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There  is  a  close  analogy  between  statistical  thermodynamics  and  the  evolution  of  allele  frequencies  under

mutation, selection and random drift.  Wright's formula for the stationary distribution of allele frequencies is

analogous  to  the  Boltzmann  distribution  in  statistical  physics.   Population  size,  2N,  plays  the  role  of  the

inverse  temperature,  1 êkT,  and  determines  the  magnitude  of  random  fluctuations.   Log  mean  fitness,

logHW L,  tends to increase under selection,  and is  analogous to a  (negative)  energy;  a  potential  function,  U,

increases  under  mutation  in  a  similar  way.   An entropy,  SH,  can  be  defined which  measures  the  deviation

from  the  distribution  of  allele  frequencies  expected  under  random  drift  alone;  the  sum

G = EAlogHW L + U + SH E  gives a free fitness that  increases as the population evolves towards its  stationary

distribution.  Usually, we observe the distribution of a few quantitative traits that depend on the frequencies

of very many alleles.  The mean and variance of such traits are analogous to observable quantities in statisti-

cal  thermodynamics.   Thus,  we can define an entropy,  SW,  which measures the volume of  allele  frequency

space  that  is  consistent  with  the  observed  trait  distribution.  The  stationary  distribution  of  the  traits  is

expA2 NIlogHW L + U + SWME;  this  applies  with  arbitrary  epistasis  and  dominance.   The  entropies  SW,  SH  are

distinct, but converge when there are so many alleles that traits fluctuate close to their expectations.  Popula-

tions tend to evolve towards states that  can be realised in many ways (i.e.,  large SW),  which may lead to a

substantial drop below the adaptive peak; we illustrate this point with a simple model of genetic redundancy.

This  analogy  with  statistical  thermodynamics  brings  together  previous  ideas  in  a  general  framework,  and

justifies a maximum entropy approximation to the dynamics of quantitative traits.

Keywords:  entropy,  fitness,  random  drift,  redundancy,  information,  statistical  thermodynamics,  Maxwell's

Demon
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There has been a long and varied history of attempts to relate thermodynamics and evolution. From the late

nineteenth  century  up  to  the  present,  there  has  been  wide  concern  that  the  inevitable  increase  in  entropy

apparently  contradicts  the  maintenance  of  order  by  living  organisms,  and  its  creation  by  natural  selection

(Depew & Weber,  1995,  Ch.  17).   In  fact,  there  is  no  real  difficulty,  because  organisms are  open  systems

that  maintain  themselves  by  exporting  entropy  to  their  surroundings  (Lotka,  1922;  Schrodinger,  1944;

Prigogine et al., 1972).  A different approach has been to relate thermodynamics to the evolutionary process

itself.  Most notably, Fisher (1930, p. 36) drew an analogy between the Second Law of thermodynamics, and

his  "Fundamental  Theorem of  Natural  Selection",  which states  that  the  increase  in  mean fitness  caused by

selection  is  proportional  to  the  additive  genetic  variance  in  fitness.   Fisher's  was  a  purely  verbal  analogy,

with  no mathematical  relation between the deterministic  effects  of  selection and the statistical  process  that

underpins  the  Second  Law.   There  have  been  many  subsequent  attempts  in  the  same  vein,  which  draw  a

verbal  analogy  between  the  increase  in  entropy  and  evolutionary  change  (e.g.  Brooks  and  Wiley,  1986;

Wicken,  1980)  or  which  find  quantities  analogous  to  entropy  that  increase  during  deterministic  evolution

(e.g.  Ginzburg,  1977;  Bomze,  1991;  Demetrius,  1997;  Baake  and  Wagner,  2001;  Saakian  et  al.,  2006;

Wilson, 2008).  However, a close analogy can be made when we consider evolution as a stochastic process:

classical  thermodynamics  is  based  on  the  aggregate  behaviour  of  a  large  number  of  molecules,  just  as

population genetics depends on the aggregate behaviour of many reproducing genes.  

Entropy and evolution 3



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

Recently,  Ao  (2005,  2008)  and  Sella  and  Hirsh  (2005a)  have  drawn  attention  to  this  analogy,  using  a

measure of entropy, SH, that was introduced by Iwasa (1988).  Our paper sets their work in a wider context,

and extends  it  to  cover  a  broader  range of  models.  The novel  feature  of  our  paper  is  that  it  extends  to  the

evolution of quantitative traits in genetically variable populations.  Quantitative traits that depend on multi-

ple  genes  define  macroscopic  states  that  include  large  numbers  of  microstates.   This  leads  to  a  distinct

entropy measure, SW, that gives a general approximation to the dynamics of quantitative traits. We illustrate

these ideas with a simple model of genetic redundancy. 

Evolution of the allele frequency distribution

Relation with existing work: Sella and Hirsh (2005a) derive a simple expression for the stationary distribu-

tion of  an asexual  population under selection and random genetic  drift.  They assume that  mutations are so

rare that the population is almost always fixed for one or other genotype, labelled i; for simplicity, they also

assume that the rate of mutation from type i to type j is the same as that in the reverse direction.  With these

assumptions, their Eq. 7 gives the probability of being fixed for type i as:

(1)Pi =
Wi

2 N

Z

where  Z  is  a  normalising  constant,  Wi  is  the  fitness  of  type  i,  and  there  are  N >> 1  diploid  individuals.

Moreover, in this stationary state, the flux of substitutions from i to j is the same as in the opposite direction,

a condition known as "detailed balance".   (Sella and Hirsh [2005a] derive the stationary distribution for the

Moran model and for haploid and diploid versions of the Wright-Fisher model.  We focus on the diffusion

limit, which approximates a wide range of models when selection and drift are weak).

Sella  and Hirsh's  (2005a)  result  had also been derived for  a  specific  model  by Berg et  al.  (2004;  see Sella

and Hirsh, 2005b), and  Aita et al. (2003, 2005) develop a similar approach for understanding evolutionary

computation  (see  Supplementary  Information  A).  The  most  general  analogy  with  thermodynamics  was  in

fact  made  much  earlier  by  Iwasa  (1988,  Eq.  18,  discussed  below).   In  fact,  this  stationary  distribution  of

fixed states (Eq. 1) is a special case of Wright's (1931) stationary distribution of allele frequencies:

(2)P@pD =
1

Z
‰
k=1

n

Jpk
4 NmP,k-1

qk
4 NmQ,k-1N W

2 N

Wright's  formula  gives  the  stationary  distribution  of  allele  frequencies,  p = 8p1, …, pn<,  for  a  sexually

reproducing  population  with  n  loci,  each  with  two  alleles  at  frequency  qk, pk  at  locus  k.   The  rates  of

mutation to these alleles are mQ,k, mP,k  respectively, and the mean fitness of the population is W . The alleles

may interact in their effects on fitness, but the fitness of each genotype must be constant.  The main restric-

tion  on  Wright's  formula  is  that  there  must  be  no  statistical  associations  amongst  alleles  at  different  loci

("linkage  equilibrium"),  so  that  the  state  of  the  population  can  be  described  simply  by  the  list  of  allele

frequencies, p.  This will be a good approximation when recombination is faster than selection and drift, as

is  usually  the  case  for  outcrossing  sexual  populations.   If  there  are  multiple  alleles  at  each  locus,  then  the

matrix of mutation rates must take a special form that allows a stationary distribution with detailed balance.

