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Ecologists have long been searching for mechanisms of species coexistence, particularly since G.E. Hutchinson raised the 'paradox of the plankton'. A promising approach to solve this paradox and to explain the coexistence of many species with strong niche overlap is to consider over-compensatory density regulation with its ability to generate endogenous population fluctuations.

Previous work has analyzed the role of over-compensation in coexistence based on analytical approaches. Using a spatially explicit time-discrete simulation model, we systematically explore the dynamics and conditions for coexistence of two species. We go beyond the analytically accessible range of models by studying the whole range of density regulation from under-to very strong over-compensation and consider the impact of spatial structure and temporal disturbances. In particular, we investigate how coexistence can emerge in different types of population growth models.

We show that two strong competitors are able to coexist if at least one species exhibits over-compensation. Analyzing the time series of population dynamics reveals how the differential responses to density fluctuations of the two competitors lead to coexistence: The over-compensator generates density fluctuations but is the inferior competitor at strong amplitudes of those fluctuations; the competitor therefore becomes frequent and dampens the over-compensator's amplitudes, but it becomes inferior under dampened fluctuations.

These species interactions cause a dynamic alternation of community states with long-term persistence of both species. We show that a variety of population growth models is able to reproduce this coexistence although the particular parameter ranges differ among the models. Spatial structure influences the probability of coexistence but A c c e p t e d m a n u s c r i p t 3 coexistence is maintained for a broad range of dispersal parameters.

The flexibility and robustness of coexistence through over-compensation emphasize the importance of non-linear density dependence for species interactions, and they also highlight the potential of applying more flexible models than the classical Lotka-Volterra equations in community ecology.

Introduction

The search for mechanisms of species coexistence has a long tradition in ecology.

Already [START_REF] Lotka | Elements of physical biology[END_REF] and [START_REF] Volterra | Fluctuations in the abundance of a species considered mathematically[END_REF] investigated this question with a theoretical competition model in the early 20 th century and found that intraspecific competition must be greater than interspecific competition to facilitate coexistence of two species. [START_REF] Gause | The struggle for existence[END_REF] complemented this finding by experimental work on Paramecium species and concluded that two species competing for the same resources cannot stably coexist.

Hutchinson answered by raising the 'paradox of the plankton' [START_REF] Hutchinson | The paradox of the plankton[END_REF]. He pointed to the apparent contradiction between the principle of 'competitive exclusion' [START_REF] Gause | The struggle for existence[END_REF]) and the existence of many highly diverse natural communities living on strongly limited numbers of resources. This contradiction brings up the question which mechanisms enable the number of coexisting species to exceed the number of available resources [START_REF] Armstrong | Coexistence of two competitors on one resource[END_REF][START_REF] Lundberg | Population variability in space and time[END_REF][START_REF] Szabo | Limiting similarity revisited[END_REF].

Coexistence mechanisms can be classified into equalizing and stabilizing mechanisms [START_REF] Chesson | Mechanisms of maintenance of species diversity[END_REF]. Equalizing mechanisms build on minimizing differences in average fitness while stabilizing mechanisms rely on increased intra-compared to interspecific competition strength, which disproportionately reduces the average fitness of the more abundant species [START_REF] Chesson | Multispecies competition in variable environments[END_REF][START_REF] Chesson | Mechanisms of maintenance of species diversity[END_REF]). Among the stabilizing coexistence mechanisms, some depend on heterogeneous distributions of species in space (i.e. spatial storage effects, [START_REF] Shmida | Coexistence of plants with similar niches[END_REF][START_REF] Hanski | Spatial synchrony in the dynamics of moth and aphid populations[END_REF][START_REF] Chesson | Mechanisms of maintenance of species diversity[END_REF][START_REF] Neuhauser | An explicitly spatial version of the Lotka-Volterra model with interspecific competition[END_REF]. Others depend on fluctuations of population densities in time and can foster coexistence via (1) temporal storage effects or (2) different nonlinear responses to common fluctuating abiotic or biotic limiting A c c e p t e d m a n u s c r i p t 5 factors [START_REF] Chesson | Multispecies competition in variable environments[END_REF][START_REF] Chesson | Understanding the role of environmental variation in population and community dynamics -Introduction[END_REF]). In this context, the term 'biotic' refers to explicitly modelled resource dynamics while the term 'abiotic' refers to a constant limiting factor.

