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Abstract

In living cells proteins motilities regulate the spatiotemporal dynamics of molecular pathways.

We consider here a reaction-diffusion model of mutual kinase-receptor activation showing that the

strength of positive feedback is controlled by the kinase diffusion coefficient. For high diffusion, the

activated kinase molecules quickly leave the vicinity of the cell membrane and cannot efficiently

activate the receptors. As a result, in a broad range of parameters, the cell can be activated only

if the kinase diffusion coefficient is sufficiently small. Our simple model shows that change in the

motility of substrates may dramatically influence the cell responses.

Keywords: reaction-diffusion system, signal transduction, positive feedback, kinase activation,

membrane receptors, protein motilitity.

1 Introduction

Regulatory networks process cellular signals in time and space enabling cell self-organization (see

Kholodenko 2006 and Karsenti 2008 for reviews). The temporal dynamics is coupled with spatial

gradients of concentrations or activity. For example, kinase cascades can emerge from receptors

and transmit signals from the cell membrane to the nucleus. In this case the gradient of active

kinase activity develops since phosphorylation and dephosphorylation proceed at different cellular

locations, respectively cell membrane and cell volume. Due to the estimations of Brown and

Kholodenko (1999), basing on measured values of protein diffusion coefficients and phosphatase

activities, gradients of kinase activity are potentially very large. In a simple system in which

kinase molecules are phosphorylated at the cell membrane and dephosphorylated by a phosphatase

molecules located homogeneously in the cell cytosol (analyzed by Brown and Kholodenko 1999)

small diffusion implies high gradient and low kinase activity in the cell center. The problem

of receptor-kinase interaction has been also studied in the context of diffusion with obstacles in

the stochastic numerical simulations of bacterial chemotaxis (Lipkow et al. 2005). One of the

conclusions of Lipkow et al. 2005 is that crowding results in a fall of the apparent diffusion coefficient

and at the anterior end, where CheY is phosphorylated, the local concentration of CheYp increases

and therefore accelerates the response of the anterior close motor. At the other, posterior, end of

the cell, the local CheYp concentration is reduced by the need to diffuse through the obstacles and

the responses of motors in this region is consequently delayed.
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Here we consider a similar model to the one analyzed by Brown and Kholodenko (1999), but

assume the mutual receptor - kinase activation. Membrane receptors can bind extracellular ligands,

that leads to cascade of molecular processes inside the cell and formation of the active receptor com-

plex. In many cases, receptor activation requires phosphorylation. Almost all G-protein coupled

receptors (GPCRs) are regulated by phosphorylation, see Tobin (2008) for review. Engagement

of immunoreceptors (TCR, BCR, FcR) leads to activation of different members of the Src kinase

family, which includes Lck (for T-cell, Housden et al. 2003), Fyn and Lyn (for B and mast cells,

Gauld and Cambier 2004). Src kinases then phosphorylate immunoreceptor tyrosine-based activa-

tion motifs (ITAMs) contained within the immunoreceptors themselves or in receptor-associated

molecules, see Abram and Lowell (2007) for review. This may lead to positive feedback, in which

active receptors send signal to kinase and in turn are activated by the same kinase species or by

one of the downstream kinases. In this study we consider the simplest situation, in which receptors

are activated by the same kinase species they activate.

We will show, that in the case of mutual receptor - kinase activation, in a broad range of param-

eters controlling the process, the cell becomes activated only if the kinase diffusion is sufficiently

small. For large diffusion, the activated kinase molecules quickly leave vicinity of cell membrane,

and the positive feedback coupling kinases with receptors becomes inefficient.

2 Model formulation

As said, we will assume that membrane receptors bind extracellular ligands, that leads to a cascade

of processes and receptor activation. At constant extracellular cytokine concentration, a steady

state uniform surface concentration of ligand-bound receptors P = const is established. We will

consider two cases. Firstly, following Brown and Kholodenko (1999) we will assume that all ligand-

bound receptors are active. Secondly, we will assume that the limiting step in the formation of the

active receptor complex is its phosphorylation by the kinase. In turn, active receptors may activate

kinase molecules, that defines the positive feedback in the regulation process. The activated kinase

may freely diffuse over entire cell volume, where they are inactivated by uniformly distributed

phosphatases.

