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Abstract

We present a simplified stochastic model to investigate the mechanisms of ac-
tion of tramadol, a centrally acting analgesic, used for treating pain. The model
accounts for the process of metabolization through the cytochrome CYP2D6
and the interactions between molecules and target receptors. The proposed for-
mulation is stochastic in nature and allows to speculate on the role of finite–size
fluctuations. Analytically, the master equation, governing the process under
scrutiny, is derived and studied in the mean–field limit. The analysis of the
associated asymptotic behavior proves interesting for its potential medical im-
plications. The analysis of fluctuations is carried on via the van Kampen ex-
pansion. Numerical simulations are also performed to confirm the adequacy of
our theoretical prediction.

Key words: Stochastic noise, Finite–size effects, Non–linear dynamics

1. Introduction

In recent years pharmacological research has moved towards the so called
personalized medicine. This discipline combines data from genotype, gene ex-
pression and other clinical information, so to plan for an administered medical
treatment which is targeted to a specific individual. In this respect, one hopes to
maximize effectiveness of the therapy, while minimizing adverse, toxic reactions.

One of the crucial aspects to be accounted for when aiming at a person-
alized pharmacological treatment is the fact that drugs can undergo a process
of metabolic transformation which either inactivate the substances, or, alterna-
tively, gives rise to metabolites, which are occasionally more effective than the
parent compound. The enzymes involved in metabolism are present in many
tissues, but generally more concentrated in the liver (Katzung, 2003). Among
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drug metabolizing hepatic enzymes, cytochrome P450 (CYP) superfamily en-
close the most prominent ones. It in fact accounts for the 75% of the total
metabolism (Guengerich, 2008). This family is characterized by a high genetic
variability: The Human Genome Project has identified 57 human genes coding
for the various cytochrome P450 enzymes1. These variations may substantially
affect the individual response to the therapy, as commonly experienced in the
medical practice. Detecting genetic variations in drug–metabolizing enzymes
becomes e.g. essential for identifying individuals who can present adverse drug
reactions to standard doses of certain medications. Individuals carrying cy-
tochrome poor metabolizer variants exhibit different pharmacokinetics proper-
ties as compared to control individuals. As a result, non–conventional doses of
medications may be eventually required to sustain the involved cytochrome ac-
tivity for biotransformation. Conversely, medications that are not processed via
cytochrome biotransformation, can be preferentially selected for those patients
with potentially impaired cytochrome metabolic capacity.

A typical example of a drug which is metabolized by hepatic cytochromes is
tramadol, a synthetic opioid widely used in the treatment of acute and chronic
pain (Grond and Sablotzki, 2004). Tramadol undergoes hepatic metabolism via
different isozymes of the cytochrome P450, being O– and N–demethylated to
five metabolites. Of these, the one catalyzed by cytochrome CYP2D6, called
M1 (O–Desmethyltramadol), is the most significant since it displays a 200 fold
increase in affinity, versus the μ–opioid receptors, as compared to the tramadol.
The process of metabolization results in different ways of action of tramadol
on the peripheral and central nervous system, since the various metabolites
bind to different specific receptors. The wide variability in the pharmacoki-
netic properties of tramadol, however, can only be partly ascribed to the CYP
polymorphism. It is in fact clear that also fluctuations in the concentrations of
tramadol, and its active metabolites, may impact the therapeutic response and
toxicity (Grond and Sablotzki, 2004).

Such a complex picture points to the need for a comphrensive interpretative
framework, where modeling efforts should develop well beyond the boundaries of
standard pharmacology. Indeed, one would aim at disposing of detailed mathe-
matical models which incorporate sufficiently accurate microscopic descriptions
of the system at hand. This achievement would in turn enables researchers to
resolve, within a self–consistent picture, the intricate cascade of reaction which
mediates pain perception, so assisting medical doctors in designing the optimal,
personalized, pharmacological treatment.

In this paper we take a first step in this direction by proposing and then
analyzing a simplistic model which describes the process of metabolization of the
tramadol. The interaction between the drug molecules and the target receptors
is also accounted for. Although we here make specific reference to the case of
tramadol, the model discussed is rather general and can hence be invoked within
other contexts where metabolization and ligand–receptors interactions do occur.

