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Abstract

HIF, being the master protein involved in adaptation to low p[O2], plays a major role in many physiological and
pathological phenomena: development, inflammation, ischemia and cancer. PHD and FIH are the two oxygen sensors
that regulate the HIF pathway. Here we model the regulatory dynamics in an oxygen gradient by a system of differential
equations. A part of the work consists in a qualitative analysis, driven independently of the values of the parameters,
which explains the non-redundant functional roles of FIH and PHD. In a second part, we use biological experiments to
fit the model in a physiologically relevant context and run simulations. Simulation results are confronted with success to
independent biological experiments. The combination of biological data and mathematical analysis stresses that FIH is a
fine modulator determining whether a given gene should be induced in mildly or in strongly hypoxic areas. Moreover it gives
access to other functional predictions that are not directly accessible by pure experiments, for instance the stoichiometry
of prolyl-hydroxylation on HIF, and the switch-like properties of the system.

Availability: An interactive simulation interface is available at http://sdi.ljad.free.fr/spip.php?article111

Keywords: Gene expression/ HIF/ Mathematical model/ Oxygen sensors/ Switch-like behavior.

1 Introduction

Most mammals live in an atmosphere composed of 21% oxygen, which is considered a physiological environment. Nevertheless
there are many circumstances in which a cell can become hypoxic - that is, subjected to low oxygen pressure. For instance an
organism can be exposed to extreme conditions such as high altitude. Moreover, hypoxia is a characteristic of many pathologies.
Cerebrovascular insult or myocardial infarction are examples of ischemic disease. Oxygen pressure is also strongly reduced in
cancer (Semenza, 2003), mainly because of (i) the chaotic architecture of tumor vessels (Folkman, 2007) that leads to lower
perfusion, and (ii) the intense proliferation of cancer cells that develop distant to blood vessels.

The common feature of these situations is that hypoxia is a powerful cellular stimulus that induces a signaling pathway
dedicated to environmental adaptation (Pouyssegur et al., 2006). In the case of ischemic disease, this adaptation is beneficial
to the patient as it promotes survival of cells that are exposed to low oxygen pressure. On the contrary hypoxia is synonymous
with bad prognosis in cancer (Semenza, 2003), selecting highly virulent cells that are able to survive in extremely unfavorable
environments.

The master protein of the hypoxic pathway is the Hypoxia Inducible Factor (HIF) (for review: (Brahimi-Horn and
Pouyssegur, 2007)). HIF is a transcription factor that targets a series of adaptation genes under hypoxic conditions. It
is a hetero-dimer composed of a regulatory α subunit and a constitutive β subunit. From a functional view, the potency of
this protein to recruit the RNA-polymerase lies in two transactivation domains (TAD) located on HIFα. One of these TAD
is C-terminal (named C-TAD) and the other is N-terminal (named N-TAD ).

HIF is regulated by oxygen thanks to post-translational modifications of its α subunit. The enzymes that modify HIFα
and that are responsible for pO2 sensitivity are called oxygen sensors. To date, two oxygen sensors have been characterized:
HIF-Prolyl-Hydroxylase (PHD) (Ivan et al., 2001); (Jaakkola et al., 2001) and HIF-Asparaginyl-Hydroxylase (also called FIH
for Factor Inhibiting HIF) (Lando et al., 2002a), (Lando et al., 2002b); (Mahon et al., 2001). Both are members of the
2-oxoglutarate dependent dioxygenase family and both catalyze a reaction of hydroxylation on HIFα (see Figure 1).
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In the presence of oxygen, PHD hydroxylates HIFα on two prolyl residues. As a consequence, HIF interacts with the von
Hippel Lindau (pVHL) ubiquitin ligase and is targeted for massive proteasomal degradation. Moreover, HIFα is hydroxylated
on an asparaginyl residue by the other oxygen sensor FIH. This last modification specifically impairs the C-TAD activity
of HIF (For review see (Pouyssegur et al., 2006)). In hypoxic conditions, these two sensors are inactivated by the lack of
oxygen substrate, and thus HIF is stabilized and active via its two transactivation domains. In such conditions, HIF is able to
target a wide series of precise adaptation genes associated with Hypoxia Responsive Elements (HRE) which are specific DNA
recognition sequences.

