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ABSTRACT 

In Quantitative Microbial Risk Assessment, it is vital to understand how lag times of 

individual cells are distributed over a bacterial population. Such identified distributions 

can be used to predict the time by which, in a growth-supporting environment, a few 

pathogenic cells can multiply to a poisoning concentration level. 5 

We model the lag time of a single cell, inoculated into a new environment, by the delay of 

the growth function characterizing the generated subpopulation. We introduce an easy-to-

implement procedure, based on the method of moments, to estimate the parameters of the 

distribution of single cell lag times. The advantage of the method is especially apparent for 

cases where the initial number of cells is small and random, and the culture is detectable 10 

only in the exponential growth phase. 

Keywords: single cell, lag time, stochastic process, parameter estimation, probability distribution 
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Introduction 

Food poisoning outbreaks can be triggered by contamination with even a few pathogenic 

cells, if they are able grow in the food to reach an infective dose. Quantitative Microbial Risk 

Assessment studies frequently need to estimate the probability that a few contaminating cells 5 

multiply to a population level above a tolerance limit. To analyse this, one needs to identify the 

probability distribution of the lag time of single cells.  

Traditional modelling of lag. If a homogeneous bacterial population is inoculated into a 

growth-supporting environment,  then it will grow exponentially, possibly after a lag period. If t 

and  N(t) denote the time and the number of cells, respectively, then  the rate 
dt

N(t)d ln   is called 10 

the (instantaneous) specific growth rate of the population. The maximum of this rate, denoted by 

μ ,  is characteristic of the species and the growth environment.  If, from the onset of the 

exponential phase, the N(t) curve can be described by a delayed growth model of the form f(t-λ)   

(where f can be such as the Malthusian, logistic, etc. models, with μ specific rate parameter)  

then λ is called the lag time (Baranyi and Roberts, 1994). Estimating the lag is vital for food 15 

safety modelling.  

The lag phase has mainly been studied  at the population level (Baty and Delignette-

Muller, 2004), but lately more and more studies concentrate on single cell lag times (Augustin, 

1999;  Elfwing et al. 2004; Francois et al. 2005; Kutalik et al. 2005; Prats et al. 2008; Pin and 

Baranyi, 2008). The reason for this is that, in practice, pathogenic contamination is frequently 20 

caused by a few cells only.  
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Apply the above definition to the case when the inoculum consists of  N0 cells. The cell 

population, N(t), sooner or later grows exponentially, so its logarithm can be modelled by the bi-

phasic 

λ
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function.  5 

Suppose that a single cell when inoculated in a new environment first goes through a 

“physiological lag” period of the random length τ . Suppose that the daughter cells are already in 

the exponential phase and the generation times (Tg: the time from birth to the next division) of all 

the future daughter cells are independent, identically distributed random variables. This means 

that the first division happens at the time τ+Tg , where the two independent variables follow two 10 

different distributions. Construct the above bi-phasic model for this stochastic birth process and 

denote the obtained lag by λ=Lg(N0),  indicating that it depends on the number of initial cells, 

too.  For shorthand, we will also use Lg  for Lg(1). Obviously Lg  is also a random variable, 

depending primarily on τ , but also on the subsequent generation times denoted by Tg in what 

follows.  We will call Lg the “geometrical” single cell lag time because of its definition (Fig.1).  15 

As N0 increases, Lg(N0) converges to a limit value, a “population-lag” parameter. This 

convergence was analysed by Baranyi (1998). 

When interpreting the single cell lag time as above, it is important to see that Lg =Lg(1) is 

not a feature of the original single cell only, but that of the sub-population generated by the 

single cell.  The distribution of Lg  is a function of the distributions of τ and Tg .  It is not easy (if 20 

possible at all) to calculate the distribution function of Lg by knowing those of the other two.  

One can expect that if τ  is dominantly bigger than Tg, then  the distribution of  Lg  should be 
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close to that of τ .  However, if τ is small, then the distributions of the two lag times can be very 

different.  For demonstration, consider the simulated, single-cell-generated growth curves in 

Fig.2.  The physiological lag was zero (τ ≡ 0), while the resulting Lg geometrical lag times are 

dispersed around zero, with a spread depending on the subsequent generation times.  