Sella and Hirsh's (2005) result (Eq. 1 above) gives a distribution across a space of fixed genotypes, whereas

Wright's  formula  (Eq.  2)  gives  a  distribution  across  the  much  larger  space  of  allele  frequencies.   (Provine

(1986, Ch. 9) discusses the relation between these alternative views of the 'fitness landscape').   The former

result  arises  in  the  limit  of  low  mutation  rates  H4 N m << 1L,  when  the  distribution  of  allele  frequencies  is

clustered  around  states  of  fixation  Hpk = 0 or 1 " kL.  Integrating  over  these  regions,  we  obtain

Pi ~Wi
2 N ë¤k I4 N mi,kM,  where  i  labels  the  2n genotypes,  and  mi,k  is  the  mutation  rate  away  from the  allele

4 Entropy and evolution
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that is fixed at locus k.  This is a generalization of Eq. 1 to asymmetric mutation ImP � mQM.  This result can

be  derived  more  directly  by  considering  the  probability  of  fixation  of  rare  mutations  (e.g.  Iwasa,  1988,  p.

271).  Just as mutation reduces fitness below the "adaptive peak" in deterministic models of "quasispecies"

(Eigen, 1971), so random drift reduces mean fitness below the maximum possible.  For specific models, this

"drift load" is proportional to 
1

2 N
 (Kimura and Ohta, 1970; Sella and Hirsh, 2005a), but this is not a general

result (Supplementary Information B).

Sella and Hirsh's model of an asexual population is equivalent to one of multiple alleles at a single genetic

locus.  However, since they consider substitutions that occur one at a time, recombination is irrelevant, and

the results also apply with free recombination in this low-mutation rate limit.  For simplicity, we deal with

two  alleles  at  each  of  multiple  loci.   This  generalises  to  multiple  alleles  at  each  locus,  provide  that  the

mutation  rates  take  a  special  form that  leads  to  a  stationary  state  with  detailed  balance.   Sella  and  Hirsh's

model of mutation satisfies this constraint.

We have contrasted Sella and Hirsh's model, in which populations jump between fixed states, with the more

general case of polymorphic populations that are described by their allele frequencies.  There is a still more

general  case,  in  which  populations  are  described  by  their  genotype  frequencies  -  that  is,  by  their  allele

frequencies  plus  all  the  linkage  disequilibria  that  describe  associations  between  alleles  at  different  loci.

With n biallelic loci, the distribution across fixed genotypes is described by a vector of  2n  numbers.  With n

allele  frequencies,  we  must  follow  the  distribution  across  an  n-dimensional  space;  and  with  2n  genotype

frequencies, we must follow the distribution across a 2n - 1 dimensional space.  This latter case is difficult,

because in general, there is no detailed balance in  the stationary state, and it is not possible to write down

the stationary density explicitly.  However, Ao (2005, 2008) has made some progress on this problem (see

Discussion).

Entropy and free  fitness:  Under  quite  general  conditions,  a  measure  can be  defined which increases  as  a

Markov process approaches its stationary distribution, P0:

(3)D EBlogB P0

P
FF ¥ 0

Here,  E@D  represents  the  expectation  over  a  distribution  of  states,  P@pD,  which  changes  through  time.  This

quantity is (minus) that defined by Boltzmann in his H-theorem (Boltzmann, 1872; Keizer, 1987, p. 76; Le

Bellac et al., 2004, p. 59); it is also known as the relative entropy, or the Kullback-Leibler distance between

P and P0  (Kullback, 1987). One way to understand it is in terms of statistical inference (Jaynes, 1983): it is

equal to the expected log likelihood of the hypothesis that the population is sampled from P0, relative to the

likelihood that it is drawn from the actual distribution P.  When P differs from P0, this is negative, since it is

on average less likely that the population is drawn from P0  than that it is drawn from the actual distribution,

P.  It reaches a maximum at zero when P = P0. 

In an evolutionary context, Iwasa (1988, Eq. 7) defined a free fitness, G, by taking the expectation in Eq. 3,

divided by 2 N.  Substituting for the stationary distribution in Eq. 2, and dropping the constant Z gives:

(4)

G =
1

2 N
EBlogB 1

P
‰
k=1

n

Jpk
4 NmP,k-1

qk
4 NmQ,k-1N W

2 NFF =

EAlog@WDE + E@UD +
1

2 N
SH

where  U  =  2 ⁄
k=1

n ImP,k Log@pkD + mQ,k Log@qkDM  is  a  measure  of  genetic  diversity,  and

SH = -EALogAPI¤k=1
n pk qkMEE  is  a  measure  of  entropy.  (Sella  and  Hirsh  (2005a,  Eq.  14)  and  Iwasa  (1988,

Entropy and evolution 5
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Eq.  19)  give  a  form  of  this  free  fitness  for  the  special  case  where  populations  are  close  to  fixation,  by

dropping  the  second  term,  E[U]).  We  label  the  entropy  measure  by  H  because  it  is  close  to  the  quantity

defined by Boltzmann's (1872) H-theorem; as we discuss below, it is also proportional to Shannon's (1948)

information  entropy.   When  averaged  over  an  ensemble  of  independently  evolving  populations,  the  free

fitness  gives  a  measure  of  the  deviation  from  the  stationary  distribution,  whose  expectation  can  never

decrease. The three terms represent the effects of selection, mutation, and drift, respectively.  Selection tends

to increase mean fitness; mutation tends to push allele frequencies towards an equilibrium value at which the

second term, E@UD,  is maximised; and random drift tends to spread out the distribution, thus increasing the

last term.  This last measure of the dispersion of the probability distribution is analogous to an entropy, and

the factor 
1

2 N
to a temperature.  

We  have  written  the  free  fitness  in  a  slightly  different  form  from  Iwasa  (1988),  who  included  the  factor

E@Log@¤k=1
n pk qkDD  with  the  second  term  rather  than  the  last.   We  have  a  free  choice  as  to  how  to

partition  across  the  three  terms:  our  choice  was  motivated  by  requiring  that  the  terms  correspond  to  the

effects  of  selection,  mutation,  and  drift,  respectively.   We  discuss  an  alternative  choice  in  Supplementary

Information C.

Application to quantitative genetics

Microstates  and macrostates:  Quantitative  genetics  describes  the  evolution of  complex traits  that  depend

on multiple interacting genes.  Typically, we observe the distribution in the population of a trait z, but do not

know the  allele  frequencies  that  influence  it.   Thus,  the  central  problem of  quantitative  genetics  is  closely

analogous  to  statistical  mechanics,  which  follows  macroscopic  variables  such  as  energy  and  pressure,

without  detailing  the  dynamics  of  individual  molecules.   We  believe  that  the  analogy  between  statistical

physics and population genetics is most fruitful in this context.

Entropy was  originally  developed in  classical  thermodynamics,  in  terms of  macroscopic  flows of  heat  and

work. Since population genetics contains no conserved quantity analogous to energy, this classical concept

cannot  be  applied.   The  measure  defined by  Sella  and Hirsh  (2005a,  Eq.  14)  and Iwasa  (1988,  Eq.  7)  is  a

measure of statistical entropy that was introduced by Boltzmann (1872) in his H-theorem; it is proportional

to  Shannon's  (1948)  information  entropy.   This  measure,  which  we  denote  SH ,  describes  the  dispersion  of

microstates,  and does  not  involve any macroscopic  variables.   A third  concept,  which we denote  SW,  links

macroscopic with microscopic descriptions; it was defined by Boltzmann (1877), and is proportional to the

logarithm of the number of microstates consistent with a given macroscopic state. (This measure of entropy

was  introduced  in  population  genetics  by  Barton  (1989)  and  Barton  and  Rouhani  (1993)).   Other  things

being equal, systems will tend to evolve towards macroscopic states with higher SW simply because these are

consistent with more microstates.  This measure of entropy is often presented in terms of a count of discrete

states.  However, in both population genetics and classical physics, we deal with a continuous space of allele

frequencies  or  of  positions  and  momenta.   In  this  continuous  setting,  entropy  is  defined  by  the  volume of

state space consistent with an infinitesimal volume of macroscopic states; it requires that we define a metric

on both macrostates  and microstates.   SW  and SH  are  distinct:  SW  is  a  function of  the  values  of  the  macro-

scopic variables, whereas SH is a functional of the distribution of microstates.  However, the distribution of

microstates that maximises SH , for given macroscopic values, converges to SW  when traits fluctuate close to

their expectations (Supplementary Information E).