Temporal storage effects are based on external variations of the environment causing species' density fluctuations, e.g. through seasonal variations in resource growth or strong and frequent disturbances [START_REF] Smith | Competitive coexistence in an oscillating chemostat[END_REF]Grover 1990;[START_REF] Anderies | Fluctuating environments and phytoplankton community structure: A stochastic model[END_REF][START_REF] Abrams | When does periodic variation in resource growth allow robust coexistence of competing consumer species?[END_REF]).

Fluctuations of abiotic resources can emerge from different nonlinear consumer responses and lead to the coexistence of many species on a handful of resources in continuous-time models [START_REF] Huisman | Biodiversity of plankton by species oscillations and chaos[END_REF]. At least three resources are needed, and there is an ongoing debate regarding the parameter space under which this behaviour can be observed [START_REF] Armstrong | Coexistence of two competitors on one resource[END_REF][START_REF] Armstrong | Competitive exclusion[END_REF][START_REF] Schippers | Does 'supersaturated coexistence' resolve the 'paradox of the plankton'?[END_REF][START_REF] Huisman | Towards a solution of the plankton paradox: the importance of physiology and life history[END_REF]. In contrast, competition for biotic resources can lead to the coexistence of two or more consumers on a single resource [START_REF] Armstrong | Competitive exclusion[END_REF][START_REF] Zicarelli | Mathematical analysis of a simulation model with several predators on a single prey[END_REF][START_REF] Abrams | When does periodic variation in resource growth allow robust coexistence of competing consumer species?[END_REF][START_REF] Kaitala | Dynamic complexities in host-parasitoid interaction[END_REF]. In this case, coexistence requires at least two differences in species traits: first in the type of functional response in resource use, and second in the minimum resource requirements.

It is well known that fluctuations in population densities can also occur through over-compensatory density regulation [START_REF] May | Biological populations obeying difference equations: stable points, stable cycles, and chaos[END_REF][START_REF] May | Simple mathematical models with very complicated dynamics[END_REF]Johst et al. 2008) Over-compensatory density regulation and the resulting non-linear dynamics and fluctuations have been investigated extensively with respect to single species persistence (e.g., [START_REF] Ripa | The route to extinction in variable environments[END_REF][START_REF] Murrell | The evolution of dispersal distance in spatially-structured populations[END_REF]Münkemüller and Johst 2006;[START_REF] Münkemüller | How does intraspecific density regulation influence metapopulation synchrony and persistence?[END_REF]. However, few studies explored their contribution to species coexistence. [START_REF] Damgaard | Dynamics in a discrete two-species competition model: coexistence and over-compensation[END_REF] expanded the Lotka-Volterra model of coexistence [START_REF] Volterra | Fluctuations in the abundance of a species considered mathematically[END_REF][START_REF] Lotka | Elements of physical biology[END_REF]) to a situation where both species exhibited the same over-compensatory density regulation and showed that -in agreement with the classical Lotka-Volterra competition model -coexistence was dependent on stronger intraspecific than interspecific competition (i.e. only partial niche overlap). Other authors found that differences in the types of density regulation can facilitate coexistence under certain assumptions of landscape configuration and interaction behaviour [START_REF] Getz | A hypothesis regarding the abruptness of density dependence and the growth rate of populations[END_REF][START_REF] Johansson | dynamics: individual resource partitioning simulation exposes the causes of nonlinear intra-specific competition[END_REF][START_REF] Edmunds | Park's Tribolium competition experiments: a nonequilibrium species coexistence hypothesis[END_REF][START_REF] Kuang | Predation-competition interactions for seasonally recruiting species[END_REF]. Analytically analyzing coexistence conditions at the limit of periodic behaviour, [START_REF] Adler | Coexistence of 2 types on a single resource in discrete-time[END_REF] and [START_REF] Cushing | Multiple mixed-type attractors in a competition model[END_REF] 

N A t + 1 ( ) ~Pois N A t ( ) ⋅ R 1 + R -1 ( ) N A t ( ) + aN B t ( ) ( ) K ( ) b A § © ¨ • ¹ ¸ § © ¨ ¨ ¨ • ¹ ¸ ¸ ¸ N B t + 1 ( ) ~Pois N B t ( ) ⋅ R 1 + R -1 ( ) N B t ( ) + aN A t ( ) ( ) K ( ) b B § © ¨ • ¹ ¸ § © ¨ ¨ ¨ • ¹ ¸ ¸ ¸
The population sizes of species A and B at time t are given by N A (t) and N B (t). Both species have the same maximum growth rate, R, and common local carrying capacity K.

