, ASPM and Microcephalin [START_REF] Dediu | From the cover: Linguistic tone is related to the population frequency of the adaptive haplogroups of two brain size genes, aspm and microcephalin[END_REF]Ladd et al., 2008). This correlation does not seem to be explained by the standard factors of shared ancestry and contact and, thus, we suggested that it represents the first case of a causal influence of genetic structure on the properties of language. It is not yet clear how such a bias works at the individual level and how is amplified by the cultural transmission of language, but we give some theoretical suggestions in [START_REF] Dediu | From the cover: Linguistic tone is related to the population frequency of the adaptive haplogroups of two brain size genes, aspm and microcephalin[END_REF] and especially in Ladd et al. (2008).

I have previously (Dediu, 2008b) learners were allowed to bias language transmission in such a complex population).

2 The agents, their language and genetic bias

In this paper, I will use the framework the I introduced and described in details elsewhere (Dediu, 2008b). The genome of an agent consists of two independent genes, G 1 and G 2 , each having two alleles (one denoted *), which are selectively neutral. The language is described by two linguistic features, F 1 and F 2 , each with two possible values, one also denoted by *. G 1 can influence the language of the agents by coding specific linguistic biases which may affect F 1 only; therefore, G 2 and F 2 evolve independently and without biasing, acting as controls. An agent's internal representation of the language is given by the probabilities that each feature has value *, p 1 and p 2 , as well as the joint probability that both have this value simultaneously, p 1•2 .

Language production involves the generation of utterances containing F * i with probability p i , and

F * 1 ∧ F * 2 with probability p 1•2 .
During language learning, the agent is presented with a sample of utterances from which the frequencies f i and f 1•2 of the utterances containing F * i and F * 1 ∧ F * 2 are computed. These frequencies represent the observed data, d, which are used to update the agent's internal linguistic representation, p i and p 1•2 depending on the current update rule. There are 3 non-Bayesian and 2 Bayesian update rules.

The Non-Bayesian agents

The difference between the observed frequency, f t i (with i ∈ {1, 2, 1•2}), and the agent's internal probability, p t i , at time t is used to update the latter:

p t+1 i = ⎧ ⎪ ⎨ ⎪ ⎩ p t i + Δ t i • r + i if p t i ≤ f t i p t i -Δ t i • r - i otherwise where Δ t i = |p t i -f t i |,
and the parameters 0 ≤ r + i , r - i ≤ 1 are the learning rates adjusting the weight of the evidence in favour of or against F * i . Depending on the parameters r + i and r - i and the initial internal probabilities p 0 i , the three models are defined as:

• M 0 (No Genetic Bias): r + 1 = r - 1 = r + 2 = r - 2 = r + 1•2 = r - 1•2 = 1 and p 0 1 = p 0 2 = p 0 1•2 = 1 2 .
Thus, there is no influence of the genes on the agent's language, allowing language to evolve in a purely cultural manner;
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• M 1 (Genes Bias the Initial Expectation): the allele G * 1 determines p 0 1 = 1, while the other allele determines p 0 1 = 0; the other parameters are as for M 0 . In this case, the genes bias language acquisition by coding for different initial starting points, in the sense that the G * 1 allele very strongly "predisposes" the agent to expect a language of type F * 1 , while the other allele very strongly "predisposes" against such a language;

• M 2 (Genes Bias the Rate of Learning): the G * 1 allele encodes an asymmetric rate of learning bias, β, given by r - 1 = β; the other parameters are as for M 0 . For this, genes bias language acquisition by coding for preferential rates of learning, in the sense that the G * 1 allele makes the agent evaluate evidence favouring F * 1 as stronger than equivalent evidence against it; the strength of the bias is measured by β between 0.0 (extremely strong tendency towards F * 1 ) to 1.0 (neutral).

The Bayesian agents

As described above, an utterance has the form u = v 1 v 2 , where v i is the value of the linguistic feature F i . Therefore, there are four possible utterances (where 1 means that the * value is present and 0 that it is absent): 00, 01, 10 and 11. Let p = (p 00 , p 01 , p 10 , p 11 ) be the vector of probabilities of the four utterances and n = (n 00 , n 01 , n 10 , n 11 ) the vector of their frequencies of occurrence in a particular set of utterances.

Thus, an agent's internal representation of language as given by {p 1 , p 2 , p 1•2 } is entirely equivalent to the vector p because:

p 00 = 1 -p 1 -p 2 + p 1•2 ; p 01 = p 2 -p 1•2 ; p 10 = p 1 -p 1•2 p 11 = p 1•2 p 1 = p 10 + p 11 ; p 2 = p 01 + p 11
and it produces utterances following a multinomial distribution, n ∼ M ultinom(p) with the probability mass function:

f (n; p) = (n 00 + n 01 + n 10 + n 11 )! n 00 ! n 01 ! n 10 ! n 11 ! p n00 00 p n01 01 p n10 10 p n11 11
Assuming, as detailed in [START_REF] Griffiths | Language evolution by iterated learning with bayesian agents[END_REF], that an agent has full access to its own learning mechanism and that the best model for production it can have is its own (of course, all of these assumptions are open to debate), the conjugate Dirichlet prior distribution was used for
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the language, p ∼ Dirichlet(α), having the probability density function:

f (p; α) = 1 B(α) p α00-1 00 p α01-1 01 p α10-1 10 p α11-1 11
where α = (α 00 , α 01 , α 10 , α 11 ) > 0 are parameters and B(α) is the beta function [START_REF] Press | Subjective and Objective Bayesian Statics[END_REF].