Suppose  that  a  polygenic  trait  is  approximately  normally  distributed.   Then,  the  state  of  the  population  is

described by the trait's mean and variance, 8z, v<. If selection acts solely on the trait, then mean fitness is a

function  W @z, vD.   The  effect  of  mutation  is  described  by  a  third  variable,  U = 2 m ⁄k=1
n logHpk qkL,  which

would not usually be observable. (We assume two alleles per locus, and for simplicity, symmetric mutation,

6 Entropy and evolution
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m = mP = mQ).  The stationary distribution of 8z, v, U<  is then obtained by integrating over the distribution

of allele frequencies (Eq. 2), conditional on these values:

(5)P@z, v, UD =
1

Z
W@z, vD2 N

‰2 NU ‰SW

where  SW@z, v, UD = LogBŸz,v,U

„p

¤k=1
n pk qk

F  involves  an  integral  over  the  space  of  allele  frequencies,

conditioned  on  values  of  z, v, U.   Note  that  although  the  unconstrained  integral  diverges  as  Ÿ p-1 „ p

(corresponding  to  accumulation  at  fixed  states,  pk = 0 or 1),  it  is  well-defined  when  the  constraint  on  U

requires  that  there  be  variation  at  every  locus.   The  normalising  constant  Z  is  analogous  to  a  partition

function,  and  can  be  used  to  recover  information  about  the   expected  state  of  the  system.  For  example,  if

log@W D  is  proportional  to a selection coefficient  s,  then � log@ZD ê� log@sD = EAlog@W DE,  and if  U is  propor-

tional to a mutation rate m, then � log@ZD ê� log@mD = E@UD (Supplementary Information D).

Although we assume normality, so that mean fitness is a function solely of z, v,  we have not assumed that

the trait,  z,  is  given by the sum of effects of the different genes (i.e.,  that  it  is  additive).   Normality would

follow from the assumptions of additivity and linkage equilibrium, but even if genes do interact to determine

the trait,  the trait  may still  follow an approximately Gaussian distribution.  For example, the trait  might be

the sum of effects of interacting pairs of genes, or more generally, interactions might fluctuate in sign so that

the  overall  distribution  remains  Gaussian  (Turelli  and  Barton,  2006).  Equation  5  applies  with  arbitrary

patterns of interaction; however, complex interactions would make calculation of SW intractable.

Directional selection on an additive trait: The stationary distribution of the macroscopic variables (Eq. 5)

expresses the tension between the three different evolutionary forces of selection, mutation and drift (Iwasa,

1988;  Barton,  1989;  Barton and Rouhani,  1993;  Sella  and Hirsh,  2005a).   To illustrate  this  point,  consider

the  simple  model  of  directional  selection  on  an  additive  trait.   Suppose  that  individual  fitness  depends  on

z = ⁄k=1
n gkIXk + Xk

* - 1M,  where  gk is the effect of the  k ' th  locus,  and  Xk, Xk
*= 0,  1  are  the  states  of  the  two

copies  of  the  k ' th locus  in  diploids.   Individual  fitness  is  ‰ bz,  corresponding  to  multiplicative  selection

sk = bgk  at the k ' th locus.  Assuming normality, we have log@W D = bz +
b2 v

2
.  When selection is weak ( b

small), as we assume, the second term 
b2 v

2
is negligible.

For simplicity, we assume equal allelic effects Hgk = 1 " kL, and work with s = b. The population mean must

lie  in  the  range  -n § z § n,  and  the  trait  variance  must  be  less  than  
n

2
K1 - J z

n
N2O;  thus,  the  population  lies

within  the  space  shown  in  Figure  1a.   With  this  simple  form  of   directional  selection,  logHW L  increases

linearly  towards  fixation  of  the  fittest  genotype  Hz = n = 100, v = 0, at rightL.   Mutation,  acting  via  the

second term in Eq. 5, ‰2 NU ,  makes no direct contribution to the stationary density of z ,  but the third term,

analogous to an entropy, does.  In the absence of mutation or selection, the population is equally likely to fix

any  of  the  2n available genotypes,  and  so  the  trait  mean  follows  a  binomial  distribution  tightly  clustered

around z = 0 - the state that can be realised in the largest number of ways (dots on horizontal axis in Fig. 1a).

When mutation and random drift act in the absence of selection, the stationary density is given by ‰2 NU+SW ,

and  clusters  around  zero  mean  and  a  variance  maintained  by  a  mutation-drift  balance  (central  contours  in

Fig.  1a).   Including  selection  (i.e.,  multiplying  by  W
2 N

)  shifts  this  distribution  to  the  right,  towards  the

maximally fit state (arrow in Fig. 1a).

Fig. 1

In the example of Fig. 1, 2 N m = 0.1, and so allele frequencies at individual loci tend to be close to fixation

(Fig.  1b).   However,  with  a  large  number  of  loci  Hn = 100L,  the  trait  mean and variance follow a  Gaussian

Entropy and evolution 7
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distribution  that  clusters  around  their  most  likely  state  (Fig.  1a).   With  a  smaller  number  of  loci

Hn = 10, sayL, the Gaussian approximation is still quite accurate, except where the distribution is close to the

edge of its allowable range.  In such cases, the exact distribution can be calculated from Eq. 5, as the convolu-

tion  of  n  allele  frequency  distributions.   Barton  (1989)  and  Coyne  et  al.  (1997,  Appendix)  explore  such

calculations, for a model of stabilising selection on an additive trait.

Figure 2 shows how mean fitness, due to a single locus under directional selection s,  is reduced below the

maximum possible  by  mutation  and  drift.   Each  panel  shows  the  average  allele  frequency,  E@pD,  which  is

directly  related  to  log  mean  fitness  IlogAW êW maxE = -2 nsH1 - E@pDLM.   Figure  2a  shows  how  the  average

frequency of the fitter allele increases with population size, for a fixed rate of mutation relative to selection,

whilst  Figure  2b  shows  how  mean  allele  frequency  depends  on  
m

s
,  for  given  2 Ns.  For  2 Ns >> 1,  E@pD

approaches  the  deterministic  limit  p =
1

2
+

1

2
1 + J 2 m

s
N2 -

m

s
 which  is  approximately  1 -

m

s
for m << s

(asymptotes at right of Fig. 2a; upper curve in Fig. 2b)..  In small populations H2 Ns << 1L, allele frequency

and  mean  fitness  increase  linearly  with  population  size,  as  E@pD =
2 Ns

1+8 N m
 (linear  region  at  left  of  Fig.  2a;

lower curve in Fig. 2b).  When mutation rates are very low Hm << sL, populations are almost always close to

fixation, and we have E@pD = 1ëI1 + ‰-4 NsM. In this limiting case, the genetic load is entirely due to random

drift,  rather than to mutation. In general,  however, the effects of drift  and mutation on mean fitness cannot

be cleanly separated. 

Fig. 2

Modifiers  of  redundancy:  The analogy with thermodynamics highlights  the point  that,  other  things being

equal,  populations  will  drift  into  mqcroscopic  states  that  can  be  realised  across  a  larger  volume  of  allele

frequency space - that is, which have higher "entropy", SW.  This effect can be seen in Figure 1a, where the

trait mean will, under random drift alone, tend towards intermediate values, because those can be realised by

a  larger  number  of  genotypes  (dots  around  z = 0, v = 0).  When  mutation  rates  are  low  HN m << 1L,  the

expected  trait  mean is  determined by  a  balance  between this  effect,  and  the  tendency of  selection  to  max-

imise  fitness.  Iwasa  (1988,  Eq.  20)  shows  how,  if  the  number  of  available  states  increases  sufficiently

rapidly as fitness decreases, the entropy effect can overwhelm selection.