The cell will be modeled geometrically as a ball B(0, r0) of radius r0, centered at the origin of

the coordinate system. We restrict to the spherically symmetric case and we will use the following

notation :
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K(t, r) - the concentration of the active kinase

Q = const - the total concentration of the kinase

R(t) - the surface concentration of the active receptors

P = const - the total surface concentration of the ligand bound receptors (active and inactive)

ΦK(t) - the flux of the active kinase

The active kinase concentration satisfies

∂K

∂t
= d1∇

2K − b1K, (1)

where b1 > 0 is the kinase dephosphorylation rate due to the action of uniformly distributed

phosphatases. The flux of the active kinase results from its phosphorylation by the surface receptors

implying the Robin type boundary condition,

ΦK = a1R (Q−Kb) = d1n · (∇K)b, (2)

where n is a unit vector normal to cell surface and subscript b denotes the boundary value for

(r = r0).

As already mentioned, regarding the receptors activation we will consider two different cases;

(1) Activity of the receptors is independent of intracellular processes, but is controlled by binding

and dissociation of some extracellular ligand (present at the constant concentration). In such a

case we may assume that all the bound receptors are persistently active i.e. R(t) = const = P .

(2) Alternatively, we may assume that the limiting step in the receptor activation is its phos-

phorylation by the kinase, that defines the positive feedback in receptor-kinase activation,

dR

dt
= a2Kb(P −R)− b2R. (3)

In the further consideration we will assume that all the reaction rate coefficients, a1, a2, b1, b2, and

diffusion constant c1 are positive. In the non-dimensional units τ = t b1, ρ = r/r0, Eq. 1 reads

∂K

∂τ
= d∇2K∗ −K∗, (4)

where d = d1/(b1r
2
0) plays the role of the non-dimensional diffusion coefficient and K∗ = K/Q.

We may thus rewrite Eqs. 2 and 3 as

aR∗ (1−K∗
b ) = dn · (∇K∗)b , (5)
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dR∗

dτ
= qK∗

b (P ∗ −R∗)− bR∗, (6)

where a = a1P/b1, R
∗ = R/(r0Q), q = a2Q/b1, b = b2/b1 and P ∗ = P/(r0Q). From now on, for

the sake of simplicity all the asterisks will be omitted. Let us notice that ρ ∈ [0, 1], K ∈ [0, 1],

R ∈ [0, P ] and a, b, d, q and P are real and nonnegative.

3 Results

3.1 Limit of infinite diffusion d→∞, K = K(τ), R = R(τ).

For the infinite diffusion, the active kinase concentration is uniform, and the system of Eqs. 4-6 is

equivalent to the system of two ordinary equation, for K(τ), R(τ),

dK

dτ
= 3aR(τ) (1−K(τ))−K(τ), (7)

dR

dτ
= qK(P −R(τ))− bR(τ). (8)

Formally, we can obtain the above system by integrating Eq. 4 over the ball B(0, 1) and using the

Gauss theorem. Let us note that the compact region D := [0, 1] × [0, P ] is invariant with respect

to the flow generated by the above system. That is to say, if {K(0), R(0)} ∈ D, then for arbitrary

τ ≥ 0, {K(τ), R(τ)} ∈ D. System 7-8 has two steady states: {K1, R1} = {0, 0} and {K2, R2},

where

K2 =
3qaP − b

q(3aP + 1)
, R2 =

3qaP − b

3a(b+ q)
. (9)

For b < 3qaP the steady state point {K2, R2} is stable, while the point {K1, R1} is unstable,

for b ≥ 3qaP , K2 < 0, R2 < 0 and the point {K2, R2} is unstable, while the {K1, R1} is stable.

In other words, restricting to subdomain D, the system has one stable steady state {0, 0}, for

b ≥ 3qaP , or {K2, R2} for b < 3qaP .

In the case without the feedback, (i.e. when R(τ) = P ) Eq. 7 can be solved analytically,
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K(τ) =

(
K(0)−

3aP

3aP + 1

)
exp[(1 + 3aP )τ ] +

3aP

3aP + 1
(10)

and has unique stable state K3 = 3aP/(1 + 3aP ).