The competition coefficient a describes the strength of interspecific relative to intraspecific competition, to which we refer using the term 'niche overlap'. It can be derived from the overlap of resource utilization curves along a resource axis (cf. Abrams et al. 2008). For most simulations we keep inter-and intraspecific competition strength equal (competition coefficient a = 1). Exceptions are the analyses without In this way, a wide range of combinations of density regulation types from under-compensation to strong over-compensation can be studied at given growth rates, carrying capacities and competition coefficients. We account for demographic stochasticity by using random numbers from a Poisson distribution. We independently and randomly initialize populations for each species by drawing from a uniform distribution between 10 and 10+K individuals.

For the comparative analysis we implemented further growth models. To simplify matters, we write them in a similar way with N all referring to the weighted sum of individuals of both species (with weighting factor a, see MSS model for comparison): Similar to the MSS model, dynamics can be varied from equilibrium to cyclic and chaotic dynamics independently of R simply by increasing the value of parameter b (viz., type of density regulation).
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In the fragmented landscape with four patches, dispersal occurs after local population growth. The population size after dispersal N i (t,d=1) is equal to the one prior to dispersal, N i (t,d=0), minus the number of emigrants, N emi,i (t), and plus the number of ( )
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The mean distance over which both species are able to disperse is defined by DD, and the dispersal mortality rates are defined by m. The denominator scales the transfer probabilities p ij such that they add up to one over all j in the absence of dispersal mortality (i.e. for the special case m=0). Emigration probability, dispersal distance and dispersal mortality rate m are equal for both species. 

Simulation experiments and output

We simulated population dynamics using reference values for the parameters if not noted otherwise (cf. Tab. 1). Reproduction rates were set to 5 per time step, which A c c e p t e d m a n u s c r i p t 11 seems reasonable for many species with low to medium body mass, e.g. for insects and small mammals [START_REF] Sinclair | Population regulation in animals[END_REF]). Local species' carrying capacity was 320 individuals.

In the time series analyses of species' densities (Figs. 1-3), we defined long-term growth trends by estimating locally weighted linear fits for population sizes as a function of time using a loess smoother (function loess in R 2.2.0, R Development Core

Team 2005). We measured the amplitudes of the over-compensating species' density fluctuations via the absolute differences in the densities between consecutive time steps.

Again using a loess smoother for a locally weighted fit, we then analyzed how the growth trends depend on amplitudes.

To investigate the role of niche overlap we varied the competition coefficient a from 0 (no niche overlap) across 1 (complete overlap) to 1.2 (interspecific competition stronger than intraspecific competition, cf. Fig. 4).

For the further and more extensive simulation experiments on the influence of the growth model and space on coexistence (cf. The simulation models were implemented with the Borland C++ Builder 5 using numerical routines from the GNU Scientific Library (GSL Team 1992) for the probability distributions. Graphics and statistics were generated in R 2.2.0 (R Development Core Team 2005).
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Results

The simulations regarding coexistence of two species with equal competition coefficients (a = 1, i.e. conspecific individuals cause the same competitive pressure as heterospecific individuals) showed that competitive interactions of two identical compensators (ln(b) = 0) resulted in the random extinction of one species (Fig. 1a). The same was true for two identical over-compensators. However, when a compensating (ln(b) = 0) and an over-compensating species (ln(b) = 1.5) competed with each other, both species were able to coexist (Fig. 1b,c).