8 Entropy and evolution
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We can illustrate this point with a simple thought experiment, which shows that a modifier allele can invade

if  it  gives  high  fitness  across  a  wide  range  of  genetic  backgrounds,  even  if  it  is  not  present  in  the  fittest

possible  genotype.   Assume  that  the  quantitative  trait,  z,  just  depends  on  the  number  of  '1'  alleles  in  the

diploid genotype; with n loci of equal effect, z is defined to range from -n to +n.. Suppose that when the '0'

allele at the modifier locus is present, fitness depends on n loci as before HW = ‰ szL, but when the '1' allele is

present, fitness is ‰ sn-d, independent of z; this robustness comes at a cost to fitness of d > 0.  If both muta-

tion  and  random  drift  are  weak  relative  to  selection,  then  the  population  will  be  close  to  fixation  for  the

fittest genotype Hz = n),  and the '1'  modifier allele cannot invade.  However, if  mutation and drift  cause the

population to spread over a wide range of less fit genotypes, then this allele may have higher fitness than its

alternative,  when  averaged  over  these  states.   The  distribution  of  frequencies  of  the  modifier  allele  is  the

same as for a single-locus system, with allelic fitnesses W 0 : W 1; this follows directly from our assumption

of linkage equilibrium.  These marginal fitnesses are simply the mean fitnesses of populations fixed for the

alternative  alleles  at  the  modifier  locus;  in  this  model,  W 0 = exp@nsH2 E@pD - 1LD,  where  E@pD  is  shown  in

Fig.  2,  and W 1 = ‰sn-d.   The modifier  allele  is  favoured both  by mutation and by drift;  in  the  limit  of  low

mutation, where it gains its advantage solely through the 'entropy' term, SW, the condition for invasion is that

‰sn-d > expJsnJ2 1

1+‰-4 Ns
- 1NN, or d <

2ns

1+‰4 Ns
.  With large numbers of loci Hn >> 1L, and drift of the same order

as, or stronger than, selection HNs <è 1L, the entropic effect dominates.

More generally, we can ask what relation between genotype and fitness is likely to evolve.  For simplicity,

suppose  that  fitness  is  some function  of  an  additive  trait,  z;  for  example,  Fig.  3a  compares  flat,  linear  and

quadratic  relations  between log fitness  and the  trait.   We can imagine a  locus  that  carries  modifier  alleles,

with  each  allele  giving  a  particular  relation  WHzL.   With  low  mutation  rates  and  large  population  size

HN m << 1, Ns >> 1L,  the  single  fittest  genotype  will  evolve  (upper  right  of  Figs.  3a,  b).   However,  when

variation  within  and  between  populations  is  introduced  by  mutation  and  drift,  then  the  mean  fitness  of  a

modifier allele depends on the fitness averaged across all background genotypes.  Specifically, it is just the

mean  fitness,  taken  across  the  stationary  distribution  (Eq.  2).   Moreover,  the  stationary  distribution  of  the

modifier allele frequency is determined by the mean fitness of the modifier alleles, and is given by the single-

locus version of Eq. 2. In the example of Fig. 3b, when Ns is small, a flat relation between trait and fitness,

and negative (synergistic) epistasis, are favoured.

The general  point  that  the success of an allele depends on its  marginal  fitness,  averaged across the genetic

backgrounds  on  which  it  finds  itself,  is  well  understood:  for  example,  it  was  emphasised  by  Dobzhansky

(Lewontin,  1981).  It  has  recently  been  discussed  primarily  in  relation  to  robustness  against  mutation  (e.g.

Schuster and Swetina, 1988, Burch and Chao, 2000, De Visser et al., 2003), and the tendency of mutation to

drive  populations  towards  flatter  parts  of  the  adaptive  landscape  has  been  termed  "survival  of  the  flattest"

(Wilke  et  al.,  2001;  Wilke,  2005).   Here,  we  are  simply  pointing  out  that  even  when  mutation  is  rare,  the

genetic  background  will  vary  if  selection  is  weak  relative  to  random drift,  and  alleles  will  be  selected  for

their  effects  across  a  range  of  more  or  less  degraded  backgrounds.   The  effects  of  random drift  have  also

been  studied  by  Krakauer  and  Plotkin  (2002),  who  analyse  small  perturbations  from  the  deterministic

equilibrium, and by van Nimwegen et al. (1999), who assume, like Sella and Hirsh (2005), that populations

are usually fixed for a single genotype.  In a more biological context, Kondrashov (1995) and Lynch (2007)

have emphasised the possible consequences of small Ns for genome evolution. 

It is not clear that it is sensible to think of "modifiers of epistasis".  Unlike classical modifiers of dispersal,

mutation or recombination, modifiers of epistasis necessarily have direct effects on fitness, and it is arbitrary

which  of  an  interacting  set  of  loci  we  label  as  the  modifier  (Hansen,  2006,  p.  138).   Regardless  of  the

labelling, at linkage equilibrium, what will evolve will be the set of genotypes that has highest mean fitness,

averaged  over  the  distribution  generated  by  mutation  and  drift.   The  real  difficulty  in  understanding  this

evolution  of  "genetic  architecture"  is  to  know  what  constrains  the  relation  between  genotype  and  fitness

(Hansen,  2006).   For  example,  Desai  et  al.  (2007)  argue  that  in  the  presence  of  deleterious  mutations,

Entropy and evolution 9
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selection favours antagonistic (positive) epistasis.  However, this result arises because in their model, what is

being selected is  primarily a reduced deleterious effect  of mutations:  whether this is  accompanied by posi-

tive or negative epistasis depends on the constraints that are assumed (Desai et al., 2007, pp. 1008-1009). 

In the limit of low mutation rates, the population will almost always be fixed for one or other genotype, and

the outcome will be the same, regardless of whether or not there is recombination.  We focus on this limit,

because  we  are  concentrating  on  how  populations  adapt  when  fitness  is  lost  because  of  drift,  rather  than

because of mutation.  Imagine that the population is initially fixed for an allele that makes fitness insensitive

to z, but at some fitness cost (flat line in Fig. 3a).  Occasional mutations will cause it to hop between alterna-

tive states, following a neutral distribution in which each genotype is equally likely; the trait z will therefore

follow a binomial distribution centred on z = 0.  Now, imagine that an alternative allele is introduced, which

increases the fitness of alleles that have high values of z, but reduces the fitness of alleles with intermediate z

(straight line in Fig. 3b).  This will only be likely to invade when it arises within a population that happens to

have  sufficiently  high  z  -  a  very  rare  event  for  large  numbers  of  loci,  n.   However,  once  the  modifier  has

fixed,  the  population  is  likely  to  evolve  towards  high  z,  and  will  have  higher  fitness  than  before,  because

mutations  that  reduce  z  are  now  strongly  deleterious.   We  can  see  from  this  example,  that  although  the

stationary distribution tells us that the long-term outcome is that the fitness profile WHzL  with highest mean

fitness is most likely, it may take a prohibitively long time for this to evolve. (This is similar to the situation

with  mutation/selection  balance  and  asexual  reproduction,  where  advantageous  alleles  can  only  fix  if  they

arise in a sufficiently fit genetic background; Fisher, 1930, p. 122; Charlesworth, 1994; Johnson and Barton,

2002).