Therefore, given p ∼ Dirichlet(α) and n ∼ M ultinom(p), we have that after the application of Bayes' rule, p|n ∼ Dirichlet(α + n).

With these, the genetic bias of a Bayesian agent is given by the parameters α 0 = (α 0 00 , α 0 01 , α 0 10 , α 0 11 ) of the distribution of p 0 = (p 0 00 , p 0 01 , p 0 10 , p 0 11 ) ∼ Dirichlet(α 0 ) with which the agent is born (to simplify the notation, in the following, the 0 superscript will be understood).

These initial probabilities, p 0 , are assigned deterministically with the following constraints:

i) F 1 and F 2 are genetically independent, and ii) F 2 is fully genetically unbiased.

Condition (i) means that p 1•2 = p 1 p 2 , equivalent to p 2 11 + p 11 (p 10 + p 01 -1) + p 10 p 01 = 0, which is satisfied iff (p 01 -1) 2 + (p 10 -1) 2 ≥ 1, giving two solutions p ± 11 = (1-p10-p01)± √ Δ 2 . Condition (ii) can be understood as requiring E[p 2 ] = 1 2 and Var[p 2 ] very large. The first implies E[p 01 ] + E[p 11 ] = 1 2 , but because E[p 01 ] = α01 αsum and E[p 11 ] = α11 αsum , we have α 01 + α 11 = αsum 2 . Because Var[p 2 ] = (α01+α11)(αsum-α01-α11) α 2 sum (αsum+1) = 1 4(αsum+1)
, the second condition requires α sum small. Moreover, by requiring that α > 1, we have that α sum > 4 and andVar[p 1 ] = σ define the genetic bias of F 1 and, using the previous results, we have α10+α11 αsum = μ and μ(1-μ) αsum+1 = σ. As α sum > 4, μ(1μ) > 5σ and given μ ∈ (0, 1) and max μ (μ(1μ)) = 1 4 for μ = 1 2 , we have that σ ∈ (0, 1 20 ). Therefore, the genetic bias is described by the two parameters μ ∈ (0, 1) (the location) and σ ∈ (0, 1 20 ) (the strength). Taking μ and σ as given, we have

Var[p 2 ] < 1 20 . E[p 1 ] = μ
α sum = μ(1-μ) σ -1, α 10 + α 11 = μα sum , α 01 + α 11 = αsum 2 and, by requiring that initially p = E[p], we have that (α sum -α 01 ) 2 + (α sum -α 10 ) 2 ≥ α 2 sum , in which case α ± 11 = (αsum-α01-α10)± √ (αsum-α01-α10) 2 -4α01α01 2 , with solution α 11 = αsumμ 2 . Furthermore, by requiring α 11 > 1, we have σ < μ 2 (1-μ) 2+μ . For function f (μ) = μ 2 (1-μ) 2+μ the equation 0 = ∂f ∂μ = 2μ(1-μ)-μ 2 2+μ -μ 2 (1-μ) (2+μ) 2 has two real roots μ ± = -5± √ 57 4
, of which only

μ + ≈ 0.6375 ∈ (0, 1) and f (μ + ) = max x∈(0,1) f (x) ≈ 0.0558.
Therefore, the two parameters describing the genetic bias, its location μ and its strength σ are

not independent, with σ < min μ(1-μ) 5 , μ 2 (1-μ) 2+μ
, μ ∈ (0, 1) and σ ∈ 0, 1 20 . Given the symmetry of the model with regard to the direction of the bias (i.e., towards or against F * 1 ), only
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the absolute deviation from unbiasedness, μ -1 2 matters: therefore, only biases towards F * 1 will be considered (i.e., μ > 1 2 ) and μ will denote the deviation from unbiasedness, μ -1 2 . To sum up, the Bayesian update rules are the sampler, SAM, and the maximum a posteriori, MAP, and their genetic bias can be described using just two non-independent parameters: the bias location, μ (given relative to the unbiasedness 1 2 ), and the bias strength, σ. In the following, we will denote a sampler with bias (μ, σ) as SAM μ σ , a maximum a posteriori with the same bias as MAP μ σ , or, when the exact update rule is irrelevant, simply as B μ σ . Computationally, sampling from a Dirichlet distribution, as required by SAM agents, was implemented using the GNU Scientific Library [START_REF] Galassi | GNU Scientific Library Reference Manual -Revised Second Edition[END_REF].

The parameter values

Obviously, most of the parameters used in the model are continuous, but due to computational constraints, this continuous range was discretised. For the learning biases of the various models, the discretisation is as follows:

• for the M 0 , M 1 agents: there are no parameters;

• for the M 2 agents: the bias strength β took the values {0.0001 (extremely strong), 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99, 0.999, 0.99925, 0.9995, 0.99975, 0.9999, 0.99999 (extremely weak)} for the single agent chain and pair chain conditions, but only {0.10, 0.50, 0.80, 0.85, 0.90, 0.95, 0.99} for complex populations, as detailed in Dediu (2008b);

• for the Bayesian agents, SAM and MAP: the bias location, μ, and bias strength, σ, are given in Table 1 below (the extreme values have been approximated due to computational rounding errors). For all cases and for each parameter combination tested, I executed 20 independent runs, each lasting for 10,000 generations. Preliminary runs, testing the robustness of the model, were done as described in Dediu (2008b). All the statistical analyses use R (R Development Core Team, In the following sections, I will study in detail three cases: the case of homogeneous chains composed of single agents, which represents the standard model used in the literature and serves as a test for the current implementation, the case of heterogeneous chains composed of pairs of agents violates some assumptions of the standard model, while the case of the heterogeneous, spatially structured populations with overallping generations violates most of those assumptions.

