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A c c e p t e d m a n u s c r i p t 1 Introduction

The inositol 1, 4, 5-trisphosphate receptor (IP 3 R) acts as a channel which controls release of Ca 2+ from the endoplasmic reticulum (ER) into the cytosol of a cell. The al. [START_REF] Rüdiger | Hybrid Stochastic and Deterministic Simulations of Calcium Blips[END_REF][START_REF] Shuai | A Kinetic Model of Single Clustered IP 3 Receptors in the Absence of Ca 2+ Feedback[END_REF] (model 1), the same model modified to include sequential binding of IP 3

and Ca 2+ as suggested by Adkins and Taylor [START_REF] Adkins | Lateral Inhibition of inositol 1,4,5trisphosphate receptors by cytosolic Ca 2+[END_REF] (model 2), and the model developed by Sneyd and Dufour [START_REF] Sneyd | A dynamic model of the type-2 inositol trisphosphate receptor[END_REF] (model 3) as given in reference Ullah et al. [START_REF] Ullah | Modeling the Statistics of Elementary Calcium Release Events[END_REF]. The IP 3 R is comprised of four subunits, which are assumed to be identical, and these three models each describe the transitions between subunit states, most of which result from the binding and release of IP 3 R and Ca 2+ . Model 1 [START_REF] Shuai | A Kinetic Model of Single Clustered IP 3 Receptors in the Absence of Ca 2+ Feedback[END_REF] is closely based on the DeYoung-Keizer model [START_REF] De Young | A Single-pool inositol 1,4,5-trisphosphatereceptor-based model for agonist-stimulated oscillations in Ca 2+ concentration[END_REF], and assumes that a subunit has binding sites for IP 3 , activating Ca 2+ and inhibitory Ca 2+ . The model by Sneyd and Dufour [START_REF] Ullah | Modeling the Statistics of Elementary Calcium Release Events[END_REF][START_REF] Sneyd | A dynamic model of the type-2 inositol trisphosphate receptor[END_REF][START_REF] Falcke | Reading the patterns in living cells -the physics of Ca 2+ signaling[END_REF] was designed to agree with several experimental observations.

While it has been known for about a decade now that puffs are random release events, we recently showed that spike sequences of intracellular Ca 2+ oscillations are random events also [START_REF] Skupin | How does intracellular Ca 2+ oscillate: by chance or by the clock?[END_REF]. The random opening and closing of individual channels, i.e.
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the random state transitions of their subunits, is believed to be the most important source of noise causing the random behavior of the whole system [START_REF] Falcke | On the role of stochastic channel behavior in intracellular Ca 2+ dynamics[END_REF]. That requires stochastic theory across all structural levels from a channel subunit up to cell level for modelling. However, existing subunit models typically comprise 6 or more subunit states, leading to hundreds of channel states and many thousands of channel cluster states. That makes stochastic theory on cluster level already almost impossible, not to mention cell level. Thus theoretical studies on puff characteristics used either extremely simplified channel models (with two subunit states [START_REF] Shuai | Stochastic properties of Ca 2+ release of inositol 1,4,5trisphosphate receptor clusters[END_REF], two or four channel states [START_REF] Nguyen | A stochastic automata network descriptor for markov chain models of instantaneously-coupled intracellular Ca 2+ channels[END_REF]) or relied on simulations [START_REF] Ullah | Modeling the Statistics of Elementary Calcium Release Events[END_REF].

Recently we presented a method which circumvents writing down the master equation of the channel molecule with its huge number of states and gets by with the subunit master equation only in calculations of waiting time distributions for channel clusters [START_REF] Thul | Waiting time distributions for clusters of complex molecules[END_REF]. Here we follow a different approach. Channel states are defined by the number of subunits in subunit states. We derive the channel Master equation from the subunit Master equation. Subsequently, we lump channel states into aggregates based on time scale separation. Standard methods for calculating cluster properties can then be applied to the Master equation defined for the lumped states.

Using these approximations, we compared the probability distributions for the first opening time of a cluster and the first closing time of a cluster, at various IP 3 R and Ca 2+ concentrations. These distributions were calculated analytically as well as through simulations, and assume a cluster consists of five channels. The three models 

Single Channel Activation

We would like to calculate F (A, t|I, 0), the probability distribution for a channel first being activated at time t, given it is in state I at time t = 0. A denotes the set of active channel states, and we say a channel is activated when it is in one of these states. We are assuming we have the subunit transition matrix W , where w i,j dt gives the probability for a subunit to move from state x j to state x i in infinitesimal time dt, for i = j. w j,j = -n i=1,i =j w i,j where n is the number of subunit states. The probability for a subunit to stay in state x i during time dt is 1 + w i,i dt.