The reason why we study Lg instead of τ  is that the latter variable, the physiological lag, 5 

is not observable for a single cell.  For simulation studies, we need to use τ , while for 

predictions it is more pragmatic to use Lg.  Namely, by means of the Lg-delayed linear growth 

model, it is easy to predict the time by which the bacterial population would reach a given (e.g. 

harmful) level; this is exactly what risk assessors need. 

Detection time. In practice, it is not feasible to follow the division of individual cells 10 

with automated measurements. Let ydet= ln(Ndet) be the level at which a bacterial culture can be 

detected, for example, by measuring its turbidity in a liquid medium. Suppose that ydet is in the 

exponential phase and let Tdet(N0) denote the detection time at which the subpopulation reaches 

this ydet threshold value. Then the detection time is a shifted version of the Lg(N0) random 

variable.  However, as this value depends on the number of initial cells, which is unknown, it is 15 

not easy to infer to the Lg single cell lag times. 

 

Our main objective is to use detection time data to give an accurate estimation procedure 

for the parameters of the single cell lag time distribution, taking also into account that the initial 

count is random.  Though maximum-likelihood principles serve as a standard for such parameter 20 

estimation problems, the use of these methods require more sophisticated software applications 

than what is commonly available on data logging computers in microbiology laboratories. Our 
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new moments-based method will be suitable for common applications, such as MS Excel 

spreadsheets. 

We will also discuss some practical implications regarding Quantitative Microbial Risk 

Assessment. 

 5 

Practical considerations and measurements 

Simulation. Suppose that the physiological lag time of a single cell, τ, is Gamma 

distributed and the Tg  generation times of the subsequent daughter cells are independent and 

identically distributed, also following a Gamma-distribution, but with parameters independent of 

the distribution for τ.  The original cell divides first at the τ+Tg  time; then the time from birth to 10 

division (single cell generation time), needed by any daughter cell of the subsequent generations, 

follow the same, the second Gamma distribution.  Simulating the growth curves as above and 

fitting Lg for each case by the bi-phasic growth curve defined earlier, we could see that  Lg  was 

reasonably close to a shifted Gamma distribution, as demonstrated in Fig.3.  

Another source of variability could be the specific growth rate of the single-cell 15 

generated population (the slope of the fitted bi-phasic function). As the simulation studies 

showed, the variance of the specific growth rate is negligible compared to the variance of Lg and 

the first few generation times (Métris et al. 2003). This can also be seen intuitively, since the 

specific rate is determined by many cells, therefore its variance is much less than that of the 

division time of a single cell.  Hence we will consider the specific growth rate as a parameter, not 20 

as a random variable.  

Experimental data.  First (Case A), the detection times of a Listeria innocua culture 

(Métris et al. 2006) were used to test the new method. The detection times refer to the times 
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when the turbidity as measured by Bioscreen C plate reader (Labsystems, Helsinki, Finland) 

reached a fixed level (optical density, OD=0.11) which was shown to be equivalent to ca 107.7 

cell/ml concentration.  

 In the second experiment (Case B), L. innocua was inoculated in the same way, but after 

receiving a mild heat shock, so the lag was significantly longer.  5 

The maximum specific growth rate of the organism was measured in an independent 

experiment, by means of traditional plate count technique. The parameter, at 22°C, was 

estimated as μ = 0.45 h-1 from the plot of colony forming units against time, using the in-house 

curve-fitting program DMFit, available at www.ifr.ac.uk/safety/DMFit. 

 Random initial counts. We evaluated the distribution of the "time to turbidity” values 10 

(detection times, Tdet) as measured by the Bioscreen C, which reads the OD of the wells of a 

microtitre plate. If the initial number of cells in a well is exactly one and the detection level is in 

the exponential phase, then the difference between the detection time and Lg depends only on the 

specific growth rate of the organism, which is reasonably constant. So Tdet differs from the Lg 

single cell lag time only by an additive constant; otherwise their distribution is the same. 15 

There is no easy way to sort single cells into the wells of the Bioscreen microtitre plates. 

Methods available include sorting by flow cytometer, which is expensive and can introduce bias 

during the process, e.g. if the cells are sorted according to size. Instead cultures are diluted to a 

level such that a sample in a well should contain only a few cells. With a sufficiently high 

dilution factor, most wells will receive zero or one cell. This technique has been applied to 20 

evaluate the variation of the lag times of single cells (Augustin (1999) and Francois (2005)).  The 

disadvantage is that many wells will be empty and, for a statistically robust distribution 
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estimation, it is desirable to have as many positive wells as possible, a minimum of about one 

hundred (Bacanova, 2004). 

