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Abstract

Heterogeneity in susceptibility and infectivity is inherent to infectious disease trans-

mission in nature. Here we are concerned with the formulation of mathematical models

that capture the essence of heterogeneity while keeping a simple structure suitable of ana-

lytical treatment. We explore the consequences of host heterogeneity in the susceptibility

to infection for epidemiological models for which immunity conferred by infection is par-

tially protective, known as Susceptible-Infected-Recovered-Infected (SIRI) models. We

analyze the impact of heterogeneity on disease prevalence and contrast the susceptibility

profiles of the subpopulations at risk for primary infection and reinfection. We present a

systematic study in the case of two frailty groups.

We predict that the average rate of reinfection may be higher than the average rate of

primary infection, which may seem paradoxical given that primary infection induces life-

long partial protection. Infection generates a selection mechanism whereby fit individuals

remain in S and frail individuals are transferred to R. If this effect is strong enough
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we have a scenario where, on average, the rate of reinfection is higher than the rate

of primary infection even though each individual has a risk reduction following primary

infection. This mechanism may explain high rates of tuberculosis reinfection recently

reported.

Finally, the enhanced benefits of vaccination strategies that target the high-risk groups

are quantified.

Keywords: partial immunity, interventions, tuberculosis.
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1 Introduction

Heterogeneity in susceptibility and infectivity is an important feature of many infectious

diseases and has been considered to improve the accuracy of epidemiological models. In the

analysis of these models, focus has been on the impact of heterogeneity in the final size of

epidemics (Ball, 1985; Miller, 2007) and on its consequences to disease control (Anderson &

Britton, 1998; Britton, 1998) and data interpretation (Gart, 1968; Anderson & May, 1991).

In the context of SIR epidemic models, it has been shown that the final size of the epidemic

is reduced when the risk of infection is heterogeneously distributed in the population, both

for the deterministic and the stochastic formulations (Gart, 1968; Ball, 1985; Anderson &

Britton, 1998). More recently, results were extended to the investigation of epidemic spread

on a random network (Miller, 2007).

In this work we explore the consequences of host heterogeneity in the susceptibility to in-

fection for endemic models for which immunity conferred by infection is not fully protective,

known as Susceptible-Infected-Recovered-Infected (SIRI) models. The model is expanded to

accommodate multiple frailty groups classified accordingly to risk of infection. We are con-

cerned not only with the impact on disease prevalence but also on how transmission changes

the risk profile of the population groups that are subject to reinfection. The SIRI model

exhibits two important thresholds in transmission: the endemic threshold that marks the

transmission intensity necessary to maintain disease endemic in a population; and the rein-

fection threshold that indicates whether self-sustained transmission occurs in a population

which has developed a degree of partial immunity (Gomes et al., 2004). The reinfection

threshold separates two fundamentally distinct model behaviors. Low endemic levels with

SIR-like transmission are maintained below threshold, while high endemic levels with SIS-

like transmission characterise the regime above threshold. Therefore, first we consider the

case of SIR and SIS models, exploring their simplicity and mathematical tractability to ex-

tract general trends. We describe how disease prevalence, risk profiles for specific population

compartments, and contribution of the high-risk group to overall incidence, change with the

parameters describing heterogeneity. Second, the same framework is used to explore the SIRI
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model. Of particular interest is the interplay between reinfection and the risk profile for the

uninfected compartments, S and R.

The results offer a plausible explanation for observations of higher than expected rein-

fection rates. In particular, rates of reinfection that surpass rates of first infection have

been reported for tuberculosis in a high transmission setting in South Africa (Verver et al.,

2005). Naively, one could attribute this effect to some form of immunologically dependent

enhancement whereby immunological memory would render individuals more susceptible to

subsequent infections. An alternative hypothesis suggested by the analysis presented here is

that relatively high rates of reinfection can result from the presence of a high-risk group that,

being at higher frequency in the recovered compartment due to selection imposed by the first

infection, can sustain rates of reinfection that are, on average, higher than the rates of first

infection even in the presence of partially protective immunity.

Heterogeneity has many implications for public health policy. In particular, we charac-

terise how the impact of vaccination strategies varies with transmission intensity, and quantify

the benefit of targeting high-risk groups.

2 The model

To incorporate heterogeneity in the infection risk in an SIRI transmission model we use a

formulation close to the one presented by Ball (1985) for SIR epidemic models. We assume

that the population is divided in n different subgroups according to the susceptibility to

infection, αi. These groups will be referred as frailty groups (Coutinho et al., 1999). Within

each frailty group, individuals are classified according to their disease history into susceptible,

infectious or recovered. A schematic version of the model is shown in Figure 1.

Figure 1: about here

It is assumed that the n frailty groups have constant size over time and that they represent

different proportions of the total population, γi, where
∑n

i=1
γi = 1. Individuals are born into

each group at the rate μγi. We use Si, Ii and Ri as the proportion of each class from the
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frailty group i in the total population. Hence we have
∑n

i=1
(Si+Ii+Ri) = 1. In the following

we denote by I the proportion of infectious in the population, that is I =
∑n

i=1
Ii.

For concreteness, we fix the parameters as described in table 1. The table describes an

Table 1: about here

average life expectancy of 70 years (that is μ = 1/70) and an average infectious period of

one week (that is τ = 52). The factor reducing the risk of infection as a result of acquired

immunity is σ = 0.25. For the limiting cases of the SIR and SIS models, parameter σ is

0 or 1, respectively. Parameters β, γi and αi are varied to explore different scenarios for

transmission intensity and host heterogeneity. Each frailty group has an average risk of

infection that differs from the population average by a factor αi, which we refer to as the

relative risk of infection (Gart, 1968; Ball, 1985). We assume that this factor controls the

rate of infection and reinfection in the ith frailty group. In general, the parameters are chosen

to resemble an acute respiratory infection in a developed country. However, we stress that

the results are valid for a wider set of parameters. Differences reside more on the quantitative

than on the qualitative behavior. The model can be written as a system of 3n differential

equations ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S′

i = μγi − λαiSi − μSi

I ′i = λαiSi + σλαiRi − (τ + μ)Ii

R′

i = τIi − σλαiRi − μRi, i = 1, . . . , n,

(2.1)

where λ = βI. To ensure comparison between different assumptions on risk distribution,

including the comparison with the homogeneous version of the model, we impose the normal-

ization ᾱ =
∑

αiγi = 1.