1See http://drnelson.utmem.edu/human.P450.table.html
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The outline of the paper is the following. In the next section we introduce
the stochastic model in term of associated chemical equations. The underlying
master equation is also specified. In section 3, we recover the mean–field system
which formally applies to the limit of infinite microscopic constituents. The
fixed points of the mean–field model are studied, as well as their associated
stability. As we shall pinpoint in the following, depending on the chemical
parameters the drug act with a different degree of effectiveness, that we here
quantify. Also, the transient dynamics present intriguing features, that we bring
into evidence. Section 4 is devoted to investigating the role of fluctuations which
are analytically studied via the van Kampen’s expansion. Numerical simulations
are performed to corroborate our findings. In the final section we sum up and
draw our conclusions.

2. Description of the model

The bloodstream in the vicinity of the target receptor is assumed to be pop-
ulated by two species of molecules, the parent drug tramadol and the main
metabolite M1. Notice that, in general, metabolization and binding events
occur in different parts of the body. Diffusion between sequentially ordered
compartments should be in principle considered. In the present formulation
space is however not explicitly incorporated and the reactions happen, accord-
ing to their associated probability, within a unique bulk where molecules are
uniformly stirred. As anticipated, the solely biological processes here addressed
are hence the metabolization and the reversible chemical reactions between the
molecules and the free target receptors. As a side comment, we also emphasize
that competition with other molecular entities dispersed in the medium could
be possibly included in the picture. This important aspects are discussed in
(Di Patti and Fanelli, 2008, 2009).

The process of biotransformation through the cytochromes gives rise to the
metabolites. Here we hypothesize that the cytochromes are present in great
quantity in the body, so that metabolization does not depend on their associ-
ated concentration, and proceeds as a spontaneous transformation at constant
rate. Denoting with T the molecule of tramadol, and assuming M to label
the metabolite of type M1, the process of metabolization is reconducted to the
following chemical reaction

T
α−→M

where α is the reaction constant. This is the parameter which quantifies the
ability of the body to metabolize the drug and can be hence supposed to be
intimately connected to the genetic polymorphisms of the cytochrome CYP2D6.

Tramadols sailing in the bloodstream can eventually encounter a free target
receptor, hereafter labeled RF . Following a successful binding event the receptor
RF changes into an occupied element RT . In formulae:

T + RF
β1−→ RT

3
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Figure 1: Chemical equations and schematic representation of the model. A tramadol molecule
(T ) turns into metabolite (M) with rate α, and it can bind to a free receptor RF with rate β1.
The spontaneous detachment of the compound RT occurs with rate γ1. Molecules of type M
bind and unbind to RF with rate β2 and γ2.

We further assume that during the binding the chemical properties of T
remain unaltered. It may hence occasionally occur that RT undergoes the in-
verse transformation by realising a, still active, T molecule. This assumption
translates into

RT
γ1−→ T + RF

The two parameters β1 and γ1 are the constant reaction rates.
To complete the model, we have to include the interaction between metabo-

lites and receptors. The medical literature reports on the specificity of tramadol
and metabolites to the different classes of receptors involved in pain mechanism,
and their role in achieving analgesia. Here, we set down to consider a simpli-
fied scenario, where the parent drug and metabolite bind to the same type of
receptors. More specifically, we shall assume, in analogy with the above, the
following reactions’ scheme for M :

M + RF
β2−→ RM

RM
γ2−→ M + RF

where now RM is the compound receptor–metabolite, and β2 and γ2 stand for
the associated (forward and backward) rates.

The cartoon in figure 1 depicts the reactions network that we imagine to
characterize our model.

How to quantify the sensation of pain within the proposed picture? Inspired
to (Di Patti and Fanelli, 2008, 2009), we imagine that the more the bound recep-
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tors the less the experienced pain. In other words, the ideal condition where all
available receptors were screened by a pool of injected drug (T or M) molecules,
would correspond to achieving complete analgesia. In future perspective the
model could be complemented by accommodating for the signal transduction
pathway, and so accurately representing the neural activity steps involved in
the process.