 

Estimation procedures 

Estimating the average initial counts per well.  Cell cultures were obtained after 5 

successive dilutions, and placed into W  number of wells (W = 200 for the microtitre plates of the 

Bioscreen). Hence, the initial number of cells (N0) in a well follows the Poisson distribution, i.e.  

Pk = 
!

)exp()( 0 k
kNP

kρρ−==    (k=0, 1, …)    (1) 

where the expected value of N0 is E(N0)=ρ. The fraction of empty wells can be used to estimate ρ  

by )/ln(ˆ 0 WW−=ρ , where W0 is the number of negative (empty) wells. 10 

A linear method relating detection time and single cell lag time. Consider the delayed 

stochastic birth process model as defined above.  At the time point t in the exponential phase, the 

natural logarithm of the population size in a well can be estimated from 

y(t) = ln N(t) = ln(N0) + μ ( t - Lg(N0) ) for t > Lg(N0)    (2) 

where Lg(N0) is the geometrical lag in the well, and μ  is the specific growth rate of the 15 

population.  We assume that, for single cells, Lg=Lg(1)  can be well described by a shifted 

Gamma distribution, i.e. for a Tshift  parameter,  Lg-Tshift  is Gamma distributed (Fig.3).  In order 

to create a simple bi-phasic model for the growth curve, the Tshift parameter compensates for the 

randomness of the first few division times. Alternatively, if Tshift is significantly different from 

zero, then it can be interpreted as a ‘compulsory repair time’ for a period after injury during 20 

which the probability of division is zero for any cell. An example will be shown for this later 

(Case B), with heat-shocked cells. 
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The linear method uses the above equation with y(t)=ydet  and transforms the Tdet(N0) 

detection times into individual lag times by using the estimation for ρ :  

μ
ρ)ˆln()( det

0det
)( −−= yNTL LIN

g         (3) 

Here,  Lg
(LIN)  denotes the linear estimation for the Lg  single cell lag time. (As mentioned,  ydet is 

the natural logarithm of the cell concentration at the detection level).  This linear method 5 

substitutes the random variable, N0, by an estimation of its mean, therefore the variability of Lg 

comes only from that of the observed detection times.  If  N0   was fixed at 1, then the difference 

between Tdet  and  Lg  would be only the additive constant  ydet/μ . 

The new ‘moments-based’ method. Define 

α(N0) = exp(-μ Lg(N0))         (4) 10 

as the physiological state for the population generated by N0 initial cells in a well (Baranyi, 

1998).  This variable shows a certain affinity of the cells to the new environment. If it is 1, then 

no need for adjustment; if zero, then the lag is infinitely long.  

Let Sα(N0) denote the sum of the physiological states of the one-cell generated 

subpopulations generated by the initial cells: 15 

∑
=

=
0

1
0 )1()(

N

j
jNS αα            (5) 

As Baranyi (1998) proved it, the physiological state of a population is the arithmetical average of 

the physiological states of the constituent subpopulations: 

)()(
0

0

0 N
N

NS αα =           (6) 

Using the relationship 20 

ydet(N0) = ln(N0) + μ [Tdet(N0)– Lg(N0)]       (7) 
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we obtain 

)()(
0

0det0det)( NTNyeNS ⋅−= μ
α          (8) 

This idea was used by Métris et al. (2006). Here we develop the method further.  We utilise the 

fact that N0 is Poisson-distributed and we can get explicit formulae for the M1, M2, M3 moments 

of Sα(N0).  The derivation can be found in the Appendix; here we show the main result only. 5 

Let the Lg-Tshift   Gamma distributed variable have the scale and shape parameters θ   and  

β, respectively.  Then the moments of Sα are given by the formulae A10-A12 of the Appendix.  

