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A c c e p t e d m a n u s c r i p t 1 Introduction

Heterogeneity in susceptibility and infectivity is an important feature of many infectious diseases and has been considered to improve the accuracy of epidemiological models. In the analysis of these models, focus has been on the impact of heterogeneity in the final size of epidemics [START_REF] Ball | Deterministic and stochastic epidemics with several kinds of susceptibles[END_REF][START_REF] Miller | Epidemic size and probability in populations with heterogeneous infectivity and susceptibility[END_REF] and on its consequences to disease control [START_REF] Anderson | Heterogeneity in epidemic models and its effect on the spread of infection[END_REF][START_REF] Britton | On critical vaccination coverage in multiple epidemics[END_REF] and data interpretation [START_REF] Gart | The mathematical analysis of an epidemic with two kinds of susceptibles[END_REF][START_REF] Anderson | Infectious diseases of humans[END_REF].

In the context of SIR epidemic models, it has been shown that the final size of the epidemic is reduced when the risk of infection is heterogeneously distributed in the population, both for the deterministic and the stochastic formulations [START_REF] Gart | The mathematical analysis of an epidemic with two kinds of susceptibles[END_REF][START_REF] Ball | Deterministic and stochastic epidemics with several kinds of susceptibles[END_REF][START_REF] Anderson | Heterogeneity in epidemic models and its effect on the spread of infection[END_REF]. More recently, results were extended to the investigation of epidemic spread on a random network [START_REF] Miller | Epidemic size and probability in populations with heterogeneous infectivity and susceptibility[END_REF].

In this work we explore the consequences of host heterogeneity in the susceptibility to infection for endemic models for which immunity conferred by infection is not fully protective, known as Susceptible-Infected-Recovered-Infected (SIRI) models. The model is expanded to accommodate multiple frailty groups classified accordingly to risk of infection. We are concerned not only with the impact on disease prevalence but also on how transmission changes the risk profile of the population groups that are subject to reinfection. The SIRI model exhibits two important thresholds in transmission: the endemic threshold that marks the transmission intensity necessary to maintain disease endemic in a population; and the reinfection threshold that indicates whether self-sustained transmission occurs in a population which has developed a degree of partial immunity [START_REF] Gomes | Infection, reinfection, and vaccination under suboptimal immune protection: epidemiological perspectives[END_REF]. The reinfection threshold separates two fundamentally distinct model behaviors. Low endemic levels with SIR-like transmission are maintained below threshold, while high endemic levels with SISlike transmission characterise the regime above threshold. Therefore, first we consider the case of SIR and SIS models, exploring their simplicity and mathematical tractability to extract general trends. We describe how disease prevalence, risk profiles for specific population compartments, and contribution of the high-risk group to overall incidence, change with the parameters describing heterogeneity. Second, the same framework is used to explore the SIRI The results offer a plausible explanation for observations of higher than expected reinfection rates. In particular, rates of reinfection that surpass rates of first infection have been reported for tuberculosis in a high transmission setting in South Africa (Verver et al., 2005). Naively, one could attribute this effect to some form of immunologically dependent enhancement whereby immunological memory would render individuals more susceptible to subsequent infections. An alternative hypothesis suggested by the analysis presented here is that relatively high rates of reinfection can result from the presence of a high-risk group that, being at higher frequency in the recovered compartment due to selection imposed by the first infection, can sustain rates of reinfection that are, on average, higher than the rates of first infection even in the presence of partially protective immunity.

Heterogeneity has many implications for public health policy. In particular, we characterise how the impact of vaccination strategies varies with transmission intensity, and quantify the benefit of targeting high-risk groups.

The model

To incorporate heterogeneity in the infection risk in an SIRI transmission model we use a formulation close to the one presented by [START_REF] Ball | Deterministic and stochastic epidemics with several kinds of susceptibles[END_REF] for SIR epidemic models. We assume that the population is divided in n different subgroups according to the susceptibility to infection, α i . These groups will be referred as frailty groups (Coutinho et al., 1999). Within each frailty group, individuals are classified according to their disease history into susceptible, infectious or recovered. A schematic version of the model is shown in Figure 1. For concreteness, we fix the parameters as described in table 1. The table describes an Table 1: about here average life expectancy of 70 years (that is μ = 1/70) and an average infectious period of one week (that is τ = 52). The factor reducing the risk of infection as a result of acquired immunity is σ = 0.25. For the limiting cases of the SIR and SIS models, parameter σ is 0 or 1, respectively. Parameters β, γ i and α i are varied to explore different scenarios for transmission intensity and host heterogeneity. Each frailty group has an average risk of infection that differs from the population average by a factor α i , which we refer to as the relative risk of infection [START_REF] Gart | The mathematical analysis of an epidemic with two kinds of susceptibles[END_REF][START_REF] Ball | Deterministic and stochastic epidemics with several kinds of susceptibles[END_REF]. We assume that this factor controls the rate of infection and reinfection in the ith frailty group. In general, the parameters are chosen to resemble an acute respiratory infection in a developed country. However, we stress that the results are valid for a wider set of parameters. Differences reside more on the quantitative than on the qualitative behavior. The model can be written as a system of 3n differential

equations ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ S i = μγ i -λα i S i -μS i I i = λα i S i + σλα i R i -(τ + μ)I i R i = τ I i -σλα i R i -μR i , i = 1, . . . , n, (2.1) 
where λ = βI. To ensure comparison between different assumptions on risk distribution, including the comparison with the homogeneous version of the model, we impose the normal-

ization ᾱ = α i γ i = 1.
Throughout this paper we analyse the case n = 2. We denote by γ the proportion of individuals belonging to the low-risk group (that is, γ 1 = γ and γ 2 = 1 -γ). For a given population structure (γ) we vary the infection risk distribution by changing α 1 , obtaining α 2 through the normalization α 1 γ + α 2 (1 -γ) = 1. We use the variance as a summary measure 

var α = (ᾱ -α 1 ) 2 γ + (ᾱ -α 2 ) 2 (1 -γ) = (1 -α 1 ) 2 γ 1 -γ . (2.2)
Note that for a given population structure the variance is a decreasing function of α 1 . The homogeneous model is obtained for α 1 = ᾱ = 1 which, consistently, corresponds to zero variance.

