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Abstract

Inositol 1, 4, 5-trisphosphate (IP3R) receptors control release of Ca2+ from

the endoplasmic reticulum into the cytosol of a cell. The binding of both 1, 4, 5-

trisphosphate (IP3) and activating Ca2+ is required for the receptor to open.

At high Ca2+ concentrations, IP3Rs are inhibited. IP3Rs are composed of four

identical subunits and form in clusters. Many models have been proposed to

describe how the binding of IP3 and Ca2+ to subunits results in the opening

and closing of IP3Rs. Here we compare the opening and closing probability

distributions for clusters of IP3Rs, resulting from three different models. The

distributions are calculated both analytically, using a method we have devel-

oped, and with simulations. We found significant differences in the behaviour

of the three models as the Ca2+ and IP3 concentrations are varied.

Running title: Waiting Time Distributions

Keywords: Inositol 1, 4, 5-trisphosphate receptor, calcium dynamics, ion channels
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1 Introduction

The inositol 1, 4, 5-trisphosphate receptor (IP3R) acts as a channel which controls

release of Ca2+ from the endoplasmic reticulum (ER) into the cytosol of a cell. The

IP3Rs release Ca2+ in response to an increase in the concentration of inositol 1, 4, 5-

trisphosphate (IP3) in the cytosol, which results from a stimulus, such as the binding

of a hormone to the cell membrane. IP3Rs open and close randomly, and the open and

closing probabilities are determined by the binding of IP3 and Ca2+. A small increase

in the concentration of cytosolic Ca2+ stimulates channel activation, whereas a large

increase causes inhibition of the IP3R. This results in a bell-shaped dependence of

the open probability on the cytosolic Ca2+ concentration. Activation of the channels

takes place on a faster time scale than inhibition. IP3Rs are found in clusters, and so

the release of Ca2+ resulting from the opening of one channel in a cluster, stimulates

the opening of other channels in the cluster. The release of Ca2+ from the cluster is

referred to as a Ca2+ puff. Puffs are the elemental events of intracellular Ca2+ release.

Various models have been proposed for describing the IP3R [15, 7]. Here we

have compared the opening and closing probability distributions resulting from three

different models. These include the model proposed in Rüdiger et al. and Shuai et

al. [10, 12] (model 1), the same model modified to include sequential binding of IP3

and Ca2+ as suggested by Adkins and Taylor [1] (model 2), and the model developed

by Sneyd and Dufour [14] (model 3) as given in reference Ullah et al. [19]. The IP3R

is comprised of four subunits, which are assumed to be identical, and these three

models each describe the transitions between subunit states, most of which result

from the binding and release of IP3R and Ca2+. Model 1 [12] is closely based on

the DeYoung-Keizer model [3], and assumes that a subunit has binding sites for IP3,

activating Ca2+ and inhibitory Ca2+. The model by Sneyd and Dufour [19, 14, 7] was

designed to agree with several experimental observations.

While it has been known for about a decade now that puffs are random release

events, we recently showed that spike sequences of intracellular Ca2+ oscillations are

random events also [13]. The random opening and closing of individual channels, i.e.
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the random state transitions of their subunits, is believed to be the most important

source of noise causing the random behavior of the whole system [6]. That requires

stochastic theory across all structural levels from a channel subunit up to cell level for

modelling. However, existing subunit models typically comprise 6 or more subunit

states, leading to hundreds of channel states and many thousands of channel cluster

states. That makes stochastic theory on cluster level already almost impossible,

not to mention cell level. Thus theoretical studies on puff characteristics used either

extremely simplified channel models (with two subunit states [11], two or four channel

states [9]) or relied on simulations [19].

Recently we presented a method which circumvents writing down the master equa-

tion of the channel molecule with its huge number of states and gets by with the

subunit master equation only in calculations of waiting time distributions for channel

clusters [18]. Here we follow a different approach. Channel states are defined by the

number of subunits in subunit states. We derive the channel Master equation from

the subunit Master equation. Subsequently, we lump channel states into aggregates

based on time scale separation. Standard methods for calculating cluster properties

can then be applied to the Master equation defined for the lumped states.

Using these approximations, we compared the probability distributions for the

first opening time of a cluster and the first closing time of a cluster, at various IP3R

and Ca2+ concentrations. These distributions were calculated analytically as well as

through simulations, and assume a cluster consists of five channels. The three models

exhibit significantly different behaviour. The sequential binding of IP3 and Ca2+

imposed in model 2 results in longer expected opening times compared to model 1 and

longer expected closing times compared to both models 1 and 3. Model 3 has a shorter

expected closing time than models 1 and 2, but has a much longer expected opening

time at low IP3 concentrations and high Ca2+ concentrations. These probability

distributions are calculated assuming the Ca2+ concentration in the vicinity of the

cluster remains constant. That is, we use one fixed value for the Ca2+ concentration

when the cluster is closed, and another fixed value for Ca2+ when the cluster is open,

i.e., when at least one channel is open. We have also looked at the effect of using a
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variable Ca2+ concentration while the cluster is open, whereby a closed channel sees

a lower concentration than an open channel. The resulting probability distributions

are very similar to when a fixed value is used, in all three models.

2 Single Channel Activation

We would like to calculate F (A, t|I, 0), the probability distribution for a channel first

being activated at time t, given it is in state I at time t = 0. A denotes the set of

active channel states, and we say a channel is activated when it is in one of these

states. We are assuming we have the subunit transition matrix W , where wi,j dt gives

the probability for a subunit to move from state xj to state xi in infinitesimal time

dt, for i �= j. wj,j = −∑n
i=1,i�=j wi,j where n is the number of subunit states. The

probability for a subunit to stay in state xi during time dt is 1 + wi,idt.