Chains of single agents

This represents the standard model in the literature [START_REF] Griffiths | Language evolution by iterated learning with bayesian agents[END_REF][START_REF] Kirby | The emergence of linguistic structure: An overview of the iterated learning model[END_REF][START_REF] Kirby | Innateness and culture in the evolution of language[END_REF] and feature discrete, non-overlapping generations, the population in each generation being reduced to a single agent learning from the agent in the previous generation. Moreover, these chains of single agents are homogenenous in the sense that the agents in all generations are "born the same", all having identical genetic biases and learning algorithms. Therefore, there are five such types of chains, composed respectively of M 0 , M 1 , M 2 , SAM and MAP agents respectively, and the following describes their behaviour.

For M 0 , the probability p 1 goes very quickly to fixation at either 0 or 1 in on average 1516.5 generations, with no preference for 0 or 1 (7 vs 13 cases, χ 2 (1) = 1.8, p = 0.179) and no difference in speed when converging to either (t(17.16) = 1.56, p = 0.137). This confirms that M 0 is indeed unbiased and language evolves through cultural drift towards fixation at a uniform language featuring F * 1 or not. As expected, p 2 behaves in the same manner: it converges to 0 or 1 in on average 1379.5 generations, with no difference in speed (t(8.26) = 0.35, p = 0.731) and no preferences for either (χ 2 (1) = 3.2, p = 0.073).

For M 1 , p 1 is constantly 1, suggesting that this bias invariably and immediately forces the languages to converge towards the biased value, F * 1 , while p 2 behaves as for M 0 , as expected.

For M 2 and all biases β, p 2 behaves as for M 0 , as expected. However, p 1 invariably converges to 1 in on average 1395.3 generations, for all biases β < 0.99, with a speed independent of β (one-way ANOVA F (10, 209) = 1.31, p = 0.226). However, when β ≥ 0.999, as the bias weakens (as for M 2 , weaker biases mean higher βs), more and more runs fail to converge to 1 and, when the bias is extremely weak (β = 0.999999), p 1 behaves very similar to M 0 , suggesting that, indeed, very weak M 2 biases converge to no bias at all. For this range, 0.999 ≤ β < 1.0, the number of runs converging to 1 (notated n →1 ) or to 0 (n →0 ) do depend on β (Pearson's r n→1 = -0.90, p = 0.005 and r n→0 = 0.93, p = 0.002), as does the speed of convergence to 1

A c c e p t e d m a n u s c r i p t (Spearman's ρ = -0.24, p = 0.017). Taken together, these suggest that M 2 behaves as intuitively expected, with the biases stronger than the threshold bias β ≈ 0.999 invariably producing the biased language, while weaker biases gradually converge towards unbiasedness.

For SAM, the language maintains the location of the bias, μ, across generations, and the variation around this value is controlled by the bias strength, σ. The regression mean(p 1 ) ∼ 0.50 + 0.998μ

(1) has an adjusted R 2 = 0.978 and all p < 2 • 10 -16 . These confirm the claim in the literature [START_REF] Griffiths | Language evolution by iterated learning with bayesian agents[END_REF][START_REF] Kirby | Innateness and culture in the evolution of language[END_REF] that chains of samplers converge on their prior.

For MAP however, the languages produced by very strong biases (σ = 0.002) cluster tightly around μ, but for more relaxed biases (σ > 0.002) they tend to spread around higher locations, depending on σ:

mean(p 1 ) ∼ 0.430 + 1.397μ + 4.974σ (2) 
with adjusted R 2 = 0.705 and all p < 10 -12 . Therefore, in this case, the actual biasing of language depends on both the bias location, μ and its strength, σ, and supports the findings in [START_REF] Griffiths | Language evolution by iterated learning with bayesian agents[END_REF]; [START_REF] Kirby | Innateness and culture in the evolution of language[END_REF] that MAP learners can amplify weak biases, but the mechanism is complex and strong biases are stable.

Figure 1 represents the average internal representation of language to which the agents arrive, mean(p 1 ), function of the bias location, μ, for MAP and SAM single-agent chains. It can be clearly seen that sampler chains tightly track their prior (genetic bias), while MAP learner chains tend to be more scattered around higher values, showing that they have a more complex and unpredictable dynamics around an -on average -amplified bias. "born the same", meaning that the chain is potentially in-homogeneous. More exactly, if we let the two agents in generation t be denoted A t 1 and A t 2 , then we can have that A t 1 = A t 2 . However, the two lineages are identical, namely, for any two generations, t 1 , t 2 , we have that A t1 1 = A t2 1 and

A t1 2 = A t2 2 .
The language models for generation t + 1, A t 1 and A t 2 , produce n utterances each, u 1 i and u 2 i respectively, i = 1, n, which are used by the current learners, A t+1 1 and A t+1 2 , to learn a language from exactly the same mixed primary data. This alteration is small but still a step towards increased realism, and any disagreements with the standard model are potentially important for the latter's generalisability.