Basic reproduction number

The basic reproduction number is an important concept in the study of epidemiological models. We recall that in the case of the corresponding model for homogeneous populations (α 1 = 1) the basic reproduction number is given by

R 0 = β τ + μ . (2.3)
Considering the heterogeneous model, the basic reproduction number is not altered. In fact,

R HET 0 = β τ + μ 2 i=1 α i γ i = β ᾱ τ + μ = β τ + μ = R 0 .
For a more detailed discussion on the calculation of the basic reproduction number in heterogeneous populations see [START_REF] Hyman | An intuitive formulation for the reproductive number for the spread of diseases in heterogeneous populations[END_REF] or [START_REF] Diekmann | On the definition and computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations[END_REF]. A threshold condition for endemicity is given by R 0 = 1 (the disease dies out if R 0 < 1 and becomes endemic if

R 0 > 1).
Note that the basic reproduction number for the entire population is a weighted average of the basic reproduction number within each independent frailty group, R 0i , given by

R HET 0 = i α i β τ + μ γ i = i R 0i γ i .
Therefore, if the basic reproduction number for each group is greater than one, then the disease is also endemic in the entire population. On the other hand, it is not necessary to have we examine the effect of heterogeneity on the prevalence in the SIS framework. All results stated in this section are proved in the appendix.

Endemic equilibrium

For σ = 0 or 1, system (2.1) has one disease-free equilibrium of the form E σ 0 = (γ, 1γ, 0, 0, 0, 0). Above R 0 = 1, the system has also an endemic equilibrium, E σ 1 . Stability results for these equilibria are stated in the two theorems below. We use the superscript σ to denote the correspondence with the SIR (σ = 0) or the SIS (σ = 1) models.

Theorem 3.1.1. For σ = 0 or 1, the disease-free equilibrium, E σ 0 , of system (2.1) is globally asymptotically stable if R 0 < 1 and it is unstable for R 0 > 1.

Theorem 3.1.2. Let σ = 0 or 1 and assume that R 0 > 1. Then system (2.1) has exactly one endemic equilibrium, E σ 1 , that is globally asymptotically stable. and distribution of infection risk for the SIR and SIS models. We observe that for a fixed R 0 , the equilibrium disease prevalence is lower when assuming heterogeneous populations.

From each plot, it is evident that for fixed γ, the prevalence curve goes down as variance increases. Comparing the three plots it is also apparent that for fixed α 1 , the prevalence curve goes down as the proportion of the population at low risk (γ) increases. Moreover, the disease prevalence appears to increase monotonically with the transmission potential, R 0 .

The following theorem summarizes these results.

Theorem 3.1.3. Let σ = 0 or σ = 1 and let I σ , σ = 0, 1, designate the disease prevalence at equilibrium, for the corresponding system (2.1) with R 0 > 1. Then, for γ and α 1 ∈ (0, 1)

∂I σ ∂γ ≤ 0, ∂I σ ∂α 1 ≥ 0 (3.1) and ∂I σ ∂R 0 > 0, σ = 0, 1. (3.2)
Previous studies based on the SIR framework have shown that heterogeneity in susceptibility to infection gives rise to smaller epidemics [START_REF] Gart | The mathematical analysis of an epidemic with two kinds of susceptibles[END_REF][START_REF] Ball | Deterministic and stochastic epidemics with several kinds of susceptibles[END_REF][START_REF] Anderson | Heterogeneity in epidemic models and its effect on the spread of infection[END_REF]). Here we find that disease prevalence at equilibrium is also lower in the presence of heterogeneity, and this is true for both SIR and SIS models. This effect is more pronounced the higher the variance in risk distribution.

Infection risk profiles

The profiles of the infection risk, within the susceptible and the recovered classes at endemic equilibrium depend on assumptions on population heterogeneity and transmission intensity.

For σ = 0, 1, we define the average risk factor among susceptible and recovered individuals as

ᾱσ S = α 1 S * 1 + α 2 S * 2 S * 1 + S * 2 , ᾱσ R = α 1 R * 1 + α 2 R * 2 R * 1 + R * 2 , (3.3)
where S * i and R * i are the susceptible and recovered individuals in each frailty group, represented as proportions of the total population at endemic equilibrium. Figure 3 shows contour plots for the average risk factor among individuals never infected (S) and those infected and In the SIR model, the average risk decreases as R 0 increases both for never-infected individuals and previously-infected individuals (Figure 3(a) and Figure 3(b), respectively). This selection mechanism underlies counter-intuitive trends that will emerge with the exploration of σ ∈ (0, 1) in section 4, such as rates of reinfection decreasing with increasing R 0 and rates of reinfection appearing higher than rates of first infection even in the presence of partially protective immunity.

In the SIS model, selection maintains a large proportion of the high-risk group in the infected class and the mechanism is not entirely visible in the uninfected sub-population. Note that the average risk among never-infected individuals is roughly constant with R 0 (Figure The properties observed for ᾱ0 S are summarized in the following theorem, proved in the appendix.