We demonstrate how to build the subunit transition matrix W with model 1 (see

section 5 for a detailed description of the model). First, we order the subunit states:

(110 + Active, 111, 010, 011, 100, 101, 000, 001). For instance the transition rate from

state 100 to 110+Active is a5c where c denotes the Ca2+ concentration. Now we can

build the 8× 8 subunit transition matrix

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−∑
1 b2 a1 · p 0 a5 · c 0 0 0

b0a2

a0+b0
· c −∑

2 0 a3 · p 0 a5 · c 0 0

b0b1
a0+b0

0 −∑
3 b4 0 0 a5 · c 0

0 b3 a4 · c −∑
4 0 0 0 a5 · c

b0b5
a0+b0

0 0 0 −∑
5 b2 a1 · p 0

0 b5 0 0 a2 · c −∑
6 0 a3 · p

0 0 b5 0 b1 0 −∑
7 b4

0 0 0 b5 0 b3 a4 · c −∑
8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

All entries have dimension s−1, p denotes the IP3 concentration. −∑
i represents the

negative sum of the ith column.

We can use W to form the channel state transition matrix P . An entry in P , pi,j dt,

gives the probability for a channel to move from state Xj to state Xi in infinitesimal
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time dt, for i �= j. The diagonal elements are given by pj,j = −∑r
i=1,i�=j pi,j. The

off-diagonal elements of P are found as follows. A channel state is represented by a

vector V where an element of the vector, vi, gives the number of subunits in subunit

state xi. Thus the length of V is n, and the sum of the elements in V is the number

of subunits in each channel, h. The transition probability pi,j is 0, if Xj and Xi differ

by more than one subunit and pi,j = φ wk,l, if Xi can be reached from Xj by one

subunit in state xl moving to state xk, and Xj has φ subunits in state xl.

To find F (A, t|I, 0) we first remove all rows and columns in P which correspond

to active channel states and denote the new matrix by P̄ . That is, if Xi ∈ A then

we remove row i and column i. This means if the system reaches an active state, it

cannot leave it. Let y(Xi, t|I, 0) be the probability of being in nonactive state Xi at

time t and let y = {y(Xi, t|I, 0), Xi /∈ A}. Then y can be found by solving the master

equation

ẏ = P̄ y.

Let f(A, t|I, 0) be the probability that an activated state is reached in the time interval

[0, t], let r be the total number of channel states and let ra be the number of open

channel states. Then

f(A, t|I, 0) = 1−
∑

i:Xi /∈A

y(Xi, t|I, 0) = 1−
r−ra∑
i=1

r−ra∑
k=1

ckVk,i e
λkt

where λk and Vk, k = 1...r − ra are the eigenvalues and eigenvectors respectively, of

P̄ and where ck, k = 1...r − ra are determined by the initial conditions. Then

F (A, t|I, 0) =
df(A, t|I, 0)

dt
= −

r−ra∑
i=1

r−ra∑
k=1

ckλkVk,i e
λkt.

3 Cluster Activation

A cluster is first activated when any of the channels in the cluster are first activated.

We assume the initial state of a channel is unknown, so we use the weighted average

over all possible initial channel states, where the weights are given by the probabilities

of each channel state occurring at rest. Let Fch(A, t) denote the probability distri-

bution for a channel to first open at time t given that the initial state is unknown
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and let Fopen(A, t) denote the probability distribution for a cluster of channels to first

open at time t (opening time distribution). Then Fopen(A, t), for t > 0, is given by

Fopen(A, t) = NFch(A, t)G(A, t)N−1

where

G(A, t) = 1−
∫ t

0

Fch(A, τ)dτ

gives the probability that a channel has not been activated by time t and N is the

number of channels in the cluster. That is, the probability for the cluster to be first

activated in the time interval [t, t + dt] is given by the probability that one of the N

channels is first activated in the time interval [t, t + dt] and all other channels have

not yet been activated.

When t = 0, if we used the method above to calculate Fopen(A, 0), this would

mean that the probability for the cluster to open in the interval [0, dt] is given by the

probability that one of the N channels opens in [0, dt], while the other N − 1 do not.

However, this is not correct. The probability that the cluster opens in [0, dt] is given

by the probability that at least one of the N channels opens in [0, dt], while the other

N − 1 channels can either open or not open. Fopen(A, 0) can be calculated using

Fopen(A, 0) = 1− (1− Fch(A, 0))N .

That is, the probability that the cluster opens instantly is the negation of no channel

opening instantly.

We use the non-open states weighted according to their resting probabilities as

initial condition for calculating F (A, t) for t > 0. The resting probabilities for the

initial channel states are given by the normalized eigenvector of P corresponding to

the eigenvalue λ = 0.

4 Cluster Closure

The cluster of channels is considered closed when all channels in the cluster are

closed. Let Fclose(A, t) denote the probability distribution for a cluster of channels
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to first close at time t if it has opened at time t=0 (closing time distribution). To

calculate Fclose(A, t), we find the cluster state transition matrix, M , from the channel

state transition matrix P , in an analogous way to how we found P from the subunit

state transition matrix, W . That is, a cluster state is represented by a vector with

length given by the number of channel states. An entry in the vector gives the number

of channels in the corresponding channel state. Thus, the sum of the elements in the

vector is the number of channels in the cluster, N . The probability of a transition

between cluster states occurring which involves more than one channel changing state

instantaneously is infinitely small compared to the probability of a transition where

only one channel changes state, and so for such transitions, the entry in M is 0. If

cluster state Xi can be reached from state Xj by one channel in state Xl moving to

state Xk, and Xj has φ channels in state Xl, then the entry in M , mi,j = φ pk,l. The

diagonal entries of M are such that the columns of M sum to 0.

Once M has been constructed, Fclose(A, t) can be found analogously to the way in

which F (A, t|I, 0) is found in section 2. That is, let M̄ be the cluster state transition

matrix with rows and columns corresponding to closed cluster states removed. Let ρ

be the total number of cluster states and let ρa be the number of closed cluster states.

Let μk and Uk, k = 1...ρ− ρa be the eigenvalues and eigenvectors respectively, of M̄ .

Then

Fclose(A, t) = −
ρ−ρa∑
i=1

ρ−ρa∑
k=1

dkμkUk,i e
μkt.

where dk, k = 1...ρ− ρa are determined by the initial conditions.