In the following I will presented the behaviour of the resulting shared language and individual language representations function of the pair's composition. I tested all possible pairs between all possible agent types and parameter values, leading to 931 cases.

The shared language

The pairs of agents managed to always converge on a shared language, with only 6 cases showing significant differences between the agents' internal representations and their common language:

M 1 -B 0.00 0.002 and B 0.10 0.002 -B 0.40 0.002 , where B stands for any type of Bayesian learner. These failures to agree are due to the widely different starting points of the Bayesian agents, μ, and their very strong biases, σ, suggesting that, in general, even agents with strong and very incongruous genetic biases can still learn the language of their community.

The following subsections will analyse the effects model X has on model Y when paired together, by comparing the internal representations of language, p Y 1 , p Y 2 and p Y 1•2 , of the Y agent in the single and paired conditions. Moreover, unless specified, these comparisons will focus on the biased feature, F 1 .

4.2

The effects of M 0 M 0 does not have any major effects when paired with itself. However, it does alter M 1 by making it very similar to M 0 (t(37.89) = -0.66, p = 0.51). By contrast, M 2 is mostly unaffected, except for the extremely strong bias β = 0.0001, which seems to be slightly buffered by this pairing, slowing down its convergence towards 1 (mean 3223.8 generations).
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Interestingly, both Bayesian models are profoundly affected by their pairing with M 0 , by becoming very similar to each other and by having their biases atenutated, as shown by the regression of their internal representation of language on their bias: SAM : mean(p 1 ) ∼ 0.506 + 0.569μ -0.338σ MAP : mean(p 1 ) ∼ 0.507 + 0.573μ -0.357σ with adjusted R 2 = 0.950 and 0.951 respectively, and all p < 10 -5 . The correlation between the mean(p 1 ) of SAM and the mean(p 1 ) of MAP is very strong and positive when they are paired with M 0 (Pearson's r = 0.958, p < 2.2 • 10 -16 ), but is negative and small when in single chains (r = -0.157, p = 0.0015). These show that even if they are very different when alone, the two Bayesian types of agents become indistinguishable when paired with the non-biased model, M 0 , throwing some doubt on the generalisability of their different behaviour in the standard model.

The effects of M 1

M 1 does not have any effects on itself, and M 2 is only slightly affected by pairing it with M 1 , but still behaving in a similar manner to its single condition.

However, both Bayesian agents change radically in the sense that they become very similar to each other and have their bias amplified, as shown by the regression of their internal representation of language on their bias SAM : mean(p 1 ) ∼ 0.680 + 0.638μ + 1.639σ MAP : mean(p 1 ) ∼ 0.684 + 0.652μ + 1.680σ adjusted R 2 = 0.946 and 0.942, respectively and all p < 10 -16 . As for the paring with M 0 discussed above, the correlation between the mean(p 1 ) of SAM and the mean(p 1 ) of MAP is very strong and positive when they are paired with M 1 (r = 0.981, p < 2.2 • 10 -16 ).

The effects of M 2

Pairing M 2 with itself has only the effect of slightly lowering the convergence speed.

Interestingly, the bias strength β does not make any difference when paired with Bayesian agents (one-way ANOVAs are ns), and there are no differences between SAM and MAP (t(3197.56) = 0.346, p = 0.729). Moreover, paring M 2 with a Bayesian agent is similar to pairing that agent with M 0 (all t -tests are ns). This suggests that the Bayesian and M 2 types of genetic 

The effects of the Bayesian agents

Pairing two identical Bayesian agents (either both MAP or both SAM and both having the same bias location, μ, and strength, σ) does not impact significantly on their behaviour. More specifically, the pairs MAP-MAP behave effectively identical to single MAP chains of the same bias, and the pairs SAM-SAM behave like single SAM chains of the same bias, except that they tend to "be more on target" (they have smaller standard deviations around the mean).

However, pairs of identically biased SAM-MAP agents behave very much like the corresponding (same bias) single SAM chains (all t -tests are ns), but different from single same bias MAP chains (14 out of 20 runs have t -tests significant at α-level 0.05).

Figure 2 shows these results as the mean of the internal representation of language of the agents, mean(p 1 ) across runs, as a function of the (common) bias location μ. Comparing this with the behaviour of single agent chains represented in figure 1, it can be seen that, indeed, pairs of identically biased MAP agents (light gray in fig. 2) behave like single MAP agents (gray in fig. 1), pairs of identically biased SAM agents (dark gray in fig. 2) behave similar to single SAM agents (black in fig. 1), but pairs of identically biased MAP and SAM agents (black in fig. 2) are very similar to pairs of identical SAM agents and, thus, to single SAM chains. This can also be seen from the linear regression of the shared language, mean(f 1 ), on the biases of MAP-MAP, SAM-MAP and SAM-SAM pairs:

mean(f 1 ) ∼ 0.408 + 0.668μ 1 + 0.730μ 2 + 4.726σ 1 + 0.510σ 2 mean(f 1 ) ∼ 0.488 + 0.478μ 1 + 0.550μ 2 + 2.120σ 1 -1.494σ 2 mean(f 1 ) ∼ 0.489 + 0.481μ 1 + 0.549μ 2 + 2.066σ 1 -1.551σ 2
with adjusted R 2 of 0.811, 0.889 and 0.887, respectively, and all p < 2.2 • 10 -5 . These suggest that while MAP-MAP pairs always amplify their individual biases (mean(f 1 ) > max(μ 1 , μ 2 ) in 98.73% cases, strongly reminiscent the behaviour of single MAP chains), the pairs involving at least a SAM behave in a different manner, by tending to settle on an average bias location. In a symbolic notation, (SAM-SAM ≈ SAM-MAP ≈ SAM) = (MAP-MAP ≈ MAP). However, it is clear that in this general case, the bias(es) cannot be directly and transparently inferred from the resulting distribution of languages.