Recently the role of FIH as a pure HIF inhibitor has been questioned (Dayan et al., 2006), (Dayan et al., 2008), (Yan et al.,
2007). Importantly, FIH only inhibits the C-TADactivity and not the N-TAD activity. New evidence tend to characterize FIH
as a discriminator between a N-TADand a C-TADspectrum of genes (Dayan et al., 2006). As a result FIH would qualitatively
affect the downstream action of HIF. Here we propose to build a mathematical model of this signaling pathway that integrates
these new features, including the differential action of FIH on the two HIF’s TAD.

2 Results

2.1 Total HIF protein versus O2 variation

2.1.1 Analytic expression

Since biological experiments measure the total concentration of HIF proteins, we are interested in the value at equilibrium of
the sum

[HIFTOT] = [HIF] + [HIFOHa] + [HIF(OHp)2] + [HIFOHa(OHp)2],

where the brackets [.] denote the concentration.
By a mathematical analysis (see Appendix) the following lemma comes readily:

Lemma 2.1 1. The equilibrium values of [PHD], [FIH] and [VHL] do not depend on oxygen and are equal to:

[PHD]0 =
k1S1

l1
[FIH]0 =

k2S2

l2
[VHL]0 =

k3S3

l3

2. Let [HIF]0 be the reference amount of HIF protein corresponding to anoxia:

[HIF]0 =
k0S0

l0

Let

τ1([O2]) =
a1b1[PHD]0[O2]2

d1 + b1[O2]2
(1)

τ3 =
a3b3[VHL]0

d3 + b3
(2)

where a1, d1 and b1 are the kinetic parameters involved in the hydroxylation of HIF by PHD, while a3, d3 and b3 are the
rates of the elementary reactions participating to the VHL-dependent proteasomal degradation of all hydroxylated forms
of HIF (see Figure 2). The units of τ1 and τ3 are inverse time units t−1.

Then, the total amount of HIF protein at equilibrium depends on oxygen [O2] in the following way:

[HIFTOT] = [HIF]0
1 + τ1([O2])

τ3

1 + τ1([O2])
l0

(3)

See Figure 3 for the interpretation of τ1 and τ3.
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2.1.2 Analysis of HIF expression

In our mathematical model we have chosen the simplest kinetic law, which is mass-action law. This formalism avoids to make
any assumption on the speed of the elementary reactions. However, we noticed afterwards that the parameters τi which arise
in the formula [3] (derived from the equations of our mass-action model, see Appendix) have a natural interpretation if we
apply the quasi-steady state model reduction, as explained thereafter.

In our context, the quasi-steady state model reduction applies to the reactions of hydroxylation of HIF proteins by PHD
and FIH and to the interaction of HIF proteins hybroxylated on Pro residues with VHL (see Figure 3). It consists in assuming
that the concentration of intermediary complexes HIF proteins-enzyme reach almost immediatly their equlibrium value (the
so-called Briggs-Haldane approximation). Then, each hydroxylation (respectively, interaction with VHL) can be considered
as one reaction, governed by Michaelis-Menten kinetics (see Section 4.3 for details).

In first approximation, when substrate concentrations (HIF in this case) are low, the enzymatic speed is proportional to
the substrate concentration. In this regime,

• τ1 is the multiplying factor of the rate of hydroxylation by PHD; it depends on the oxygen level;

• τ3 is the multiplying factor of the rate of degradation through VHL.

Formally, τ1 and τ3 are the slopes of the Michealis-Menten curve near the origin. Another qualitative interpretation in terms
of enzymatic activity is that τ1 and τ3 are equal to Vmax/KM where KM is attributed to the HIF substrate. The higher this
quantity is, the more potent the enzyme is, either in reference to its maximal speed, or to its better affinity for its substrate,
HIF. In this context, τ1 (in reference to PHD) appears in a ratio with τ3 (in reference to VHL) and in a ratio with l0 (in
reference to the non specific degradation of HIF). If one considers the extreme condition l0 = τ3 (which would mean that the
non specific degradation of HIF is equally potent to the VHL-dependent degradation), HIF is no longer dependent on oxygen.
In that case, the oxygen- and non oxygen-dependent degradation are balanced. If l0 > τ3, the function would be increasing.
And if l0 < τ3 (which is relevant physiologically), the function is decreasing (See Figure 4 (Left)).