We demonstrate how to build the subunit transition matrix W with model 1 (see section 5 for a detailed description of the model). First, we order the subunit states:

(110 + Active, 111, 010, 011, 100, 101, 000, 001). For instance the transition rate from state 100 to 110+Active is a 5 c where c denotes the Ca 2+ concentration. Now we can build the 8 × 8 subunit transition matrix

W = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ -1 b 2 a 1 • p 0 a 5 • c 0 0 0 b 0 a 2 a 0 +b 0 • c -2 0 a 3 • p 0 a 5 • c 0 0 b 0 b 1 a 0 +b 0 0 -3 b 4 0 0 a 5 • c 0 0 b 3 a 4 • c -4 0 0 0 a 5 • c b 0 b 5 a 0 +b 0 0 0 0 -5 b 2 a 1 • p 0 0 b 5 0 0 a 2 • c -6 0 a 3 • p 0 0 b 5 0 b 1 0 -7 b 4 0 0 0 b 5 0 b 3 a 4 • c -8 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ .
All entries have dimension s -1 , p denotes the IP 3 concentration.i represents the negative sum of the ith column.

We can use W to form the channel state transition matrix P . An entry in P , p i,j dt,

gives the probability for a channel to move from state X j to state X i in infinitesimal
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time dt, for i = j. The diagonal elements are given by p j,j = -r i=1,i =j p i,j . The off-diagonal elements of P are found as follows. A channel state is represented by a vector V where an element of the vector, v i , gives the number of subunits in subunit state x i . Thus the length of V is n, and the sum of the elements in V is the number of subunits in each channel, h. The transition probability p i,j is 0, if X j and X i differ by more than one subunit and p i,j = φ w k,l , if X i can be reached from X j by one subunit in state x l moving to state x k , and X j has φ subunits in state x l .

To find F (A, t|I, 0) we first remove all rows and columns in P which correspond to active channel states and denote the new matrix by P . That is, if X i ∈ A then we remove row i and column i. This means if the system reaches an active state, it cannot leave it. Let y(X i , t|I, 0) be the probability of being in nonactive state X i at time t and let y = {y(X i , t|I, 0), X i / ∈ A}. Then y can be found by solving the master equation ẏ = P y.

Let f (A, t|I, 0) be the probability that an activated state is reached in the time interval [0, t], let r be the total number of channel states and let r a be the number of open channel states. Then

f (A, t|I, 0) = 1 - i:X i / ∈A y(X i , t|I, 0) = 1 - r-ra i=1 r-ra k=1 c k V k,i e λ k t
where λ k and V k , k = 1...rr a are the eigenvalues and eigenvectors respectively, of P and where c k , k = 1...rr a are determined by the initial conditions. Then

F (A, t|I, 0) = df (A, t|I, 0) dt = - r-ra i=1 r-ra k=1 c k λ k V k,i e λ k t .

Cluster Activation

A cluster is first activated when any of the channels in the cluster are first activated.

We assume the initial state of a channel is unknown, so we use the weighted average over all possible initial channel states, where the weights are given by the probabilities 

of
F open (A, t) = NF ch (A, t)G(A, t) N -1
where

G(A, t) = 1 - t 0 F ch (A, τ )dτ
gives the probability that a channel has not been activated by time t and N is the number of channels in the cluster. That is, the probability for the cluster to be first 

activated
F open (A, 0) = 1 -(1 -F ch (A, 0)) N .
That is, the probability that the cluster opens instantly is the negation of no channel opening instantly.

We use the non-open states weighted according to their resting probabilities as initial condition for calculating F (A, t) for t > 0. The resting probabilities for the initial channel states are given by the normalized eigenvector of P corresponding to the eigenvalue λ = 0.

Cluster Closure

The cluster of channels is considered closed when all channels in the cluster are closed. Let F close (A, t) denote the probability distribution for a cluster of channels
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to first close at time t if it has opened at time t=0 (closing time distribution). To calculate F close (A, t), we find the cluster state transition matrix, M, from the channel state transition matrix P , in an analogous way to how we found P from the subunit state transition matrix, W . That is, a cluster state is represented by a vector with length given by the number of channel states. An entry in the vector gives the number of channels in the corresponding channel state. Thus, the sum of the elements in the vector is the number of channels in the cluster, N. The probability of a transition between cluster states occurring which involves more than one channel changing state instantaneously is infinitely small compared to the probability of a transition where only one channel changes state, and so for such transitions, the entry in M is 0. If cluster state X i can be reached from state X j by one channel in state X l moving to state X k , and X j has φ channels in state X l , then the entry in M, m i,j = φ p k,l . The diagonal entries of M are such that the columns of M sum to 0.

Once M has been constructed, F close (A, t) can be found analogously to the way in which F (A, t|I, 0) is found in section 2. That is, let M be the cluster state transition matrix with rows and columns corresponding to closed cluster states removed. Let ρ be the total number of cluster states and let ρ a be the number of closed cluster states.