Complex populations

Here I extend my previous model of complex populations (described in detail in Dediu, 2008b) to the Bayesian case. The world is composed of a square grid of 10 × 10 regions, each region being able to support a population. The optimal population size is fixed for each region, and the actual population size fluctuates around it through birth, death and migration. The time is discretised in years, generations are desynchronised (overlapping) and each agent has a limited non-deterministic lifespan. Language acquisition takes place during the critical period, with most utterances learned from the agent's mother, followed by members of the agent's own group and with some influence from members of neighboring groups. After reaching sexual maturity, there is mating and reproduction. All demographic and linguistic processes depend on space (through Moore neighbourhoods), and the genes are exposed to drift, there being no natural selection.

A c c e p t e d m a n u s c r i p t

Following the procedure described in Dediu (2008b), I tested the model against various settings of these parameters and I found found it to be robust.

The biasing allele, G * 1 , has initial frequency ν in the population, and this, together with the biasing mechanism (M 0 , M 1 , M 2 , SAM or MAP) and the appropriate bias parameters (β, or μ and σ) identify such a complex population model (see Dediu, 2008b for more details on the procedure). For all cases and for each parameter combination tested, 20 independent runs were executed, each lasting for 10,000 simulation years (Dediu, 2008b). Preliminary runs, testing the robustness of the model, were done as described in Dediu (2008b).

The following sections will focus on two goals:

• the description of the emerging language function of the composition of the population and its comparison with the simpler pair and single agent chains, and

• the analysis of the resulting spatial pattern of biased language and the detectability of this bias.

The language

In this case, the language is represented by the global (world-wide) frequency of the starred value F * i , denoted f i , and the genetics by the global frequency of starred allele, G * i , denoted g i , for

i ∈ {1, 2, 1 • 2}. As expected, f 2 , g 1 and g 2 do not depend on the model or its parameters, fluctuating around 1 2 , with f 2 being globally very stable (see Dediu, 2008b, for details). However, f 1 -the frequency of the biased linguistic value -does depend on the parameter values and the following will study this dependency. Due to computational constraints, the initial population frequency of the biasing allele G * 1 , ν, takes the values {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.

For M 0 (meaning that the population is entirely composed of unbiased agents), as expected, f 1 is constant across generations for each individual run, and does not depend on ν, the initial frequency of the biasing allele. The mean(f 1 ) ≈ 1 2 , and the standard deviation, sd(f 1 ) ≈ 0.004, showing that, indeed, M 0 does not bias the language.

When M 1 agents form part of the population, f 1 increases with their increasing frequency, ν, in a non-linear fashion:

mean(f 1 ) ∼ 1.992ν -0.990ν 2
with adjusted R 2 = 0.999 and all p < 2.2 • 10 -16 . Moreover, the variation, sd(f 1 ), declines with increasing population frequency, ν: Pearson's r = -0.67, p < 2.2 • 10 -16 .

As opposed to all other models (M 0 , M 1 , MAP or SAM), where f 1 tends to be relatively constant across time (except for very slight random fluctuations), for M 2 it follows an A c c e p t e d m a n u s c r i p t asymptotic growth curve, modeled here as a linear rise possibly followed by a plateau at the maximum possible value of 1.0 (see fig. 3).

Given that the rise always starts at 1 2 and the plateau at 1 is not always reached during the time allowed for the run, a valid measure of the dynamics of f 1 is represented by the actual maximum value M 1 = max(f 1 ) and the moment it was first realized, M x 1 = min(argmax(f 1 )).

From these, the speed of the rise in the frequency of the biased linguistic value, F * 1 , can be estimated by the angle of the rising part, α = atan(M 1 -1 2 , Mx 1 ) (measured in degrees, • ). The speed of rise α and, consequently, the maximum reached in the allowed time, M 1 , are higher for stronger biases and higher initial frequencies of the biasing allele:

α( • ) ∼ 43.85 • + 22.92 • ν -48.43 • β
with adjusted R 2 = 0.839 and all p < 2.2 • 10 -16 . Figure 3: The trajectory through time (horizontal axis, in simulation years) of the frequency of the biased linguistic value, f 1 , (solid lines) and the global frequency of the biasing allele, g 1 , (dotted lines) for representative runs of M 2 (β=0.5, ν=0.6, black) and MAP (μ=0.2, σ=0.027, ν=0.2, gray). g 1 changes by random drift around its initial value, ν, irrespective of the model, while f 1 behaves dramatically different for the two models.

When the biased agents in the population are Bayesian learners (MAP or SAM), the language is also more or less constant across time for each run (as for the other non-Bayesian agents except M 2 ). Moreover, it is indistinguishable between the two models (t(7993.66) = 1.004, p = 0.32) and depends on all three parameters in a complex and non-transparent manner:

mean(f 1 ) ∼ 0.40 + 0.31ν + 0.73μ -0.64σ -0.16ν 2 + 11.35σ 2
with adjusted R 2 = 0.905, all p < 10 -6 .