3.2 Finite diffusion - steady state analysis

(1) Case without feedback

In spherical coordinates Eq. 4 reads

∂K

∂τ
= d

1

�2

∂

∂�

(
�2∂K

∂�

)
, (11)

and has unique steady state solution

K(�) =
Kc (eα� − e−α�)

2�α
, (12)

where α = d−1/2 and Kc = K(0). Using Eq. 5 (with R = P ) and Eq. 12 we may calculate

boundary value Kb = K(1)

Kb =
aPα2(e2α − 1)

1 + α− aα2P + e2α(α+ aα2P − 1))
, (13)

and then

Kc = 2Kbα/
(
eα − e−α

)
=

2aPα3eα

1 + α− aα2P + e2α(α+ aα2P − 1))
. (14)

In the limit of infinite diffusion α → 0, the active kinase distribution is uniform, K(�) ≡ Kc,

with Kc = K3. The total amount of active kinase Ktot is

Ktot = 4π

1∫
0

�2K(�)d� = 4πKc
αcosh(α) − sinh(α)

α3
. (15)

Differentiating Kb, Kc and Ktot several times with respect to α, one can show that for a > 0

and P > 0:

1) Kb is a monotonically increasing function of α = d−1/2,

2) Kc and Ktot are monotonically decreasing functions of α.
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Large diffusion enhances the flux of the active kinase from the cell membrane towards the cell

center. Thus, as one could expect, both Kc and Ktot are growing functions of diffusion coefficient.

Simultaneously, the active kinase concentration close to the boundary decreases with increasing

diffusion, Fig. 1.

(2) Case with feedback

In the case with feedback the spatial profile of K(�) is the same as in the case without feedback;

Eqs. 5-6 gives us two values of Kb (or Kc = Kb ∗ 2α/ (eα − e−α)) corresponding to one stable and

one unstable steady state solution

Kc1 = 0, Kc2 =
2αeα

(
be2α (1− α)− b(α+ 1

)
+ qaPα2

(
e2α − 1

)
)

q (e2α − 1) (1 + α− aα2P + e2α(α+ aα2P − 1))
. (16)

The stable solution K(�) is given by

K(�) =
Kc (eα� − e−α�)

2�α
. (17)

where Kc = max(Kc1,Kc2), i.e. for Kc2 > 0 the stable solution is positive, while for Kc2 < 0,

K(�) ≡ 0. The global stability (with respect to a perturbation without spherical symmetry) of

K(�) solution is proved in the Appendix.

Let us note, that in the limit of the infinite diffusion coefficient d → ∞, i.e. α → 0, K(�) ≡

Kc = K2 and thus one obtains the same solution as given in Eq. 9. In the opposite limit d → 0

(i.e. α → ∞), Kb = 1, Kc = 0, Ktot = 0. In further analysis we set q = a = P = 1, and consider

the steady state kinase activity profiles with respect to two nondimensional parameters: α = d−1/2,

and b (receptor inactivation constant).

In Fig. 2 we analyze the dependence of the stable steady state K(�) on the diffusion parameter

α = d−1/2. With respect to the receptor dephosphorylation coefficient b, we may distinguish

three cases, shown in Panels A, B and C. For small b (Panel A), the dependence of active kinase

concentration profiles K(�) on α is similar as in the case without feedback; the larger is α, the

steeper is the active kinase profile, with higher value at the boundary and the lower value in the cell

center. Qualitatively different is the case shown in Panel B for larger values of b. For b = 2.5, the

active kinase concentration is higher across the whole cell for some finite diffusion (α = 2) than for

the infinite diffusion (α = 0). In the case of large dephosphorylation parameter (Panel C, b = 4) for

infinite, or large diffusion, K(�) ≡ 0, while for smaller diffusion K(�) > 0. This somehow surprising

effect is due to the fact that the strength of positive feedback is controlled by the diffusion. For
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small diffusion activated kinase remain longer in the vicinity of the membrane and may activate

the receptors more effectively.

In Figs. 3A and 3B we analyze Kb(α) and Kc(α) for four different values of b. As can be

expected , Kb is a growing function of α. For small b, Kc decreases with growing α (as in the case

without feedback), however for larger b, Kc(α) has a maximum for some αm(b) > 0. The existence

of such an ”optimal” αm is due to interplay of two counter-effects:

(1) large diffusion (small α) speeds translocation of active kinase, so they have a larger chance

to remain phosphorylated until they reach the cell center,

(2) simultaneously large diffusion attenuates the positive feedback coupling kinases with recep-

tors.

In contrast to the case without feedback, the total amount of active kinase Ktot(α) for large

b has maximum for some α′m(b) > αm(b) > 0. Let us note also, that both α′m(b) and αm(b) are

growing functions of b, diverging logarithmically to infinity with b.