Another comment is mandatory at this point. We have in fact deliber-
ately decided to disregard the elimination of tramadol and metabolites from
the body. Elimination is indeed crucial and leads to the final absorbing state
where the concentration of T and M are both zero. However, and being at
present interested with elucidating the local interaction of drugs and receptors,
we hypothesised the elimination to proceed on a different (sensibly longer) time
scale. Under this working assumption we do imagine to focus on a sequence
of snapshots of the (relatively faster) interaction dynamics, where the global
number of microscopic actors can be assumed as constant.

Moreover, we can certainly assume that the total number of receptors does
not change with time (degradation is also happening with a different charac-
teristic time). Denoting with ni the number of molecules belonging to the i–th
species, for i = T, M, RT , RM , RF , the following constrains are in conclusion
put forward:

nT + nM + nRT + nRM = N1

nRF + nRT + nRM = N2

where N1 represents the total number of molecules, while N2 refers to the total
number of receptors. We can use these relations to express nRM and nRF in
terms of the other independent variables, namely nRM = N1 − nT − nM − nRT

and nRF = N2 −N1 + nT + nM , so that the state of the system is given by the
three dimensional vector n = (nT , nM , nRT ).

Within this framework, we are able to write the transition probabilities for
the system to go from initial state n to the final (allowed) state n′. Such a
probability is labeled T (n′|n). In our system only transitions from n to (nT −
1, nM + 1, nRT ), (nT ± 1, nM , nRT ∓ 1) and (nT , nM ± 1, nRT ) can take place.
The corresponding nonzero T (n′|n) entries are

T (nT − 1, nM + 1, nRT |n) = αnT

T (nT − 1, nM , nRT + 1|n) = β1nT
(N2 −N1 + nT + nM )

N

T (nT , nM − 1, nRT |n) = β2nM
(N2 −N1 + nT + nM )

N
T (nT + 1, nM , nRT − 1|n) = 2γ1nRT

T (nT , nM + 1, nRT |n) = 2γ2(N1 − nT − nM − nRT )

where N = N1 + N2.
Transition probabilities allow us to write down a master equation which

governs the time evolution of the probability P (n, t), namely the probability of
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having the system in state n at time t. The rate of change of P (n, t) is simply
given by the sum of the transitions towards n, minus the outward transitions
propagating from that state. In mathematical notation:

d
dt

P (n, t) = T (n|nT + 1, nM − 1, nRT )P (nT + 1, nM − 1, nRT , t)

+T (n|nT + 1, nM , nRT − 1)P (nT + 1, nM , nRT − 1, t)
+T (n|nT , nM + 1, nRT )P (nT , nM + 1, nRT , t)
+T (n|nT − 1, nM , nRT + 1)P (nT − 1, nM , nRT + 1, t)
+T (n|nT , nM − 1, nRT )P (nT , nM − 1, nRT , t)

−
[
T (nT − 1, nM + 1, nRT |n) + T (nT − 1, nM , nRT + 1|n)

+T (nT , nM − 1, nRT |n) + T (nT + 1, nM , nRT − 1|n)

+T (nT , nM + 1, nRT |n)
]
P (n, t) (1)

with null initial and boundary conditions.
We have by now formulated our discrete stochastic model and specified the

transition probabilities between the admissible states. The (exact) master equa-
tion could be, in principle, solved to obtain a closed expression for the expected
probability at time t. This task turns out impossible and one has to resort
to approximate solution. In first place, as discussed in the next section, the
mean–field limit (namely N1 → ∞, N2 → ∞) can be recovered. Then fluc-
tuations around the mean–field dynamics could be considered via perturbative
techniques. Notice that simulating the full stochastic model is instead possible
by resorting to the celebrated Gillespie algorithm, as outlined below.

3. The deterministic limit

Multiplying both sides of equation (1) by nT and summing over all states,
we obtain

d
dt

∑
n

nT P (n, t) =
∑

n

[
T (nT + 1, nM , nRT − 1|n)

− T (nT − 1, nM + 1, nRT |n)− T (nT − 1, nM , nRT + 1|n)
]
P (n, t)

where the summation variables have been shifted to simplify the expression.
Substituting in for the transition rates and remembering that by definition∑

n nT P (n, t) = 〈nT 〉, we have

d
dt
〈nT 〉 = −α〈nT 〉 − β1

N
〈nT (N2 −N1 + nT + nM )〉+ 2γ1〈nRT 〉 . (2)

6
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Figure 2: Metabolites and receptor densities as function of time. The solid (red) lines represent
the stochastic simulation while the dashed (black) lines correspond to the numerical solution
of the mean–field system. Parameters used are α = 0.12, β1 = 0.23, β2 = 0.33, γ1 = 0.4,
γ2 = 0.35, N1 = 4500 and N2 = 2000.