Theorem 3.2.1. Let R 0 > 1. Then, for γ and α 1 ∈ (0, 1)

∂ ᾱ0 S ∂γ ≤ 0, ∂ ᾱ0 S ∂α 1 ≥ 0 (3.4) and ∂ ᾱ0 S ∂R 0 < 0. (3.5)
The decrease on the average risk of infection of the susceptible class explains how prevalence decreases with population heterogeneity. In fact, the average force of infection, λ0 , depends on the transmission intensity and on the average infection risk of the population
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subject to infection,

λ0 = λ 0 ᾱ0 S = βI 0 ᾱ0 S = μ(R 0 ᾱ0 S -1), (3.6)
where we expressed I 0 as a function of ᾱ0 S according to formula (B.2) given in section B of the appendix. Directly from Theorem 3.2.1 it follows that heterogeneity decreases the force of infection, since

∂ λ0 ∂γ ≤ 0, ∂ λ0 ∂α 1 ≥ 0. (3.7)
Remark 3.1. As mentioned above, when σ = 1 we can identify our model with a SIS model through the identification of the class S + R with the susceptible class of the SIS. It is then natural to investigate the effect of heterogeneity on prevalence by considering the dependence on the parameters of the average risk of infection of the S + R class, ᾱ1 S+R , defined as

ᾱ1 S+R := α 1 (S * 1 + R * 1 ) + α 2 (S * 2 + R * 2 ) (S * 1 + R * 1 ) + (S * 2 + R * 2 )
and of the corresponding force of infection, λ1 , defined as λ1 = λ 1 ᾱ1 S+R = βI 1 ᾱ1 S+R . This is easily done, since from Remark B.1 and equation (A.4) in the appendix we have, respectively, that ᾱ1 S+R = ᾱ0 S and that λ1 = τ +μ μ λ0 . As a consequence, λ1 satisfies the inequalities (3.7), and we conclude that the decrease on the average risk of infection of the susceptible plus recovered class explains how prevalence decreases with population heterogeneity in the SIS model.

Finally, as a side remark, we would like to note that with respect to the quantities defined

in (3.3), it is ᾱ1 S+R = ᾱ1 S S * + ᾱ1 R R * S * + R * .
Despite having the same infectivity, the frailty groups contribute differently to the force of infection. Disease is more easily spread on the high-risk group due to its increased susceptibility, so the relative size of class I 2 is also greater. To further explore how the contribution of the high-risk group to the total proportion of infections changes with transmission intensity and heterogeneity, we define the quotient

Q σ = I σ 2 /I σ at equilibrium. For σ = 0 or σ = 1,
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the contribution of the high-risk group, Q σ , decreases as transmissibility increases and it is greater when this frailty group is larger (γ close to 0) or when its relative risk of infection is further from the population average (α 1 close to 0). The following theorem summarizes these results.

Theorem 3.2.2. Let R 0 > 1. Then, for γ and α 1 ∈ (0, 1)

∂Q σ ∂γ ≤ 0, ∂Q σ ∂α 1 ≤ 0 (3.8) and ∂Q σ ∂R 0 < 0 σ = 0, 1. (3.9)
Overall, the contribution of the high-risk group can vary from α 2 times its relative size, near the epidemic threshold, to its relative size, for sufficiently high transmission. This can have important consequences for the effectiveness of interventions, specially in low endemic regions where the groups with increased risk have more impact. We will focus more on this aspect when studying the SIRI model.

The SIRI model

Endemic equilibrium

Here we consider the effect of heterogeneity in the intermediate scenario where infection induces partial immunity. It is assumed that individuals are protected while infected but regain some susceptibility upon recovery. Susceptibility to reinfection is reduced by a factor σ ∈ [0, 1], compared to susceptibility to first infection. Endemic equilibria and infection risk profiles have been analyzed for the limiting cases σ = 0, 1 (corresponding to SIR, SIS models) in section 3. In both cases, disease persistence is determined by the threshold condition, R 0 > 1, irrespective of population structure, sustaining levels of infection that are generally much higher in the SIS scenario due to reinfection. In the intermediate case, another threshold has been identified, R 0 = 1/σ [START_REF] Gomes | Infection, reinfection, and vaccination under suboptimal immune protection: epidemiological perspectives[END_REF][START_REF] Gomes | The reinfection threshold[END_REF], to describe a transition from SIRto SIS-like behavior. In section C of the appendix we show that the same expression holds
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for the reinfection threshold in the presence of heterogeneity in susceptibility to infection.

Quantitative discrepancies between epidemiological data and model results have been reported previously and generally attributed to case sub-notification or population heterogeneity not captured by simple models [START_REF] Fine | Measles in England and Wales-II: The impact of the measles vaccination programme on the distribution of immunity in the population[END_REF], [START_REF] Anderson | Age-related changes in the rate of disease transmission: implications for the design of vaccination programmes[END_REF], van Boven at al. ( 2001)). Systematic investigations of these factors are expected to provide valuable insights with wide application in infectious disease epidemiology. In section 3 we have shown that heterogeneity in susceptibility to infection reduces prevalence of infection in SIR and SIS models and here we extend this conclusion to the general SIRI framework. Figure 4 shows the Figure 4: about here endemic equilibrium for different infection risk profiles of the population. When heterogeneity is considered the disease prevalence is lower than in the homogeneous case, and this effect is more pronounced when the variance, var α , is higher (high γ and low α 1 ). These trends are observed for 0 ≤ σ ≤ 1, including the particular cases σ = 0, 1, analyzed previously.

Infection risk profiles

The reduction in disease prevalence is associated with the changes in the infection risk profile imposed by transmission on both susceptible and recovered classes. In this section we analyze how the average infection risk of susceptible and recovered individuals change with R 0 and heterogeneity (here represented by the proportion the population with low risk, γ, and risk of these individuals relative to the average, α 1 ). We remark that when σ ∈ (0, 1) the average risk factors in the susceptible and recovered classes, ᾱS and ᾱR respectively, are defined as in (3.3). In the latter case, selection maintains a large proportion of the population in the infected class.