Throughout this paper we analyse the case n = 2. We denote by γ the proportion of

individuals belonging to the low-risk group (that is, γ1 = γ and γ2 = 1 − γ). For a given

population structure (γ) we vary the infection risk distribution by changing α1, obtaining α2

through the normalization α1γ + α2(1− γ) = 1. We use the variance as a summary measure
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of variations on α1,

varα = (ᾱ− α1)
2γ + (ᾱ− α2)

2(1− γ) =
(1− α1)

2γ

1− γ
. (2.2)

Note that for a given population structure the variance is a decreasing function of α1. The ho-

mogeneous model is obtained for α1 = ᾱ = 1 which, consistently, corresponds to zero variance.

2.1 Basic reproduction number

The basic reproduction number is an important concept in the study of epidemiological mod-

els. We recall that in the case of the corresponding model for homogeneous populations

(α1 = 1) the basic reproduction number is given by

R0 =
β

τ + μ
. (2.3)

Considering the heterogeneous model, the basic reproduction number is not altered. In fact,

RHET
0 =

β

τ + μ

2∑
i=1

αiγi =
βᾱ

τ + μ
=

β

τ + μ
= R0.

For a more detailed discussion on the calculation of the basic reproduction number in hetero-

geneous populations see Hyman & Li (2000) or Diekmann et al. (1990). A threshold condition

for endemicity is given by R0 = 1 (the disease dies out if R0 < 1 and becomes endemic if

R0 > 1).

Note that the basic reproduction number for the entire population is a weighted average

of the basic reproduction number within each independent frailty group, R0i, given by

RHET
0 =

∑
i

αiβ

τ + μ
γi =

∑
i

R0iγi.

Therefore, if the basic reproduction number for each group is greater than one, then the dis-

ease is also endemic in the entire population. On the other hand, it is not necessary to have
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all reproductive numbers greater than one to have endemicity.

3 The limit cases, SIR (σ = 0) and SIS (σ = 1)

Before studying the SIRI model, we analyze the impact of host heterogeneity in the case of

SIR and SIS models, corresponding to σ = 0 and σ = 1, respectively. The identification

between the SIS model and our model with σ = 1 is made in a natural way, by collapsing the

classes S and R of this last model into a class S + R, which we identify with the susceptible

class of the SIS model. However, in order to make possible the comparison between the limit

case with σ = 1 and the intermediate SIRI model, in what follows we keep distinct the S and

R classes even for σ = 1. Actually, we will consider the class S + R in Remark 3.1, where

we examine the effect of heterogeneity on the prevalence in the SIS framework. All results

stated in this section are proved in the appendix.

3.1 Endemic equilibrium

For σ = 0 or 1, system (2.1) has one disease-free equilibrium of the form Eσ
0 = (γ, 1 −

γ, 0, 0, 0, 0). Above R0 = 1, the system has also an endemic equilibrium, Eσ
1 . Stability results

for these equilibria are stated in the two theorems below. We use the superscript σ to denote

the correspondence with the SIR (σ = 0) or the SIS (σ = 1) models.

Theorem 3.1.1. For σ = 0 or 1, the disease-free equilibrium, Eσ
0 , of system (2.1) is globally

asymptotically stable if R0 < 1 and it is unstable for R0 > 1.

Theorem 3.1.2. Let σ = 0 or 1 and assume that R0 > 1. Then system (2.1) has exactly

one endemic equilibrium, Eσ
1 , that is globally asymptotically stable.

Figure 2: about here

We analyze the impact of heterogeneity on disease prevalence at equilibrium. Figure 2

illustrates how disease prevalence changes for different assumptions on population structure
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and distribution of infection risk for the SIR and SIS models. We observe that for a fixed

R0, the equilibrium disease prevalence is lower when assuming heterogeneous populations.

From each plot, it is evident that for fixed γ, the prevalence curve goes down as variance

increases. Comparing the three plots it is also apparent that for fixed α1, the prevalence

curve goes down as the proportion of the population at low risk (γ) increases. Moreover,

the disease prevalence appears to increase monotonically with the transmission potential, R0.

The following theorem summarizes these results.

Theorem 3.1.3. Let σ = 0 or σ = 1 and let Iσ, σ = 0, 1, designate the disease prevalence

at equilibrium, for the corresponding system (2.1) with R0 > 1. Then, for γ and α1 ∈ (0, 1)

∂Iσ

∂γ
≤ 0,

∂Iσ

∂α1

≥ 0 (3.1)

and
∂Iσ

∂R0

> 0, σ = 0, 1. (3.2)

Previous studies based on the SIR framework have shown that heterogeneity in suscepti-

bility to infection gives rise to smaller epidemics (Gart, 1968; Ball, 1985; Anderson & Britton,

1998). Here we find that disease prevalence at equilibrium is also lower in the presence of

heterogeneity, and this is true for both SIR and SIS models. This effect is more pronounced

the higher the variance in risk distribution.

3.2 Infection risk profiles

The profiles of the infection risk, within the susceptible and the recovered classes at endemic

equilibrium depend on assumptions on population heterogeneity and transmission intensity.