However, in order to allow the comparison with the languages produced by the single agent chains, mean(f 1 ) was regressed linearly just on μ and σ: mean(f 1 ) ∼ 0.502 + 0.734μ

A c c e p t e d m a n u s c r i p t

with adjusted R 2 = 0.789 and all p < 2.2 • 10 -16 ; it can be seen that this is much more similar to single SAM chains than to single MAP chains (compare with eqn. 1 and 2). Figure 4: The average of the internal representation of language, mean(p 1 ) (vertical axis), function of the bias location, μ (horizontal axis), for complex populations of MAP agents for three initial frequencies of the biasing allele, ν: 0.1 (light gray, leftmost dots), 0.5 (black; middle dots, displaced by 0.015) and 0.9 (dark gray, rightmost dots, displaced by 0.030). The same happens also for SAM agents. It can be seen by comparing with figs. 1 and 2 that this is more similar to single SAM chains.

Focusing on the extreme case of homogeneous Bayesian populations (ν = 1.0), SAM and MAP are again identical (t(797.57) = 0.35, p = 0.72) and very similar to the single SAM (compare to eqn. 1):

mean(f 1 ) ∼ 0.50 + 1.024μ
with adjusted R 2 = 0.999 and all p < 2.2 • 10 -16 . Therefore, it is again clear that populations of samplers and MAP learners more complex than the homogeneous single agent chains do not show any differences in the language produced and behave more similar to single SAM chains than to single MAP chains, calling into question the generality of the results in [START_REF] Kirby | Innateness and culture in the evolution of language[END_REF] (see also fig. 4).

Correlations between linguistics, genetics and geography

As briefly described in the Introduction, our recent discovery of a correlations between the geographical distributions of tone languages and the derived haplogroups of ASPM and Microcephalin, correlation which apparently cannot be entirely explained by contact and shared ancestry, has lead us to propose that a genetic bias causes language to change in a certain direction when transmitted across generations in a population containing enough such biased individuals. Methodologically, we used Mantel (partial) correlations [START_REF] Mantel | The detection of disease clustering and a generalized regression approach[END_REF] (computed using the ZT software [START_REF] Bonnet | Zt: a software tool for simple and partial mantel tests[END_REF] between geographical, genetic, historical linguistic and typological distances to control for these factors, where historical linguistic distances encode the degree of relatedness due to sharing a common ancestor, while the typological distances reflect the degree of structural similarity between languages (for details, please see [START_REF] Dediu | From the cover: Linguistic tone is related to the population frequency of the adaptive haplogroups of two brain size genes, aspm and microcephalin[END_REF]. For a detailed discussion of the assumptions, earlier proposals 2008), and for language evolution, see Dediu (2008a).

In Dediu (2008b) I implemented a computer model designed to test the conditions under which such a genetic biasing of language can be detected using the methodology we proposed in [START_REF] Dediu | From the cover: Linguistic tone is related to the population frequency of the adaptive haplogroups of two brain size genes, aspm and microcephalin[END_REF] using non-Bayesian learners and the type of complex populations described above. There, I found that while M 1 agents cannot produce such a bias, M 2 agents can and, moreover, the region of the parameter space allowing this bias to be detected is quite large. Here I extend this work for the two types of Bayesian learners and investigate their capacity to induce a detectable genetic biasing of language of the type we reported for tone and ASPM and Microcephalin.

The relationships between (structural) linguistic, genetic and geographic distances between populations are measured using (partial) Mantel correlations, where GenGeo is the correlation between genes and geography, LingGeo the correlation between linguistics and geography,

GenLing is the relationship between genetic and linguistic distances and GenLingGeo is the residual correlation between genes and languages after controlling for geography. Also, we measure the Pearson correlations between the population frequencies of the starred allele, G * j , and starred linguistic feature, F * i , denoted F i G j , for i, j ∈ {1, 2}. In order to capture the dynamics of a series of such correlations through time (simulation years), ρ was defined in Dediu (2008b) to represent the proportion of significant correlations for a given α-level.

The first finding is that the behaviour of the correlations produced by the two Bayesian learners, SAM and MAP, in such complex populations is almost indistinguishable:

randomisation ANOVAs [START_REF] Edgington | Randomization Tests[END_REF] are ns after multiple testing correction [START_REF] Holm | A simple sequentially rejective multiple test procedure[END_REF].

Therefore, only MAP learners will be analysed in the following.

Concerning the separate correlations of linguistic and genetic distances with geography, GenGeo and LingGeo are both very high, confirming that the model is behaving as expected (Dediu, 2008b). Moreover, GenGeo depends very slightly only on ν -the initial frequency of of the biasing allele, G * 1 , in the population which -in an inverted "U" shape, being highest either for very rare or very common biasing agents. However, LingGeo is higher for lower ν (Spearman's ρ = -0.17, p < 2.2 • 10 -16 ), higher μ (ρ = 0.26, p < 2.2 • 10 -16 ) and small σ (ρ = -0.084, p = 3.33 • 10 -7 ), suggesting that the correlation between linguistics and geography is most detectable for rare but strongly biased agents.