Let μ k and U k , k = 1...ρρ a be the eigenvalues and eigenvectors respectively, of M .

Then

F close (A, t) = - ρ-ρa i=1 ρ-ρa k=1 d k μ k U k,i e μ k t .
where d k , k = 1...ρρ a are determined by the initial conditions.

We choose as the initial probabilities for a channel to be in each of the channel states the probabilities at the expected cluster opening time. That is, we begin with the resting probabilities, then solve the master equation,

ż(t) = P 0 z(t),
where z(t) gives the probabilities of being in the channel states at time t, and P 0 The large number of cluster states presents a problem when calculating F close (A, t).

The number of channel states, r is given by r = h+n-1 n-1 . Recall, n is the number of subunit states and h is the number of subunits per channel. The number of cluster states, ρ, is given by ρ

= N +r-1 r-1
. Recall, N is the number of channels in the cluster.

So ρ is very large for the values of n, h and N we require, which results in the above method for finding F close (A, t) being too slow and requiring too much memory to be feasible.

To overcome the problem of there being too many cluster states, we reduce the number of channel states before finding M. We developed a reduction method motivated by and similar to that described in Huisinga et al. [START_REF] Deuflhard | Identification of almost invariant aggregates in reversible nearly uncoupled Markov chains[END_REF]. It is based on the theory of weakly coupled Markov chains. The weakly coupled state aggregates are identified by a Perron cluster analysis in the study by Huisinga et al. We replace cluster identification by a simpler method. In one case we compared our results with those of the method used in [START_REF] Deuflhard | Identification of almost invariant aggregates in reversible nearly uncoupled Markov chains[END_REF] and found them to be identical.

We identify aggregates by repeatedly finding the largest transition rate in the channel state transition matrix P , then combining the two states connected by the transition, into one aggregate state. In general we combine two states X i , X j to an aggregate state {X i , X j } and after repeating the reduction process we get a set of aggregate states of the form {X a i , i = 1 . . . m}. The transition rate for moving from the aggregate state

{X a i , i = 1 . . . m 1 } to the aggregate state {X b i , i = 1 . . . m 2 } is then given by m 2 j=1 m 1 i=1 p b j ,a i V 0 (a i ) / m 1 i=1 V 0 (a i ) .
V 0 represents the stationary solution of the whole un-reduced system and p b j ,a i denotes the transition probability from state a i to b j . This is repeated until the number of aggregate channel states is sufficiently small that the number of cluster states is small 

Subunit Models

We have compared results using three models of IP 3 channel subunits. These include the nine state model of Rüdiger et al. [START_REF] Rüdiger | Hybrid Stochastic and Deterministic Simulations of Calcium Blips[END_REF] which we have reduced to eight states, the same model but with conditions of sequential binding of Ca 2+ and IP 3 imposed, and the model of Sneyd and Dufour [START_REF] Sneyd | A dynamic model of the type-2 inositol trisphosphate receptor[END_REF] modified and reduced to six states as given by Ullah and Jung [START_REF] Ullah | Modeling the Statistics of Elementary Calcium Release Events[END_REF].

Model 1

Model 1 is based on the DeYoung-Keizer model [START_REF] De Young | A Single-pool inositol 1,4,5-trisphosphatereceptor-based model for agonist-stimulated oscillations in Ca 2+ concentration[END_REF], whereby the subunit has an IP 3 binding site, an activating Ca 2+ binding site and an inhibitory Ca 2+ binding site.

Subunit states are represented by the triplet (ijk), where i, j and k represent these three binding sites respectively. An occupied site is represented with a 1 and an unoccupied site with a 0. In the DeYoung-Keizer model [START_REF] De Young | A Single-pool inositol 1,4,5-trisphosphatereceptor-based model for agonist-stimulated oscillations in Ca 2+ concentration[END_REF], the subunit is considered active when it is in state (110). That is, when the IP 3 and activating Ca 2+ binding sites are occupied but the inhibitory Ca 2+ binding site is not occupied. Rüdiger et al. [START_REF] Rüdiger | Hybrid Stochastic and Deterministic Simulations of Calcium Blips[END_REF] have added an extra state labelled 'Active' with transitions to and from state (110). The subunit is only active when it is in this state. This model is illustrated in Fig. 1. We have combined the 'Active' state and state (110) into one state by assuming the transition rates between the two states are fast, and so reduced the model to eight states. We have used the transition rates given by Shuai et al. [START_REF] Shuai | A Kinetic Model of Single Clustered IP 3 Receptors in the Absence of Ca 2+ Feedback[END_REF],
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which are listed in the Appendix.

A channel contains four such subunits, and is considered open when any three of the four subunits are in the active state.