Interspecific interactions dampened the fluctuations of the over-compensator, i.e.

amplitudes were much larger without interspecific interactions (a = 0, Fig. 2a) than with interactions (a = 1, Fig. 1b,c). More specifically, amplitudes were buffered most strongly when the compensating species was more frequent than the over-compensating species. In contrast, amplitudes of the compensator were comparably strong without (a = 0, Fig. 2b) and with interspecific interactions (a = 1, Fig. 1). The local regression analysis between the over-compensator's amplitudes and species' growth trends revealed two alternating and mutually advantageous dynamic situations for the species (Fig. 3): (1) low to moderate amplitudes of the fluctuations resulted on average in a positive growth trend of the over-compensator but in a negative growth trend of the compensator;

(2) for strong amplitudes, the situation was vice versa. This was found to be a general pattern, but the absolute magnitude of the amplitude where the switch from positive to negative growth rates for the over-compensator and the competitor occurred (i.e., where both species displayed zero growth) varied between simulations. However, within each simulation the switch point of zero growth was identical for both the overcompensator and the competitor. gradually increased the competition coefficient a (Fig. 4). Species with equal density regulation types (i.e., equal b) were able to coexist only if interspecific competition was weaker than intraspecific competition (a < 1, Fig. 4a, left side of vertical line). How weak it had to be depended on the type of density regulation. However, if species differed in density regulation types and one species showed over-compensation, coexistence was possible even if interspecific was equal to or stronger than intraspecific competition (1 < a < 1.2, Fig. 4b, right side of vertical line). In particular, interspecific competition allowed a strong over-compensator that could not persist in isolation to coexist with another species (Fig. 4b, extinction of a strong over-compensator at a < 0.35, but survival and coexistence with an under-compensator at 0.35 < a < 1.2).

Hence, interspecific competition clearly broadened the survival range that resulted from the various density regulation types.

In a next step, we conducted a comparative analysis for a range of demographic parameters and growth models (Fig. 5) and analysed for which combinations of density regulation types coexistence was possible. This consistently occurred when at least one species showed over-compensation and the other species differed in its density regulation type (Fig. 5, green area). No coexistence occurred when both species had the same density regulation type (cf. cells along the diagonals). From under-compensation to moderate over-compensation, the species with stronger over-compensation was superior, i.e. species A outcompeted species B (Fig. 5, yellow areas), but from moderate to strong over-compensation the species with less over-compensation was superior, i.e.

species B outcompeted species A (Fig. 5, blue areas). Increasing the carrying capacity In a final comparison, we evaluated the role of space for coexistence (cf. Fig. 6).

We used growth rates that led to robust coexistence in homogeneous space (R = 2 for the Ricker model and R = 20 for all other models). Global carrying capacity was set to 500 (resulting in local carrying capacities of 125 individuals in the four patches).

Generally, fragmenting the available carrying capacity led to decreased coexistence.

However, coexistence was still much more probable than could be expected in a completely isolated patch with a carrying capacity of 125 individuals. We further found that increasing emigration rates resulted in decreased coexistence range (cf. plots with 

Discussion

Using a time-discrete population model we show that two strong competitors (identical in their growth rates, carrying capacities and competition coefficients) are able to coexist if (1) they differ in their types of density regulation and (2) at least one species shows over-compensating density regulation. We found that this coexistence occurs over a wide parameter range of density regulation types and proved robust to model choice, temporal disturbances and spatial structure.

Nonlinear population growth maintains coexistence

Our analysis reveals the underlying dynamic mechanism (Fig. 3): The resulting community dynamics are characterised by two dynamically alternating and mutually advantageous biotic system states. These states are generated internally, and the different fluctuation strength of the over-compensator's population density in these states is the key element. At low to moderate fluctuations, the over-compensator is the stronger competitor with a higher effective growth trend compared to the competitor [START_REF] Johansson | dynamics: individual resource partitioning simulation exposes the causes of nonlinear intra-specific competition[END_REF]. This leads to increasing dominance of the overcompensator's density in the population. However, high densities amplify the overcompensator's intrinsic fluctuations. At strong fluctuations, the competing species can use the emerging density depressions as temporal niches, provided that its density regulation is more compensatory. Consequently, the competing species has the higher effective net growth rate and increases its relative frequency in the population.