The patterns described for susceptible and recovered risk profiles have strong implications for the interpretation of disease dynamics, notably the contribution of reinfection to the overall disease incidence. We define the incidence of first infection and the incidence of reinfection, in the respective populations at risk, as

Y 1 = σλ(α 1 S * 1 + α 2 S * 2 ) S * = λᾱ S , (4.1) 
Y 2 = σλ(α 1 R * 1 + α 2 R * 2 ) R * = σλᾱ R . (4.2)
The total incidence in the entire uninfected population is then calculated as

Y total = (Y 1 S * + Y 2 R * )/(S * + R * )
. entire uninfected population, Y total . We see that, for the homogeneous case (α 1 = 1), the quotient, Y 2 /Y total , increases monotonically with R 0 , and for R 0 > 1/σ it is above one. For the heterogeneous case, reinfection among the recovered class can be higher than disease incidence also below the reinfection threshold. Even for low endemic populations, where the contribution of reinfection is low, it is possible that recovered individuals, as a group, show a higher risk of reinfection than expected when assuming partial immunity. This can have major implications for the interpretation of epidemiological data. In particular, overlooking host heterogeneity may lead to misleading expectations for the effectiveness of control measures.

Contribution of the high-risk group

As we have observed, for intermediate transmission levels, that reinfection occurs mainly in the high-risk group. So, it is also expected that its contribution to the overall transmission should be higher than in the heterogeneous SIR and SIS models. 

Targeted vaccination

The greater impact of the high-risk group on transmission should be taken into account when planning interventions for disease control. In this section, we compare uniform and targeted vaccination strategies. Comparison is made on the basis of the vaccination coverage required, under different strategies, to obtain the same impact. We implement vaccination at birth assuming that the protection conferred by the vaccine is equivalent to that of natural immunity. Vaccination reduces the risk of infection but the relative susceptibility of the two frailty groups is maintained. This is formalised as

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ S i = (1 -v i )μγ i -λα i S i -μS i I i = λα i S i + σλα i R i -(τ + μ)I i R i = v i μγ i + τ I i -σλα i R i -μR i , i = 1, 2.
(5.1)

The epidemic threshold for system (5.1) is described by

R 0 = 1 ((1 -v 1 ) + σv 1 )γα 1 + ((1 -v 2 ) + σv 2 )(1 -γ)α 2 . (5.2)
First, we consider a strategy based on a limited quantity of vaccines corresponding to a given coverage, v. We can then vary the percentage of each risk group covered by the program by

fixing v = v 1 γ + v 2 (1-γ)
and varying v 2 . Naturally, increasing the representation of the highrisk group in the vaccinated sub-population will increase the impact of the program [START_REF] Britton | On critical vaccination coverage in multiple epidemics[END_REF]. Here we reverse the argument and inspect what coverage we need to attain with a targeted strategy in order to achieve the same effectiveness as the corresponding uniform
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strategy. This will provide an estimation for how many doses we save by targeting the vaccination program to those individuals at higher risk, as a so called top-to-bottom strategy [START_REF] Britton | On critical vaccination coverage in multiple epidemics[END_REF]. 

c = (1 -1/R 0 )(1 -γ)/[(1 -σ)(1 -γα 1 )] or v c = [(1 -1/R 0 )/(1 -σ) -(1 -α 1 )
]/α 1 for the top-to-bottom strategy with vaccination of only the high-risk group (dotted line) or both groups (dashed line), respectively. Under the reinfection threshold, the elimination coverage is always lower for the targeted strategy. Note that it is impossible to interrupt transmission and eliminate the infection above the reinfection threshold as previously described [START_REF] Gomes | Infection, reinfection, and vaccination under suboptimal immune protection: epidemiological perspectives[END_REF][START_REF] Gomes | The reinfection threshold[END_REF]. Above this threshold, only a superior vaccine, capable of inducing an immune response more effective than natural infection, would be efficacious.

Discussion

We have previously identified a reinfection threshold in the SIRI model and characterised how this induces a sharp division of the transmissibility axis into two regimes: reinfection is rare
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below threshold (SIR behavior) and very frequent above (SIS behavior). Here we describe how heterogeneity in innate susceptibility to infection smoothens this transition by making both regimes less extreme. Heterogeneity is always present in nature and it is important to understand how it can affect system behavior both qualitatively and quantitatively.

We perform a systematic analysis of the SIRI model with distributed susceptibility. The most striking result is the prediction that the average rate of reinfection may be higher than the average rate of primary infection, which may seem paradoxical given that primary infection induces life-long partial protection. The rationale behind this result is that infection generates a selection mechanism that skews the susceptibility profiles of the S and R compartments to lower and higher susceptibility, respectively. In other words, selection acts to keep fit individuals in S and frail individuals in R. If this effect is strong enough we have a scenario where, on average, the rate of reinfection (infection out of R) is higher than the rate of primary infection (infection out of S) even though each individual has a risk reduction following primary infection. This mechanism may explain high rates of tuberculosis reinfection recently reported (Verver et al., 2005).

A rule of thumb has been proposed in infections disease dynamics, whereby 20% of the population is responsible for 80% of all infections due to heterogeneity in susceptibility or infectivity (Woolhouse et al., 1997). However, direct confirmation of this hypothesis requires very large epidemiological studies. For diseases that induce partial immunity, mathematical models such as those proposed here offer the practical alternative of using the ratio between reinfection and primary infection rates as an indirect measure of population heterogeneity.

In the SIRI models with heterogeneous susceptibility, we predict that disease prevalence is lower than the corresponding homogeneous model, as described before for epidemic SIR models [START_REF] Gart | The mathematical analysis of an epidemic with two kinds of susceptibles[END_REF][START_REF] Ball | Deterministic and stochastic epidemics with several kinds of susceptibles[END_REF][START_REF] Anderson | Heterogeneity in epidemic models and its effect on the spread of infection[END_REF][START_REF] Miller | Epidemic size and probability in populations with heterogeneous infectivity and susceptibility[END_REF]. In other words, to obtain a given level of disease prevalence, the heterogeneous model requires a higher value for the transmission intensity, R 0 . This implies that elimination strategies require more effort under wider heterogeneity [START_REF] Anderson | Infectious diseases of humans[END_REF].