As shown in Fig. 4 there are unbounded parameter domains Dc and Dtot in (α, b) plane for

which respectively Δc := Kc(α, b) −Kc(0, b) > 0 and Δtot := Ktot(α, b) −Ktot(0, b) > 0. Since for

finite diffusion Kb(α) > Kc(α): Dc ⊂ Dtot. In the case of the infinite diffusion (α = 0), the positive

solutions K(ρ, α, b) > 0 are restricted to domain b < 3. In the case of finite diffusion, for arbitrarily

large b there exists such α(b) that K(ρ, α, b) > 0.

4 Discussion

Dynamics of molecular pathways is determined by both, chemical reaction rules and localization of

substrates that in turn is governed by diffusion or transport. We considered here a simple theoretical

model of mutual receptor-kinase activation in which the kinase molecules, are phosphorylated by

the receptors at the cell membrane and may freely diffuse in the cell volume, where they are

dephosphorylated with time- and space-independent dephosphorylation rate. The positive feedback,

considered in the model, arises since activated kinase may in turn activate receptors.

In the case without feedback, active kinase concentration in the cell center and the total amount

of active kinase are monotonically growing functions of diffusion coefficient. However, the presence

of the positive feedback causes that the concentration of the active kinase in the cell volume is a

nontrivial function of the diffusion coefficient. The active kinase concentration in the cell center

depends on the two opposite, diffusion controlled effects: the kinase activity profile along the cell
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radius is flatter for large diffusion, and the strength of positive feedback controlling active kinase

concentration at the boundary is stronger for small diffusion. As a result in a broad range of

parameters a, q, P and b controlling mutual kinase-receptors activation and inactivation rates the

maximum value of the active kinase concentration in the cell center is reached for some finite value

of the kinase diffusion coefficient. Moreover, for the large receptor inactivation rate (b ≥ 3qaP ) the

active kinase concentration is everywhere zero for the infinite diffusion, but it is positive for the

sufficiently small diffusion. Interestingly, for constant a, q and P , even for arbitrarily large inacti-

vation coefficient b, there exists a positive steady state solution for the active kinase concentration

if the diffusion is sufficiently small.

In living cells the diffusion and thus spatiotemporal localization of substrates can be controlled

in a number of ways; Molecules can bind to a larger molecules of lower motility called buffers, or to

the cell membrane and other structural elements directly or with help of the, so called, anchoring

proteins. On the cell membrane receptors can form larger complexes of lower motility, or get

localized within lipid rafts. Relevant to our model, cell membrane can create microdomains which

trap signalling molecules, like Lck kinase, that activates TCR receptors, Douglass and Vale (2005).

Major simplification of our study is that it does not account for macromolecular crowding and

presence of diffusion obstacles within the cell (organelle, cellular structures). The macromolecular

crowding may have non-trivial effect on molecular association in the cell, possibly increasing its

rate by limiting the volume in which molecules are free to diffuse (see Minton 2001 and Zimmerman

and Minton 1993).

Our simple model provides an example in which diffusion controls the strength of the feedback

regulation and thus the dynamics of kinase activation. In the considered model, for a broad range of

parameters the cell can be activated only when the kinase diffusion coefficient is sufficiently small,

i.e. when reacting kinases and receptors are well collocalized that enables their mutual activation.
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Figure captions

Fig. 1. The case without feedback. Profiles of active kinase concentration K(ρ) for different values

of α = d−1/2. For all plots the remaining parameters are fixed: a = P = 1.
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Fig. 2. The case with feedback. Profiles of active kinase concentration K(ρ) for different

values of α = d−1/2. Three qualitatively different cases corresponding to three different value of

nondimensional receptor dephosphorylation rate b are considered; Panel A, (b = 1, α = 0, 2, 4),

Panel B, (b = 2.5, α = 0, 2, 4 ), and Panel C (b = 4, α = 0, 3.5, 6). For all plots the remaining

parameters are fixed: q = a = P = 1.

Fig. 3. The case with feedback. Concentration of active kinase at the boundary Kb (Panel A),

in the cell center Kc (Panel B), and total amount of active kinase Ktot (Panel C) as a function of

α = d−1/2. For all plots the remaining parameters are fixed: q = a = P = 1.

Fig. 4. The case with feedback. Dependence of active kinase concentration in the cell center

(Panel A) and total amount of active kinase (Panel B) with respect to α = d−1/2 and nondimensional

receptor dephosphorylation rate b. In Panel A we may distinguish three domains in (α, b) plane in

which respectively, Kc(α, b) = 0; Δc = Kc(α, b)−Kc(0, b) > 0; Δc ≤ 0. In domain Δc > 0, isolines

of Δc are shown. Similarly, in Panel B we may distinguish three domains in which respectively,

Ktot(α, b) = 0; Δtot = Ktot(α, b)−Ktot(0, b) > 0; Δtot ≤ 0. In domain Δtot > 0, isolines of Δtot are

shown. For both plots the remaining parameters are fixed: q = a = P = 1.