Model 2

It had been suggested by Adkins and Taylor [START_REF] Adkins | Lateral Inhibition of inositol 1,4,5trisphosphate receptors by cytosolic Ca 2+[END_REF] that the binding of Ca 2+ to the activating and inhibitory binding sites may be affected by whether or not the IP binding rate when IP 3 is bound, are made small (they are set to 1.0 × 10 -3 μM -1 s -1 ).

In order to maintain the condition of detailed balance, the corresponding reverse transition rates (the b i values) have also been made small, so that the dissociation constants, K i = b i /a i remain the same. The transitions that are made slow are indicated by dotted lines in Fig. 1.

Model 3

Sneyd and Dufour [START_REF] Sneyd | A dynamic model of the type-2 inositol trisphosphate receptor[END_REF] describe a 10 state model of the IP 3 R subunit. It includes one IP 3 binding site, two binding sites for Ca 2+ activation and one binding site for Ca 2+

inactivation. The Sneyd and Dufour [START_REF] Sneyd | A dynamic model of the type-2 inositol trisphosphate receptor[END_REF] model was designed to produce agreement with a number of results from experimental data. Falcke [START_REF] Falcke | Reading the patterns in living cells -the physics of Ca 2+ signaling[END_REF] modified the model to overcome a problem involving a lack of Ca 2+ conservation in triangular motifs employed to achieve saturating binding kinetics. These triangular motifs are replaced by square motifs Fig. 2 B, and the full model contains then thirteen states. The resulting transition diagram is shown in Fig. 2. We have used the parameter values given by Ullah and Jung [START_REF] Ullah | Modeling the Statistics of Elementary Calcium Release Events[END_REF], but changed them slightly in order to obey detailed balance. They can be found in the Appendix.

A channel consists of four of these subunits, and is considered open when all four 

Results

We show results for a cluster consisting of five channels, using various values for the In Fig. 3 A,B ,we see that the opening distributions for models 1 and 2 are very similar when c close < 0.1 μM. At large Ca 2+ concentrations, model 2 has a much longer expected opening time compared to model 1 (see Fig. 4). At high Ca 2+ concentrations, there is a high probability of a subunit being in state (011) at rest. In model 1, the fastest route from (011) to (110) is through the binding of IP 3 followed by the release of inhibitory Ca 2+ . However, in model 2 this route is not fast, resulting in a longer expected opening time. When the Ca 2+ concentration is low (∼ 0.1 μM) subunits are more likely to initially be in state (000), from which transitions to the active state are very fast in both models. However, if the Ca 2+ concentration is very low (0.01 μM for example), the binding of Ca 2+ to the activating Ca 2+ site is slow, resulting in the increase in the expected opening times seen in Fig. 4 A,B.

In model 3, the single Ca 2+ dependent transition rate into an active state depends on the concentration of IP 3 too, which is slow for small IP 3 concentration. Therefore, the effect of increasing the Ca 2+ concentration is to increase the transition rates into show that the agreement of the analytical and numerical distributions for small times is rather good. However, if the distribution is more spread out, a small error in the tail of the analytic distributions may be causing the bad agreement. . This is the maximum number for which results could be computed due to limitations set by computational efficiency. 1 We see also from Fig. 14 that this is close to the minimum value for which we can expect reasonably accurate results, when using a single channel.
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It can be seen in Fig. 14 A are reasonably accurate when using a single channel, they will also be reasonably accurate when using 5 channels. Thus, the method we suggest for predicting the accuracy of results after aggregation, is to compute the expected closing time for a single channel using the full model and to compare this with the expected closing time computed after the number of states has been reduced. The minimum number of aggregate states for which reasonable approximations can be expected is the number just above the dramatic change of results.
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Many models describing the kinetics of IP 3 R subunits have been proposed. We have compared the probability distributions for the expected opening and closing times of a cluster of five IP 3 Rs resulting from three different subunit models. The first model is that of Shuai et al. [START_REF] Shuai | A Kinetic Model of Single Clustered IP 3 Receptors in the Absence of Ca 2+ Feedback[END_REF], which is similar to the DeYoung-Keizer model [START_REF] De Young | A Single-pool inositol 1,4,5-trisphosphatereceptor-based model for agonist-stimulated oscillations in Ca 2+ concentration[END_REF]. Here there are binding sites for IP 3 , activating Ca 2+ and inhibitory Ca 2+ , resulting in eight subunit states. Shuai et al. [START_REF] Shuai | A Kinetic Model of Single Clustered IP 3 Receptors in the Absence of Ca 2+ Feedback[END_REF] add an extra 'Active' state reachable only from the state where IP 3 and activating Ca 2+ are bound, and inhibitory Ca 2+ is not bound.