The success of vaccination depends then on the ability to target those individuals at higher groups. Generally, there is an additional benefit associated with targeting vaccination

A c c e p t e d m a n u s c r i p t

strategies, as previously described for the SIR epidemic model [START_REF] Britton | On critical vaccination coverage in multiple epidemics[END_REF][START_REF] Koopman | When to control endemic infections by focusing on high-risk groups[END_REF]. In the case of the SIRI model, however, the added value of targeting high-risk groups is limited to those regions where transmission is below the reinfection threshold.
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Proof of Theorem 3.1.1

Proof. Let us first consider σ = 0. The Jacobian of system (A.1) at the disease-free equilibrium is

J(E 0 ) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ -μ 0 -βα 1 γ 0 -μ -βα 2 (1 -γ) 0 0 β -(τ + μ) ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ .
The eigenvalues of this matrix are -μ and β -(τ + μ). So we conclude that E 0 is locally asymptotically stable for R 0 < 1 and unstable for R 0 > 1. Moreover, system (A.1) is equivalent to system (3.1) in [START_REF] Hyman | Differential susceptibility epidemic models[END_REF] for n = 2. In Theorem 3.1 of that paper, the authors prove the global stability for the disease-free equilibrium for R 0 < 1.

For the case σ = 1, calculations can be repeated using μ = τ + μ as the new birth and death rates and τ = 0 as the new rate of recovery.

Proof of Theorem 3.1.2

Proof. The second member of system (A.1) vanishes at the equilibria. From the two first equations we get a relation between S i and I: S 1 = γμ/(μ + βIα 1 ) and S 2 = (1 -γ)μ/(μ + βIα 2 ). Substituting in the third one we get (τ + μ) P (I) Q(I) I = 0, where

P (I) = a 2 I 2 + a 1 I + a 0 with a 2 = -α 1 α 2 R 2 0 (τ + μ) 2 , a 1 = R 0 (τ + μ)μ(α 1 α 2 R 0 -(α 1 + α 2 )
) and a 0 = μ 2 (R 0 -1) and

Q(I) = (μ + βIα 1 )(μ + βIα 2 ).
Note that for I ≥ 0 we have Q(I) > 0. We conclude that the I coordinate of the nontrivial equilibria of system (A.1) will correspond to a positive solution of P (I) = 0. Since a 2 < 0 and a 0 > 0 for R 0 > 1 we conclude that the polynomial P has exactly one positive solution of the form:

I 0 (R 0 ) = -a 1 -a 2 1 -4a 2 a 0 2a 2 (A.3)
and this proves the first part of the theorem.

In what concerns stability, system (A.1) is equivalent to system (3.1) in [START_REF] Hyman | Differential susceptibility epidemic models[END_REF] for n = 2. In Theorem 3.2 of that paper, the authors prove the stability for the endemic equilibrium for R 0 > 1 via Liapunov stability theory.
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As in the previous proof, for the case σ = 1, calculations can be repeated using μ = τ + μ as the new birth and death rates and τ = 0 as the new rate of recovery.

Remark A.1. From the proof of theorem 3.1.2 it is possible to establish a relation between the disease prevalence of both models. In fact, for every γ ∈ (0, 1) and α 1 ∈ (0, 1] we have

I 1 = τ + μ μ I 0 , (A.4)
where I 0 and I 1 represent the disease prevalence at equilibrium for the SIR and SIS models, respectively. This relation is systematically used to extend the proofs from the case σ = 0 to the case σ = 1.

We can also conclude that for all γ ∈ (0, 1) and

α 1 ∈ (0, 1] lim R 0 →+∞ I 0 = μ τ + μ and lim R 0 →+∞ I 1 = 1. (A.5) Remark A.2.
From the proof of Theorem 3.1.2, taking into account Remark A.1, we recover the expression of the endemic equilibrium for the homogeneous model, both for the σ = 0 and the σ = 1 cases, by using α 1 = α 2 = 1 (or α 1 = 1):

I 0 Hom (R 0 ) = μ τ + μ 1 - 1 R 0 and I 1 Hom (R 0 ) = 1 - 1 R 0 . (A.6)
Proof of Theorem 3.1.3

Proof. First, let σ = 0 and denote by I 0 and I 0 * , respectively, the unique positive and negative roots of the polynomial P defined in the proof of Theorem 3.1.2. Differentiating P (I 0 ) = 0 with respect to a parameter , we get

∂I 0 ∂ = - ∂a 2 ∂ I 0 2 - ∂a 1 ∂ I 0 - ∂a 0 ∂ 2a 2 I 0 + a 1 . (A.7)
Note that we have I 0 + I 0 * = -a 1 /a 2 and that a 2 < 0. Hence we conclude that the denominator of (A.7) verifies 2a

2 I 0 + a 1 = a 2 (2I 0 + a 1 /a 2 ) = a 2 (2I 0 -I 0 -I 0 * ) = a 2 (I 0 -I 0 * ) < 0. As
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a consequence of this fact, the sign of (A.7) will be the opposite of the one of the numerator.