For σ = 0, 1, we define the average risk factor among susceptible and recovered individuals as

ᾱσ
S =

α1S
∗

1 + α2S
∗

2

S∗

1
+ S∗

2

, ᾱσ
R =

α1R
∗

1 + α2R
∗

2

R∗

1
+ R∗

2

, (3.3)

where S∗

i and R∗

i are the susceptible and recovered individuals in each frailty group, repre-

sented as proportions of the total population at endemic equilibrium. Figure 3 shows contour

plots for the average risk factor among individuals never infected (S) and those infected and
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Figure 3: about here

recovered at least once (R). Note, however, that these factors are further multiplied by λ and

σλ to produce the average per capita rates of infection in S and R, respectively. This figure

reflects how selection imposed by infection acts on the risk profiles.

In the SIR model, the average risk decreases as R0 increases both for never-infected indi-

viduals and previously-infected individuals (Figure 3(a) and Figure 3(b), respectively). This

selection mechanism underlies counter-intuitive trends that will emerge with the exploration

of σ ∈ (0, 1) in section 4, such as rates of reinfection decreasing with increasing R0 and rates

of reinfection appearing higher than rates of first infection even in the presence of partially

protective immunity.

In the SIS model, selection maintains a large proportion of the high-risk group in the

infected class and the mechanism is not entirely visible in the uninfected sub-population. Note

that the average risk among never-infected individuals is roughly constant with R0 (Figure

3(c)) while among previously-infected individuals (Figure 3(d)) the average risk decreases

with increasing R0 as in the susceptible class of the SIR model (Figure 3(a)).

The properties observed for ᾱ0
S are summarized in the following theorem, proved in the

appendix.

Theorem 3.2.1. Let R0 > 1. Then, for γ and α1 ∈ (0, 1)

∂ᾱ0
S

∂γ
≤ 0,

∂ᾱ0
S

∂α1

≥ 0 (3.4)

and
∂ᾱ0

S

∂R0

< 0. (3.5)

The decrease on the average risk of infection of the susceptible class explains how preva-

lence decreases with population heterogeneity. In fact, the average force of infection, λ̄0,

depends on the transmission intensity and on the average infection risk of the population

9



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

subject to infection,

λ̄0 = λ0ᾱ0
S = βI0ᾱ0

S = μ(R0ᾱ
0
S − 1), (3.6)

where we expressed I0 as a function of ᾱ0
S according to formula (B.2) given in section B of

the appendix. Directly from Theorem 3.2.1 it follows that heterogeneity decreases the force

of infection, since

∂λ̄0

∂γ
≤ 0,

∂λ̄0

∂α1

≥ 0. (3.7)

Remark 3.1. As mentioned above, when σ = 1 we can identify our model with a SIS model

through the identification of the class S + R with the susceptible class of the SIS. It is then

natural to investigate the effect of heterogeneity on prevalence by considering the dependence

on the parameters of the average risk of infection of the S + R class, ᾱ1
S+R, defined as

ᾱ1
S+R :=

α1(S
∗

1 + R∗

1) + α2(S
∗

2 + R∗

2)

(S∗

1
+ R∗

1
) + (S∗

2
+ R∗

2
)

and of the corresponding force of infection, λ̄1, defined as λ̄1 = λ1ᾱ1
S+R = βI1ᾱ1

S+R. This is

easily done, since from Remark B.1 and equation (A.4) in the appendix we have, respectively,

that ᾱ1
S+R = ᾱ0

S and that λ̄1 = τ+μ
μ

λ̄0. As a consequence, λ̄1 satisfies the inequalities

(3.7), and we conclude that the decrease on the average risk of infection of the susceptible

plus recovered class explains how prevalence decreases with population heterogeneity in the

SIS model.

Finally, as a side remark, we would like to note that with respect to the quantities defined

in (3.3), it is ᾱ1
S+R =

ᾱ1
SS∗ + ᾱ1

RR∗

S∗ + R∗
.

Despite having the same infectivity, the frailty groups contribute differently to the force of

infection. Disease is more easily spread on the high-risk group due to its increased suscepti-

bility, so the relative size of class I2 is also greater. To further explore how the contribution of

the high-risk group to the total proportion of infections changes with transmission intensity

and heterogeneity, we define the quotient Qσ = Iσ
2 /Iσ at equilibrium. For σ = 0 or σ = 1,
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the contribution of the high-risk group, Qσ, decreases as transmissibility increases and it is

greater when this frailty group is larger (γ close to 0) or when its relative risk of infection is

further from the population average (α1 close to 0). The following theorem summarizes these

results.

Theorem 3.2.2. Let R0 > 1. Then, for γ and α1 ∈ (0, 1)

∂Qσ

∂γ
≤ 0,

∂Qσ

∂α1

≤ 0 (3.8)

and
∂Qσ

∂R0

< 0 σ = 0, 1. (3.9)

Overall, the contribution of the high-risk group can vary from α2 times its relative size,

near the epidemic threshold, to its relative size, for sufficiently high transmission. This can

have important consequences for the effectiveness of interventions, specially in low endemic

regions where the groups with increased risk have more impact. We will focus more on this

aspect when studying the SIRI model.

4 The SIRI model

4.1 Endemic equilibrium

Here we consider the effect of heterogeneity in the intermediate scenario where infection

induces partial immunity. It is assumed that individuals are protected while infected but

regain some susceptibility upon recovery. Susceptibility to reinfection is reduced by a factor

σ ∈ [0, 1], compared to susceptibility to first infection. Endemic equilibria and infection risk

profiles have been analyzed for the limiting cases σ = 0, 1 (corresponding to SIR, SIS models)

in section 3. In both cases, disease persistence is determined by the threshold condition,

R0 > 1, irrespective of population structure, sustaining levels of infection that are generally

much higher in the SIS scenario due to reinfection. In the intermediate case, another threshold

has been identified, R0 = 1/σ (Gomes et al., 2004, 2005), to describe a transition from SIR-

to SIS-like behavior. In section C of the appendix we show that the same expression holds
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for the reinfection threshold in the presence of heterogeneity in susceptibility to infection.