The correlation between genetics and linguistic structure, GenLing, is moderately strong and depends in an inverted "U" shape on ν (ρ = -0.21, p < 2.2 • 10 -16 ), and gets stronger for higher μ (ρ = 0.30, p < 2. GenLingGeo, diminishes the values of the correlations but does not alter their pattern, suggesting that geography does not fully explain the similarity between genes and language structures.

In order to understand the nature and detectability of the genetic biases, we need to focus on the correlations between individual alleles and linguistic features. As expected, F 1 F 2 (the correlation between the two linguistic features), F 1 G 2 , F 2 G 1 and F 2 G 2 are constantly very low, reflecting their mutual independence (built in the simulation). The correlation between the two genes, G 1 G 2 , is a bit higher, reflecting the slower peace of genetic drift. However, the correlation between the biasing allele and the biased feature, F 1 G 1 , is very low for small biases and high population frequencies, but extremely high for strong (small σ), marked (large μ) infrequent (low ν) biases:

F 1 G 1 ∼ 0.257 -0.266ν + 0.663μ -1.903σ
with adjusted R 2 = 0.411 and all p < 2 • 10 -16 . This function has a maximum for ν = 0, μ = 1 2 and σ = 0, suggesting that it is easiest to detect very strong infrequent Bayesian biases as opposed to moderately strong and relatively frequent M 2 biases, as was found in Dediu (2008b).

It can be concluded that such non-homogeneous, spatially structured complex populations with overlapping generations confirm the results of chains of pairs of agents, of which probably the most important is that the two types of Bayesian learners behave in the same way and similar to single chains of samplers. Moreover, the biases generated by such Bayesian learners in a complex population can be detected using the methodology of [START_REF] Dediu | From the cover: Linguistic tone is related to the population frequency of the adaptive haplogroups of two brain size genes, aspm and microcephalin[END_REF], but probably only for very strong infrequent biases.

Discussion

Despite their low realism, homogeneous chains of single agents probably represent the standard model of language evolution, both theoretically, through mathematical and computational modelling [START_REF] Griffiths | Language evolution by iterated learning with bayesian agents[END_REF][START_REF] Kirby | Innateness and culture in the evolution of language[END_REF], and experimentally [START_REF] Kirby | Cumulative cultural evolution in the laboratory: an experimental approach to the origins of structure in human language[END_REF]. This is primarily due to the fact that such homogeneous single agent chains are well understood thanks to a relatively long history of computational studies in the Iterated Learning Model tradition, focused mainly on the emergence of compositionality [START_REF] Kirby | The emergence of linguistic structure: An overview of the iterated learning model[END_REF] but also to the recent seminal approach of [START_REF] Griffiths | Language evolution by iterated learning with bayesian agents[END_REF]. Moreover, they are also relatively easy to implement and study in the laboratory using real human subjects, as recently shown by [START_REF] Kirby | Cumulative cultural evolution in the laboratory: an experimental approach to the origins of structure in human language[END_REF]. However, these models present a series of potential pitfalls and the following enumeration is not intended to be exhaustive:

A c c e p t e d m a n u s c r i p t

• they abstract away from horizontal and oblique social interactions (by having a single agent in each generation), assuming that their impact is not dramatic;

• the assumption of "acquisitionism" [START_REF] Honeybone | ) 'optimality theory and language change[END_REF] -the view of language change and evolution as due to children acquiring a different language because of the reinterpretation of data produced by adults [START_REF] Kirby | The emergence of linguistic structure: An overview of the iterated learning model[END_REF]) -a position prevalent in certain views of historical linguistics [START_REF] Lightfoot | The Development of Language: Acquisition, Change and Evolution[END_REF], but largely contradicted by a number of empirical observations suggesting that actually it is the adults that have the active role in language change [START_REF] Croft | Explaining language change: An evolutionary approach[END_REF];

• they also assume that the (degenerate) population is homogeneous, which is not warranted by the data on inter-individual diversity, both at the genetic and cultural levels (e.g., [START_REF] Plomin | Behavioral Genetics[END_REF][START_REF] Stromswold | The heritability of language: A review and metaanalysis of twin, adoption and linkage studies[END_REF].

Moreover, the Bayesian approach to these models carries with it a supplementary set of assumption, including the fact that human language learning is validly approximated by Bayes' rule, that a single fixed hypothesis is selected from the posterior after the learning has ceased, and that learners have extensive access to their own learning algorithm so that they can use it to measure the likelihood that the observed data was produced by a given hypothesis (for a larger list and discussion see [START_REF] Griffiths | Language evolution by iterated learning with bayesian agents[END_REF].

While I do not want to imply that all of these assumptions are wrong, I want to suggest that most are empirical questions not currently well supported by the data available, and that the effects of their violation for the validity of theoretical results obtained in the homogeneous single agent chains tradition was not investigated in proportion to its importance. The present study has attempted to explore the effects of changing some of these assumptions.

First, with all assumptions is place, the present model succeeded in confirming the theoretical and computational results in [START_REF] Griffiths | Language evolution by iterated learning with bayesian agents[END_REF] and [START_REF] Kirby | Innateness and culture in the evolution of language[END_REF], namely that chains of samplers, SAM, converge to the "pure" genetic bias, while the language of chains of a posteriori maximisers, MAP, depends in a complex manner on their genetic bias.

Second, when enlarging the population to two agents and allowing the homogeneity assumption to be dropped, I found that, in general, even learners with very different genetic biases do converge on a common language. However, Bayesian agents involved in heterogeneous pair chains behave in the same manner, with the strong differences between SAM and MAP learners in the single chain condition being totally lost. Moreover, chains composed of SAM-MAP pairs tend to behave like single chains of SAM.