However, the over-compensator's fluctuations are buffered at a high frequency of the competing species, and thus the over-compensator becomes the stronger competitor again. In sum, coexistence through over-compensation is possible because the over-
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18 compensator tends to generate fluctuations from which it suffers and the competing species tends to dampen these fluctuations from which it benefits (Figs. 1,3). These alternating system stages can maintain coexistence both for competition coefficients (i.e. degrees of niche overlap) that would lead to competitive exclusion in the classical Lotka-Volterra equations (with linear density dependence; Fig. 4) and for strong overcompensators that could not survive on their own due to strong endogenous fluctuations and resulting deterministic extinction in the absence of a buffer (Fig. 4b).

Our simulation experiments show that various models that are well-established in theoretical population ecology (e.g., Maynard Smith and Slatkin, Hassell, Gompertz, Ricker) can display fluctuating coexistence through over-compensatory dynamics similar to the oscillating coexistence in the more complex consumer-resource models where the dynamics of consumers and resources are coupled explicitly (e.g., [START_REF] Armstrong | Competitive exclusion[END_REF][START_REF] Huisman | Towards a solution of the plankton paradox: the importance of physiology and life history[END_REF], Abrams and Holt 2002, Wilson and Abrams 2005). As coexistence through over-compensation results from differences in the shape parameter b of the growth function, it can be associated easily with Chesson's category of relative nonlinearity [START_REF] Chesson | Multispecies competition in variable environments[END_REF][START_REF] Chesson | Mechanisms of maintenance of species diversity[END_REF]). Also, [START_REF] Kuang | Predation-competition interactions for seasonally recruiting species[END_REF] suggested a similar interplay between two alternating states for a plant community facing seed predation. In their model the relative nonlinearity of the growth functions was generated by life history trade-offs between seed productivity and persistence in the seed bank rather than through density regulation. These different studies highlight that considering not only the size of competition coefficients but also the nonlinearity of population growth promises new insights into coexistence dynamics. capacities can support coexistence through over-compensation. This is because large mean population sizes buffer density fluctuations and help to prevent extinction during density drops. Thus, our results suggest that communities relying on this coexistence mechanism are likely to be sensitive to landscape fragmentation, in particular if remaining patches are small. Yet, it is not high connectivity between patches (i.e., when species have high emigration rates and low dispersal mortalities) that buffers the fragmentation effect best, but low connectivity (low emigration rates, Fig. 6). The reason is that coexistence through over-compensation depends on interacting and alternating dynamics of the two species (as explained above). Too much exchange of individuals between patches disturbs these dynamics and reduces coexistence. Thus, limited dispersal is advantageous because it leaves local dynamics almost undisturbed while still allowing for recolonization of extinct small patches, which supports coexistence. This is quite different from coexistence through limited-dispersal specialization where individuals disperse locally, either to exploit empty patches quickly or to more rapidly increase densities in neighbouring patches to exclude competitors (e.g. [START_REF] Bolker | Spatial moment equations for plant competition: understanding spatial strategies and the advantages of short dispersal[END_REF]. Coexistence through over-compensation in 

Robustness of coexistence

Relevance for real ecosystems

What is the relevance of this coexistence mechanism for real ecosystems? The type of density regulation is a species trait that is difficult to measure in field experiments [START_REF] Godfray | Complex dynamics in multispecies communities[END_REF][START_REF] Morris | Problems in detecting chaotic behavior in natural populations by fitting simple discrete models[END_REF]). Even for time series derived from simulation models, it is difficult to estimate the type of density regulation without an a priori knowledge of the processes included in the model. In spite of these difficulties, many researchers agree that different types of density regulation may have a significant effect on ecosystem dynamics and functioning (reviewed in [START_REF] Hastings | Chaos in ecology: Is mother nature a strange attractor?[END_REF]). For example, several studies have provided evidence of chaotic dynamics due to overcompensatory density regulation, in experimental as well as 'natural' conditions [START_REF] Godfray | Complex dynamics in multispecies communities[END_REF][START_REF] Hastings | Chaos in ecology: Is mother nature a strange attractor?[END_REF]. Field studies suggest over-compensating density regulation as a possible mechanism in the competition for resources especially for species with density regulation in early life stages [START_REF] Sinclair | Population regulation in animals[END_REF]; e.g. for butterflies such as cinnabar moths Tyria jacobaeae, beetles such as southern pine beetle Dendroctonus frontalis, [START_REF] Reeve | Scramble competition in the Southern pine beetle, Dendroctonus frontalis[END_REF], or small mammals such as Arvicola terrestris, [START_REF] Aars | Water vole in the Scottish uplands: distribution patterns of disturbed and pristine populations ahead and behind the American mink invasion front[END_REF]Microtus ochrogaster, Getz et al. 2006). We suggest that particularly in communities with high species diversity but no apparent differentiation in physiological characteristics or resource requirements, species coexistence may rely critically on the differentiation in the types of density regulation as Intraspecific competition is as strong as interspecific competition (a=1). 