We choose as the initial probabilities for a channel to be in each of the channel

states the probabilities at the expected cluster opening time. That is, we begin with

the resting probabilities, then solve the master equation,

ż(t) = P0z(t),

where z(t) gives the probabilities of being in the channel states at time t, and P0

is found from P by setting transition rates out of open states to 0, because we ave

interested in those trajectories only, which did not go through open states. z(t) is

then evaluated at the expected opening time for the cluster, which is calculated from
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Fopen(A, t). Initially, we assume one channel in the cluster is open, while the others

are closed. To enforce this condition, we find from z(t) the conditional probability of

being in each state where exactly one channel is open, given that the cluster is in one

such state. All other cluster states have an initial probability of zero.

The large number of cluster states presents a problem when calculating Fclose(A, t).

The number of channel states, r is given by r =
(

h+n−1
n−1

)
. Recall, n is the number of

subunit states and h is the number of subunits per channel. The number of cluster

states, ρ, is given by ρ =
(

N+r−1
r−1

)
. Recall, N is the number of channels in the cluster.

So ρ is very large for the values of n, h and N we require, which results in the above

method for finding Fclose(A, t) being too slow and requiring too much memory to be

feasible.

To overcome the problem of there being too many cluster states, we reduce the

number of channel states before finding M . We developed a reduction method mo-

tivated by and similar to that described in Huisinga et al. [4]. It is based on the

theory of weakly coupled Markov chains. The weakly coupled state aggregates are

identified by a Perron cluster analysis in the study by Huisinga et al. We replace

cluster identification by a simpler method. In one case we compared our results with

those of the method used in [4] and found them to be identical.

We identify aggregates by repeatedly finding the largest transition rate in the

channel state transition matrix P , then combining the two states connected by the

transition, into one aggregate state. In general we combine two states Xi, Xj to an

aggregate state {Xi, Xj} and after repeating the reduction process we get a set of

aggregate states of the form {Xai
, i = 1 . . .m}. The transition rate for moving from

the aggregate state {Xai
, i = 1 . . .m1} to the aggregate state {Xbi

, i = 1 . . .m2} is

then given by
m2∑
j=1

[(
m1∑
i=1

pbj ,ai
V0(ai)

)
/

m1∑
i=1

V0(ai)

]
.

V0 represents the stationary solution of the whole un-reduced system and pbj ,ai
denotes

the transition probability from state ai to bj . This is repeated until the number of

aggregate channel states is sufficiently small that the number of cluster states is small
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enough for computations to be feasible or till the stop criterion has been reached (see

section 7).

This process of combining channel states results in open and closed channel states

being combined. However, as we require open states to be distinct from closed states,

we divide the aggregate states which contain both open and closed states into two

separate states, one containing only the closed states and one containing only the

open states. After these aggregate states are split, transition rates to and from the

new aggregate states must be found.

5 Subunit Models

We have compared results using three models of IP3 channel subunits. These include

the nine state model of Rüdiger et al. [10] which we have reduced to eight states, the

same model but with conditions of sequential binding of Ca2+ and IP3 imposed, and

the model of Sneyd and Dufour [14] modified and reduced to six states as given by

Ullah and Jung [19].

5.1 Model 1

Model 1 is based on the DeYoung-Keizer model [3], whereby the subunit has an IP3

binding site, an activating Ca2+ binding site and an inhibitory Ca2+ binding site.

Subunit states are represented by the triplet (ijk), where i, j and k represent these

three binding sites respectively. An occupied site is represented with a 1 and an

unoccupied site with a 0. In the DeYoung-Keizer model [3], the subunit is considered

active when it is in state (110). That is, when the IP3 and activating Ca2+ binding

sites are occupied but the inhibitory Ca2+ binding site is not occupied. Rüdiger et

al. [10] have added an extra state labelled ‘Active’ with transitions to and from state

(110). The subunit is only active when it is in this state. This model is illustrated

in Fig. 1. We have combined the ‘Active’ state and state (110) into one state by

assuming the transition rates between the two states are fast, and so reduced the

model to eight states. We have used the transition rates given by Shuai et al. [12],
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which are listed in the Appendix.

A channel contains four such subunits, and is considered open when any three of

the four subunits are in the active state.

5.2 Model 2

It had been suggested by Adkins and Taylor [1] that the binding of Ca2+ to the

activating and inhibitory binding sites may be affected by whether or not the IP3

binding site is occupied. Specifically, if IP3 is bound, then Ca2+ cannot bind to the

inhibitory Ca2+ binding site, and if IP3 is not bound, then Ca2+ cannot bind to the

activating Ca2+ binding site. Thus, model 2 uses the same scheme as model 1, but

the activating Ca2+ binding rate when IP3 is not bound, and the inhibitory Ca2+

binding rate when IP3 is bound, are made small (they are set to 1.0×10−3 μM−1s−1).

In order to maintain the condition of detailed balance, the corresponding reverse

transition rates (the bi values) have also been made small, so that the dissociation

constants, Ki = bi/ai remain the same. The transitions that are made slow are

indicated by dotted lines in Fig. 1.

5.3 Model 3

Sneyd and Dufour [14] describe a 10 state model of the IP3R subunit. It includes one

IP3 binding site, two binding sites for Ca2+ activation and one binding site for Ca2+

inactivation. The Sneyd and Dufour [14] model was designed to produce agreement

with a number of results from experimental data. Falcke [7] modified the model

to overcome a problem involving a lack of Ca2+ conservation in triangular motifs

employed to achieve saturating binding kinetics. These triangular motifs are replaced

by square motifs Fig. 2 B, and the full model contains then thirteen states. The

resulting transition diagram is shown in Fig. 2. We have used the parameter values

given by Ullah and Jung [19], but changed them slightly in order to obey detailed

balance. They can be found in the Appendix.

A channel consists of four of these subunits, and is considered open when all four
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are in state O′, Õ, Ō (the open states) or state Ã, Ā (the activated states) or an

intermediate combination, such as one subunit in state O′ and three in state Ā.