Applying the same method to the two other variables, we obtain the following
differential equations

d
dt
〈nM 〉 = α〈nT 〉 − β2

N
〈nM (N2 −N1 + nT + nM )〉

+ 2γ2〈N1 − nT − nM − nRT 〉 (3)
d
dt
〈nRT 〉 =

β1

N
〈nT (N2 −N1 + nT + nM )〉 − 2γ1〈nRT 〉 . (4)

In the limit N →∞ we can replace 〈ninj〉 = 〈ni〉〈nj〉 for every i, j in equations
(2)–(4). In this way 〈ni〉/N becomes the deterministic variable φi, and we can
write the mean–field system as:

d
dt

φT = −αφT − β1φT (σ + φT + φM ) + 2γ1φRT

d
dt

φM = αφT + 2γ2(ϕ− φT − φM − φRT )− β2φM (σ + φT + φM ) (5)

d
dt

φRT = β1φT (σ + φT + φM )− 2γ1φRT

where σ = (N2 −N1)/N and ϕ = N1/N .
Figure 2 shows the comparison between the stochastic behavior of the model

and the mean–field one, as calculated by numerical integration of equations (5),
dashed (black) line. The continuous (red) line is a typical stochastic simulation
obtained through implementing the Gillespie’s exact algorithm (Gillespie, 1976).
For each species, the two profiles overlap well: The approximate mean–field
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theory and the stochastic simulation agree, a part from corrections due to the
finiteness of the simulated medium. As T is not continuously administered,
its (number) concentration (as well that of RT ) decays to zero. Conversely,
the densities of the other species settle down to a steady–state value. This
latter value and its stability properties are calculated in the following, where
simple speculations on the medical relevance of our findings are also going to
be addressed.

3.1. Analysis of the macroscopic equations
To find the equilibrium point of the macroscopic equations, we set the time

derivative to zero in system (5) and solve, obtaining the point φ∗ = (0, φ∗M , 0)
where

φ∗M =
−(2γ2 + β2σ) +

√
(2γ2 + β2σ)2 + 8γ2ϕβ2

2β2
.

The stability of this point can be deduced from the Jacobian matrix

J(φ∗) =

⎛
⎝ −α− β1σ − β1φ

∗
M 0 2γ1

α− 2γ2 − β2φ
∗
M −2γ2 − β2σ − 2β2φ

∗
M −2γ2

β1σ + β1φ
∗
M 0 −2γ1

⎞
⎠

whose eigenvalues are

λ1 = −
√

(2γ2 + β2σ)2 + 8γ2ϕβ2 (6)

λ2,3 =
−(2γ1 + α + β1σ + β1φ

∗
M )±√

(2γ1 + α + β1σ + β1φ∗M )2 − 8γ1α

2
. (7)

These values are clearly negative and real, proving the system has a globally
stable equilibrium point.

As explained in section 2, we here assess the effectiveness of the pharma-
cological treatment by measuring the number of bound receptors. However,
recalling that the initial dose of tramadol is completely metabolized at equi-
librium, we shall be solely interested with the quantity φ∗RM

. To visualize the
asymptotic stage of the evolution we refer to the plan (φRF , φRM ) and therein
trace the bisectrix (dashed line in figure 3a). Above the diagonal, φ∗RM > φ∗RF ,
the drug works better and the patient experiences less pain. Such a condition
realizes if

N1 >
β2 + 4γ2

2(β2 − 2γ2)
N2

and β2 > 2γ2. This means that the forward binding rate for the metabolite must
be (at least) a factor two larger than the corresponding dissociation constant.
Moreover, the initial dose of administered drug has to be chosen so that N1 is
larger than (at least) N2/2.