Appendix. Stability of spherically symmetric solutions

Let K̃(ρ) and R̃ = const denote the spherically symmetric stationary solution of system 4-6. For

the initial data not coinciding with (K̃(ρ), R̃), the solution (K(x, τ), R(τ)) to system 4-6 will be in

general different, i.e.

K(x, τ) = K̃(ρ) + δK(x, τ), R(x, τ) = R̃+ δR(x, τ).

Our task here is to examine the asymptotic in time behavior of the functions K and R. We will

confine here to initial data preserving the positivity of the functions K and R. The equations for

δR and δK read:

∂δK

∂τ
= d∇2δK − δK

inside the sphere and

dδR

dτ
= qδKb(P − R̃)− (qK̃b + b)δR − qδKbδR

aδR(1− K̃b)− aR̃δKb − aδRδKb = cn · ∇δKb

11
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on the sphere. Here we used the fact that R̃ and K̃ satisfy system 4-6. For ε > 0 an arbitrarily

small positive number, let

δk = δK exp ετ , δr = δR exp ετ (18)

Then, the above equations can be written as:

∂δk

∂τ
= d∇2δk − (1− ε)δk (19)

dδr

dτ
= q(P − R̃)δkb − (qK̃b + b+ qδkb exp (−ετ)− ε)δr (20)

aδr(x, τ)(1 − K̃b) = dn · ∇δk + a
(
R̃+ δr(x, τ) exp (−ετ)

)
δkb. (21)

The idea of the stability proof is to construct a time independent sub- and supersolution pairs:

(−δr−, δk
−) and (δr+, δk

+). As ε > 0 this will prove that δR(x, τ) and δK(x, τ) tend to 0 as

τ →∞.

Let

δK±(ρ) = ±δK±bφ(ρ;αε), (22)

where αε =

(
1− ε

d

)1/2

and

φ(ρ;α) =
(eα� − e−α�)

� (eα − e−α)
. (23)

Let us recall that φ is an increasing function of ρ and φ(1;α) = 1 for all α ∈ (0,∞). In fact

K̃(ρ) = K̃bφ(ρ;α0). (24)

Let

δK−b = K̃b − ψ(ε) (25)

where ψ(ε) ↘ 0 as ε → 0. This function will be specified later. It follows from 23, 24 and the

continuity of the function φ(ρ;αε) with respect to the parameter ε that if K(x, 0) > η > 0 for

|x| ≤ 1, we can find ε > 0 so small that

K(x, 0) > K̃(ρ(x))− δK−bφ(ρ(x);αε) > 0

for all x inside the sphere. Let δK+ be at least so large that K(x, 0) < K̃(ρ(x)) + δK+b(ρ(x)),

implying that δK(x, 0) < δK+b(ρ(x)). Let

12
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WR =
q(P − R̃)

qK̃b − qδK−b + b− ε
=

q(P − R̃)

qψ(ε) + b− ε
. (26)

We will assume that

δR± = δK±b(WR + ε). (27)

Let us note that as

(P − R̃)/R̃ = b/(qK̃b), (28)

it follows from Eq.27 that:

δR− = R̃− C2ψ(ε) + C̃2ε+ o(ψ(ε)) + o(ε). (29)

for some positive constants C2 and C̃2. If, for small ε ≥ 0, ψ(ε)/ε ≥ C3 > 0 with C3 sufficiently

large, then δR− < R̃. On the other hand, for any R(0) > 0 we can find ε > 0 sufficiently small

such that R(0) > R̃− δR−. Obviously, we may also choose δK+ so large that R(0) < R̃+ δR+.