The curves in Figure 4 are plotted from a set of parameters adapted from previous publication (Kohn et al., 2004). In this
context, which satisfies τ3 > l0, HIF is a strictly decreasing function of oxygen. Its sensitivity to PHD is illustrated in the
right panel. The sharpness of the HIF response is highly dependent on a1, the association constant between HIF and PHD.

2.1.3 Fitting with experiments

In our approach, we choose to determine the parameters of our system that fit the best with experimental data. In the case of
HIF, we use a protein quantification by western blotting as a reference. Indeed, Figure 5 (Left) reports a measure of HIFTOT

concentration at different pressures of oxygen. We define the function h([O2]) = R[HIFTOT]([O2]), where the re-scaling R
factor is linked to the fact that quantification is done in an arbitrary unit, and we fit h with the experimental data.

Function h is totally determined by three parameters:

a = R[HIF]0
1 + a1[PHD]

τ3

1 + a1[PHD]
l0

b =
d1

b1

1

1 + a1[PHD]
τ3

c =
d1

b1

1

1 + a1[PHD]
l0

which satisfy the relation:

h([O2]) = a
b + [O2]2

c + [O2]2

We evaluated a, b and c by nonlinear fitting with the help of the software Mathematica c©: Figure 5 (Right).

2.1.4 The endogenous HIF is hydroxylated at both proline sites

In the conception of our model (Section 4.2), we arbitrarily choose to take into account the double hydroxylation of HIF by
PHD on Pro 402 and Pro 564 (in addition to the hydroxylation on Asn804 by FIH). Nevertheless, it is still debated if one
or two prolines are simultaneously hydroxylated on HIF. It appears that these two reactions are independently driven (Chan
et al., 2005). For the first time our model gives access indirectly and easily to the hydroxylation status of the endogenous
HIF. Indeed, Table 3 shows an optimization score as a function of the number of prolyl hydroxylations n. This number
impacts the enzymatic equations and consequently the profile of HIFTOT within the oxygen gradient. When compared to
the experimental data (i.e HIFTOT protein quantification), the optimization calculation characterizes n = 1.98 with the best
optimization score d = 2.29. In contrast to other values of d in Table 3, the double hydroxylation on prolyl is noticeably
the best configuration. As a consequence, from the simple protein profile of HIFTOT, and from our mathematical model, we
conclude that the endogenous HIF in LS174 cells (colon carcinoma) is hydroxylated on two prolyl residues.
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2.1.5 Fitted set of enzymatic parameters

It is clear that for a full set of kinetic parameters ai, bi, di, ki, Si, li, there corresponds a unique triplet (a, b, c). Conversely,
to each triplet (a, b, c), there corresponds an infinite set of kinetic parameters. In Table 2, we give an arbitrary set of kinetic
parameters corresponding to the best fitted value of a, b, and c.

2.2 Gene stimulation versus O2 variation

2.2.1 Analytical expression

According to our hypothesis on the roles of both transactivation domains of HIF on HRE stimulation, we define the gene
stimulation function by

Gq = N + qC (4)

where N and C are respectively the N-TADand C-TAD -related stimulation functions:

N = [HIF:HRE] + [HIFOHa:HRE]+
[HIF(OHp)2:HRE] + [HIFOHa(OHp)2:HRE]

C = [HIF:HRE] + [HIF(OHp)2:HRE]

Analogously to τ1 and τ3, we define:

τ2([O2]) =
a2b2[FIH]0[O2]

d2 + b2[O2]
(5)

It has inverse time unit and can be interpreted as the multiplying factor of the rate of hydroxylation by FIH in the linear
regime of the quasi-steady state reduced model (see Figure 3 and Section 4.3).

In terms of the τ1, τ2 and τ3, we get (see Appendix):

Gq =
a4

d4
[HIF]0

1 + τ1
τ3

1 + τ1
l0

+ a4
d4

[HIF]0(1 + τ1
τ3

)
(1 + q

1 + τ1
l0

1 + τ1
l0

+ τ2
l0

) (6)

2.2.2 Normalization and numerical fitting

In order to compare the stimulation function between various genes, we introduce a normalized gene stimulation function
{

gq = R′Gq

gq(0) = 100 (7)

where Gq is defined by Equation [4]. From an experimental view point it can be interpreted as the stimulation level with
respect to the stimulation induced in anoxia. We get:

gq =
100(1 + a4

d4
[HIF]0)(1 + τ1

τ3
)

(q + 1)(1 + τ1
l0

+ a4
d4

[HIF]0(1 + τ1
τ3

))
(1 + q

1 + τ1
l0

1 + τ1
l0

+ τ2
l0

) (8)

The function gq was calibrated using data obtained from the gene ca-IX (see Appendix for details). A set of enzymatic
parameters, compatible with the calibration from experimental data is given in Table 2 and is used in the following sections.