Let = γ. In this case, ∂a 0 /∂γ = 0. So, ∂I 0 /∂γ ≤ 0 iff ∂a 2 ∂γ I 0 + ∂a 1 ∂γ < 0. Now we replace I 0 by its expression in (A.3). Since a 2 < 0 and ∂a 2 /∂γ < 0 we get the following equivalent condition -a 1 + 2a 2 ∂a 1 ∂γ / ∂a 2 ∂γ < a 2 1 -4a 0 a 2 . If the left hand side is negative, then the condition is true and the result is proved. Otherwise, we can square both sides. In this case we get -

a 1 + 2a 2 ∂a 1 ∂γ / ∂a 2 ∂γ 2 -a 2 1 + 4a 0 a 2 = -4α 1 R 0 (1 -γ)(1 -α)(1 -γα 1 ) < 0, which ends this part of the proof. Let = α 1 . Now we have ∂I 0 /∂α 1 ≥ 0 iff ∂a 2 ∂α 1 I 0 + ∂a 1 ∂α 1 > 0. (A.8)
Again, we substitute I 0 by its expression in (A.3). Depending on the sign of ∂a 2 /∂α 1 ( = 0)

we obtain two different cases:

Case 1. If ∂a 2 ∂α 1 < 0 then (A.8) is equivalent to -a 1 + 2a 2 ∂a 1 ∂α 1 / ∂a 2 ∂α 1 > a 2 1 -4a 0 a 2 (a); Case 2. If ∂a 2 ∂α 1 > 0 then (A.8) is equivalent to -a 1 + 2a 2 ∂a 1 ∂α 1 / ∂a 2 ∂α 1 < a 2 1 -4a 0 a 2 (b).
Note that if ∂a 2 /∂α 1 = 0 then we must see if ∂a 1 /∂α 1 > 0, which is true for R 0 > 1.

The sign of ∂a 2 /∂α 1 is the same as the sign of 2α 1 γ -1. So, for case 1, let us assume

2α 1 γ < 1. The left hand side of (a) is R 0 (τ + μ)μ[R 0 α 1 ((1 -α 1 γ)(1 -2α 1 γ)) + 1 -α 1 ] (1 -γ)(1 -2α 1 γ) which is positive for 2α 1 γ > 1.
Hence, we can square both sides of (a) and we get -

a 1 + 2a 2 ∂a 1 ∂γ / ∂a 2 ∂γ 2 -a 2 1 + 4a 0 a 2 = R 2 0 (τ + μ) 2 μ 2 4γα 1 (1 -γ) 2 (1 -2α 1 γ) 2 (1 -α 1 )(1 -α 1 γ)[R 0 ((1 -2α 1 γ) 2 + α 1 (1 - 2α 1 γ)) + 1 -α 1 ] > 0 which ends the proof of case 1.
In case 2 the left hand side can change sign. Let us denote the left hand side by B. So, to verify (b) we have to show that if B is positive then B 2 -a 2 1 +4a 0 a 2 < 0. By the calculations for the previous case we get that, for 2α

1 γ > 1, B > 0 iff C = R 0 α 1 ((1-α 1 γ)(1-2α 1 γ))+1-α 1 < 0.
Again, from the previous case we know that the sign of B 2 -a 2 1 +4a 0 a 2 is the same as the one

of R 0 ((1-2α 1 γ) 2 + α 1 (1-2α 1 γ))+ 1-α 1 = C/α 1 + R 0 (1-2α 1 γ)α 1 (1-γ)-(1-α 1 ) 2 /α 1 < 0,
since C < 0. This ends the proof of case (b).

Finally, let = R 0 . In this case ∂a 0 /∂R 0 = 0. So, from (A.7) and since the denominator

A c c e p t e d m a n u s c r i p t

is non-positive, to prove that ∂I 0 /∂R 0 ≥ 0 we need to prove that

∂a 2 ∂R 0 I 0 2 + ∂a 1 ∂R 0 I 0 + ∂a 0 ∂R 0 > 0. (A.9)
Now, taking into account that I 0 2 = -(a 1 I 0 + a 0 )/a 2 and using the expression of I 0 given in (A.3) we obtain -Aa

1 + 2a 2 B > A a 2 1 -4a 0 a 2 , where A = ∂a 1 ∂R 0 a 2 -∂a 2 ∂R 0 a 1 and B = a 2 ∂a 0 ∂R 0 -a 0 ∂a 2 ∂R 0
. By substituting a i and its derivatives in A we conclude that

A = -α 1 (1 - α 1 γ)R 2 0 (τ + μ) 3 μ(α 1 (1 -γ) + (1 -α 1 γ))/(1 -γ) 2 < 0.
So, we can divide both sides by A and get

-a 1 + 2a 2 B/A > a 2 1 -4a 0 a 2 . (A.10)
If the left hand side is negative, then the condition is true and the result is proved. Otherwise, we can square both sides of (A.10). Finally, we need to prove that the following expression

-4C(1 -α 1 γ)α 1 μ 2 (τ + μ) 2 R 2 0 /(1 -γ)(α 1 (1 -γ) + (1 -α 1 γ)) 2 is negative, where C is a polynomial in R 0 of degree 2 with coefficients c 2 = α 1 (1 -α 1 γ)(α 1 (1 -γ) + γ(1 -α 1 )), c 1 = 2α 1 (1 -α 1 )(1 -α 1 γ)(1 -2γ
) and c 0 = (1 -α 1 ) 2 . We note that, the minimum value of

C is attained at R m 0 = 1 -(1 -γ)/(α 1 (1 -γ) + γ(1 -α 1 )) < 1 and C is positive at R m 0 .
As a consequence, since c 2 > 0 we conclude that C is positive for R 0 > 1. This concludes this part of the proof.

For σ = 1 the proofs follow easily from Remark A.1.

B Proofs of Section 3.2

First we derive an expression which relates the disease prevalence with the relative risk of the susceptible class in the case of the SIR model and the average risk of infection of the S + R class in the case of the SIS system. Then we can use the results from the previous section to prove theorem 3.2.1 and to get Remark 3.1.