Make them equal to the empirical moments of Sα  : 

n

e
e

n

j

Ty

T

jj

∑
=

⋅−

−− =+ 1

)(
det

)(
det

shift )1(

μ

βμ μθρ         (9) 

( )
( )

n

e
e

n

j

Ty

T

jj

∑
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⋅−

−−− =+++ 1

2

222

)(
det

)(
det

shift )1()21(

μ

ββμ μθρμθρ      (10) 10 

( )
( )

n

e
e

n

j

Ty

T

jj

∑
=

⋅−

−−−−− =++++++ 1

3

3323

)(
det

)(
det

shift )1()21()1(3)31(

μ

ββββμ μθρμθμθρμθρ  (11) 

where j=1…n  numbers the observations, 

As mentioned, ρ can be estimated by the number of empty wells, W0, out of the total 

wells, W.  The specific rate is calculated from different data, so three equations remain with 3 

parameters, Tshift,  β  and θ.  The estimate for Lg will be  15 

Lg
(M) = Tshift + βθ          (12) 

with the fitted parameters. 
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Results  

The linear method is reliable only if the average number of initial cells is very low, so the 

majority of the wells contain one cell only. We demonstrate below that there can already be a 

significant difference between the true Lg values and the linear estimate produced by Eq. (3) 

when the average initial number of cells in a well is between 2 and 3. 5 

 We simulated two cases for the Gamma parameters of the physiological single cell lag 

times:  

Simulation_1:   τ ~ Γ(2,1)  [  E(τ) = 2h,    σ(τ)= 1.4h   ] 

Simulation_2:   τ ~ Γ(2,10)  [  E(τ) =20h,   σ(τ)=14 h   ] 

The coefficient of variation values of these Gamma distributed variables are the same and, from 10 

observed data, realistic (Kutalik et al. 2005). The difference between them is the ratio of their 

scale parameters to their means and to the subsequent specific growth rate, which is fixed at μ = 

0.45 (h-1).    

Assume that the cells are inoculated into 200 wells, with E(N0) =ρ = 2.5 cells per well. 

Simulate the theoretical outcome considering only wells with less than 5 cells (88% of the non-15 

empty wells). As mentioned, the σ standard deviation of the Tdet(N0) detection times will be the 

same as that of the Lg(N0)  population lag times.  The first four rows of Table 2 refers to Lg(k), 

for wells containing exactly k = 1, 2, 3, 4 cells (in P1 P2 P3 P4 proportions, respectively).  The 

last row refers to their convoluted distribution, which would be the result from the linear method, 

apart from the slight under-representation because of the missing 12% of the wells with >4 initial 20 

counts.   With Simulation_1,  σ(Lg(N0)) > σ(Lg(1)), while with Simulation_2, the result is the 

opposite.  In reality, the detection time variability is equal to the variability of the Lg(N0) lag 

time, where N0 is random. As the table show, it can significantly differ from the variability of 
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single cell lag times. If the subsequent generation times in the exponential phase are comparable 

to the single cell lag times (Simulation_1), then the difference is around 10%;  however if the lag 

time is much longer than the generation times (Simulation_2), then the relative difference 

between the two standard deviations can be as high as 40-50%. 

 5 

 It is evident that the higher the Poisson parameter, ρ, the less it is true that the linear 

method estimates the distribution of the single cell lag time. However, we demonstrate below 

that the new method is also suitable for ρ>1 cases. We applied it to two experimental data sets 

obtained with L. innocua.   

Case A. The first example is the same as used by Métris et al. (2006).  Out of the W=200, 10 

146 were positive, so the average initial number of cells per well was ρ̂ = -ln(54/200) = 1.31. The 

specific rate was fixed at the value μ=0.15 h-1 as reported in the original paper.  By means of the 

formulae (6) and (8), the physiological state of the cell population could be calculated by using 

the estimate for the mean of N0 : 

n

e
n

j

Ty jj

⋅
=
∑

=

⋅−

ρ
α

μ

1

)(
det

)(
det

=0.019 15 

The standard deviation of the detection times was σ(Tdet(N0))=12.5 h while our method resulted 

in σ(Lg(1))=32.23 h  for the single cell lag times.  Tshift was insignificant, and its value could be 

fixed at 0. After fitting the β, θ parameters, the average single cell lag time was calculated as 

Tshift+βθ = 55.5 h. Note that the lag of the population was –ln(α)/μ = 26.5,  about half of the mean 

single cell lag time. These results coincide with those of Métris et al. (2006), because the Tshift 20 

parameter was zero. 
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Case B. In the second example, after a mild heat shock, cells were inoculated into wells 

as described earlier. In this case, 189 wells out of W=198 were positive, so the average initial 

counts per well was ρ̂ = -ln(9/198)=3.09.  Equipped with the linear method only, experiments 

with such a high average initial count would normally be discarded as unsuitable to measure the 

variability of single cell lag times.  Using our method, we were able to estimate that the standard 5 

deviation of the detection times was σ(Lg(N0)) = σ(Tdet(N0))=15.52 h  and that of the  individual 

lag times was σ(Lg(1))=23.6 h.  Here, the Tshift parameter was significant, its estimate was 6.6 

hours.  The physiological state and the lag of the population was ca. 10-4 and 20.6 h, respectively, 

the latter being less than half of the mean of the single cell lag times that was estimated as 49h.  