2.3 FIH modulates the profile of HIF-targeted genes

In the context of our mathematical model, we questioned the biological impact of the oxygen sensor FIH. Our aim is to reach
a better understanding of the qualitative role of FIH. FIH and PHD are often considered as two redundant lockers of the
HIF pathway. Yet in opposition to PHD, FIH was recently revealed not to be a pure inhibitor of the HIF pathway (Dayan
et al., 2006). FIH only inhibits the C-TAD -sensitive genes while “N-TAD -dominant” genes (e.g pgk1) are not sensitive to this
oxygen sensor. As a result FIH would control a switch between the N-TAD and the C-TAD repertoire.

For the first time, our MIM includes this precise level of complexity, and opens the way to monitor the influence of FIH
on the N-TAD and C-TAD spectrums. We chose to investigate this effect thanks to an inhibition, Figure 7 (panels D, E, F)
and an overexpression of FIH, Figure 7 (panels A,B,C). Note that all parameters in the numerical experiment are fitted to
biological data; here the arbitrary value 100 for FIH corresponds to the physiological context. Then, the inhibition of FIH
results in a contraction of the gene expression curves. More precisely, curves associated to C-TAD -sensitive genes (highest
q) are relocalized into milder hypoxic areas. Simultaneously, N-TAD only genes (q = 0) are not affected, which is consistent
with the fact that the N-TAD activity is not modified by FIH. At the extreme point where FIH = 0 (complete knockout of
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FIH), C-TAD -sensitive gene profiles become superposed to N-TAD -only curves. Consistently, increasing the amount of FIH
from 100 to 1000 gives symmetrical results: the overexpression of FIH leads to a relocalization of C-TAD -sensitive genes into
stronger hypoxic areas.

The shape of this series of curves reflects the ability of FIH to retain the activity of the C-TAD -sensitive genes, and to
release it in strongly hypoxic areas of the oxygen gradient. Conversely, the expression of N-TAD -only genes is not retained
by FIH, and should be released in milder hypoxic regions. As a result, FIH is a modulator of the HIF spectrum profile in an
oxygen gradient, and allows us to differentiate the gene expression pattern of the N-TADand C-TAD repertoires of genes.

2.4 Biological predictions supported by experimental data

2.4.1 Prediction of the C-TAD -sensitivity for a series of 25 genes

In this part we exploit experimental data from quantitative PCR performed on a series of 25 HIF-targeted genes. For each
gene, a relative induction score of hypoxia is evaluated by calculating the ratio (gene expression at 3 %O2 ) / (maximal
gene expression under anoxia). From this score, our model attributes a value of q, associated to each gene (Figure 8).
Thus our theoretical model gives access to the quantitative contribution of the C-TAD , which is difficult to estimate purely
experimentally. See also Appendix.

2.4.2 Modulation of the gene profile, and physiological limitations of the action of FIH

The x-axis in Figure 8 quantifies the flexibility of gene induction given by the action of FIH. This oxygen sensor has the ability
to retain the expression of C-TAD -sensitive genes (high q) and to release it only in highly hypoxic areas. Such genes present
a low relative induction score in Figure 8 (x-axis), which means that their induction at 3% oxygen is far from their maximal
anoxic induction. Thus FIH modulates the profile of C-TAD -sensitive genes; nevertheless, importantly, our model predicts
an asymptotic border that defines a limit in the action of FIH: dotted line in Figure 8, y1 value in Appendix . Whatever the
strength of the C-TAD sensitivity (i.e. q), the consequence in terms of gene induction is necessarily limited. In the case of
our numerical values, the ratio between the gene induction at 3% oxygen and anoxia should always be superior to y1 = 3.5%.
This a priori counter-intuitive result reflects a physiological limit of flexibility of the gene profile within an oxygen gradient.