A c c e p t e d m a n u s c r i p t

In the SIR case, from (A.1) letting S = S 1 + S 2 , we obtain

⎧ ⎪ ⎨ ⎪ ⎩ S = μ -βI ᾱ0 S S -μS I = βI ᾱ0 S S -(τ + μ)I. (B.1)
Hence, we get an implicit expression for the disease prevalence at equilibrium in the case σ = 0

I 0 = μ τ + μ 1 - 1 ᾱ0 S R 0 . (B.2)
Similarly, from system (A.2), we obtain the relation between the disease prevalence I 1 and the average risk of infection

I 1 = 1 - 1 ᾱ1 S+R R 0 . (B.3) Remark B.1.
In particular, from Remark A.1 we conclude by this last equality that ᾱ0 S = ᾱ1 S+R .

Proof of Theorem 3.2.1

Proof. Let σ = 0. From (B.2) we obtain the following expression for ᾱ0

S ᾱ0 S = μ R 0 (μ -(τ + μ)I 0 ) . (B.4)
Thus, for = γ or α 1 we get

∂ ᾱ0 S ∂ = μ(τ + μ) R 0 [μ -(τ + μ)I 0 ] 2 ∂I 0 ∂ , (B.5)
which has the same sign as ∂I 0 /∂ .

For the derivative of ᾱ0 S with respect to R 0 we get

∂ ᾱ0 S ∂R 0 = μ [R 0 (μ -(τ + μ)I 0 )] 2 μ -(τ + μ)I 0 -R 0 (τ + μ) ∂I 0 ∂R 0 . (B.6)
Hence, to prove that the derivative is negative is equivalent to prove that I 0 + ∂I 0 /∂R 0 < μ/(τ + μ). Now we substitute (I 0 ) 2 by -(a 1 I 0 + a 0 )/a 2 and ∂I 0 /∂R 0 by the expression from ). Furthermore, we replace I 0 by its expression in (A.3). So, taking into account that a 2 < 0 and

A = R 0 ∂a 2 ∂R 0 a 1 -a 2 a 1 -∂a 1 ∂R 0 a 2 R 0 -2a 2 2 μ/(τ +μ) = -μ(τ +μ) 3 α 2 1 (1-α 1 γ) 2 R 4 0 /(1-γ) 2 < 0
we get to the equivalent condition

-a 1 + 2a 2 B/A < a 2 1 -4a 0 a 2 . (B.7)
If the left hand side is negative then the condition is true. Otherwise we can square both sides of (B.7). Hence -

a 1 + 2a 2 B/A 2 -a 2 1 + 4a 0 a 2 = -4R 2 0 γμ 2 (τ + μ) 2 (1 -α 1 ) 2 /(1 -γ) < 0.
which ends this part of the proof.

Proof of Theorem 3.2.2

Proof. As for the previous proofs, we start by studying the case σ = 0 and then the case σ = 1 follows directly from Remark A.1. In fact, in this case we have

Q 0 = Q 1 .
For simplicity we write Q 0 = I 0 2 /I 0 as 1 -I 0 1 /I 0 = 1 -R 0 α 1 μγ/(R 0 (τ + μ)I 0 α 1 + μ). The derivative of Q 0 with respect to γ is

∂Q 0 ∂γ = - R 0 α 1 μ[μ + R 0 α 1 (τ + μ) I 0 -γ ∂I 0 ∂γ ] (R 0 (τ + μ)I 0 α 1 + μ) 2 . (B.8) But I 0 -γ ∂I 0 ∂γ = I 0 1 + γ ∂a 2 ∂γ I 0 + ∂a 1 ∂γ 2a 2 I 0 + a 1 ≥ 0 
from what was seen in the proof of Theorem 3.1.3. Thus we conclude that ∂Q 0 ∂γ ≤ 0. The derivative of Q 0 with respect to α 1 is If the left hand side is negative, then the condition is verified. Otherwise we can square both sides of (B.10). Hence, we get -

∂Q 0 ∂α 1 = - R 0 γμ[μ -R 0 α 2 1 (τ + μ) ∂I 0 ∂α 1 ] (R 0 (τ + μ)I 0 α 1 + μ)
4(1 -α 1 γ) 2 γα 2 1 μ 2 (τ + μ) 2 R 4 0
(1 -γ) ≤ 0. This implies that C ≥ 0 or, equivalently, that ∂Q 0 /∂α 1 ≤ 0, which ends this part of the proof.

The derivative of Q 0 with respect to R 0 is (B.11) This expression has the same sign of

∂Q 0 ∂R 0 = α 1 γμ[μ -R 2 0 α 1 (τ + μ) ∂I 0 ∂R 0 ] (R 0 (τ + μ)I 0 α 1 + μ) 2 .
C = b -R 2 0 ∂I 0 ∂R 0 , where b = μ/(α 1 (τ + μ)). We conclude that C > 0 iff -a 1 A + 2a 2 B > A a 2 1 + 4a 2 a 0 , where A = ∂a 2 ∂R 0 a 1 -∂a 1 ∂R 0 a 2 -2a 2 2 b , B = a 0 ∂a 2
∂R 0 -∂a 0 ∂R 0 a 2 -b a 1 a 2 and b = ba 2 /R 2 0 . Note that by substituting a i and its derivatives in A we can easily conclude that A is negative. So, we can divide both sides by A, obtaining that C > 0 iff

-a 1 + 2a 2 B/A < a 2 1 + 4a 2 a 0 . (B.12)
If the left hand side is negative the condition is verified. Otherwise we can square both sides of (B.12). Hence, we get -

4(1 -α 1 γ) 2 γα 2 1 μ 2 (τ + μ) 2 R 4 0
(1 -γ) < 0. This ends the proof. be represented with the following system of differential equations:

C The reinfection threshold for the heterogeneous SIRI model

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ R 1 = μγ + τ I 1 -σλα 1 R 1 -μR 1 , I 1 = σλα 1 R 1 -(τ + μ)I 1 R 2 = μ(1 -γ) + τ I 2 -σλα 2 R 2 -μR 2 , I 2 = σλα 2 R 2 -(τ + μ)I 2 (C.1)
The reinfection sub-model has a unique disease-free equilibrium E 0 = (γ, 0, 1 -γ, 0). Analyzing the jacobian at E 0 we conclude that a bifurcation on the transmission parameter β occurs at β = (τ + μ)/σ when the disease free equilibrium changes its stability. In terms of the basic reproduction number the bifurcation is attained at R 0 = 1/σ. 