These result could not have been obtained without introducing the Tshift parameter.  10 

 

Discussion 

Developing the new method. Automated readers are used increasingly to follow the 

physico-chemical properties of bacterial cultures. They are not suitable to detect low cell 

concentrations, but able to provide for example the times by which the cultures reach a given 15 

concentration level. It is desirable to process such data with methods that can easily be attached 

to the data acquisition software. We gave such a method in this paper, in order to identify the 

distribution of single cell lag times. The novelty of our method is due to the explicit expressions 

that can be obtained for the moments of the “physiological state” random variable. 

Estimating initial counts by the number of negative wells. There is no practical 20 

alternative to estimating the Poisson parameter more efficiently than by means of the number of 

negative wells. The level of initial counts in a well is much too low for direct detection.  Another 

way would be by means of  the original cell concentration before the dilution series. However, 
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estimating the per-well cell concentration this way is much more inaccurate than the one 

obtained by the number of negative wells.  Nonetheless the calculation is useful to estimate the 

number of necessary dilutions to arrive at the concentration of ca 1-3 cells per well.  

Numerical stability. The estimation procedure requires solving the three equations (9)-

(11) for Tshift , θ and β.  The system of equations is highly non-linear and a common solver tends 5 

to find extreme values of the parameters, when all terms disappear. To avoid this, we instead 

minimize the sum of squares of the differences between the two sides of the equations. If that 

minimum is sufficiently small, then we accept the obtained parameters as solutions.  

Even in this case, a global minimisation algorithm can still cause problems because of the 

extreme parameter values. A local minimum is needed which requires good initial estimations of 10 

the parameters. This is quite demanding, and probably no better way exists than to examine the 

sum of squares on a feasible grid of the parameters. If no local minimum is found then the data 

are not compatible with the basic assumptions of the method (Poisson distribution for N0 and 

shifted Gamma distribution for Lg).  

As mentioned, and shown in Table 2, the distribution of the single cell lag times can be 15 

either wider or narrower than the distribution of the Tdet(N0) detection times, depending mainly 

on N0  and the relation between the lag and the growth rate. With N0 increasing, the estimation 

for ρ is less accurate, as are the estimates for the moments. However, when cells grow together in 

a well, then their population lag has a smaller variability than that of a single cell lag time. This 

increases the accuracy of the estimation procedure. 20 

In Simulation_2,  σ(Lg(1))  was bigger than σ(Lg(N0)).   This relatively wide distribution 

of the single cell lag times means that if cells grow together then the population lag of N0>2 cells 

is dominantly determined by the subpopulation of the first dividing initial cells (by the time the 
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slowest cells divide, the others are in the exponential phase). In such cases, it  is crucial to know 

the specific growth rate a-priori.  Here we use viable count growth curves for its accurate 

estimation, but Baranyi and Pin (1999) showed a method to also measure the specific rate as well 

as determining the lag time distribution using the Bioscreen. 

An obvious alternative to our moments-based method is one based on the Maximum 5 

Likelihood principle.  We compared our results with those generated by an ML program and they 

were practically identical. However, the computational cost (time, resources) of the ML method 

is much higher than that of the method of moments.  Note that even if software packages are 

available and can provide ML-results, our method is useful to give initial parameter values for 

the ML-iteration. 10 

Application of single cell lag variation in Microbial Risk Assessment. Our results can 

be used in simulations for Quantitative Microbial Risk Assessment. A framework for this is 

demonstrated in Fig. 4: Suppose that the initial number of cells on a portion of food is a random 

variable following a distribution that we call "vertical" for obvious reasons. This distribution is 

the result of the history of the cells. Let y0=lnN0  denote the natural logarithm of the initial counts. 15 