We have reduced these two states to one state by assuming the transitions between them are fast. The parameter values are such that the binding of IP 3 reduces the affinity of the inhibitory Ca 2+ site, and Ca 2+ binding to the inhibitory site reduces the affinity of the IP 3 binding site. The second model used is a modification of the first suggested by Adkins and Taylor [START_REF] Adkins | Lateral Inhibition of inositol 1,4,5trisphosphate receptors by cytosolic Ca 2+[END_REF]. Here the inhibitory Ca 2+ binding rate when IP 3 is bound is made very small, as is the activating Ca 2+ binding rate when IP 3 is not bound. The reverse transition rates are also made small to maintain detailed balance. The third model is a thirteen state model given by Sneyd and Dufour [START_REF] Sneyd | A dynamic model of the type-2 inositol trisphosphate receptor[END_REF] and extended by Falcke [START_REF] Falcke | Reading the patterns in living cells -the physics of Ca 2+ signaling[END_REF] designed to accommodate various experimental findings.

We have compared the opening and closing time distributions resulting from the three models, at various Ca 2+ and IP 3 concentrations, as well as the expected opening and closing times. We found the three models gave significantly different results. At low Ca 2+ concentrations (< 0.1 μM), models 1 and 2 have similar expected opening times, but at larger Ca 2+ concentrations model 2 has a much longer expected opening time. When the Ca 2+ concentration is large, both the activating and inhibiting Ca 2+

binding sites are likely to be occupied prior to the addition of IP 3 . Model 1 then opens comparatively quickly due to the binding of IP 3 followed by the release of inhibitory Ca 2+ . This route to activation is slow in model 2 as the rate for the release of inhibitory Ca 2+ when IP 3 is bound is small.

The models show also differences in closing behavior. Using model 1 there is a decrease in the expected closing time of a cluster, as the Ca 2+ concentration increases We have used a fixed value for the Ca 2+ concentration when the cluster is open.

However, the concentration around the cluster may vary depending on whether indi-

vidual channels are open or closed. In Fig. 11 we use a variable Ca 2+ concentration, so that channels in the cluster which are closed see a lower Ca 2+ concentration than

those that are open. Making the Ca 2+ concentration variable has had very little impact. Fraiman et al. [START_REF] Fraiman | Analysis of Puff Dynamics in Oocytes: Interdependence of Puff Amplitude and Interpuff Interval[END_REF] note that the time taken for a single inactivated IP 3 R to become uninhibited is much longer than a typical puff duration. Our results support this statement. Consequently, the Ca 2+ concentration seen by a closed IP 3 R has little effect, as all channels are likely to close before it has time to reopen. These results imply that puffs with these models are insensitive towards spatial arrangement of individual channels within the cluster as long as the distance is not too large. We mimicked a decay of the Ca 2+ concentration on the channel distance corresponding to 3-4.6 diffusion lengths of free Ca 2+ .

Our method for calculating the closing time distribution of a cluster requires the number of channels in the cluster to be small (≤ 5) so that the number of possible cluster states is not too large. There have been various estimates of the number of channels in a cluster. Some estimate it to be in the range of 20-30 [START_REF] Callamaras | Activation and co-ordination of InsP 3 -mediated elementary Ca 2+ events during global Ca 2+ signals in Xenopus oocytes[END_REF][START_REF] Dupont | Quantal release, incremental detection, and long-period Ca 2+ oscillations in a model based on regulatory Ca 2+ -binding sites along the permeation pathway[END_REF][START_REF] Sun | A continuum of InsP 3 -mediated elementary Ca 2+ signalling events in Xenopus oocytes[END_REF], while In order to calculate the closing time distribution of a cluster, we reduced the number of channel states so that the number of cluster states was not too large.

We tried different methods to reduce the system among them a rapid-equilibrium approximation: We identified the states connected by the fastest transition rates, assumed equilibrium just between these two states, lumped them accordingly and
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repeated the procedure with the new set of states. With respect to accuracy, that method was as good as the one we used here. Its only disadvantage was that it did not allow for re-separating closed and open states once the aggregates had been found.

The state aggregation introduces error to the calculation. This is particularly apparent in the poor agreement between the analytic and simulation estimates of the expected cluster closing times for model 2. There is a loose relationship between the expected opening time, and the agreement between simulation and analytic results, such that if the expected opening time is long it is likely the agreement will be worse than if the expected opening time is short. Thus, it seems that the error results from the smallest eigenvalues of the coefficient matrix.

We tried a variety of criteria for the degree of state aggregation still providing good approximations. We required for instance the inverse of the smallest transition rate lumped to be much smaller than moments of the waiting time distributions or residence times of the system in aggregates. These are criteria suggested by the use of time scale separation as the basis for state aggregation. Surprisingly, meeting conditions of that type did not give conclusive predictions on the quality of the approximation. The criterium to stop lumping states into aggregates when analytic single channel results get bad compared to single channel simulations was the most predictive and feasible criterium.

We have not related our results to experimental observations in this study yet.