Discussion

Analogy  with  thermodynamics:  When  a  population  can  be  described  in  terms  of  allele  frequencies,  its

stationary state under selection, mutation and random genetic drift is given by Wright's (1931) formula (Eq.

2).   This  immediately  suggests  a  precise  analogy  with  the  Boltzmann  distribution,  with  log  mean  fitness

analogous to a (negative) energy, and the inverse of population size analogous to temperature: fluctuations

in  mean  fitness  are  stronger  in  a  smaller  population,  in  just  the  same  way  that  fluctuations  in  energy  are

stronger at higher temperatures.  We can think of selection as causing a systematic increase of those particu-

lar alleles that raise fitness IEADpiE = Hpi qi ê2L I� logHW Lë� piMM. This is analogous to the organised molecular

movements required to produce work in classical thermodynamics.  In contrast, random drift causes random

fluctuations in allele frequencies, analogous to the disorganised motions of heat.  

Ao (2005, 2008) has set  out this analogy in detail,  identifying gradual parameter changes that  preserve the

stationary  distribution  as  being  "reversible"  in  the  thermodynamic  sense.   It  is  then  possible  to  make  a

precise  analogy  with  the  Carnot  cycle:  isothermal  changes,  in  which  parameters  such  as  the  strength  of

selection change at constant population size, alternate with adiabatic changes, in which population size and

intensive parameters change together (i.e., keeping Ns, N m etc. constant), so as to keep the allele frequency

distribution the same.  However, there is no equivalent to the conservation of energy in population genetics,

and it makes no sense to think of exchange of energy with the outside world.  Therefore, this line of thinking

does  not  lead  to  any  constraint  on  the  increase  in  mean  fitness  that  would  correspond  to  the  constraint

identified by Carnot in classical thermodynamics.  Although this analogy is intriguing, it  seems to have no

biological significance.

If,  as  is  often the case,  we observe quantitative traits  that  depend on genotype in  a  complex way,  then the

distribution of these traits is found by averaging over Wright's distribution (Eq.5; Barton, 1989).  This gives

a product of three terms that correspond to the effects of selection that increases mean fitness; mutation that

increases  genetic  diversity;  and  an  entropy-like  effect,  that  favors  those  macroscopic  states  that  can  be

realised through the largest set of allele frequencies.  Again, these terms are analogous to those that arise in

statistical mechanics, where we see a macroscopic system as an average over very many microscopic states.

10 Entropy and evolution
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We  also  find  that  the  stationary  distribution  maximises  statistical entropy, SH ,  given  constraints  on  the

expected values of observables (Supplementary Information D),

The analogy with thermodynamics is limited: mean fitness is not conserved in the same way as energy; there

is  no  constraint  on  the  increase  in  mean  fitness,  analogous  to  the  Second  Law;  populations  do  not  tend

towards  the  same  size  when  coupled  together,  as  physical  systems  would  tend  towards  the  same  tempera-

ture; and there is no principle of equipartition, which spreads populations out evenly over the space of allele

frequencies.  Rather, the analogy follows from the general properties of Markov processes, which justifies a

fundamentally statistical view of entropy (Jaynes, 1983; le Bellac et al., 2004).  

The  analogy  is  greatly  simplified  by  the  fact  that  the  response  of  a  population  to  selection  is  equal  to  the

gradient in log mean fitness,  multiplied by a genetic variance which also gives the rate of random fluctua-

tions.  We  have  developed  the  analogy  by  assuming  linkage  equilibrium  (so  that  the  population  can  be

represented  by  its  allele  frequencies)  and  by  assuming  special  forms  of  mutation  and  selection  (so  that

Wright's formula applies, and the population tends towards a stationary state with detailed balance).  When

linkage disequilibria are significant,  when selection is frequency-dependent,  or with more general forms of

mutation,  the  stationary  distribution  cannot  be  written  down  explicitly,  and  does  not  cleanly  separate  into

separate factors.   Nevertheless,  we can still  regard the distribution of observed variables,  such as the mean

and variance of a quantitative trait, as an average over the space of genotype frequencies, and we still expect

the population to tend towards states  that  can be realised in the largest  number of  ways.   Ao (2005,  2008)

develops methods for analysing systems that do not tend towards a stationary state, with detailed balance.

The size of the system: In our analogy, the number of genetic loci corresponds to the size of a thermody-

namic  system  -  the  number  of  gas  molecules,  for  example.   Thus,  parameters  such  as  mutation  rate,  m,

selection  gradient,  b,  and  population  size,  N,  that  act  at  each  locus  can  be  seen  as  intensive  variables,

independent  of  the  size  of  the  system,  and  analogous  to  pressure  or  temperature.  Similarly,  variables  that

depend  on  all  the  loci  (for  example,  the  measure  of  diversity,  U,  or  a  quantitative  trait,  z)  can  be  seen  as

extensive  variables.   With  additive  traits,  this  analogy  is  straightforward:  we  can  define  an  aggregate  trait

which is the sum of two traits that depend on different sets of loci, in much the same way that we can make a

physical  system  by  combining  two  smaller  systems,  and  adding  up  the  extensive  variables.   However,  in

general we do not assume that quantitative traits are additive; with epistasis, it is harder to make the analogy

with  physical  systems,  since  there  is  no  quantity  such  as  mass  or  energy  that  is  conserved,  and  no  simple

operation that corresponds to aggregating two systems.

Genetic systems typically are much smaller than familiar physical systems: quantitative traits might depend

on  hundreds  of  genes  at  most,  whereas  the  number  of  molecules  in  a  macroscopic  systems  is  of  order

Avogadro's  number,  ~6�1023 mole-1.   Thus,  we  cannot  be  as  confident  in  describing  trait  variation  by

averaging over the underlying genetics as we can be in using classical thermodynamics to describe macro-

scopic physical systems.  Nevertheless, the distribution of quantitative traits clusters quite closely around its

expectation even with a modest number of loci (Fig. 1a).  Moreover, although we have only a rough idea of

how many loci typically contribute to trait variation, it may well be large enough for populations to approach

the  thermodynamic limit.   It  is  true  that  in  crosses  between inbred lines,  quantitative  trait  loci  (QTL) with

major effects are often detected, accounting for a substantial fraction of genetic variance.  However, popula-

tions typically respond in a steady and replicable way for as long as selection is applied (Barton and Keight-

ley, 2002), a pattern most naturally explained by the infinitesimal model (Bulmer, 1980), which assumes an

indefinitely large number of  genes.   The success of  quantitative genetics in smoothing over the underlying

genetics suggests that  the analogy with thermodynamics may be fruitful,  despite the very different sizes of

the systems involved.

Quasispecies:  Eigen  (1971)  modelled  a  population  of  sequences  evolving  under  mutation  and  selection.

This  model  of   a  "quasispecies"  (Eigen  and  Schuster,  1977)  describes  the  deterministic  evolution  of  an

asexual population; it is the focus of an extensive literature, mainly published in physics journals.  There is
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also  intense  interest  within  population  genetics  in  the  interaction  between  mutation  and  selection,  but  the

concerns are broader, including sexual reproduction, recombination, and random drift; Wilke (2005) reviews

the  relation  between  these  literatures,  which  have  remained  largely  separate.   The  quasispecies  model  is

essentially linear, and so its solution can be written explicitly.  This leads to a precise analogy with quantum

mechanics,  in  which  the  inverse  temperature  corresponds  to  time:  deterministic  evolution  towards  the

equilibrium corresponds to cooling towards the ground state (Baake et al., 1997; Baake and Wagner, 2001;

Saakian  and  Hu,  2004).   This  is  quite  different  from  the  analogy  described  here,  in  which  the  model  is

stochastic, with temperature corresponding to the rate of random genetic drift.