6 Results

We show results for a cluster consisting of five channels, using various values for the

Ca2+ concentration when the cluster is closed, cclose, the Ca2+ concentration when the

cluster is open, copen, and the IP3 concentration, p. When finding the steady channel

state probabilities, we use p = 10−7 and the Ca2+ concentration cclose. When the

cluster is open, we use the Ca2+ concentration copen and it remains fixed regardless

of the number of open channels. When cclose, copen and p are not being varied, their

values are 0.1 μM, 100 μM and 0.15 μM respectively. Figures 3-9 show the effect of

changing cclose, copen and p when using models 1, 2 and 3. We present the probability

distribution for the opening time Fopen(A, t) and closing time Fclose(A, t) of a cluster

of channels and the expected value of the opening time distribution Topen and closing

time distribution Tclose.

In Fig. 3 A,B ,we see that the opening distributions for models 1 and 2 are very

similar when cclose < 0.1 μM. At large Ca2+ concentrations, model 2 has a much

longer expected opening time compared to model 1 (see Fig. 4). At high Ca2+ con-

centrations, there is a high probability of a subunit being in state (011) at rest. In

model 1, the fastest route from (011) to (110) is through the binding of IP3 followed

by the release of inhibitory Ca2+. However, in model 2 this route is not fast, resulting

in a longer expected opening time. When the Ca2+ concentration is low (∼ 0.1 μM)

subunits are more likely to initially be in state (000), from which transitions to the

active state are very fast in both models. However, if the Ca2+ concentration is very

low (0.01 μM for example), the binding of Ca2+ to the activating Ca2+ site is slow,

resulting in the increase in the expected opening times seen in Fig. 4 A,B.

In model 3, the single Ca2+ dependent transition rate into an active state depends

on the concentration of IP3 too, which is slow for small IP3 concentration. Therefore,

the effect of increasing the Ca2+ concentration is to increase the transition rates into
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the inactivated or shut states. That slows down activation (Fig. 3 C, Fig. 4) and

the expected opening time does not exhibit a minimum in dependence on the Ca2+

concentration.

In Fig. 5 A-C and Fig. 6 A,B we see that increasing p results in an initial rapid

decrease in the expected opening time. All three models exhibit high sensitivity to the

IP3 concentration at low concentrations, and low sensitivity at high concentrations.

Model 2 again has a long expected opening time compared to model 1 as the fastest

routes to the active state in model 1 are made slow in model 2.

Fig. 7 A,B and Fig. 8 show that changing the Ca2+ concentration has a strong

effect on the closing behavior of model 1, but has very little effect on the closing time

distribution of model 2. In model 2, the Ca2+ dependent transition rate out of the

open state is very low, so the Ca2+ concentration has little effect on the expected

closing time. The most prominent closing transition is IP3 dissociation. At high

Ca2+ concentrations, model 1 closes quickly due to the binding of inhibitory Ca2+.

However, in model 2 inhibitory Ca2+ cannot bind quickly until IP3 has first been

released, resulting in longer expected closing times. We increased the rate of IP3

release in model 2 by a factor of 10 (that is, K1 = 0.036 μM and K3 = 8.0 μM),

and this decreased the expected closing time. Changing the Ca2+ concentration still

has little effect on the expected closing time when the IP3 release rate is increased.

Model 3 does neither exhibit any noteworthy dependence of the cluster closing rate

on the Ca2+ concentration. Closing is obviously dominated by the Ca2+-independent

transitions with the rate 4(l−4 + k−2) (see Fig. 2). Fig. 9 A-C and Fig. 10 A,B show

that increasing the IP3 concentration increases the expected closing time in all three

models.

In Fig. 11 A-C we show results using both a fixed and variable value for the Ca2+

concentration, copen. When copen is fixed, it has a value of 100 μM and applies to

all channels in the cluster as soon as at least one channel is open. That corresponds

to very strong spatial coupling by Ca2+ diffusion. When copen is variable it takes

on different values depending on whether an individual channel is open or closed

corresponding to weaker spatial coupling. For an open channel copen = 0.1 + 99.9 =
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100 μM as before. This corresponds to a base level concentration of 0.1 μM and an

increase of 99.9 μM resulting from the opening of the cluster. For a closed channel

the increase is reduced. We use copen = 0.1 + 0.1 × 99.9 = 10.09 μM and copen =

0.1 + 0.01× 99.9 = 1.099 μM. We see that making copen variable in this manner has

very little effect.

Variable copen has of course no affect on the expected opening time, but could

change the time course of a puff and therefore the expected closing time. Model 1

shows significant dependence of the closing time distribution on the Ca2+ concentra-

tion and so we may expect that making the Ca2+ concentration variable would have

a more significant effect than seen here. A possible explanation is that channels still

open fast with the smaller concentrations and channel reopening is very slow com-

pared to channel closing. Thus if a channel closes, it is very likely that the rest of

the channels will close before it has reopened, whether it sees a Ca2+ concentration

of 1.099 μM, 10.09 μM or 100 μM.

In Fig. 12 A-C and 13 A-C we compare the analytic results with the simulation

results, for Fopen(A, t)dt and Fclose(A, t)dt resp., using the fixed values of cclose, copen

and p. Because our method for finding Fclose(A, t)dt relies on an approximation of the

channel state transition matrix, there is potential for there to be significant errors in

the analytic results. For models 1 and 2 the number of channel states is reduced from

330 to 12 and for model 3 from 1820 to 11. Comparison of the expected values found

using the analytic results and the simulation results (see Fig 8 and Fig. 10 A,B) show

the agreement for model 1 and model 3 is not good for high values of IP3. Model 1

has a large expected closing time compared to the other two models which is partly

due to a comparatively high open probability at large time values. Fig. 12 and 13

show that the agreement of the analytical and numerical distributions for small times

is rather good. However, if the distribution is more spread out, a small error in the

tail of the analytic distributions may be causing the bad agreement.
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7 Stop criterion for Reduction

Fig. 14 A-C show how the expected closing time for a single channel varies as the

number of aggregate states is reduced. When there are 330 aggregate states for models

1 and 2 and 1820 states for model 3, the full model is being used. The calculations

are done for a single channel here, as it is too computationally expensive to use more

channels with a large number of aggregate states. The vertical lines mark the number

of aggregate states used in the results presented in this study. Note, the horizontal

axes give the number of states prior to the open states being separated out. We

use 12 aggregate states for model 1, 2 and 11 for model 3 here (after separating the

open states). This is the maximum number for which results could be computed due

to limitations set by computational efficiency.1 We see also from Fig. 14 that this

is close to the minimum value for which we can expect reasonably accurate results,

when using a single channel.