Quantitative discrepancies between epidemiological data and model results have been re-

ported previously and generally attributed to case sub-notification or population heterogeneity

not captured by simple models (Fine & Clarkson (1982), Anderson & May (1985), van Boven

at al. (2001)). Systematic investigations of these factors are expected to provide valuable

insights with wide application in infectious disease epidemiology. In section 3 we have shown

that heterogeneity in susceptibility to infection reduces prevalence of infection in SIR and SIS

models and here we extend this conclusion to the general SIRI framework. Figure 4 shows the

Figure 4: about here

endemic equilibrium for different infection risk profiles of the population. When heterogeneity

is considered the disease prevalence is lower than in the homogeneous case, and this effect is

more pronounced when the variance, varα, is higher (high γ and low α1). These trends are

observed for 0 ≤ σ ≤ 1, including the particular cases σ = 0, 1, analyzed previously.

4.2 Infection risk profiles

The reduction in disease prevalence is associated with the changes in the infection risk profile

imposed by transmission on both susceptible and recovered classes. In this section we analyze

how the average infection risk of susceptible and recovered individuals change with R0 and

heterogeneity (here represented by the proportion the population with low risk, γ, and risk

of these individuals relative to the average, α1). We remark that when σ ∈ (0, 1) the average

risk factors in the susceptible and recovered classes, ᾱS and ᾱR respectively, are defined as in

(3.3).

Figure 5 illustrates the average risk factor for susceptible and recovered classes for γ = 0.8

and σ = 0.25, by means of contour plots in the parameter space of transmissibility, R0,

and heterogeneity, α1. Generally, the average risk among susceptible individuals decreases

as R0 increases (Figure 5(a)) while the opposite is observed among recovered individuals

(Figure 5(b)). The reinfection threshold, marked by vertical dotted lines, is associated with
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a saturation of the trend observed for the susceptible (ᾱS appears constant for R0 above

threshold) and an average risk equal to one in the recovered class (ᾱR = 1). Compare

with Figure 3. Overall, we have two equilibrium regimes. Below the reinfection threshold,

Figure 5: about here

the uninfected population is composed of many susceptible individuals with an average risk

factor below one, and few recovered individuals with high risk due to selection imposed by

infection. Above the reinfection threshold, most individuals have already experienced at least

one infection and are still susceptible to reinfection but have an average risk factor below one.

In the latter case, selection maintains a large proportion of the population in the infected

class.

The patterns described for susceptible and recovered risk profiles have strong implications

for the interpretation of disease dynamics, notably the contribution of reinfection to the overall

disease incidence. We define the incidence of first infection and the incidence of reinfection,

in the respective populations at risk, as

Y1 =
σλ(α1S

∗

1 + α2S
∗

2)

S∗
= λᾱS , (4.1)

Y2 =
σλ(α1R

∗

1 + α2R
∗

2)

R∗
= σλᾱR. (4.2)

The total incidence in the entire uninfected population is then calculated as

Ytotal = (Y1S
∗ + Y2R

∗)/(S∗ + R∗)

.

Figure 6: about here

Figure 6 shows that despite reinfection being hindered by heterogeneity, the rate of rein-

fection among recovered individuals, Y2, can be higher than overall rate of infection in the
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entire uninfected population, Ytotal. We see that, for the homogeneous case (α1 = 1), the

quotient, Y2/Ytotal, increases monotonically with R0, and for R0 > 1/σ it is above one. For

the heterogeneous case, reinfection among the recovered class can be higher than disease in-

cidence also below the reinfection threshold. Even for low endemic populations, where the

contribution of reinfection is low, it is possible that recovered individuals, as a group, show a

higher risk of reinfection than expected when assuming partial immunity. This can have ma-

jor implications for the interpretation of epidemiological data. In particular, overlooking host

heterogeneity may lead to misleading expectations for the effectiveness of control measures.

4.3 Contribution of the high-risk group

As we have observed, for intermediate transmission levels, that reinfection occurs mainly in

the high-risk group. So, it is also expected that its contribution to the overall transmission

should be higher than in the heterogeneous SIR and SIS models.

Figure 7 shows the contribution of the high-risk group to the total disease prevalence for

the particular case γ = 0.8 and α1 = 0.2. This corresponds to a risk group of 20% of the total

population with an increased risk of infection α2 = 4.2 times that of the total population,

and 21 times that of the low-risk group. Moreover, for this choice of parameters, disease

prevalence corresponds to about 30% of the homogeneous model prediction as represented by

the dashed line in Figure 4(b) for σ = 0.25. Here a sub-population of 20% accounts from 70%

to 85% of the infection, depending on the intensity of transmission. The contribution of the

high-risk group is stronger near the endemic and reinfection thresholds. Near the thresholds

the classes that are susceptible to infection and reinfection, S and R, respectively, reach their

maximum capacity, accounting for almost all population. Therefore, the average risk on these

classes and the selection pressure on the high-risk group are maximum.

Figure 7: about here

When considering heterogeneous infectivity, theoretical work and different field studies

have suggested that roughly 20% of the infectious individuals can be responsible for 80% of
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transmission (Galvani & May, 2005; Woolhouse et al., 1997). This 20/80 rule has important

consequences for disease control (Woolhouse et al., 1997). Here we obtain similar effects by

assuming heterogeneity in susceptibility to infection as previously estimated for the case of

malaria transmission, where 20% of people receive 80% of all infections (Smith at al., 2005)

due to heterogeneity in biting or in susceptibility to infection.