As it is shown in Figure 3a, the equilibrium point is confined on the line
Nφ∗RM

+ Nφ∗RF
−N2 = 0, which also defines the subdomain of the plane which

can be visited during the transient dynamics. Above that line in fact the pos-
itiveness of the variables is guaranteed. In figure 3b we project the numerical

8
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Figure 3: Panel (a) reports the projection of the equilibrium point into the plane φRF
φRM

.
The two domains separated by the bisectrix are respectively labeled less/more pain, according
to the prescriptions of the model (see main text). The colored (yellow) region denotes the
portion of the plane where trajectories are not allowed. The solid black line corresponds to the
condition Nφ∗

RM
+Nφ∗

RF
−N2 = 0 (here N1 = 2000 and N2 = 5000). The equilibrium point

(black square) belongs to this line. Panel (b) represents the projection of the trajectories
on the plane φRF

φRM
for different initial conditions. Parameters used for the numerical

integration of the mean–field system are α = 0.7, β1 = 0.2, β2 = 0.9, γ1 = 0.8, γ2 = 0.05,
N1 = 2500 and N2 = 2000. Inset: The time evolution of the total number of bound receptors,
is reported. The curve is traced with reference to one specific initial condition, namely the
red trajectory (online) of the main panel.

solutions of the system (5) in to the plane φ∗RF
φ∗RM

. The trajectories of the
mean–field equations evolve towards the attractor. Starting from an arbitrary
initial condition characterized by a generic value of nRT and nRM , the system
gets apparently trapped into a transient phase which displays an almost constant
number of bound receptors, sensibly different from that eventually achieved at
equilibrium. Indeed, as testified by figure 3b, the number of bound receptors
initially shrinks and only after, due to the action of newly injected chemicals,
starts growing to approach the fixed point. This setting could correspond to
mimicking the condition where a patient is exposed to a treatment which closely
follows a preceding drug administration.

Furthermore, the characteristic time of equilibration can be estimated as the
(absolute value of the) inverse of the maximum eigenvalue (6)–(7). This is an
interesting indicator as it quantifies the ability of the system to eventually attain
the asymptotic condition where the largest number of receptors is occupied. The
data in figure 4 show that the relaxation time decreases as the metabolization
rate increases, thus suggesting that the administered drug acts more rapidly for
extensive metabolizers.

4. The van Kampen expansion

Corrections to the mean–field dynamics can be calculated by resorting to
the van Kampen’s expansion (van Kampen, 1992). The main idea is to write
the variables ni as a sum of two contributions, namely ni = Nφi(t) +

√
Nξi,

9
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Figure 4: The color code (in logarithmic scale) refers to the slowest characteristic time of
convergence to equilibrium as calculated from the linearized dynamics. We here scan the
parameter plane (α, β2). The other parameters are chose as β1 = 0.3, γ1 = 0.5, γ2 = 0.1,
N1 = 3000, N2 = 2500.

where i = T, M, RT . Here φi stands for the deterministic component, while ξi

relates to the fluctuations. The scaling factor 1/
√

N follows from the central
limit theorem. A new probability distribution function Π can be hence defined
as Π(ξ, t) = P (n, t) where ξ = (ξT , ξM , ξRT ). Moreover:

dP

dt
=

∂Π
∂t
−
√

N
∑

i=T,M,RT

dφi

dt

∂Π
∂ξi

To simplify the notation, it is practice to rewrite the master equation (1) in
terms of step operators. These latter are defined through their action on an
arbitrary function of n as:

E
±1
T f(n, t) = f(nT ± 1, nM , nRT )

E
±1
M f(n, t) = f(nT , nM ± 1, nRT )

E
±1
RT

f(n, t) = f(nT , nM , nRT ± 1) .

The master equation can be therefore cast in the form:

d
dt

P (n, t) = (E+1
T E

−1
M − 1)αnT P (n, t)

+(E+1
T E

−1
RT
− 1)

β1

N
nT (N2 −N1 + nT + nM )P (n, t)

+(E+1
M − 1)

β2

N
nM (N2 −N1 + nT + nM )P (n, t)

+(E−1
T E

+1
RT
− 1)2γ1nRT P (n, t)

+(E−1
M − 1)2γ2(N1 − nT − nM − nRT )P (n, t) . (8)

10
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The operators E
±1
i change ni in ni ± 1 and so ξi in ξi ± 1. They hence admit

the following representation in terms of differential operators:

E
±1
i = 1±N−1/2 ∂

∂ξi
+

1
2
N−1 ∂2

∂ξ2
i

± · · · . (9)

Substituting relation (9) into (8) and collecting contributions of order
√

N , one
recovers the mean–field system of coupled differential equations (5). Work-
ing out the next–to–leading order, namely N , one eventually obtains a Fokker
Planck equation (FPE) which characterizes the fluctuations around the asymp-
totic mean–field solution. The FPE reads:

∂Π
∂τ

= −
∑

i

∂

∂ξi

(
Ai(ξ)Π

)
+

1
2

∑
ij

Bij
∂2Π

∂ξi∂ξj
(10)

where
A(iξ) =

∑
j

Mijξj .