Note that in the absence of FIH, another inferior limit of gene induction appears: y0 value in Appendix , when FIH = 0
(or q = 0 for N-TAD -only genes). In that situation, PHD is the only oxygen sensor driving the shape of the gene expression
curve from normoxia to anoxia. Consequently, when FIH = 0, the gene expression is parallel to the HIF protein induction,
and more limited. In the case of our numerical values, this limit is equal to 80% under the influence of PHD alone. A
biological interpretation of y1 and y0 relies on the impact of FIH on the gene profile in addition to PHD. Here this enzyme,
by playing on the HIF activity, allows to shift the inferior limit from 80% to 3.5%; thanks to FIH, the system is still limited,
but substantially more flexible.

2.4.3 The calculated C-TAD sensitivity is consistent with FIH modulation experiments

In order to check the biological relevance of our model and our predictions, we exploited an independent biological experiment.
Indeed, as previously published (Dayan et al., 2006), the sensitivity to FIH of a given gene can be estimated thanks to FIH
modulation experiments (overexpression and inhibition by shRNA).

Then for each gene, we defined a FIH sensitivity score that is equal to the ratio (gene response following inhibition of
FIH)/(gene response following overexpression of FIH). The higher this FIH score is, the more a gene responds to FIH. This
score was at the basis of the C-TADand N-TADsensitivity classification in (Dayan et al., 2006). Among 25 HIFtargeted
genes, 16 were classified as FIH-sensitive / C-TADresponsive and 9 as FIH insensitive / N-TAD dominant. Aiming at putting
our model to the test, we compared this FIH sensitivity score to the calculated q predicted by our system. Figure 9 shows that
among the same 25 genes, a nice correlation is observed, and that 3 clusters emerge. Cluster A gathers 8 N-TAD dominant
genes with low q. Cluster B gathers 10 C-TAD responsive genes with intermediary q. In cluster C, 3 C-TAD responsive genes
present a substantially higher q. Thus our model is consistent with the previous classification as N-TAD (green diamonds)
and C-TAD -sensitive (blue squares) genes. Moreover, it allows easy discrimination between these 2 categories on the basis
of a simple experiment (gene induction at 3% and 0 % oxygen) whereas the previous classification was based on a genetic
modulation of FIH.

2.4.4 Exception genes

In Figure 9, 4 genes escape to the 3 clusters that are described above. They are exceptions that don’t match with our model.
Our interpretation is that their gene expression is driven by other actors that are not present in our model, or still have to be
discovered. Interestingly these 4 genes are pointed out thanks to the correlation graph. Coefficient q for phd3 is exceptionally
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high with comparison to its FIH sensitivity score, which reflects that in addition to FIH, another factor should contribute
to release phd3 expression in highly hypoxic zones. On the opposite, trefoil factor 3 and, to a certain extent, p21 present a
relatively low q when compared to their FIH sensitivity score, which means that an unknown mechanism decreases the effect
of FIH on their induction profile within an oxygen gradient. At last, bnip3 presents an unusual FIH sensitivity score, below
1, which means that FIH does not inhibit bnip3 in this experiment, and even further that it increases its expression. In our
model, such a situation should correlate with a negative value of q (an inhibitory activity of the C-TAD ). Nevertheless it is
not the case, and certainly the mechanism of bnip3 induction is not fully described by our MIM.

2.5 Switch-like behavior of the HIF protein

2.5.1 Preliminary definitions.

In the wider acceptation, a system has a switch-like behavior if, by variation of a parameter, it changes from one stable state
to another one and the transition is sharp.

Two very distinct phenomena can lie behind an observed switch-like behavior, and distinguishing which of both occurs in
a specific situation is biologically relevant.

The first of these phenomena is the switch. A classical example is the lysis/lisogeny switch of the λ-phage (see for instance
(Arkin et al., 1998)), but there are plenty of others. A fundamental characteristic of switches is irreversibility: if the change
from stable state A to stable state B occurs at a critical value c when increasing the parameter, then if one decreases the
parameter below c, the system stays in state B. This property was already pointed out in (Monod and Jacob, 1961) and is
now well understood in terms of a hysteresis effect: the parameter c is a bifurcation point and there is another bifurcation
point c′ < c and for any value of the parameter between c′ and c, the system is bistable.