A c c e p t e d m a n u s c r i p t

Third, in the case of complex, spatially-structured populations with overlapping generations, the resulting language is largely influenced by the frequency, nature and strength of the genetic biases. The two Bayesian learners are behaving indistinguishably from each other and similar to single chains of samplers, SAM, even in the case of populations composed entirely of a single agent type.

Taken together, these results suggest that the stark differences between the two types of Bayesian learners when in single agent chains disappear for more complex settings, both behaving similar to Bayesian samplers. Therefore, the language resulting from Bayesian biased cultural transmission is very much influenced by the characteristics of the bias (the prior).

However, the resulting distribution of languages does not allow the direct and transparent inference of these same genetic biases, supporting the view that the process of cultural transmission plays a very important mediating role [START_REF] Kirby | Innateness and culture in the evolution of language[END_REF].

Moreover, I found that the methods we have previously used to find the correlation between the geographical distributions of tone, ASPM and Microcephalin [START_REF] Dediu | From the cover: Linguistic tone is related to the population frequency of the adaptive haplogroups of two brain size genes, aspm and microcephalin[END_REF] can indeed detect such Bayesian biases, especially when they are rare in the population and strong.

However, it seems that the type of bias produced by the non-Bayesian M 2 (Dediu, 2008b) better fits the intuitive notion of a genetic bias for tone [START_REF] Dediu | From the cover: Linguistic tone is related to the population frequency of the adaptive haplogroups of two brain size genes, aspm and microcephalin[END_REF]Ladd et al., 2008), but this fit is still far from perfect.

For now, the ultimate source(s) of this imperfection in modelling the notion of such a genetic bias is not known but it seems probable that it stems, at least partially, from the acquisitionist assumption. As extensively discussed in the language change literature (see [START_REF] Croft | Explaining language change: An evolutionary approach[END_REF] for a good review), the theory that first language acquirers (children) determine language change by reanalysing the language they hear as being produced by a slightly different grammar ("acquisitionism") fails to explain most of the empirical data available. Likewise, in the type of models discussed in this paper, after the acquisition period is over and the single winning grammar, h w , is chosen, it becomes frozen in the adults. However, probably a more realistic alternative would be to allow adults not only to change their grammar through time and social conext but to be active innovators. This would certainly add extra complexity to our models but it would make them more plausible, as well. The kind of genetic biases discussed throughout this paper can act in the children as well as competent adult language users, but their action in the second condition has so far been neglected, representing a promissing direction for future research.

In conclusion, it seems premature to draw any general conclusions concerning the process of language evolution and the specific interplay between nature (genetic biases) and nurture (cultural transmission) based on models of first language acquisition in homogeneous chains of single Bayesian agents. However, these models do seem to suggest that when the structure of the language community is more complex, the relationship between the distribution of languages and the genetic bias(es) depends less on the particular type of language learner, and is complex and non-transparent. Therefore, they support the view that theories which explain the similarities and differences between languages as direct consequences of a genetically endowed "Universal Grammar" are probably wrong. The alternative view, that language variation and its constraints are due to a complex interaction between genetics, individual learning and cultural transmission across generations in populations is, in my view, better as describing the empirical data we have.

I hope that further refining our models to include more complex communicative contexts and groups, and shifting the focus towards the competent language users as the agents of change will provide a better account of the complex phenomena involving the expression of genetic factors mediated by cultural transmission [START_REF] Dediu | From the cover: Linguistic tone is related to the population frequency of the adaptive haplogroups of two brain size genes, aspm and microcephalin[END_REF]Ladd et al., 2008).

A c c e p t e d m a n u s c r i p t

  being open to invasion by MAP learners, and suggests that "maximising is always preferred over sampling" (p. 289) in an evolutionary context. Moreover,Kirby et al. 

  reviewer of Dediu, 2008b, who wondered what would happen if Bayesian

  I applied[START_REF] Holm | A simple sequentially rejective multiple test procedure[END_REF] multiple testing correction where appropriate, in which case I report adjusted p-values.
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 1 Figure1: The average of the internal representation of language, mean(p 1 ) (vertical axis), function of the bias location, μ (horizontal axis), for chains of single MAP (gray) and SAM (black; displaced to the right by 0.015 for display purposes) agents. (Please, note that the actual value of μ is μ + 0.5)

  orthogonal, referring to profoundly different manners of being biased and that, from the point of view of a Bayesian agent, all M 2 s are just a sort of M 0 , while for M 2 , both types of Bayesian agents are the same thing.

Figure 2 :

 2 Figure 2: The average of the internal representation of language, mean(p 1 ) (vertical axis), function of the bias location, μ (horizontal axis), for chains of pairs of Bayesian agents with identical biases: MAP-MAP (light gray, leftmost dots), SAM-MAP (black; middle dots, displaced by 0.015) and SAM-SAM (dark gray, rightmost dots, displaced by 0.030). Compare with Fig 1.
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 1 The bias parameters for the Bayesian learners(B σ 
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	μ	0.00	0.01	0.02	0.03	0.04	0.05
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μ ; B stands for both SAM and MAP).

  2 • 10 -16 ) and lower σ (ρ = -0.19, p < 2.2 • 10 -16 ), being most detectable for
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