  the carrying capacity only due to stochastic events (equilibrium dynamics). With under-compensatory density regulation, populations under-compensate deviations from carrying capacities and the adjustment of population sizes to carrying capacities is slow (delayed dynamics). For example, storage capacities may lead to a delayed response if resources decline.

  a = 0; Fig.2) and those where we explore the effect of the competition coefficient on coexistence (systematic variation of a; cf. Fig. 5). Both species differ only in their type of density regulation, which is characterized by b A and b B (b < 1 corresponds to under-compensating, b = 1 to compensating, and b > 1 to overcompensating density regulation).

  number of emigrants per patch is drawn from a binomial distribution with N i (t,d=0) number of trials and emigration rate p emi . The number of immigrants from patch i to patch j is drawn from a multinomial distribution with N emi,i (t) trials and transfer probability p ij . The matrix of transfer probabilities, with entries p ij , describes the probability to move from patch i to patch j. Values decrease exponentially with the Euclidean distance between patches, D ij , measured in units of grid cells:

  Temporal disturbances are introduced by an additional mortality rate; they occur after population growth and dispersal. Disturbances randomly reduce local density by D s (t)•N(t) individuals, where D s (t) ranges from 0 to D s,max for each species and is independently drawn in each time step.

  Figs. 5, 6), we varied density regulation from under-compensatory (minimum: ln(b )= -2) to strong over-compensatory density regulation (maximum: ln(b) = 2) for both species. For each combination of density regulation types, 100 simulations each with 1000 time steps were conducted, and from these we derived the survival probability of each species as well as the coexistence probability (proportion of simulations where both species survived 1000 time steps). To validate coexistence probabilities we additionally analyzed invasibility and monitored the probability to invade the population of the respective competitor with very few invaders. Both analyses gave comparable results, and thus we only report coexistence probabilities. We further repeated the experiments under the exclusion of demographic stochasticity. We found no qualitative changes in the results and thus report only those

  the experiments where intraspecific was equal to interspecific competition strength (a = 1) and those without interspecific interactions (a = 0), we

  number of density regulation types that were able to coexist with each other. For small carrying capacities coexistence was either reduced to very small ranges or was not possible at al (cf. plots for K = 200 vs. K = 1000).The magnitude of the influence of growth rate depended on the growth model that was chosen. While for the Ricker model coexistence was possible at small reproduction rates (cf. plots with R = 2) and decreased at high reproduction rates (R = 20), it was vice versa for the Hassell and the Gompertz type models. The MSS model output was very robust to the choice of reproduction rate. Generally, at low reproduction rates coexistence shifted to higher b values. Too low carrying capacities did not allow for coexistence in any model.

P

  emi = 0.05 vs. P emi = 0.4). Including dispersal mortality slightly increased the coexistence range through over-compensation. Additionally, a new coexistence mechanism emerged: equal or very similar species (along the negative diagonal) were able to 'neutrally' coexist, a mechanism well known from the literature (cf.[START_REF] Chesson | Multispecies competition in variable environments[END_REF][START_REF] Chesson | Mechanisms of maintenance of species diversity[END_REF][START_REF] Adler | A niche for neutrality[END_REF]). Qualitatively, results did not vary between different growth models with the exception that coexistence was more robust to high emigration MSS and Gompertz type models than for the Ricker and Hassell models.