Robustness: We have shown that a modifier allele can increase in frequency if it causes high fitness across

a wide range of genetic backgrounds, even if it reduces the fitness of the optimal genotype; this effect can be

strong, since it increases in proportion to the number of genes involved.  This can be thought of as a form of

selection for redundancy: the 'entropy' SW  which we have defined drives populations towards states that can

be realised in many ways, even at the expense of a reduction in maximum fitness (Iwasa, 1988).  There has

been  considerable  recent  discussion  of  the  evolution  of  redundancy  (e.g.  de  Visser  et  al.,  2003;  Hansen,

2006;  Wagner,  2005),  stimulated by the  surprising discovery that  most  genes  in  eukaryotes  can be  deleted

without  obvious  ill-effects.   This  issue  is  closely  related  to  the  robustness  of  organisms  to  genetic  and

environmental  perturbations,  which  facilitates  evolution  of  novel  features  without  disruption  of  existing

function.  This discussion has focussed on the effects of deleterious mutation; the analogy with thermodynam

ics emphasises that random drift also causes populations to spread over sub-optimal states, and so they will

tend to adapt to the inevitable presence of drift load as well as mutation load. Indeed, even in the limit where

mutation is very rare, modifiers that increase redundancy can still evolve, albeit slowly. Balancing selection

also  contributes  to  the  maintenance  of  the  ubiquitous  genetic  diversity  that  we  observe:  organisms  must

evolve to cope with all these sources of variation in the genetic background.

Approximating the dynamics:  Although the analogy with thermodynamics gives  an intriguing interpreta-

tion  of  Wright's  (1931)  formula  for  the  stationary  distribution,  it  does  not  lead  directly  to  new results:  the

argument drawn from physics that  systems will  tend towards states with higher entropy corresponds to the

straightforward  biological  argument  that  some  states  will  be  more  likely  to  evolve  because  they  can  be

generated by a larger set of allele frequency combinations.  The thermodynamic interpretation is,  however,

valuable  when  extended  to  approximate  the  dynamics  of  quantitative  traits.   The  rate  of  change  of  trait

means  caused by selection and drift  is  proportional  to  the  additive  genetic  variance,  but  the  variance itself

evolves,  in  a  way  that  depends  on  the  underlying  allele  frequencies.  In  a  series  of  papers,  Prugel-Bennett,

Rattray  and  Shapiro  approximate  these  allele  frequencies  by  supposing  that  they  maximise  an  entropy

measure,  conditional  on  the  observed  distribution  of  the  trait  (Shapiro  et  al.,  1994,  Rogers  and  Prugel-

Bennett, 2000, Rattray and Shapiro, 2001).  Their simulations suggest that this can be a remarkably accurate

approach.  However, their entropy measure differs from that used here, and is not justified by any evolution-

ary model; their procedure can be seen as an ad hoc technique for moment closure.  In contrast, the entropy

measure  that  we  define  here  is  justified  in  that  the  stationary  distribution  is  recovered  correctly

(Supplementary Information D). Provided that the quantitative trait is perturbed from its steady state slowly

enough,  then  the  underlying  allele  frequencies  should  stay  close  to  their  stationary  distribution,  and  the

approximation  will  remain  accurate.  (Such  changes  are  termed  "reversible",  by  analogy  with  physical

perturbations  that  are  slow  enough  for  the  Boltzmann  distribution  to  be  maintained;  Ao,  2005).  Without

examination of specific models, however, it is not clear whether this would be a good approximation to more

rapidly  evolving  populations,  where  the  quantitative  trait  and  the  allele  frequencies  evolve  on  the  same

timescale. Barton and de Vladar (2009) show that under directional selection, this approach is accurate even

in the worst case of an abrupt change; they also outline the application to stabilising selection on a quantita-

tive trait.   

Information  and  entropy:  Fisher  saw  "natural  selection  [as]  a  mechanism  for  generating  an  exceedingly

high  degree  of  improbability"  (Edwards,  2000);  qualitatively,  we  see  natural  selection  as  building  up  the
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highly improbable combinations of alleles that cause reproductive success, and therefore, as being responsi-

ble  for  the  functional  information  that  is  encoded  in  the  genome.  Fundamentally,  the  number  of  offspring

left  by  an  individual  provides  the  information that,  over  very  many generations,  creates  complex function.

We conclude our paper by contrasting two distinct views as to how selection generates information. 

Kimura  (1961)  pointed  out  that  there  is  a  close  quantitative  relation  between  Haldane's  (1957)  "cost  of

natural selection", and the increase in information due to selection (see also Worden, 1995).  In order to pick

out a single highly improbable genotype, which would have a chance P = ¤i pi  of fixing in the absence of

selection,  there  must  be  at  least  logH1 êPL  selective  deaths.   More  precisely,  the  difference  in  reproductive

rate between the fittest genotype and the population average sums over time to a total of logH1 êPL.  This is

just the information added by choosing a single genotype that has a priori probability P. 

Unfortunately, Kimura's (1961) argument has restricted scope. The "cost of selection" is precisely related to

the increase in information if reproduction is asexual, but fails when there is sexual reproduction, and when

genes interact with each other.  To see this, note that truncation selection can raise any number of favourable

alleles to moderate frequency  for the same cost.  If a fraction q of the population is selected in each genera-

tion,  then  a  large  number  of  different  favourable  alleles,  each  initially  rare,  may  all  be  selected  in  each

generation,  and  can  rapidly  increase  by  a  factor  
1

q
 in  each  generation.   Once  they  all  become  common,

recombination is needed to bring them together into the fittest genotype, and so with asexual reproduction,

progress stalls (Fisher, 1930; Muller, 1932).  With recombination, however, the fittest genotype can rapidly

fix,  and  most  of  the  "cost  of  selection"  is  avoided:  an  arbitrarily  improbable  genotype  can  be  fixed  for  a

limited number of selective deaths. 

There are several key differences between Kimura's (1961) argument, and the statistical entropy, SH , which

we have discussed here.  Haldane's (1957) and Kimura's (1961) argument is based on a deterministic model

of either asexual reproduction, or of strictly multiplicative gene effects; it relates the increase of information

due to selection to the integral of mean fitness over time. In contrast, our results for the stochastic evolution

of the distribution of allele frequencies assume free recombination, and apply for arbitrary gene interaction;

we focus on the statistical balance between erosion of mean fitness by random drift,  and its increase under

selection.  Nevertheless, on both views selection acts to pick out highly improbable genotypes, in much the

same  way  that  Maxwell's  Demon can  generate  useful  work  from thermal  energy  by  picking  out  particular

molecules  (Leff  and  Rex,  2003).   We  believe  that  the  analogy  with  thermodynamics  may  lead  to  a  better

understanding of just how natural selection builds up the information that specifies complex organisms.  
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Figures
Figure  1.   The  stationary  distribution  of  the  trait  mean  and  variance  is  the  product  of  three  terms  (Eq.  5):

P0 ~W
2 N

‰2 NU ‰SW .   Figure  1a  illustrates  the  simple  case  of  directional  selection  on  an  additive  trait

HW = ‰ szL.  This  shows  the  state  of  the  population,  described  by  the  trait  mean  and  variance  Hz, vL.   With

n = 100  loci  of  equal  effect  g=1,  -n § z § n, 0 § v §
n

2
K1 - J z

n
N2O;  the  upper  limit  on  the  trait  variance  is

shown by the parabola.   First, suppose that there is no selection, and negligible mutation. Then, the entropy

term  ‰SW  is  dominated  by  fixed  states  Hp = 0, 1L.   The  number  of  states  with  given

z follows a binomial distribution, and is dominated by states with intermediate mean.  This is shown by dots

on the horizontal axis Hv = 0L,  around z = 0: each state is marked by a disc with size proportional to the log

number of states, SW .    Now, consider the combined effects of mutation and random drift, which are given

by  the  product  ‰2 NU‰SW .   This  is  shown  by  the  contours  at  upper  middle  (10%,  50%  quartiles),  for