5 Targeted vaccination

The greater impact of the high-risk group on transmission should be taken into account

when planning interventions for disease control. In this section, we compare uniform and

targeted vaccination strategies. Comparison is made on the basis of the vaccination coverage

required, under different strategies, to obtain the same impact. We implement vaccination at

birth assuming that the protection conferred by the vaccine is equivalent to that of natural

immunity. Vaccination reduces the risk of infection but the relative susceptibility of the two

frailty groups is maintained. This is formalised as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S′

i = (1− vi)μγi − λαiSi − μSi

I ′i = λαiSi + σλαiRi − (τ + μ)Ii

R′

i = viμγi + τIi − σλαiRi − μRi, i = 1, 2.

(5.1)

The epidemic threshold for system (5.1) is described by

R0 =
1

((1− v1) + σv1)γα1 + ((1− v2) + σv2)(1− γ)α2

. (5.2)

First, we consider a strategy based on a limited quantity of vaccines corresponding to a given

coverage, v. We can then vary the percentage of each risk group covered by the program by

fixing v = v1γ+v2(1−γ) and varying v2. Naturally, increasing the representation of the high-

risk group in the vaccinated sub-population will increase the impact of the program (Britton,

1998). Here we reverse the argument and inspect what coverage we need to attain with a

targeted strategy in order to achieve the same effectiveness as the corresponding uniform
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strategy. This will provide an estimation for how many doses we save by targeting the

vaccination program to those individuals at higher risk, as a so called top-to-bottom strategy

(Britton, 1998).

Figure 8: about here

Figure 8 illustrates the saving associated with targeting. For Figure 8(a) we use as a

reference the reduction in disease prevalence achieved with a uniform vaccination strategy

with coverage v = 0.5. The figure shows the coverage for a targeted strategy to achieve the

same reduction in disease prevalence. Below the reinfection threshold (R0 = 4) it is always

possible to achieve the same reduction using a targeted strategy with lower coverage, while

above the reinfection threshold there is no difference. Note that this is achieved by vaccinating

only a proportion of the high-risk group (if R0 is low enough - dotted line in the figure) or

by vaccinating completely the high-risk group and a proportion of the low-risk group (dashed

lines in the figure).

Figure 8(b) represents elimination coverages under different strategies. The critical vac-

cination coverage to eliminate the infection for a given R0 is vc = (1 − 1/R0)/(1 − σ) for

the uniform strategy (full line) and vc = (1 − 1/R0)(1 − γ)/[(1 − σ)(1 − γα1)] or vc =

[(1− 1/R0)/(1−σ)− (1−α1)]/α1 for the top-to-bottom strategy with vaccination of only the

high-risk group (dotted line) or both groups (dashed line), respectively. Under the reinfection

threshold, the elimination coverage is always lower for the targeted strategy. Note that it is

impossible to interrupt transmission and eliminate the infection above the reinfection thresh-

old as previously described (Gomes et al., 2004, 2005). Above this threshold, only a superior

vaccine, capable of inducing an immune response more effective than natural infection, would

be efficacious.

6 Discussion

We have previously identified a reinfection threshold in the SIRI model and characterised how

this induces a sharp division of the transmissibility axis into two regimes: reinfection is rare
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below threshold (SIR behavior) and very frequent above (SIS behavior). Here we describe

how heterogeneity in innate susceptibility to infection smoothens this transition by making

both regimes less extreme. Heterogeneity is always present in nature and it is important to

understand how it can affect system behavior both qualitatively and quantitatively.

We perform a systematic analysis of the SIRI model with distributed susceptibility. The

most striking result is the prediction that the average rate of reinfection may be higher than

the average rate of primary infection, which may seem paradoxical given that primary infection

induces life-long partial protection. The rationale behind this result is that infection generates

a selection mechanism that skews the susceptibility profiles of the S and R compartments

to lower and higher susceptibility, respectively. In other words, selection acts to keep fit

individuals in S and frail individuals in R. If this effect is strong enough we have a scenario

where, on average, the rate of reinfection (infection out of R) is higher than the rate of primary

infection (infection out of S) even though each individual has a risk reduction following

primary infection. This mechanism may explain high rates of tuberculosis reinfection recently

reported (Verver et al., 2005).

A rule of thumb has been proposed in infections disease dynamics, whereby 20% of the

population is responsible for 80% of all infections due to heterogeneity in susceptibility or

infectivity (Woolhouse et al., 1997). However, direct confirmation of this hypothesis requires

very large epidemiological studies. For diseases that induce partial immunity, mathematical

models such as those proposed here offer the practical alternative of using the ratio between

reinfection and primary infection rates as an indirect measure of population heterogeneity.

In the SIRI models with heterogeneous susceptibility, we predict that disease prevalence

is lower than the corresponding homogeneous model, as described before for epidemic SIR

models (Gart, 1968; Ball, 1985; Anderson & Britton, 1998; Miller, 2007). In other words, to

obtain a given level of disease prevalence, the heterogeneous model requires a higher value

for the transmission intensity, R0. This implies that elimination strategies require more effort

under wider heterogeneity (Anderson & May, 1991).

The success of vaccination depends then on the ability to target those individuals at

higher groups. Generally, there is an additional benefit associated with targeting vaccination
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strategies, as previously described for the SIR epidemic model (Britton, 1998; Koopman et

al., 2005). In the case of the SIRI model, however, the added value of targeting high-risk

groups is limited to those regions where transmission is below the reinfection threshold.
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Appendix

A Proofs of Section 3.1

For σ = 0 (SIR model), from system (2.1) we obtain

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S′

1 = μγ − βIα1S1 − μS1

S′

2 = μ(1− γ)− βIα2S2 − μS2

I ′ = βI(α1S1 + α2S2)− (τ + μ)I.

(A.1)

When σ = 1 (SIS model), we can collapse the recovered classes into the susceptible ones in

system (2.1). Then, if we denote for simplicity by Si the classes Si + Ri, i = 1, 2, and use

the fact that γi = Si + Ii, we obtain the following system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S′

1 = (τ + μ)γ − βIα1S1 − (τ + μ)S1

S′

2 = (τ + μ)(1− γ)− βIα2S2 − (τ + μ)S2

I ′ = βI(α1S1 + α2S2)− (τ + μ)I.