We call a “shift” the case when no irreversibility is observed. Although in both situations a sharp transition is observed
between two stable states, the number of stable states is a fundamental qualitative difference between a switch and a shift:
while in the case of a switch, both stable states “cohabite” in a region of parameter space, in the case of a shift, whatever the
value of the parameter is, the system has a unique stable state.

Let us emphasize that a switch behavior is a robust qualitative property of the system, that is: (1) it does not depend on
specific choices of initial conditions and (2) it persists under perturbations. A perturbation can affect the numerical values of
the stable states and the bifurcation point but not their existence and the sharp transition. In contrast, the shift property is
not robust: it depends on the choice of a sharpness threshold, that is the minimum value of the steepness (the derivative) at
the inflexion point. The numerical value for the threshold is empirical and is strongly related to the context. This approach
is taken in (Qutub and Popel, 2006).

Finally, notice that many authors assimilate switch and switch-like behavior, but for the purpose of our discussion, we
make the careful distinction.

2.5.2 Questioning the switch-like behavior

In (Kohn et al., 2004), a switch-like behavior was numerically observed for the gene stimulation function;and the authors
suggested that the underlying phenomenon was a switch. Notice that when we set FIH = 0 and choose the hypothesis of only
one hydroxylation of HIF by PHD, our model reduces to a simplified version of the model in (Kohn et al., 2004). In this case
the gene stimulation and the total HIF protein functions give qualitatively the same response as in (Kohn et al., 2004).

Following our mathematical analysis (and this discussion is independent on the hypothesis of a unique or a double hy-
droxylation of HIF by PHD), it appears that the switch-like behavior is strongly dependent on the condition that PHD is
not degraded (Remark A.1 in Appendix), a condition which is not in agreement with physiology. To the contrary when PHD
is produced and degraded, the switch-like property is lost. To assess this theoretical argument, we simulated the model of
Kohn, partially simplified by assuming that the role of the constitutive β subunit of HIF can be neglected in the regulation of
hypoxia, with the set of parameters proposed in (Kohn et al., 2004) and with the hypothesis of a unique hydroxylation of HIF
by PHD, see Figure 10. Actually, we also simulated the complete Kohn’s model (result not shown), getting the same result.

In the same conditions (PHD not degraded), we have numerically tested the irreversibility property, but without success:
the sharp transition occurred at the same critical value by increasing or decreasing the parameter. It seems more realistic to
assume a shift than a switch.

2.5.3 Artifactual sequestration effects

The exhibition of a non-generic switch-like behavior in (Kohn et al., 2004) is an illustration of a more general situation, that
we now explain. From a modeling point-of-view, it is not equivalent to assume that a species has a constant concentration or
that it is produced and degraded at constant rates. Let us illustrate this phenomenon on VHL. Assume that, to the contrary
of our model, VHL is simply a constant parameter. Then, the available concentration of VHL corresponds to VHL which
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is not being used in the system ( “sequestrated”). Since the rate of degradation of HIF(OHp)2 and HIFOHa(OHp)2 by the
proteasome is proportional to the available concentration of VHL, HIF(OHp)2 at equilibrium has a nonlinear dependance on
HIF, and HIFOHa(OHp)2 at equilibrium has a nonlinear dependance on HIFOHa. This fact has a consequence on HIFTOT,
because the dependence on HIFOHa becomes explicit. In particular, we predict that HIFTOT depends on FIH in this context.
By assuming that VHL has non-zero degradation and production rates, the problem disappears since the sum HIFTOT is not
anymore dependent on FIH.

Conversely, we can predict that under pathological conditions where production or degradation of proteins (like PHD, FIH
or VHL in our model) are stopped or even severely slowed down, sequestration effects can occur and induce nonlinearities in the
system, giving unexpected effects like the dependence of HIFTOT on FIH when VHL is affected. The theoretical model would
be worth exploiting for deeper studies of this kind of unusual situations. Finally, notice that, in another context, sequestration
effects have been proposed as an explanation to unexpected damped temporal oscillations under constant stimulation of
signaling cascades (see (Ventura et al., 2008), and also (Legewie et al., 2007)).