2 N m = 0.1; the distribution is close to Gaussian.  Finally, with selection 2 N b = 1, the distribution shifts to

the right, indicated by the arrow, towards the state with maximum fitness Hz = n, v = 0L.  b) Even though the

macroscopic variables are clustered closely around their expectations, the distribution of allele frequencies at

individual loci is widely spread (thin line: no selection; thick line: 2 N b = 1; for both, 2 Nm=0.1).
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Figure  2.   a)  Mean  allele  frequency  plotted  against  the  scaled  population  size,  2 Ns,  for

m

s
= 0, 0.025, 0.05,0.1, 0.2 (top to bottom). b) Mean allele frequency plotted against 

m

s
 for 2 Ns=0.5, 1, 2, 4

(bottom to top). 
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Figure 3. Selection acts on the sensitivity of fitness to an additive trait, z.  Figure 3a compares four different

relationships between fitness and trait,  with the form W = C * expI-b1Hn - zL +
b2

2
Hn - zL2M.   The horizontal

line  represents  insensitivity  to  the  trait  (b1 = b2 = 0L. The  solid  straight  line  represents  a  mutliplicative

dependence  Hb1 = 0.05, b2 = 0L,  and  the  upper  and  lower  dashed  lines  represent  synergistic

Hb1 = 0.05, b2 = -0.0005L  and  antagonistic  (Hb1 = 0.05, b2 = +0.0005L)  relations,  respectively.   Figure  3b

shows  how  mean  fitness  depends  on  population  size  H2 NL,  assuming  low  mutation  rates  HN m << 1L.   The

overall  fitness,  C,  is  adjusted so that the mean fitnesses are equal at  2 N = 30.  For larger population sizes,

the relation that gives the genotype with the highest possible fitness is favoured (intercept at upper right of

Fig.  3a;  dashed  line).   In  contrast,  at  lower  population  sizes,  a  flatter  slope  Hb1  small)  and  synergistic

(negative) epistasis Hb2 negative; short dashed lineL is favoured.
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Supplementary Information

A: Relation with Aita et al. (2003, 2005)

Aita  and  Husimi  (2003)  analyse  an  "adaptive  walk",  by  analogy  with  thermodynamics.   They  assume  a

sequence of length n, with l alleles at each site, and follow the change in a single sequence over successive

time steps.  At each time step, N  offspring are produced, each of which differs by mutation at d  sites; each

mutation consists of a random choice amongst the l - 1 alternative alleles at each of the d  sites.  The single

sequence with highest fitness is then selected, and the process is repeated.  Fitness is calculated as the sum of

effects of the n sites, with alleles having effects 0, e, … Hl - 1L e, where e<0.  Thus, selection tends towards

one  fittest  genotype,  with  fitness  zero,  but  mutation  and  random  sampling  pull  the  walk  into  a  stationary

distribution with mean fitness below the adaptive peak.

This  model  represents  the  kind  of  optimisation  algorithm that  is  used  in  evolutionary  computation.   How-

ever,  it  can  also  be  seen  as  representing  several  biological  models.   The  'adaptive  walk'  across  sequence

space is similar to Iwasa's (1988) model of codon usage, and to the models of Sella and Hirsh (2005a).  It is

similar  to  Orr's  (1998)  analysis  of  Fisher's  (1930)  geometric  model  of  phenotypic  adaptation,  in  which

fitness depends on the sum of squares of traits, and the probability of a jump to a new phenotype is propor-

tional to its fitness advantage, so that fitness necessarily increases.    Finally, if one thinks of an ensemble of

adaptive walks, Aita and Husimi's (2003) model represents asexual evolution, with strong truncation selec-

tion within families, but no selection between families.

Aita and Husimi (2003) find the mean and variance of changes in fitness, W, by approximating the distribu-

tion of mutational effects as a truncated normal; this leads to approximations for the stationary distribution

of fitness, and the typical time taken to reach this distribution.   Aita and Husimi (2003) define a free fitness

whose expecation always increases,  as  G = W + TS.   Their  entropy,  S,  is  defined as  being proportional  to

logHWL, where W@WD is the density of sequences with fitness W; this is essentially the same as our definition

of SW  (Eq. 5).   Their temperature, T,  is chosen so that the mean fitness maximises G;  it  is roughly propor-

tional to d ê logHNL , Aita and Husimi (2003) go on to show that as the system approaches stationarity, the

rate of increase in W  is proportional to the gradient of free fitness; they divide this rate into two components,

one due to selection for increasing W , and the other to evolution towards states with higher entropy.

In  a  subsequent  paper,  Aita  et  al.  (2005)  allow  for  a  distribution  of  mutation  distances,  d,  allow  natural

selection, by which M  individuals are selected from N  offspring, and use the NK  model of epistasis, as well

as the strictly additive case.

Although this analogy with thermodynamics is similar to ours, it is largely qualitative, and differs in several

respects.   The fluctuations are due to the combined action of sampling and mutation, and Aita and Husimi

(2003, p. 216) see 'temperature' as depending on both processes.  In contrast, our population genetic analysis

treats mutation and selection as deterministic processes, which are separate from random sampling drift.
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What is needed to apply our method to this model is a diffusion model for evolution over the sequence space

(i.e.,  over  microstates),  rather  than for  the  evolution of  the  single  macroscopic  variable,  W .   It  is  not  clear

that the stationary state would show detailed balance.  If it did, it would be possible to write down a potential

function,  and  hence  the  stationary  distribution  over  sequences.   The  stationary  distribution  would  then  be

proportional to expHSWL, as in Eq. 5 above; in our notation, fluctuations are proportional to the 'temperature',

1 ê2 N.   Similarly,  the  expected  value  of  the  free  fitness  would  necessarily  increase  as  the  population

approches stationarity.  However, there will not in general be a simple relation between the rate of change of

the mean fitness, dE@WD êdt, and the gradient in free fitness, �G ê�W .  This question is investigated further

by Barton and de Vladar (2009).

B: Drift load

Random  drift  reduces  the  mean  fitness  of  a  population  below  the  maximum  possible.   Sella  and  Hirsh

(2005a,  Eq.  13)  calculate  this  "fixed-drift"  load  for  a  specific  model  of  mutation.   If  genotypes  have  a

uniform distribution of fitnesses 0<W<1, and mutation increases or decreases fitness in a symmetrical way,

then this load is 
1

2 N
 for N >> 1.  This is twice the load due to random drift around a balanced polymorphism,

which  can  be  derived  from Eq.  2  (assuming  that  selection  is  strong  relative  to  mutation  and  drift;  Kimura

and Ohta, 1970).  However, the drift load only takes this simple form with this particular choice of fitnesses:

in  general,  it  depends  on selection as  well  as  population size.   For  example,  with  symmetric  mutation and

Ns >> 1, the probability that a population is fixed for an allele which reduces fitness by s is ~ expH-4 NsL in
diploids, and so the fixed-drift load is ~ 1 - s ‰-4 Ns.  

We note here that when fitness is reduced by mutation, the mean fitness of an asexual  population depends

only on the total mutation rate, and evolution of the relation between fitness and genotype then has no long-

term effect on fitness.  In contrast, the drift load is reduced by increased selection against deleterious alleles,

because they are then less likely to fix by chance.