(A.2)

Note that system (A.2) is equivalent to an SIR model where the birth and death rate are

equal to μ̃ = τ + μ and the recovery rate is τ̃ = 0.
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Proof of Theorem 3.1.1

Proof. Let us first consider σ = 0. The Jacobian of system (A.1) at the disease-free equilib-

rium is

J(E0) =

⎡
⎢⎢⎢⎢⎣

−μ 0 −βα1γ

0 −μ −βα2(1− γ)

0 0 β − (τ + μ)

⎤
⎥⎥⎥⎥⎦

.

The eigenvalues of this matrix are −μ and β − (τ + μ). So we conclude that E0 is locally

asymptotically stable for R0 < 1 and unstable for R0 > 1. Moreover, system (A.1) is equiv-

alent to system (3.1) in Hyman & Li (2005) for n = 2. In Theorem 3.1 of that paper, the

authors prove the global stability for the disease-free equilibrium for R0 < 1.

For the case σ = 1, calculations can be repeated using μ̃ = τ + μ as the new birth and

death rates and τ̃ = 0 as the new rate of recovery.

Proof of Theorem 3.1.2

Proof. The second member of system (A.1) vanishes at the equilibria. From the two first

equations we get a relation between Si and I: S1 = γμ/(μ + βIα1) and S2 = (1 − γ)μ/(μ +

βIα2). Substituting in the third one we get (τ + μ)
P (I)

Q(I)
I = 0, where P (I) = a2I

2 + a1I + a0

with a2 = −α1α2R
2
0(τ + μ)2, a1 = R0(τ + μ)μ(α1α2R0 − (α1 + α2)) and a0 = μ2(R0− 1) and

Q(I) = (μ + βIα1)(μ + βIα2). Note that for I ≥ 0 we have Q(I) > 0. We conclude that the

I coordinate of the nontrivial equilibria of system (A.1) will correspond to a positive solution

of P (I) = 0. Since a2 < 0 and a0 > 0 for R0 > 1 we conclude that the polynomial P has

exactly one positive solution of the form:

I0(R0) =
−a1 −

√
a2

1
− 4a2a0

2a2

(A.3)

and this proves the first part of the theorem.

In what concerns stability, system (A.1) is equivalent to system (3.1) in Hyman & Li

(2005) for n = 2. In Theorem 3.2 of that paper, the authors prove the stability for the

endemic equilibrium for R0 > 1 via Liapunov stability theory.
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As in the previous proof, for the case σ = 1, calculations can be repeated using μ̃ = τ + μ

as the new birth and death rates and τ̃ = 0 as the new rate of recovery.

Remark A.1. From the proof of theorem 3.1.2 it is possible to establish a relation between

the disease prevalence of both models. In fact, for every γ ∈ (0, 1) and α1 ∈ (0, 1] we have

I1 =
τ + μ

μ
I0, (A.4)

where I0 and I1 represent the disease prevalence at equilibrium for the SIR and SIS models,

respectively. This relation is systematically used to extend the proofs from the case σ = 0 to

the case σ = 1.

We can also conclude that for all γ ∈ (0, 1) and α1 ∈ (0, 1]

lim
R0→+∞

I0 =
μ

τ + μ
and lim

R0→+∞

I1 = 1. (A.5)

Remark A.2. From the proof of Theorem 3.1.2, taking into account Remark A.1, we recover

the expression of the endemic equilibrium for the homogeneous model, both for the σ = 0 and

the σ = 1 cases, by using α1 = α2 = 1 (or α1 = 1):

I0
Hom(R0) =

μ

τ + μ

(
1−

1

R0

)
and I1

Hom(R0) = 1−
1

R0

. (A.6)

Proof of Theorem 3.1.3

Proof. First, let σ = 0 and denote by I0 and I0∗ , respectively, the unique positive and negative

roots of the polynomial P defined in the proof of Theorem 3.1.2. Differentiating P (I0) = 0

with respect to a parameter ε, we get

∂I0

∂ε
=
−

∂a2

∂ε
I02

−
∂a1

∂ε
I0 −

∂a0

∂ε
2a2I0 + a1

. (A.7)

Note that we have I0 +I0∗ = −a1/a2 and that a2 < 0. Hence we conclude that the denomina-

tor of (A.7) verifies 2a2I
0 + a1 = a2(2I

0 + a1/a2) = a2(2I
0− I0− I0∗) = a2(I

0− I0∗) < 0. As
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a consequence of this fact, the sign of (A.7) will be the opposite of the one of the numerator.

Let ε = γ. In this case, ∂a0/∂γ = 0. So, ∂I0/∂γ ≤ 0 iff
∂a2

∂γ
I0 +

∂a1

∂γ
< 0. Now we

replace I0 by its expression in (A.3). Since a2 < 0 and ∂a2/∂γ < 0 we get the following

equivalent condition −a1 + 2a2
∂a1

∂γ
/∂a2

∂γ
<

√
a2

1
− 4a0a2. If the left hand side is negative, then

the condition is true and the result is proved. Otherwise, we can square both sides. In this

case we get
(
−a1 +2a2

∂a1

∂γ
/
∂a2

∂γ

)2

−a2
1 +4a0a2 = −4α1R0(1−γ)(1−α)(1−γα1) < 0, which

ends this part of the proof.