Fitting models to experimental data will be the subject of future research. Puffs can be found in a very small range of IP 3 concentration only below which no release is observed and above which spiking or sustained release is found. Only recently. the lab of I. Parker's developed a method to observe puffs over a larger range of IP 3 concentrations by decoupling puff sites by the buffer EGTA [22]. This method will produce data with which we can meaningfully compare our results. C: F open (A, t) for model 3. 
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IP 3

 3 Rs release Ca 2+ in response to an increase in the concentration of inositol 1, 4, 5trisphosphate (IP 3 ) in the cytosol, which results from a stimulus, such as the binding of a hormone to the cell membrane. IP 3 Rs open and close randomly, and the open and closing probabilities are determined by the binding of IP 3 and Ca 2+ . A small increase in the concentration of cytosolic Ca 2+ stimulates channel activation, whereas a large increase causes inhibition of the IP 3 R. This results in a bell-shaped dependence of the open probability on the cytosolic Ca 2+ concentration. Activation of the channels takes place on a faster time scale than inhibition. IP 3 Rs are found in clusters, and so the release of Ca 2+ resulting from the opening of one channel in a cluster, stimulates the opening of other channels in the cluster. The release of Ca 2+ from the cluster is referred to as a Ca 2+ puff. Puffs are the elemental events of intracellular Ca 2+ release. Various models have been proposed for describing the IP 3 R [15, 7]. Here we have compared the opening and closing probability distributions resulting from three different models. These include the model proposed in Rüdiger et al. and Shuai et
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  exhibit significantly different behaviour. The sequential binding of IP 3 and Ca 2+ imposed in model 2 results in longer expected opening times compared to model 1 and longer expected closing times compared to both models 1 and 3. Model 3 has a shorter expected closing time than models 1 and 2, but has a much longer expected opening time at low IP 3 concentrations and high Ca 2+ concentrations. These probability distributions are calculated assuming the Ca 2+ concentration in the vicinity of the cluster remains constant. That is, we use one fixed value for the Ca 2+ concentration when the cluster is closed, and another fixed value for Ca 2+ when the cluster is open, i.e., when at least one channel is open. We have also looked at the effect of using a variable Ca 2+ concentration while the cluster is open, whereby a closed channel sees a lower concentration than an open channel. The resulting probability distributions are very similar to when a fixed value is used, in all three models.
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 t is found from P by setting transition rates out of open states to 0, because we ave interested in those trajectories only, which did not go through open states. z(t) is then evaluated at the expected opening time for the cluster, which is calculated from open (A, t). Initially, we assume one channel in the cluster is open, while the others are closed. To enforce this condition, we find from z(t) the conditional probability of being in each state where exactly one channel is open, given that the cluster is in one such state. All other cluster states have an initial probability of zero.
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  enough for computations to be feasible or till the stop criterion has been reached (see section 7). This process of combining channel states results in open and closed channel states being combined. However, as we require open states to be distinct from closed states, we divide the aggregate states which contain both open and closed states into two separate states, one containing only the closed states and one containing only the open states. After these aggregate states are split, transition rates to and from the new aggregate states must be found.
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  s c r i p t are in state O , Õ, Ō (the open states) or state Ã, Ā (the activated states) or an intermediate combination, such as one subunit in state O and three in state Ā.

Ca

  2+ concentration when the cluster is closed, c close , the Ca 2+ concentration when the cluster is open, c open , and the IP 3 concentration, p. When finding the steady channel state probabilities, we use p = 10 -7 and the Ca 2+ concentration c close . When the cluster is open, we use the Ca 2+ concentration c open and it remains fixed regardless of the number of open channels. When c close , c open and p are not being varied, their values are 0.1 μM, 100 μM and 0.15 μM respectively. Figures 3-9 show the effect of changing c close , c open and p when using models 1, 2 and 3. We present the probability distribution for the opening time F open (A, t) and closing time F close (A, t) of a cluster of channels and the expected value of the opening time distribution T open and closing time distribution T close .
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  the inactivated or shut states. That slows down activation (Fig.3C, Fig.4) and the expected opening time does not exhibit a minimum in dependence on the Ca 2+ concentration.In Fig.5A-C and Fig.6A,B we see that increasing p results in an initial rapid decrease in the expected opening time. All three models exhibit high sensitivity to the IP 3 concentration at low concentrations, and low sensitivity at high concentrations.Model 2 again has a long expected opening time compared to model 1 as the fastest routes to the active state in model 1 are made slow in model 2.