It can be seen in Fig. 14 A-C that the expected closing time changes abruptly as

the number of aggregate states changes. The abrupt changes in the expected closing

time correspond exactly to changes in the number of open aggregate states. There

is a dramatic change for all three models and all values of copen when the number

of open aggregates gets below a critical value. That critical value provides the stop

criterion for cluster state reduction.

Fig. 15 compares exact analytic results with simulations. The error does not vary

greatly as the number of channels increases from 1 to 5, suggesting that if the results

are reasonably accurate when using a single channel, they will also be reasonably

accurate when using 5 channels. Thus, the method we suggest for predicting the

accuracy of results after aggregation, is to compute the expected closing time for

a single channel using the full model and to compare this with the expected closing

time computed after the number of states has been reduced. The minimum number of

aggregate states for which reasonable approximations can be expected is the number

just above the dramatic change of results.

1Several hours using a UniServer 3346 with 4Dual-Core AMD Opteron 800 series CPU’s
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8 Discussion

Many models describing the kinetics of IP3R subunits have been proposed. We have

compared the probability distributions for the expected opening and closing times of

a cluster of five IP3Rs resulting from three different subunit models. The first model

is that of Shuai et al. [12], which is similar to the DeYoung-Keizer model [3]. Here

there are binding sites for IP3, activating Ca2+ and inhibitory Ca2+, resulting in eight

subunit states. Shuai et al. [12] add an extra ‘Active’ state reachable only from the

state where IP3 and activating Ca2+ are bound, and inhibitory Ca2+ is not bound.

We have reduced these two states to one state by assuming the transitions between

them are fast. The parameter values are such that the binding of IP3 reduces the

affinity of the inhibitory Ca2+ site, and Ca2+ binding to the inhibitory site reduces

the affinity of the IP3 binding site. The second model used is a modification of the

first suggested by Adkins and Taylor [1]. Here the inhibitory Ca2+ binding rate when

IP3 is bound is made very small, as is the activating Ca2+ binding rate when IP3

is not bound. The reverse transition rates are also made small to maintain detailed

balance. The third model is a thirteen state model given by Sneyd and Dufour [14]

and extended by Falcke [7] designed to accommodate various experimental findings.

We have compared the opening and closing time distributions resulting from the

three models, at various Ca2+ and IP3 concentrations, as well as the expected opening

and closing times. We found the three models gave significantly different results. At

low Ca2+ concentrations (< 0.1 μM), models 1 and 2 have similar expected opening

times, but at larger Ca2+ concentrations model 2 has a much longer expected opening

time. When the Ca2+ concentration is large, both the activating and inhibiting Ca2+

binding sites are likely to be occupied prior to the addition of IP3. Model 1 then

opens comparatively quickly due to the binding of IP3 followed by the release of

inhibitory Ca2+. This route to activation is slow in model 2 as the rate for the release

of inhibitory Ca2+ when IP3 is bound is small.

The models show also differences in closing behavior. Using model 1 there is a

decrease in the expected closing time of a cluster, as the Ca2+ concentration increases
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from 20 μM to 200 μM. This is due to an increased rate of Ca2+ inhibition. In model 2

the rate for Ca2+ inhibition while IP3 is bound is very slow, resulting in less sensitivity

of the expected closing time to the Ca2+ concentration. Model 3 exhibits only a very

weak dependence of the expected closing time on Ca2+. Using all three models, the

expected cluster closing time increases monotonically with the IP3 concentration.

We have used a fixed value for the Ca2+ concentration when the cluster is open.

However, the concentration around the cluster may vary depending on whether indi-

vidual channels are open or closed. In Fig. 11 we use a variable Ca2+ concentration,

so that channels in the cluster which are closed see a lower Ca2+ concentration than

those that are open. Making the Ca2+ concentration variable has had very little im-

pact. Fraiman et al. [8] note that the time taken for a single inactivated IP3R to

become uninhibited is much longer than a typical puff duration. Our results support

this statement. Consequently, the Ca2+ concentration seen by a closed IP3R has little

effect, as all channels are likely to close before it has time to reopen. These results

imply that puffs with these models are insensitive towards spatial arrangement of

individual channels within the cluster as long as the distance is not too large. We

mimicked a decay of the Ca2+ concentration on the channel distance corresponding

to 3-4.6 diffusion lengths of free Ca2+.

Our method for calculating the closing time distribution of a cluster requires the

number of channels in the cluster to be small (≤ 5) so that the number of possible

cluster states is not too large. There have been various estimates of the number of

channels in a cluster. Some estimate it to be in the range of 20–30 [2, 5, 16], while

Shuai et al. [12] estimate 40–70. However, Fraiman et al. [8] estimate 4 or 5, which

agrees with an estimate by Swillens et al. [17] and Demuro et al. of about 10 channels

in a cluster [20]. Very recent experiments suggest an average number of 4 [21].

In order to calculate the closing time distribution of a cluster, we reduced the

number of channel states so that the number of cluster states was not too large.

We tried different methods to reduce the system among them a rapid-equilibrium

approximation: We identified the states connected by the fastest transition rates,

assumed equilibrium just between these two states, lumped them accordingly and
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repeated the procedure with the new set of states. With respect to accuracy, that

method was as good as the one we used here. Its only disadvantage was that it did not

allow for re-separating closed and open states once the aggregates had been found.