Let ε = α1. Now we have ∂I0/∂α1 ≥ 0 iff

∂a2

∂α1

I0 +
∂a1

∂α1

> 0. (A.8)

Again, we substitute I0 by its expression in (A.3). Depending on the sign of ∂a2/∂α1(�= 0)

we obtain two different cases:

Case 1. If
∂a2

∂α1

< 0 then (A.8) is equivalent to −a1 + 2a2

∂a1

∂α1

/
∂a2

∂α1

>
√

a2
1
− 4a0a2 (a);

Case 2. If
∂a2

∂α1

> 0 then (A.8) is equivalent to −a1 + 2a2

∂a1

∂α1

/
∂a2

∂α1

<
√

a2
1
− 4a0a2 (b).

Note that if ∂a2/∂α1 = 0 then we must see if ∂a1/∂α1 > 0, which is true for R0 > 1.

The sign of ∂a2/∂α1 is the same as the sign of 2α1γ − 1. So, for case 1, let us assume

2α1γ < 1. The left hand side of (a) is
R0(τ + μ)μ[R0α1((1 − α1γ)(1 − 2α1γ)) + 1− α1]

(1− γ)(1 − 2α1γ)

which is positive for 2α1γ > 1. Hence, we can square both sides of (a) and we get
(
− a1 +

2a2
∂a1

∂γ
/∂a2

∂γ

)2

− a2
1 + 4a0a2 =

R2
0(τ + μ)2μ24γα1

(1− γ)2(1− 2α1γ)2
(1−α1)(1−α1γ)[R0((1− 2α1γ)2 + α1(1−

2α1γ)) + 1− α1] > 0 which ends the proof of case 1.

In case 2 the left hand side can change sign. Let us denote the left hand side by B. So, to

verify (b) we have to show that if B is positive then B2−a2
1+4a0a2 < 0. By the calculations for

the previous case we get that, for 2α1γ > 1, B > 0 iff C = R0α1((1−α1γ)(1−2α1γ))+1−α1 <

0. Again, from the previous case we know that the sign of B2−a2
1+4a0a2 is the same as the one

of R0((1−2α1γ)2 +α1(1−2α1γ))+1−α1 = C/α1 +R0(1−2α1γ)α1(1−γ)−(1−α1)
2/α1 < 0,

since C < 0. This ends the proof of case (b).

Finally, let ε = R0. In this case ∂a0/∂R0 �= 0. So, from (A.7) and since the denominator
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is non-positive, to prove that ∂I0/∂R0 ≥ 0 we need to prove that

∂a2

∂R0

I02
+

∂a1

∂R0

I0 +
∂a0

∂R0

> 0. (A.9)

Now, taking into account that I02
= −(a1I

0 + a0)/a2 and using the expression of I0 given

in (A.3) we obtain −Aa1 + 2a2B > A
√

a2
1
− 4a0a2, where A = ∂a1

∂R0
a2 −

∂a2

∂R0
a1 and B =

a2
∂a0

∂R0
− a0

∂a2

∂R0
. By substituting ai and its derivatives in A we conclude that A = −α1(1 −

α1γ)R2
0(τ + μ)3μ(α1(1− γ) + (1−α1γ))/(1− γ)2 < 0. So, we can divide both sides by A and

get

−a1 + 2a2B/A >
√

a2
1
− 4a0a2. (A.10)

If the left hand side is negative, then the condition is true and the result is proved. Otherwise,

we can square both sides of (A.10). Finally, we need to prove that the following expression

−4C(1 − α1γ)α1μ
2(τ + μ)2R2

0/(1 − γ)(α1(1 − γ) + (1 − α1γ))2 is negative, where C is a

polynomial in R0 of degree 2 with coefficients c2 = α1(1 − α1γ)(α1(1 − γ) + γ(1 − α1)),

c1 = 2α1(1 − α1)(1 − α1γ)(1 − 2γ) and c0 = (1− α1)
2. We note that, the minimum value of

C is attained at Rm
0 = 1− (1− γ)/(α1(1 − γ) + γ(1 − α1)) < 1 and C is positive at Rm

0 . As

a consequence, since c2 > 0 we conclude that C is positive for R0 > 1. This concludes this

part of the proof.

For σ = 1 the proofs follow easily from Remark A.1.

B Proofs of Section 3.2

First we derive an expression which relates the disease prevalence with the relative risk of the

susceptible class in the case of the SIR model and the average risk of infection of the S + R

class in the case of the SIS system. Then we can use the results from the previous section to

prove theorem 3.2.1 and to get Remark 3.1.
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In the SIR case, from (A.1) letting S = S1 + S2, we obtain

⎧⎪⎨
⎪⎩

S′ = μ− βIᾱ0
SS − μS

I ′ = βIᾱ0
SS − (τ + μ)I.

(B.1)

Hence, we get an implicit expression for the disease prevalence at equilibrium in the case

σ = 0

I0 =
μ

τ + μ

(
1−

1

ᾱ0
SR0

)
. (B.2)

Similarly, from system (A.2), we obtain the relation between the disease prevalence I1

and the average risk of infection

I1 = 1−
1

ᾱ1
S+RR0

. (B.3)

Remark B.1. In particular, from Remark A.1 we conclude by this last equality that ᾱ0
S =

ᾱ1
S+R.

Proof of Theorem 3.2.1

Proof. Let σ = 0. From (B.2) we obtain the following expression for ᾱ0
S

ᾱ0
S =

μ

R0(μ− (τ + μ)I0)
. (B.4)

Thus, for ε = γ or α1 we get

∂ᾱ0
S

∂ε
=

μ(τ + μ)

R0[μ− (τ + μ)I0]2
∂I0

∂ε
, (B.5)

which has the same sign as ∂I0/∂ε.