Fig. 7 AA c c e p t e d m a n u s c r i p t 100

 7100 Fig. 7 A,B and Fig. 8 show that changing the Ca 2+ concentration has a strong effect on the closing behavior of model 1, but has very little effect on the closing time distribution of model 2. In model 2, the Ca 2+ dependent transition rate out of the open state is very low, so the Ca 2+ concentration has little effect on the expected closing time. The most prominent closing transition is IP 3 dissociation. At high Ca 2+ concentrations, model 1 closes quickly due to the binding of inhibitory Ca 2+ . However, in model 2 inhibitory Ca 2+ cannot bind quickly until IP 3 has first been released, resulting in longer expected closing times. We increased the rate of IP 3 release in model 2 by a factor of 10 (that is, K 1 = 0.036 μM and K 3 = 8.0 μM), and this decreased the expected closing time. Changing the Ca 2+ concentration still has little effect on the expected closing time when the IP 3 release rate is increased.Model 3 does neither exhibit any noteworthy dependence of the cluster closing rate on the Ca 2+ concentration. Closing is obviously dominated by the Ca 2+ -independent transitions with the rate 4(l -4 + k -2 ) (see Fig.2). Fig.9A-C and Fig.10 A,Bshow that increasing the IP 3 concentration increases the expected closing time in all three models.In Fig.11A-C we show results using both a fixed and variable value for the Ca 2+ concentration, c open . When c open is fixed, it has a value of 100 μM and applies to all channels in the cluster as soon as at least one channel is open. That corresponds to very strong spatial coupling by Ca 2+ diffusion. When c open is variable it takes on different values depending on whether an individual channel is open or closed corresponding to weaker spatial coupling. For an open channel c open = 0.1 + 99.9 =

Fig. 14 A

 14 Fig. 14 A-C show how the expected closing time for a single channel varies as the number of aggregate states is reduced. When there are 330 aggregate states for models 1 and 2 and 1820 states for model 3, the full model is being used. The calculations are done for a single channel here, as it is too computationally expensive to use more channels with a large number of aggregate states. The vertical lines mark the number of aggregate states used in the results presented in this study. Note, the horizontal axes give the number of states prior to the open states being separated out. We use 12 aggregate states for model 1, 2 and 11 for model 3 here (after separating the open states). This is the maximum number for which results could be computed due

  Fig. 15 compares exact analytic results with simulations. The error does not vary greatly as the number of channels increases from 1 to 5, suggesting that if the results

A c c e p t e d m a n u s c r i p t from 20

 20 μM to 200 μM. This is due to an increased rate of Ca 2+ inhibition. In model 2 the rate for Ca 2+ inhibition while IP 3 is bound is very slow, resulting in less sensitivity of the expected closing time to the Ca 2+ concentration. Model 3 exhibits only a very weak dependence of the expected closing time on Ca 2+ . Using all three models, the expected cluster closing time increases monotonically with the IP 3 concentration.

Shuai et al. [ 12 ]

 12 estimate 40-70. However, Fraiman et al. [8] estimate 4 or 5, which agrees with an estimate by Swillens et al. [17] and Demuro et al. of about 10 channels in a cluster [20]. Very recent experiments suggest an average number of 4 [21].

A c c e p t e d m a n u s c r i p t

  Demuro, A. and I. Parker. 2008. Multi-dimensional resolution of elementary Ca 2+ signals by simultaneous multi-focal imaging, Cell Calcium 43(4):367-374 [21] Taufiq-Ur-Rahman, A. Skupin, M. Falcke, C.W. Taylor. 2009. Clustering of IP 3 receptors by IP 3 retunes their regulation by IP 3 and Ca 2+ , Nature, in press [22] Smith, F., S.M. Wiltgen, and I. Parker. 2009. Localization of puff sites adjacent to the plasma membrane: Functional and spatial characterization of Ca 2+ signaling in SH-SY5Y cells utilizing membrane-permeant caged IP 3 , Cell Calcium 45:65-76
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Figure 1 :

 1 Figure 1: The nine state model of an IP 3 receptor channel subunit proposed by Rüdiger et al. [10]. The Ca 2+ concentration is denoted by c and the IP 3 concentration is denoted by p. The dotted lines indicate the transitions that are made small in model 2.

Figure 2 :

 2 Figure 2: The model of an IP 3 receptor channel subunit given by Sneyed [14]. The channel states are R: unbound receptor, I 1 and I 2 : inactivated, O: open, A: activated, and S: shut. The Ca 2+ concentration is denoted by c and the IP 3 concentration is denoted by p.

Figure 3 :

 3 Figure 3: Open probability distribution F open (A, t) for various c close values. A: F open (A, t) for model 1. B: F open (A, t) for model 2. C: F open (A, t) for model 3.

Figure 4 :

 4 Figure 4: A: The expected opening times T open for the three models. B: Enlarged plot of the expected opening times for the three models to show clearly the minimum of models 1 and 2 for small values of c open .

Figure 5 :

 5 Figure 5: Opening time distribution F open (A, t) when changing p for some representative IP 3 concentrations. A: F open (A, t) for model 1. B: F open (A, t) for model 2.

Figure 6 :

 6 Figure 6: A: The expected opening times T open for the three models as function of the IP 3 concentration. B: Enlarged plot of T open for small concentrations.