Each cell goes through a lag period, Lg, which follows a distribution we call "horizontal", then, 

during the exponential phase, the log number increases linearly. The question a risk assessor is 

most interested in is the probability that the contamination level at the time of consumption, tc, is 

above a certain threshold. The “vertical” distribution of this contamination level, y(tc) is affected 

by the “vertical” distribution of y0 , the (horizontal) distribution of Lg and the specific growth rate 20 

that we consider constant here. The distribution of the bacterial population level can seldom be 

calculated explicitly by algebraic operations but Monte-Carlo simulations provide a 

straightforward solution to study them. For those simulations, the underlying distributions should 
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be measured as accurately as possible. Unfortunately, the region of interest is at relatively low 

cell concentrations, where automated measurements, which are necessary for sufficient data to 

obtain robust distribution estimates, are not available. At high concentrations, however, 

assuming that the detection level ydet is still in the exponential phase, one can use the "horizontal" 

distribution of the Tdet detection times instead of the Lg lag times, as we did in this paper. 5 

 Generally, only vertical distributions are measurable in food, while broth cultures are 

suitable to determine both horizontal and vertical distributions. The transformation between them 

can be made by means of the specific growth rate, since the two types of distributions are rotated 

by 90o.  

 The lag time distribution has significance in predicting contamination levels only if the 10 

estimation of the specific growth rate is accurate. When this is the case, the ideas shown in this 

paper can be built into Monte-Carlo simulations as the "computational engine" behind Microbial 

Risk Assessment programs. 
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Appendix 

Calculate the first three moments of the random variable e-μτ  around zero, where  τ  is Gamma 

distributed with scale parameter θ  and shape parameter β :  

βμθ −+= )1(1m            (A1) 

( ) βμθ −+= 21 2m           (A2) 5 

( ) βμθ −+= 31 3m           (A3) 

 

Suppose that the Lg =Lg(1) geometrical lag has a (constant) time shift parameter, i.e.  Lg-Tshift   

follows the above Gamma distribution. Therefore, the respective moments of the physiological 

state  gLe μα −=  are 10 

βμμ μθ −−− +== )1()( shift
1

TL eeM gE         (A4) 

βμμ μθ −−− +== )21()( shift22
2

TL eeM gE         (A5) 

βμμ μθ −−− +== )31()( shift33
3

TL eeM gE         (A6) 

The moments of the compound random variable Sα(N0) can be calculated by means of the 

moments of N0 and αj : 15 

110
1

1  )()(
0

MMNαS
N

j
j ρα =⋅=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=

EEM        (A7) 

( ) 2
1

2
2

2
1020

1

2
2    )()()(

0

MMMNMNαS
N

j
j ρρα +=+⋅=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=

EEEM    (A8) 

3
1

3
21

2
3

1

3
3 3 )(

0

MMMMαS
N

j
j ρρρα ++=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=

EM       (A9) 
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Combining A1-A3 and A7-A9: 

βμ
α μθρ −− += )1()( shift

1
TeSM          (A10) 

( )ββμ
α μθρμθρ 222

2 )1()21()( shift −−− +++= TeSM       (A11) 

( )ββββμ
α μθρμθμθρμθρ 3323

3 )1()21()1(3)31()( shift −−−−− ++++++= TeSM   (A12) 

 5 
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Legends 

 

Table 1. 

Summary of the key notations used in the paper. 

 5 

Table 2. Standard deviation of the Lg geometrical lag times for exactly k and for N0 cell/well  

where N0 is random, in case of  Simulation_1 and  Simulation_2. 

 

Figure 1.  

Simulated growth curve of a one-cell-generated population growing as a result of subsequent 10 

divisions. The horizontal "steps” represent the intervals when no division occurred. The 

physiological lag, τ, for the initial cell was a random number generated to follow the Gamma 

distribution with mean=5.4 h,   σ=1.8 h. After the lag, the subsequent individual generation times 

for the daughter cells were also Gamma distributed, with mean=1 h and σ=0.26 h. The time to 

the first division (equal to the "detection time" when the detection level is ydet=ln 2) is the sum of 15 

τ and the first generation time. The Lg geometrical lag is not marked by a measurable event but 

depends on the subsequent growth of the population. Its distribution can be measured by that of 

the detection times, Tdet. The parameters of the simulation were taken from flow-chamber 

experiments presented in Elfwing (2004). 

 20 

Figure 2.  