For the derivative of ᾱ0
S with respect to R0 we get

∂ᾱ0
S

∂R0

=
μ

[R0(μ− (τ + μ)I0)]2

[
μ− (τ + μ)I0 −R0(τ + μ)

∂I0

∂R0

]
. (B.6)

Hence, to prove that the derivative is negative is equivalent to prove that I0 +∂I0/∂R0 <

μ/(τ + μ). Now we substitute (I0)2 by −(a1I
0 + a0)/a2 and ∂I0/∂R0 by the expression from
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(A.7). Furthermore, we replace I0 by its expression in (A.3). So, taking into account that a2 <

0 and A = R0
∂a2

∂R0
a1−a2a1−

∂a1

∂R0
a2R0−2a2

2μ/(τ +μ) = −μ(τ +μ)3α2
1(1−α1γ)2R4

0/(1−γ)2 < 0

we get to the equivalent condition

−a1 + 2a2B/A <
√

a2
1
− 4a0a2. (B.7)

If the left hand side is negative then the condition is true. Otherwise we can square both sides

of (B.7). Hence
(
− a1 + 2a2B/A

)2
− a2

1 + 4a0a2 = −4R2
0γμ2(τ + μ)2(1 − α1)

2/(1 − γ) < 0.

which ends this part of the proof.

Proof of Theorem 3.2.2

Proof. As for the previous proofs, we start by studying the case σ = 0 and then the case

σ = 1 follows directly from Remark A.1. In fact, in this case we have Q0 = Q1.

For simplicity we write Q0 = I0
2/I0 as 1− I0

1/I0 = 1−R0α1μγ/(R0(τ + μ)I0α1 + μ). The

derivative of Q0 with respect to γ is

∂Q0

∂γ
= −

R0α1μ[μ + R0α1(τ + μ)
(
I0 − γ ∂I0

∂γ

)
]

(R0(τ + μ)I0α1 + μ)2
. (B.8)

But I0 − γ
∂I0

∂γ
= I0

(
1 + γ

∂a2

∂γ
I0 + ∂a1

∂γ

2a2I0 + a1

)
≥ 0 from what was seen in the proof of Theorem

3.1.3. Thus we conclude that ∂Q0

∂γ
≤ 0.

The derivative of Q0 with respect to α1 is

∂Q0

∂α1

= −
R0γμ[μ−R0α

2
1(τ + μ) ∂I0

∂α1
]

(R0(τ + μ)I0α1 + μ)2
. (B.9)

This expression has the opposite sign of C = μ−R0α
2
1(τ + μ) ∂I0

∂α1
. Again, we replace I02

by

−(a1I
0 + a0)/a2 and then I0 by its expression in (A.3). Finally, we conclude that C ≥ 0 iff

−a1A + 2a2B ≤ A
√

a2
1
+ 4a2a0, where A = 2μa2

2 − R0α
2
1(τ + μ) ∂a2

∂α1
a1 + R0α

2
1(τ + μ) ∂a1

∂α1
a2

and B = a1a2μ−R0α
2
1(τ + μ) ∂a2

∂α1
a0. Note that by substituting ai and its derivatives in A we
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can easily conclude that A is positive. Therefore, we can divide both sides by A, obtaining

that C ≥ 0 iff

−a1 + 2a2B/A ≤
√

a2
1
+ 4a2a0. (B.10)

If the left hand side is negative, then the condition is verified. Otherwise we can square both

sides of (B.10). Hence, we get −
4(1 − α1γ)2γα2

1μ
2(τ + μ)2R4

0

(1− γ)
≤ 0. This implies that C ≥ 0

or, equivalently, that ∂Q0/∂α1 ≤ 0, which ends this part of the proof.

The derivative of Q0 with respect to R0 is

∂Q0

∂R0

=
α1γμ[μ−R2

0α1(τ + μ) ∂I0

∂R0
]

(R0(τ + μ)I0α1 + μ)2
. (B.11)

This expression has the same sign of C = b−R2
0

∂I0

∂R0
, where b = μ/(α1(τ + μ)). We conclude

that C > 0 iff −a1A + 2a2B > A
√

a2
1
+ 4a2a0, where A = ∂a2

∂R0
a1 −

∂a1

∂R0
a2 − 2a2

2b
′, B =

a0
∂a2

∂R0
− ∂a0

∂R0
a2 − b′a1a2 and b′ = ba2/R

2
0. Note that by substituting ai and its derivatives in

A we can easily conclude that A is negative. So, we can divide both sides by A, obtaining

that C > 0 iff

−a1 + 2a2B/A <
√

a2
1
+ 4a2a0. (B.12)

If the left hand side is negative the condition is verified. Otherwise we can square both sides

of (B.12). Hence, we get −
4(1− α1γ)2γα2

1μ
2(τ + μ)2R4

0

(1− γ)
< 0. This ends the proof.

C The reinfection threshold for the heterogeneous SIRI model

To compute the reinfection threshold associated with the heterogeneous SIRI model (2.1)

with n=2, we first have to define the reinfection sub-model. This model corresponds to the

limit situation where all individuals that enter in the system are partiality immunized and

only subjected to reinfection. Hence, the reinfection sub-model has only four classes and can
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be represented with the following system of differential equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

R′

1 = μγ + τI1 − σλα1R1 − μR1,

I ′1 = σλα1R1 − (τ + μ)I1

R′

2 = μ(1− γ) + τI2 − σλα2R2 − μR2,

I ′2 = σλα2R2 − (τ + μ)I2

(C.1)

The reinfection sub-model has a unique disease-free equilibrium E0 = (γ, 0, 1− γ, 0). An-

alyzing the jacobian at E0 we conclude that a bifurcation on the transmission parameter β

occurs at β = (τ + μ)/σ when the disease free equilibrium changes its stability. In terms of

the basic reproduction number the bifurcation is attained at R0 = 1/σ.
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Table 1: about here
symbol definition value

β transmission coefficient variable

σ factor reducing the risk of infection as a result of acquired 0, 1 or

immunity to a previous infection 0.25

μ death and birth rate 1/70 yr−1

τ rate of recovery 52 yr−1

γi relative size of each frailty group variable

αi relative risk of infection of each frailty group variable

Table1