The state aggregation introduces error to the calculation. This is particularly

apparent in the poor agreement between the analytic and simulation estimates of the

expected cluster closing times for model 2. There is a loose relationship between the

expected opening time, and the agreement between simulation and analytic results,

such that if the expected opening time is long it is likely the agreement will be worse

than if the expected opening time is short. Thus, it seems that the error results from

the smallest eigenvalues of the coefficient matrix.

We tried a variety of criteria for the degree of state aggregation still providing

good approximations. We required for instance the inverse of the smallest transition

rate lumped to be much smaller than moments of the waiting time distributions or

residence times of the system in aggregates. These are criteria suggested by the use

of time scale separation as the basis for state aggregation. Surprisingly, meeting

conditions of that type did not give conclusive predictions on the quality of the

approximation. The criterium to stop lumping states into aggregates when analytic

single channel results get bad compared to single channel simulations was the most

predictive and feasible criterium.

We have not related our results to experimental observations in this study yet.

Fitting models to experimental data will be the subject of future research. Puffs can

be found in a very small range of IP3 concentration only below which no release is

observed and above which spiking or sustained release is found. Only recently. the

lab of I. Parker’s developed a method to observe puffs over a larger range of IP3

concentrations by decoupling puff sites by the buffer EGTA [22]. This method will

produce data with which we can meaningfully compare our results.
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[10] Rüdiger, S., J. W. Shuai, W. Huisinga, C. Nagaiah, G. Warnecke, I. Parker, M.

Falcke. 2007. Hybrid Stochastic and Deterministic Simulations of Calcium Blips.

Biophys. J. 93:1847–1857.

[11] Shuai, J.W., P. Jung. 2002. Stochastic properties of Ca2+ release of inositol 1,4,5-

trisphosphate receptor clusters. Biophys.J. 83:87–97

[12] Shuai, J., J. E. Pearson, J. K. Foskett, D. D. Mak and, I. Parker. 2007. A Ki-

netic Model of Single Clustered IP3 Receptors in the Absence of Ca2+ Feedback.

Biophys. J. 93:1151–1162.

[13] Skupin, A., H. Kettenmann, U. Winkler, M. Wartenberg, H. Sauer, St. C. Tovey,

C. W. Taylor, M. Falcke. 2008. How does intracellular Ca2+ oscillate: by chance

or by the clock?. Biophys. J. 94:

[14] Sneyd, J., and J. F. Dufour. 2002. A dynamic model of the type-2 inositol trispho-

sphate receptor. Proc. Natl. Acad. Sci. USA. 99:2398–2403.

[15] Sneyd, J., and M. Falcke. 2005. Models of the inositol trisphosphate receptor.

Prog. Biophys. Mol. Biol. 89:207–245.

[16] Sun, X.-P., N. Callamaras, J. S. Marchant, and I. Parker. 1998. A continuum of

InsP3-mediated elementary Ca2+ signalling events in Xenopus oocytes. J. Phys-

iol. 509:67–80.

[17] Swillens, S., G. Dupont, L. Combettes, and P. Champell. 1999. From calcium

blips to calcium puffs: theoretical analysis of the requirements for interchannel

communication. Proc. Natl. Acad. Sci. USA. 96:13750–13755.

[18] Thul, R., and M. Falcke. 2007. Waiting time distributions for clusters of complex

molecules. Europhysics Letters 79:38003.

[19] Ullah, G., and P. Jung. 2006. Modeling the Statistics of Elementary Calcium

Release Events. Biophys. J. 90:3485–3495.

19



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

[20] Demuro, A. and I. Parker. 2008. Multi-dimensional resolution of elementary Ca2+

signals by simultaneous multi-focal imaging, Cell Calcium 43(4):367–374

[21] Taufiq-Ur-Rahman, A. Skupin, M. Falcke, C.W. Taylor. 2009. Clustering of IP3

receptors by IP3 retunes their regulation by IP3 and Ca2+, Nature, in press

[22] Smith, F., S.M. Wiltgen, and I. Parker. 2009. Localization of puff sites adjacent to

the plasma membrane: Functional and spatial characterization of Ca2+ signaling

in SH-SY5Y cells utilizing membrane-permeant caged IP3, Cell Calcium 45:65–76

20



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

Table 1: Parameter values for Model 1

Parameter Value Parameter Value

a0 550.0 s−1 b0 80.0 s−1

K1 0.0036 μM a1 60.0 μM−1s−1

K2 16.0 μM a2 0.2 μM−1s−1

K3 0.8 μM a3 5.0 μM−1s−1

K4 0.072 μM a4 0.5 μM−1s−1

K5 0.8 μM a5 150.0 μM−1s−1
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Table 2: Parameter values for Model 3

Parameter Value Parameter Value

k1 2.0 μM−1s−1 k−1 0.04 s−1

k2 37.4 μM−1s−1 k−2 1.4 s−1

k3 0.11 s−1 k−3 29.8 s−1

k4 4.0 μM−1s−1 k−4 0.37 s−1

k5 2.0 μM−1s−1 l1 10.0 μM−1s−1

l3 100.0 μM−1s−1 l5 0.1 μM−1s−1

L1 0.12 μM L3 0.025 μM

L5 38.2 μM l2 1.7 s−1

l−2 0.8s−1 l4 37.4 μM−1s−1

l−4 2.5 s−1 l6 4707.0 s−1

l−6 11.4 s−1
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Figure 1: The nine state model of an IP3 receptor channel subunit proposed by

Rüdiger et al. [10]. The Ca2+ concentration is denoted by c and the IP3 concentra-

tion is denoted by p. The dotted lines indicate the transitions that are made small in

model 2.

Figure 2: The model of an IP3 receptor channel subunit given by Sneyed [14].

The channel states are R: unbound receptor, I1 and I2: inactivated, O: open, A:

activated, and S: shut. The Ca2+ concentration is denoted by c and the IP3 concen-

tration is denoted by p.