The entries of matrix M and B are given in the appendix as a function of the
chemical parameters of the model. Equation (10) can be solved explicitly: The
obtained probability distribution Π(ξ, t) is a Gaussian and it is hence completely
specified by its first and second moments. In the next section we shall calcu-
late the associated moments explicitly and test the adequacy of the predictions
versus direct simulations.

4.1. Analysis of the fluctuations
To characterize the moments of the distribution we proceed as follows. We

multiply both sides of the FPE (10) by ξi (resp. ξiξj) and integrate over all ξ.
One then recovers the equations for the mean value of the fluctuations 〈ξi〉, as
well as for the associated correlations, 〈ξiξj〉.

The evolution of the first moments is found to be governed by the following
equations:

d
dt
〈ξT 〉 = m11〈ξT 〉+ m12〈ξM 〉+ m13〈ξRT 〉

d
dt
〈ξM 〉 = m21〈ξT 〉+ m22〈ξM 〉+ m23〈ξRT 〉

d
dt
〈ξRT 〉 = m31〈ξT 〉+ m32〈ξM 〉+ m33〈ξRT 〉 (11)

11
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while the the second moments obey to

d
dt
〈ξ2

T 〉 = 2m11〈ξ2
T 〉+ m12〈ξT ξM 〉+ 2m13〈ξT ξRT 〉+ b11

d
dt
〈ξT ξM 〉 = m21〈ξ2

T 〉+ (m11 + m22)〈ξT ξM 〉+ m23〈ξT ξRT 〉
+m12〈ξ2

M 〉+ m13〈ξMξRT 〉+ b12

d
dt
〈ξT ξRT 〉 = m31〈ξ2

T 〉+ m32〈ξT ξM 〉+ (m11 + m33)〈ξT ξRT 〉
+m12〈ξMξRT 〉+ m13〈ξ2

RT 〉+ b13

d
dt
〈ξ2

M 〉 = 2m21〈ξT ξM 〉+ 2m22〈ξ2
M 〉+ 2m23〈ξMξRT 〉+ b22

d
dt
〈ξMξRT 〉 = m31〈ξT ξM 〉+ m21〈ξT ξRT 〉+ m32〈ξ2

M 〉+ (m22 + m33)〈ξMξRT 〉
+m23〈ξ2

RT 〉
d
dt
〈ξ2

RT 〉 = 2m31〈ξT ξRT 〉+ 2m32〈ξM ξRT 〉+ 2m33〈ξ2
RT 〉+ b33 (12)

where elements mij and bij are listed in the appendix.
The above system cannot be solved analytically (indeed we cannot even cast

the mean–field solution in a closed analytic form). However, being interested
in the fluctuations around the equilibrium point, once the initial transient has
damped out, one sets to zero the time derivatives in system (11) and evaluates
the coefficients mij at the equilibrium point φ∗. It turns out that 〈ξT 〉st =
〈ξM 〉st = 〈ξRT 〉st = 0. Proceeding in a similar fashion with system (12), one
readily finds that all the second moments are zero but 〈ξ2

M 〉st which instead
reads

〈ξ2
M 〉st =

β2φ
∗
M

2 + (β2σ − 2γ2)φ∗M + 2γ2ϕ

2(2β2φ∗M + β2σ + 2γ2)

In this latter case the stationary probability distribution Π(ξ)st is given by

Π(ξ)st =
1√

2π〈ξ2
M 〉st

exp
[
− ξ2

M

2〈ξ2
M 〉st

]
(13)

Figure 5a shows the projection of the stationary probability distribution Πst

on the plane (φRF , φRM ). As it can be appreciated by visual inspection, the
dispersion occurs along the direction given by Nφ∗RM

+ Nφ∗RF
−N2 = 0 which

also contains the equilibrium point. In figure 5b the stationary probability
distribution Πst is plotted as a function of ξM . The figure testifies on the
predictive ability of equation (13) here depicted with a solid line, which is shown
to interpolate correctly the numerical data (symbols).