A c c e p t e d m a n u s c r i p t

  particular interest is the interplay between reinfection and the risk profile for the uninfected compartments, S and R.
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  greater than one to have endemicity.3 The limit cases, SIR (σ = 0) and SIS (σ = 1)Before studying the SIRI model, we analyze the impact of host heterogeneity in the case of SIR and SIS models, corresponding to σ = 0 and σ = 1, respectively. The identification between the SIS model and our model with σ = 1 is made in a natural way, by collapsing the classes S and R of this last model into a class S + R, which we identify with the susceptible class of the SIS model. However, in order to make possible the comparison between the limit case with σ = 1 and the intermediate SIRI model, in what follows we keep distinct the S and R classes even for σ = 1. Actually, we will consider the class S + R in Remark 3.1, where
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  (c)) while among previously-infected individuals (Figure 3(d)) the average risk decreases with increasing R 0 as in the susceptible class of the SIR model (Figure 3(a)).
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 5 Figure 5 illustrates the average risk factor for susceptible and recovered classes for γ = 0.8 and σ = 0.25, by means of contour plots in the parameter space of transmissibility, R 0 , and heterogeneity, α 1 . Generally, the average risk among susceptible individuals decreases as R 0 increases (Figure 5(a)) while the opposite is observed among recovered individuals (Figure 5(b)). The reinfection threshold, marked by vertical dotted lines, is associated with
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Figure 7

 7 Figure7shows the contribution of the high-risk group to the total disease prevalence for the particular case γ = 0.8 and α 1 = 0.2. This corresponds to a risk group of 20% of the total population with an increased risk of infection α 2 = 4.2 times that of the total population, and 21 times that of the low-risk group. Moreover, for this choice of parameters, disease prevalence corresponds to about 30% of the homogeneous model prediction as represented by the dashed line in Figure4(b) for σ = 0.25. Here a sub-population of 20% accounts from 70% to 85% of the infection, depending on the intensity of transmission. The contribution of the high-risk group is stronger near the endemic and reinfection thresholds. Near the thresholds the classes that are susceptible to infection and reinfection, S and R, respectively, reach their maximum capacity, accounting for almost all population. Therefore, the average risk on these classes and the selection pressure on the high-risk group are maximum.
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Figure 8

 8 Figure 8(b) represents elimination coverages under different strategies. The critical vaccination coverage to eliminate the infection for a given R 0 is v c = (1 -1/R 0 )/(1 -σ) for the uniform strategy (full line) and vc = (1 -1/R 0 )(1 -γ)/[(1 -σ)(1 -γα 1 )] or v c =

A

  the opposite sign of C = μ -R 0 α 2 that A is positive. Therefore, we can divide both sides by A, obtaining that C ≥ 0 iff-a 1 + 2a 2 B/A ≤ a 2 1 + 4a 2 a 0 .(B.10) 

  To compute the reinfection threshold associated with the heterogeneous SIRI model (2.1) with n=2, we first have to define the reinfection sub-model. This model corresponds to the limit situation where all individuals that enter in the system are partiality immunized and only subjected to reinfection. Hence, the reinfection sub-model has only four classes and can
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  figures. The horizontal line represents the case for which the infection risk distribution is homogeneous (α1 = α2 = 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 8 Uniform vs. targeted vaccination programs. (a) Vaccination coverage required for the targeted strategy to obtain the same disease reduction as a uniform strategy with 50% coverage, for each R0. (b) Vaccination coverage required to eliminate the infection for each R0. Full lines corresponds to the uniform strategy and broken lines correspond to the targeted strategy (dotted if vaccination is restricted to the high-risk group, and dashed if this is complemented by vaccination in the low-risk group). Infection risk distribution is given by γ = 0.8 and α1 = 0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
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	Table1		
	symbol definition	value
	β	transmission coefficient	variable
	σ	factor reducing the risk of infection as a result of acquired 0, 1 or
		immunity to a previous infection	0.25
	μ	death and birth rate	1/70 yr -1
	τ	rate of recovery	52 yr -1
	γ i	relative size of each frailty group	variable
	α i	relative risk of infection of each frailty group	variable

(τ + μ) ∂I 0 ∂α 1 . Again, we replace I 0

by -(a 1 I 0 + a 0 )/a 2 and then I 0 by its expression in (A.3). Finally, we conclude that C ≥ 0 iff-a 1 A + 2a 2 B ≤ A a 2 1 + 4a 2 a 0 , where A = 2μa 2 2 -R 0 α 2 1 (τ + μ) ∂a 2 ∂α 1 a 1 + R 0 α 2 1 (τ + μ) ∂a 1 ∂α 1 a 2 and B = a 1 a 2 μ -R 0 α 2 1 (τ + μ) ∂a 2∂α 1 a 0 . Note that by substituting a i and its derivatives in A we
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Appendix

A Proofs of Section 3.1

For σ = 0 (SIR model), from system (2.1) we obtain

When σ = 1 (SIS model), we can collapse the recovered classes into the susceptible ones in system (2.1). Then, if we denote for simplicity by S i the classes S i + R i , i = 1, 2, and use the fact that γ i = S i + I i , we obtain the following system

(A.2) Note that system (A.2) is equivalent to an SIR model where the birth and death rate are equal to μ = τ + μ and the recovery rate is τ = 0.