  demonstrates that coexistence through over-compensation is a feature of all four growth models, albeit for slightly different parameter ranges. As endogenous density fluctuations result from the combined action of population growth rate R, density regulation type b and the particular functional form of the population growth model, different models lead to different coexistence ranges (Fig.5). This explains for example why the Ricker model exhibits coexistence at smaller R than the Hassel model, or why the Gompertz model needs larger R than the MSS model to maintain coexistence. Furthermore, our results show that only relatively large carrying

  a good example for a situation where a weak stabilizing mechanism (coexistence through over-compensation cannot develop its full power due to the small patch sizes) is supported by limited dispersal and only the two mechanisms together lead to long-term coexistence[START_REF] Chesson | Mechanisms of maintenance of species diversity[END_REF][START_REF] Adler | A niche for neutrality[END_REF]).

  theoretical investigations. Examples may be the high small mammal and insect biodiversity in some parts of the tropical rainforest zone or marine plankton communitiesIn conclusion, we were able to show that the essence of coexistence through over-compensation is the alternation of different dynamic community states emerging from interacting species of different density regulation types. Coexistence is maintained for a wide range of combinations of density regulation types, and it is also robust with respect to the introduction of temporal disturbances and spatial structure as well as to the choice of the particular non-linear model. Nevertheless, interesting questions for future research remain, e.g., how these mechanisms may work if more species and resources were involved, or how it could evolve in communities.Our results clearly suggest that theoretical community ecology should go beyond the linear density dependence of Lotka-Volterra equations. For example, for a better understanding of spatial coexistence mechanisms it may be helpful to consider the relevance of nonlinear density dependence for both local processes and resulting equations for mean densities (moment equations, cf.[START_REF] Bolker | Spatial moment equations for plant competition: understanding spatial strategies and the advantages of short dispersal[END_REF].Moreover, field studies should examine more closely competition types within communities when studying coexistence. As scramble competition may lead to overcompensating density regulation, a more detailed analysis of scramble versus contest competition may give further insights into the functioning of communities. earlier versions of this manuscript. We thank Jim Grover for very helpful comments on an earlier version and the title of the manuscript. Suggestions of anonymous reviewers helped to clarify and improve our manuscript considerably. We appreciate the financial support provided by the BMBF Germany (German Federal Ministry of Education and Research, project ID: 01 LB 0202). Overview of parameters that were varied across simulation experiments, parameters that were kept constant across all simulation experiments (but some were drawn from given distributions), and output variables.
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 1 Figure 1: Population densities of two competing species over 300 time steps on one
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 2 Figure 2: Population densities of two non-interacting species over 300 time steps on one

Figure 3 :

 3 Figure 3: Long-term trends in population growth of both species depend on the over-

Figure 4 :

 4 Figure 4: Coexistence probability of two species over 1000 time steps for different
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  Here, we investigate how different population growth models are able to display this coexistence.

	We simulate a two-species community with time-discrete dynamics. The species can
	We conduct these investigations using a time-discrete simulation model of differ in their density regulation type, but all other attributes are identical. Niches of the
	population growth. In a first step, we study community dynamics and analyse the species can overlap completely, only partly, or not at all. The species live either in a
	species-specific time series to better understand when and how two strong competitors homogeneous landscape or in a fragmented landscape with four patches connected via
	are able to coexist through over-compensatory density regulation. In a second step, we dispersal.
	investigate the impact of demographic parameters such as growth rate and carrying Time-discrete local population dynamics of the species A and B are described by
	capacity in four different population growth models. Finally, we investigate whether an extended version of the Maynard Smith and Slatkin equation (MSS model) unless
	space matters and how species' dispersal abilities (emigration rate and dispersal noted otherwise (1973; see also Hassell and Comins 1976):
	mortality) influence coexistence through over-compensation.
	provided evidence of oscillatory
	coexistence of two species with complete niche overlap, i.e. intraspecific competition
	equalling interspecific competition.
	However, to date no study has systematically explored the robustness of
	coexistence through over-compensation for a wide variety of density regulation types

(beyond the cyclic range including chaotic dynamics) and in a context that examines the A c c e p t e d m a n u s c r i p t 7 role of temporal disturbances and spatial habitat fragmentation.
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and emigration rates (P emi =0.05, 0.1 or 0.4). The colours code is the same as in Fig. 5. 
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