Figure 7 :

 7 Figure 7: Cluster closing time distribution F close (A, t) when changing c open . A:F close (A, t) for model 1. B: F close (A, t) for model 2. C: F close (A, t) for model 3.

Figure 8 :A c c e p t e d m a n u s c r i p t

 8 Figure 8: The expected closing times T close for the three models. Model 2 is represented by the upper lines, where the dashed line with ×-symbols show the simulation results and dashed line without shows analytic results. Model 1 is shown by two

Figure 9 :

 9 Figure 9: Cluster closing time distribution F close (A, t) when changing p. A: F close (A, t) for model 1. B: F close (A, t) for model 2. C: F close (A, t) for model 3.

Figure 10 :

 10 Figure 10: A: The expected closing times T close for models 1 and 2, from both the analytic and simulation results. Model 1 is represented by the upper dashed line (analytic results) and dashed line with ×-symbols (simulation results). Model 2 is represented by the lower full lines. There are few differences between analytic (full line) and simulation results (full line with +-symbols). B: The expected closing times T close for model 3 only with analytic (full line) and simulation results (full line with +-symbols).

Figure 11 :

 11 Figure 11: F close (A, t) using both a fixed and variable Ca 2+ concentration. Here c close = 0.1 μM and p = 0.15 μM. c open = 100 μM when fixed. When c open is variable, it has a value of 100 μM for a channel which is open and a value of 10.09 μM (labeled 'Variable c open 1') or 1.099 μM (labeled 'Variable c open 2') for a channel which is closed. A: Results for model 1. B: Results for model 2. C: Results for model 3.

Figure 12 :

 12 Figure 12: Analytic and simulation results showing F open (A, t) for all three models. Here c close = 0.1 μM, and p = 0.15 μM. The full lines represent the analytic results and the -symbols the simulation results. A: Results for model 1. B: Results for model 2. C: Results for model 3.

Figure 13 :A c c e p t e d m a n u s c r i p t

 13 Figure 13: Analytic and simulation results showing F close (A, t) for the three mod-

Figure 14 :

 14 Figure 14: The effect of the number of aggregate states on the expected closing time. These results are for a single channel. A-C show the expected closing time T close as the number of aggregate states is reduced. This is shown for the three models at various parameter values. The vertical lines represent the number of aggregate states which are used in the results presented here. D-F show the number of open aggregates N open as function of the aggregate states for all three models and various parameters.

Figure 15 :

 15 Figure 15: Varying the cluster size. Graphs A, B and C show the expected closing time of the cluster T close , using models 1 (A), 2 (B) and 3 (C) respectively, as the number of channels in the cluster is varied from 1 to 5. We use p = 0.15 μM, c open = 100 μM and c close = 0.1 μM(to compute the initial condition). Both analytic (full lines) and simulation results (dashed lines with +-symbols) are shown.
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A c c e p t e d m a n u s c r i p t and

  each channel state occurring at rest. Let F ch (A, t) denote the probability distribution for a channel to first open at time t given that the initial state is unknown let F open (A, t) denote the probability distribution for a cluster of channels to first open at time t (opening time distribution). Then F open (A, t), for t > 0, is given by

  in the time interval [t, t + dt] is given by the probability that one of the N

	channels is first activated in the time interval [t, t + dt] and all other channels have
	not yet been activated.
	When t = 0, if we used the method above to calculate F open (A, 0), this would
	mean that the probability for the cluster to open in the interval [0, dt] is given by the
	probability that one of the N channels opens in [0, dt], while the other N -1 do not.
	However, this is not correct. The probability that the cluster opens in [0, dt] is given
	by the probability that at least one of the N channels opens in [0, dt], while the other
	N -1 channels can either open or not open. F open (A, 0) can be calculated using

  3binding site is occupied. Specifically, if IP 3 is bound, then Ca 2+ cannot bind to the inhibitory Ca 2+ binding site, and if IP 3 is not bound, then Ca 2+ cannot bind to the activating Ca 2+ binding site. Thus, model 2 uses the same scheme as model 1, but the activating Ca 2+ binding rate when IP 3 is not bound, and the inhibitory Ca 2+

Table 1 :

 1 Parameter values for Model 1

	Parameter Value	Parameter Value
	a 0	550.0 s -1	b 0	80.0 s -1
	K 1	0.0036 μM a 1	60.0 μM -1 s -1
	K 2	16.0 μM	a 2	0.2 μM -1 s -1
	K 3	0.8 μM	a 3	5.0 μM -1 s -1
	K 4	0.072 μM	a 4	0.5 μM -1 s -1
	K 5	0.8 μM	a 5	150.0 μM -1 s -1

Table 2 :

 2 Parameter values for Model 3

	Parameter Value	Parameter Value

Several hours using a UniServer 3346 with 4Dual-Core AMD Opteron 800 series CPU's