Figure 3: Open probability distribution Fopen(A, t) for various cclose values. A:

Fopen(A, t) for model 1. B: Fopen(A, t) for model 2. C: Fopen(A, t) for model 3.

Figure 4: A: The expected opening times Topen for the three models. B: Enlarged

plot of the expected opening times for the three models to show clearly the minimum

of models 1 and 2 for small values of copen.

Figure 5: Opening time distribution Fopen(A, t) when changing p for some repre-

sentative IP3 concentrations. A: Fopen(A, t) for model 1. B: Fopen(A, t) for model 2.

C: Fopen(A, t) for model 3.

Figure 6: A: The expected opening times Topen for the three models as function

of the IP3 concentration. B: Enlarged plot of Topen for small concentrations.

Figure 7: Cluster closing time distribution Fclose(A, t) when changing copen. A:

Fclose(A, t) for model 1. B: Fclose(A, t) for model 2. C: Fclose(A, t) for model 3.

Figure 8: The expected closing times Tclose for the three models. Model 2 is repre-

sented by the upper lines, where the dashed line with ×-symbols show the simulation

results and dashed line without shows analytic results. Model 1 is shown by two
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full lines, with +-symbols for simulation and without for analytic results. Fast IP3

release in model 2 corresponds to K1 = 0.036 μM and K3 = 8.0 μM. The simulation

results are represented by the dashed line with �-symbols and the analytic results

by the dashed line. Results for model 3, analytic and simulation, is shown by the

dashed line with the ∗-symbols below. The analytic and simulation results can not

be distinguished.

Figure 9: Cluster closing time distribution Fclose(A, t) when changing p. A:

Fclose(A, t) for model 1. B: Fclose(A, t) for model 2. C: Fclose(A, t) for model 3.

Figure 10: A: The expected closing times Tclose for models 1 and 2, from both

the analytic and simulation results. Model 1 is represented by the upper dashed line

(analytic results) and dashed line with ×-symbols (simulation results). Model 2 is

represented by the lower full lines. There are few differences between analytic (full

line) and simulation results (full line with +-symbols). B: The expected closing times

Tclose for model 3 only with analytic (full line) and simulation results (full line with

+-symbols).

Figure 11: Fclose(A, t) using both a fixed and variable Ca2+ concentration. Here

cclose = 0.1 μM and p = 0.15 μM. copen = 100 μM when fixed. When copen is variable,

it has a value of 100 μM for a channel which is open and a value of 10.09 μM (labeled

‘Variable copen 1’) or 1.099 μM (labeled ‘Variable copen 2’) for a channel which is

closed. A: Results for model 1. B: Results for model 2. C: Results for model 3.

Figure 12: Analytic and simulation results showing Fopen(A, t) for all three mod-

els. Here cclose = 0.1 μM, and p = 0.15 μM. The full lines represent the analytic

results and the �-symbols the simulation results. A: Results for model 1. B: Results

for model 2. C: Results for model 3.

Figure 13: Analytic and simulation results showing Fclose(A, t) for the three mod-
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els. Here, copen = 100 μM and p = 0.15 μM. A: Fclose(A, t) for model 1. B: Fclose(A, t)

for model 2. C: Fclose(A, t) for model 3.

Figure 14: The effect of the number of aggregate states on the expected closing

time. These results are for a single channel. A-C show the expected closing time Tclose

as the number of aggregate states is reduced. This is shown for the three models at

various parameter values. The vertical lines represent the number of aggregate states

which are used in the results presented here. D-F show the number of open aggregates

Nopen as function of the aggregate states for all three models and various parameters.

Figure 15: Varying the cluster size. Graphs A, B and C show the expected closing

time of the cluster Tclose, using models 1 (A), 2 (B) and 3 (C) respectively, as the

number of channels in the cluster is varied from 1 to 5. We use p = 0.15 μM,

copen = 100 μM and cclose = 0.1 μM(to compute the initial condition). Both analytic

(full lines) and simulation results (dashed lines with +-symbols) are shown.

25



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

b0

a0

b1

a1p

b2

a2c

b3a3p

b4

a4c

b5

a5c

Active

110 111

011010

101

001000

100

a2c

b2

b4

a4c

b1

a1p

b3a3p

b5

a5c

b5

a5c

b5

a5c

Unbound Bound

Unbound

Bound

U
n
b
o
u
n
d

B
o
u
n
d

IP3

Inhibitory Ca2+

A
ct

iv
at

io
n C

a
2+

Figure 1:

26



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

Figure 2:

27



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

 0

 0.5

 1

 1.5

 2

 2.5

 0  1  2  3  4  5

F
op

en
(A

,t)
 (

s-1
)

Time (s)

Model 1A

cclose
0.01 μM

0.1 μM
5.0 μM

10.0 μM

 0

 0.5

 1

 1.5

 2

 0  1  2  3  4  5

F
op

en
(A

,t)
 (

s-1
)

Time (s)

Model 2B

cclose
0.01 μM

0.1 μM
1.0 μM
5.0 μM

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  1  2  3  4  5

F
op

en
(A

,t)
 (

s-1
)

Time (s)

Model 3C

cclose
0.01 μM

0.1 μM
5.0 μM

10.0 μM

Figure 3:

28



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0  2  4  6  8  10

T
op

en
 (

s)

cclose (μM)

A

Model 1
Model 2
Model 3

 0

 2

 4

 6

 8

 10

 12

 0  0.2  0.4  0.6  0.8  1

T
op

en
 (

s)

cclose (μM)

B

Model 1
Model 2
Model 3

Figure 4:

29



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

 0

 1

 2

 3

 4

 5

 0  1  2  3  4  5

F
op

en
(A

,t)
 (

s-1
)

Time (s)

Model 1A

IP3
0.01 μM

0.1 μM
1.0 μM

10.0 μM

 0

 1

 2

 3

 4

 0  1  2  3  4  5

F
op

en
(A

,t)
 (

s-1
)

Time (s)

Model 2B

IP3
0.01 μM

0.1 μM
1.0 μM

10.0 μM

 0

 5

 10

 15

 20

 0  0.2  0.4  0.6  0.8  1

F
op

en
(A

,t)
 (

s-1
)