Two simulated examples for a one-cell-generated population with no lag. The distribution of the 

generation times is as in Fig. 1. The distribution of  Lg=Lg(1) (see Fig. 1) comes exclusively from 
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the distribution of the subsequent generation times, since the physiological lag time is zero. The 

two panels demonstrate that both (i) Lg(1)<0  and (ii) Lg(1)>0  are possible for the population 

growth. 

 

Figure 3.  5 

Distribution of the Lg=Lg(1) single cell lag times with the same simulation parameters as in Fig. 

2, based on 1000 replicates of a Monte-Carlo simulation. The age of the initial cell was also 

picked randomly. The cells had no physiological lag time, so this distribution of the geometrical 

lag time is a sole consequence of that of the subsequent generation times. It is compared with a 

zero-centered, shifted Gamma distribution (continuous line), where the shift is equal to the mean 10 

of the generation times (1 h) but the deviation is higher (0.4 h vs. 0.26) than that of the 

generation times. 

 

Figure 4. Schematic representation of the horizontal and vertical distributions for a Monte-Carlo 

simulation for Quantitative Microbial Risk Assessment. The vertical distribution of the  Ln N(tc) 15 

log cell number, where tc is the time of consumption, depends both on the vertically distributed 

initial load, y0, and the horizontally distributed Lg geometrical lag time. The horizontal 

distribution of the detection time is measurable at higher cell concentration. The vertical and 

horizontal distributions can be transformed into each other by means of the specific growth rate, 

μ, which is assumed to be constant. 20 
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Table 1. 

Notation Definition 
α(N0) Physiological state of the initial population consisting of N0 cells  (a compound 

random variable):  α(N0) = exp(-μ·Lg(N0))   
E(X) Expected value of a random variable X 
Γ(θ,β) Gamma distribution, as a generalisation of that obtained by adding β exponentially 

distributed random variables each of which has θ mean value. Then the mean of the 
distribution is β·θ,  its variance is β·θ2 . 

Mi(X) i-th moment of the random variable X      (E(X) = M1(X))  
Lg(N0) Geometrical lag time produced by N0 initial cells in a well (a compound random 

variable; it depends on both τ  and Tg) 
)(M

gL  Estimator for Lg=Lg(1), based on the moments-method 
)(LIN

gL  Estimator of Lg=Lg(1), based on the linear method 

μ Maximum specific growth rate (constant) 
N0 Initial cell number in a well (random variable) 
ρ Parameter of the Poisson distribution; average cell number per well:  ρ = Ε(Ν0) 
ρ̂  Estimate for the unknown ρ =Ε(Ν0)  parameter:   ρ̂ =-ln(W0/W) 

Sα(N0) Sum of the individual physiological states in the initial population consiting of N0 
cells:    Sα(N0) = α1(1) + … +  αN0(1).  It can be proven that  Sα(N0)=N0·α(N0) 

σ(X) Standard deviation of the random variable X 
Tdet(N0) Detection time, a compound random variable:  μ·(Tdet(N0) - Lg(N0)) = ydet - ln N0 

Tshift Shift parameter for Lg=Lg(1) :   Lg-Tshift is Gamma distributed. 
τ Physiological lag time of a single cell of the initial population (its first division 

happens at τ+Tg) 
ydet Natural logarithm of the detection level (constant) 
W Total number of wells in the Bioscreen 
W0 Number of empty wells 
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Table 2. 

Number of initial 
cells in a well. 

Proportion of wells with k 
cells among the positive 

wells 

Simulation_1 
E(τ) = 2 h 

 σ(τ) = 1.4 h 

Simulation_2 
 E(τ) = 20 h 
 σ(τ) = 14 h 

N0 ~ Poisson(2.5) Pk = P(N0=k)  = (lag ≈ 
gen.time) 

(lag >> 
gen.time) 

N0 = k    ( 1 ≤ k ≤ 4 )   (ρk e-ρ / k!) / (1-e-ρ) σ(Lg(k)) σ(Lg(k))  

k = 1 P1 = 0.223564 1.41 14.15 
k = 2 P2 = 0.279455 0.86 8.25 
k = 3 P3 = 0.232879 0.67 6.12 
k = 4 P4 = 0.145549 0.56 5 

Convolution (k < 5) 0.881447 σ(Lg(N0))  ≈  
1.54 

σ(Lg(N0))  ≈  
10.36 
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Fig 2. 
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Fig 3.  
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Fig 4. 
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