C: Alternative metrics

An  alternative  choice  for  a  measure  on  the  space  of  allele  frequencies,  midway  between  our  and  Iwasa's

(1988)  convention,  is  to  define  U* =  2 ⁄
k=1

n IImP,k -
1

8 N
M Log@pkD + ImQ,k -

1

8 N
M Log@qkDM,  and  to

change the last  term in Eq.  4 to SH = -EALogAP I ¤k=1
n pk qk MEE.   This choice is  motivated by the

fact that the space of allele frequencies has a natural metric (known as the Shashahani metric) which deter-

mines the effects of both drift and selection (Antonelli and Strobeck, 1977; Shahshahani, 1979; Akin, 1979,

p.  37;  Barton and Rouhani,  1987).   Fluctuations  in  allele  frequency are  uncorrelated across  loci  (assuming

linkage  equilibrium),  and  have  variance  
pi qi

2 N
;  and  the  expected  rate  of  change  of  allele  frequency  due  to

selection is 
pi qi

2
�pi

log@W D.  Therefore, it is natural to measure the distance between states separated by d p

as  ⁄k=1
n Idpk

2 ëHpk qkLM.   Then,  selection  increases  mean  fitness  as  rapidly  as  possible,  for  a  given  rate  of

change of this measure, and random drift causes a uniform rate of diffusion. On this measure, the probability

density  is  now  P* =  P I ¤k=1
n pk qk M;  the  change  in  metric  leads  to  an  additional  'force',  which  we

include (arbitrarily) by modifying the mutation potential.  From a mathematical point of view, this choice is

more elegant.  However, we maintain a simpler biological interpretation in Eq. 4, by ensuring that the three

terms in the free fitness depend solely on selection, mutation and drift, respectively, and that these are each

proportional to the rates of selection, mutation, and drift Js, m,
1

2 N
N.
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D: Maximum entropy

Here, we show that the stationary distribution, P0, maximises the entropy, SH ,  subject to constraints on the

expected  values  of  a  set  of  observables  (see  Le  Bellac  et  al.,  2004,  p.  64,  for  a  treatment  in  a  physical

context). We write the potential function in the form logHW L + U = a
1

.A, where the vector A is a function of

the allele frequencies p, and   a
1

 is a vector of coefficients.  Crucially, the observables A may be a nonlinear

function of the microscopic variables, p.  The simplest choice would be to set a1 = m, a2 = s, as measures of

the  rates  of  mutation  and  selection.   Then,  A1 =2 ⁄
k=1

n Hqk Log@pkD + H1 - qkL Log@qkDL,  where

qk = mP,k ëImQ,k + mP,kM,   and  A2=  logHW Lës  determines  the  form  of  selection.   We  might  further  separate

logHW L  into  separate  sources  of  selection:  for  example,  with  stabilising  selection  of  strength  s  towards  an

optimum  at  zopt,  logHW L = -s
v

2
-

sJz--zoptN2
2

 =  -s
v

2
- s

z
-2

2
+ sz

-
zopt - constant.   Thus,  we  can  set

A = :2 ⁄
k=1

n Hqk Log@pkD + H1 - qkL Log@qkDL, -
v

2
, -

z
-2

2
, z

->;  the  coefficients  a
1

= 9m, s, s ', szopt=
then represent mutation, selection to reduce variance in the trait, v, stabilising selection to reduce deviations

in the mean,  z
-2

,  and directional  selection on the trait  mean,  z.   We might  also add observables that  do not

affect fitness, but are nevertheless of interest, by setting their ak to zero.

Generalising the definition of SH  given below Eq. 4 we write:

(6)SH @PD ª ‡ P log
f

P
„ p
1

where  f  is  a  measure  which we take  here  to  be  f = ¤k=1
n Hpk qkL-1.   To find the  distribution PME  that

maximises SH  subject  to constraints  on the expectations,  <A>, we use the method of Lagrange multipliers,

setting these multipliers to be proportional to 2 Na.   We also require the constraint that Ÿ PME „ p = 1, with

associated multiplier denoted by 2 Ng:

(7)

0 = dSH + 2 Ngd K‡ P „p
”O + 2 N a

”
.d < A

”
>

= ‡ log
f

P
- 1 dP „p

”
+ 2 Ng ‡ dP „p

”
+ 2 N ‡ a

”
.A
”

dP „p
”

= ‡ log
f

P
+ H2 N g - 1L + 2 Na

”
.A
”

dP „p
”

Rewriting the normalisation as Z = expH1 - 2 NgL, we find that the distribution PME  that maximises SH , for

given values of < A
”

>, is:

(8)P =
1

Z
f e2 Na

”
.A
”

where Z = ‡ fe2 Na
”

.A
”

„p
”

The coefficients  a” determine the values of the expectations through the constraint:

(9)< A
”

> =
1

Z
‡ f A

”
e2 Na

”
.A
”

„p
”

The expectations can also be found by differentiating the normalisation:
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(10)< A
”

> =
1

2 N

�log HZL
�a
”

(c.f. Le Bellac et al. 2004, Eq. 2.66). Moreover, the covariance amongst the observables is given differentiat-

ing again:

(11)cov IAi, AjM = Ci,j =
1

4 N2

�2 log HZL
�ai �aj

(c.f. Le Bellac et al. 2004, Eq. 2.70).

E: Relation between entropy measures

The entropies SW ,  SH  are distinct, and indeed are functions of different variables: SW@AD  is a functon of the

observables, whereas SH @PD is a functional of the distribution across microstates, and does not depend on any

definition  of  the  observables.   However,  we  show  here  that  there  is  nevertheless  a  close  relation  between

them.

Generalising the definition given below Eq. 5, we define SW@AD as the log density of states that are consistent

with macroscopic variables A:

(12)SW@AD ª Log ‡
A

f „ p

where f@pD = I ¤i=1
n pi qiM-1

 is a measure on the allele frequency space, and where the integral is over states

„ p that give macroscopic values in „A
”

.  If f were constant, then SW@AD would be the same as Boltzmann's

entropy,  as  in the case of  physical  systems where all  the micro-states  consistent  with the observables have

the same probability (Landau and Lifshitz, 1980, p. 25). Assuming that the evolutionary forces depend only

on A, the stationary distribution of the observables, P0
*@A”D is then obtained by integrating over the distribu-

tion of allele frequencies, P0@pD, conditional on A
”

:

(13)P0
* IAM =

1

Z
e2 N a.A ‰SW

What is the relation between SW@AD and SH @PD? The maximum value of SH[P], given constraints on XA
”\, is

found at the stationary density (Supplementary Information B).  Substituting from Eq. 8:

(14)SMEAXA
”\E = ‡ P0 Log

f

P0

„ p = LogHZL - 2 Na
1

.XA\

(c.f. Le Bellac et al. 2004, Eq. 2.65). The normalisation factor Z  is given by the requirement that P0
* IAM integrates to 1

(Eq. 13).  Thus:

(15)SMEAXA
”\E = LogK‡ e2 N a.A ‰SW „ AO - 2 N a

1

.XA\
Writing  A  in  terms  of  its  deviation  from  expectation,  < A > +d A,  and  similarly  for  the  entropy,

SW@AD = SWA < A >E + dSW:
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(16)SMEAXA
”\E = SWAXA

”\E + LogK‡ e2 N a.d A ‰dSW „ d AO
If  A  is  clustered  around  its  expectation,  in  an  approximately  Gaussian  distribution,  the  integral  can  be

evaluated to give:

(17)SME = SW -
1

2
Log

SW
''

2 p

where �…¥ denotes a determinant, and SW
''  denotes the matrix of second derivatives of SW  w.r.t. A, evaluated

at  XA\.  Now,  we  know  that  the  covariance  of  fluctuations  in  A  is  given  by  the  matrix  C  (Eq.  11);  hence,

2 NSW
'' = C-1. Hence:

(18)SM E = SW +
1

2
LogH�2 pC¥L

Thus, SME and SW converge when n is large, so that fluctuations are small: then, SM E, SW are large compared

with the logarithmic term.
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