Imagine now to partition the plane (φRF , φRM ) into two regions separated
by the bisectrix. Moving above the diagonal, the number of screened receptors
increases which in turn implies reducing the pain, within our simplified scenario.
Fluctuations can facilitate the road towards analgesia, as outlined in figure 5a.
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Figure 5: Panel (a) shows the projection of the stationary probability distribution Πst on the
original plane φRF φRM . The solid black line represents the bisectrix of the plane. Panel (b)
reports the stationary probability distribution as function of ξM . The solid line represents
the theoretical prediction based on equation (13). The symbols refer to the Gillespie like
numerical simulation. Here, the parameters are α = 0.5, β1 = 0.2, β2 = 0.3, γ1 = 0.5,
γ2 = 0.1, N1 = 3000, and N2 = 1000.

The stationary probability distribution can be be hypothetically employed to
quantify the probability of entering the region in (φRF , φRM ) where the drug
effect is supposedly more pronounced. This latter probability corresponds to the
area of the distribution above the bisectrix and is quantified in p = 0.196 for
the chosen parameters’ setting. Interestingly, although the mean–field solution
predicts a stationary condition characterized by a pronounced sensation of pain
(φ∗RF = 0.129 and φ∗RM = 0.121), there is a nonzero probability that, due to
fluctuations, the system enters a region where pain is partially hindered. Obvi-
ously, this speculation applies as long as N is finite (though large). This is for
instance the case where a local stimulus is applies which interests a finite patch
of neurons (see for instance the whisker stimulation experiment (Rojas et al.,
2006)). In the general case where the number of involved receptors is exceedingly
large, the mean–field dynamics takes over and the aforementioned distribution
shrinks to a delta.

5. Conclusions

In this paper we present a stochastic model which describes the mechanism
of action of tramadol, a synthetic opioid widely used in the management of
chronic and acute pain. The proposed formulation consists of two populations of
molecules, the parent drug and metabolites: Parent drug produces metabolites
through metabolization, and both kind of molecules interact with the same
target receptors so to induce analgesia. Within our simplified context, we choose
to quantify the effectiveness of the pharmacological treatment by measuring the
number of receptors instantaneously bound to the active molecules.
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The system is analyzed, focusing first on the mean–field dynamics (N →∞)
which is governed by a set of coupled ordinary differential equations for the
species amount. The fixed points are studied together with the associated sta-
bility properties. The chemical parameters are found to control the asymptotic
regime determining the effectiveness of the administered therapy. More inter-
estingly, in the transient dynamics a lethargic phase is registered, where the
number of bound receptors appear to have stabilized to a quota sensitive to
initial condition, before reaching their equilibrium solution.

Moreover, fluctuations have been also analyzed via the van Kampen tech-
nique. It is here speculated that, in particular cases, they might influence the
degree of experienced pain, which could hence change over time.

Appendix

In this Appendix we list the entries of the matrices M and B as calculated
via the van Kampen expansion. The elements of the matrix M , hereafter mij ,
are

m11 = − [α + 2β1φT + β1σ + β1φM ]
m12 = −β1φT

m13 = 2γ1

m21 = α− β2φM − 2γ2

m22 = −( 2β2φM + β2σ + β2φT + 2γ2)
m23 = −2γ2

m31 = 2β1φT + β1σ + β1φM

m32 = β2φT

m33 = −2γ1

The elements of matrix B, hereafter bij , read

b11 = β1σφT + β1φ
2
T + β1φT φM + αφT + 2γ1φRT

b12 = −αφT

b13 = − [
β1σφT + β1φ

2
T + β1φT φM + 2γ1φRT

]
b22 = β2φ

2
M + β2σφM + β2φMφT + 2γ2ϕ− 2γ2φT − 2γ2φM − 2γ2φRT + αφT

b23 = 0
b33 = β1φT σ + β1φ

2
T + β1φT φM + 2γ1φRT
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