Time (s)

Model 3C

IP3
0.01 μM

0.1 μM
1.0 μM
5.0 μM

Figure 5:

30



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  2  4  6  8  10

T
op

en
 (

s)

p (μM)

A

Model 1
Model 2
Model 3

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2

T
op

en
 (

s)

p (μM)

B

Model 1
Model 2
Model 3

Figure 6:

31



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

 0

 10

 20

 30

 40

 50

 60

 0  0.05  0.1  0.15  0.2  0.25  0.3

F
cl

os
e(

A
,t)

 (
s-1

)

Time (s)

Model 1
A

copen
20.0 μM

100.0 μM
150.0 μM
200.0 μM

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  0.05  0.1  0.15  0.2  0.25  0.3

F
cl

os
e(

A
,t)

 (
s-1

)

Time (s)

Model 2B

copen
20.0 μM

100.0 μM
150.0 μM
200.0 μM

 0

 5

 10

 15

 20

 25

 0  0.05  0.1  0.15  0.2  0.25  0.3

F
cl

os
e(

A
,t)

 (
s-1

)

Time (s)

Model 3C

copen
20.0 μM

100.0 μM
150.0 μM
200.0 μM

Figure 7:

32



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 20  40  60  80  100  120  140  160  180  200

T
cl

os
e 

(s
)

copen (μM)

Model 1

Model 2

Model 2 fast release

Model 3

Figure 8:

33



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  0.1  0.2  0.3  0.4  0.5

F
cl

os
e(

A
,t)

 (
s-1

)

Time (s)

Model 1A

p
0.01 μM

0.1 μM
1.0 μM

10.0 μM

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  0.1  0.2  0.3  0.4  0.5

F
cl

os
e(

A
,t)

 (
s-1

)

Time (s)

Model 2B

p
0.05 μM

0.1 μM
1.0 μM

10.0 μM

 0

 10

 20

 30

 40

 50

 0  0.1  0.2  0.3  0.4  0.5

F
cl

os
e(

A
,t)

 (
s-1

)

Time (s)

Model 3
C

p
0.01 μM

0.1 μM
1.0 μM

10.0 μM

Figure 9:

34



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  2  4  6  8  10

T
cl

os
e 

(s
)

p (μM)

Model 1

Model 2

A

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

T
cl

os
e 

(s
)

p (μM)

B

Model 3

Figure 10:

35



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

 0

 5

 10

 15

 20

 25

 30

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

F
cl

os
e(

A
,t)

 (
s-1

)

Time (s)

Model 1A

Variable copen 1
Variable copen 2

Fixed copen

 0

 5

 10

 15

 20

 25

 30

 0  0.2  0.4  0.6  0.8  1

F
cl

os
e(

A
,t)

 (
s-1

)

Time (s)

Model 2B

Variable copen 1
Variable copen 2

Fixed copen

 0

 5

 10

 15

 20

 25

 30

 0  0.2  0.4  0.6  0.8  1

F
cl

os
e(

A
,t)

 (
s-1

)

Time (s)

Model 3C

Variable copen 1
Variable copen 2

Fixed copen

Figure 11:

36



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.5  1  1.5  2  2.5  3

F
op

en
(A

,t)
 (

s-1
)

Time (s)

Model 1A

Analytic
Simulation

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.5  1  1.5  2  2.5  3

F
op

en
(A

,t)
 (

s-1
)

Time (s)

Model 2B

Analytic
Simulation

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.5  1  1.5  2  2.5  3

F
op

en
(A

,t)
 (

s-1
)

Time (s)

Model 3C

Analytic
Simulation

Figure 12:

37



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

 0

 2

 4

 6

 8

 10

 12

 14

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

F
cl

os
e(

A
,t)

 (
s-1

)

Time (s)

Model 1A

Analytic
simulation

 0

 5

 10

 15

 20

 25

 30

 0  0.1  0.2  0.3  0.4  0.5

F
cl

os
e(

A
,t)

 (
s-1

)

Time (s)

Model 2B

Analytic
Simulation

 0

 5

 10

 15

 20

 25

 30

 0  0.1  0.2  0.3  0.4  0.5

F
cl

os
e(

A
,t)

 (
s-1

)

Time (s)

Model 3
C

Analytic
Simulation

Figure 13:

38



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 5  10  15  20  25  30

T
cl

os
e 

(s
)

N

Model 1
A

12

copen = 50.0 μM
copen = 100.0 μM

p = 10.0 μM

 1

 2

 3

 4

 5

 6

 7

 8

 50  100  150  200  250  300

N
op

en

N

Model 1D

copen = 50.0 μM
copen = 100.0 μM

p = 10.0 μM

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 5  10  15  20  25  30

T
cl

os
e 

(s
)

N

Model 2B

12

copen = 50.0 μM
copen = 100.0 μM

p = 10.0 μM

 1

 2

 3

 4

 5

 6

 7

 8

 50  100  150  200  250  300

N
op

en

N

Model 2E

copen = 50.0 μM
copen = 100.0 μM

p = 10.0 μM

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 5  10  15  20  25  30

T
cl

os
e 

(s
)

N

Model 3C

11

copen = 50.0 μM
copen = 100.0 μM

p = 10.0 μM

 0

 10

 20

 30

 40

 50

 60

 70

 0  400  800  1200  1600

N
op

en

N

Model 3F

copen = 50.0 μM
copen = 100.0 μM

p = 10.0 μM

Figure 14:

39



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

 0.04

 0.08

 0.12

 0.16

 0.2

 1  2  3  4  5

T
cl

os
e 

(s
)

Number of Channels in Cluster

Model 1A

Simulation
Analytic

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1  2  3  4  5

T
cl

os
e 

(s
)

Number of Channels in Cluster

Model 2
B

Simulation
Analytic

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 1  2  3  4  5

T
cl

os
e 

(s
)

Number of Channels in Cluster

Model 3
C

Simulation
Analytic

Figure 15:

40