Let

δr± = δR±, δk±b = δK±b. (30)

Let δk±(·) be constant in time spherically symmetric solutions to Eq.19:

δk±(ρ) = ±δk±bφ(ρ;αε). (31)

We will prove that (−δr−, δk
−) and (δr+, δk

+) defined in 30 and 31 are respectively the sub- and

supersolution pairs for system 19-21. So, after putting δr = −δr− in Eq.20 we infer that the right

hand side is positive if δkb ≥ −δk−b. In the similar way, after putting δr = δr+ in Eq.20 we infer

that the right hand side is negative if δkb ≤ δk+b. It follows that if δk+ ≥ δk(x, τ) ≥ −δk− at the

boundary, then δr(x, τ) ∈ (−δr−, δr+). We have thus to prove the corresponding properties of the

functions δk− and δk+ with respect to Eqs.19-21. First, as we said, the functions δk±(ρ) satisfy

Eq.19. So, to prove that δk−, defined in (22) is a subsolution it suffices to show, as (δk−)′|B =

w(1−ε
d )(−δk−b), that for all δr(x, τ) ∈ (−δr−, δr+) we have

δr(x, τ)(1 − K̃b + δk−b) ≥ −R̃δk−b − a
−1w

(
1− ε

d

)
δk−b. (32)

(See, chapter 2 of Pao 1992. Note that the coefficient by δkb in 21 is positive.) Here
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w(s) = φ,ρ(ρ = 1, s)

is smooth and monotonically increasing function of s for s ≥ (2d)−1. As δk−b = δK−b < K̃b then,

putting δr(x, τ) = −δr−, we conclude that inequality 32 is implied by the inequality:

(1− K̃b + δK−b)

[
q(P − R̃)

qK̃b − qδK−b + b− ε
+ ε

]
< R̃+ a−1w

(
1− ε

d

)

where we used 27. Now, due to 28, (P − R̃)/R̃ = b/(qK̃b). Hence, we obtain the condition:

b(1− K̃b + δK−b)/(qK̃b − qδK−b + b− ε) +O1(ε) < K̃b +
K̃b

R̃
a−1w

(
1− ε

d

)
.

As the spherically symmetric solution satisfies the equality

aR̃
(
1− K̃b

)
= w

(
1

d

)
K̃b (33)

then

b(1− K̃b + δK−b)/(qK̃b − qδK−b + b− ε) +O1(ε) < K̃b + (1− K̃b)w
(

1−ε
d

) [
w
(

1

d

)]−1

≤ K̃b + (1− K̃b)(1 − ν(ε))

for some given smooth function ν. Using 25 we arrive at the inequality

b(1− ψ(ε))

(qψ(ε) + b− ε)
+O1(ε) < 1− (1− K̃b)ν(ε).

This inequality can be satisfied if only ψ(ε) ≥ C(ε+ ν(ε)) with C > 0 sufficiently large.

In the last step we have to prove that δr(x, τ)(1 − K̃b) ≤
(
R̃+ δr(x, τ) exp(−ετ)

)
δk+b +

a−1w
(

1−ε
d

)
δk+b for all δr(x, τ) ∈ (−δR−, δR+). As δk+b = δK+b > 0 and δR− < R̃ then

δK+b

(
R̃+ δr(x, τ)

)
> 0 for δr(x, τ) ∈ (−δR−, δR+). Thus we have only to prove that δr(x, τ)(1−

K̃b) ≤ a−1w
(

1−ε
d

)
δK+b. Obviously, it suffices to show it for δr = δr+. Let us recall that

δr+ = δK+b(WR + ε) = δK+b
q(P − R̃)

qψ(ε) + b− ε
+ δK+b ε.

Hence we have to prove that[
q(P − R̃)

qψ(ε) + b− ε
+ ε

]
(1− K̃b) < a−1w

(
1− ε

d

)
.
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Using 28 and 33 we obtain as before that we have to satisfy the condition

b

qψ(ε) + b− ε
+O(ε) <

w
(

1−ε
d

)
w
(

1

d

) .

This is implied by the inequality:

b

qψ(ε) + b− ε
+O(ε) < 1− ν(ε)

where ν(ε) → 0 as ε→ 0. As before, this condition can be satisfied, if only ψ(ε) ≥ C(ε+ν(ε)) with

C > 0 sufficiently large. Finally, taking into account what we have shown and using Theorem 2.1.2

from Pao 1992, we come to a conclusion that −δr− < δr(x, τ) < δr+ and δk−(ρ(x)) ≤ δk(x, τ) ≤

δk+(ρ(x)) for all τ ∈ (0,∞).

So, due to the definition 18 we conclude that δK(x, τ) and δR(x, τ) tend to zero in the supremum

norm as t→∞.

We have thus shown that, if the initial data K(x, 0) and R(0) are positive, then the solution

(K(x, τ), R(τ)) to system 4-6 tends to the unique spherically symmetric solution (K̃, R̃) as τ →∞.
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