3 Discussion

3.1 A theoretical model that is dedicated to biology

We designed a Molecular Interaction Map including key actors of the HIF pathway and major regulators of the gene induction
profile downstream of HIF. We attempted to adhere as closely as possible to biological and molecular reality by systematically
evaluating our parameters with reference to biological experiments.

From the modeling point-of-view this system has many virtues. First, it reflects all biological features considered in
the problem, but stays relatively simple since it admits an analytical treatment which -1- helps in identifying pertinent
parameters, ([HIF]0, τ1, τ2, τ3 ), and -2- helps in fitting with experiments without requiring random exploration of parameter
space. Finally, it is a prediction tool, in the sense that it can be used to quantify the coefficient of sensitivity q of a given gene
to the C-TAD domain of HIF, while this measure is not experimentally easily accessible.

From the biological point-of-view, HIF is considered as a key transcription factor driving multiple fundamental biological
pathways. In the context of microenvironmental stress adaptation, HIF-targeted genes play crucial functions such as angio-
genesis, pH control, extracellular matrix modulation, inflammation, migration or metabolic change (for review (Pouyssegur
et al., 2006)). This work introduces an original function of the oxygen sensor FIH (supporting the fact that it is not redundant
with the other oxygen sensor PHD). This O2-sensitive enzyme allows physical segregation of two potential HIF spectrums
in an oxygen gradient: N-TAD -dominant genes would be associated with mild hypoxia (in close vicinity to blood vessels)
whereas C-TAD responsive genes would release their maximal expression in strong hypoxia (in periphery of blood vessels).
Thus our updated hypoxic MIM indicates how the HIF repertoire can be spatially driven thanks to FIH, and what are the
amplitude and the limit of this oxygen sensor.

3.2 Parameter space

The formula for HIFTOT (Equation [3]) allows us to understand what are the parameters which control HIFTOT in an oxygen
gradient, namely [HIF]0, a1, d1, b1, [PHD]0, l0 and τ3. More interestingly, the signal HIFTOT actually depends exclusively on
[HIF]0 and the ratios d1/b1, a1[PHD]0/τ3 and τ3/l0. This shows that many combinations of the initial kinetic parameters lead
to the same global dynamics in this interaction network, with the same triplet a, b and c. Our interpretation is that this system
is potentially able to adapt to punctual kinetic changes and to recover its functionality. For example, if a pharmacological
drug inhibits the association between HIF and PHD (decrease in a1), the system can readapt exactly to the same dynamics by
increasing the production of PHD (by a gene duplication for instance), or by counterbalancing τ3 (enzymatic activity of VHL,
that can be altered by single mutations) and l0 (non specific degradation of HIF). On the other side, perturbations in this
dynamical system can also naturally occur in the Von Hippel Lindau disease, generating hematological disorders and kidney
tumors. In this context our model should allow evaluation of the impact of different VHL mutations leading to a decreased
a3, and to show how to restore a physiological context thanks to an adjusted therapy.

3.3 Conclusion

This work illustrates how mathematical tools and biological experiments can synergize in order to get a better understanding
of complex interaction networks. In the case of HIF, our data allow us to finely characterize the behavior of this master
signaling pathway. Deregulation in this mechanism leads to pathological contexts such as the von Hippel Lindau disease. Our
model is a tool that should allow a better understanding of this type of disorder, and also to find ways to therapeutically
restore a physiological balance. Our model predicts how FIH allows induction of a precise gene at a precise location within
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an oxygen gradient. From a physiological point-of-view, it is highly probable that each gene has to be accurately located
in order to properly adapt cells to their microenvironmental stress. This precise spatial regulation should be particularly
pertinent within a solid tumour where the dynamics of angiogenesis and environmental adaptation is directly linked to cancer
progression. Consequently, as a gene induction organizer, FIH could be an interesting anti-cancer target. It opens the way to
an original type of micro-environment directed therapy aiming at disorganizing the spatial profile of the HIF repertoire. In
this context, such a type of therapeutical strategy could be implemented, evaluated and optimized in our biomathematical
model.

4 Materials and methods

4.1 Approach

We propose to model the regulation of HIF interaction network taking into account both PHD and FIH. The network is
represented by a Molecular Interaction Map (MIM, see Figure 2), that is a diagram, with a well defined symbolic vocabulary,
which represents all biochemical interactions in a given system. Dynamics are modeled using differential equations (see Figure
11). The system is relatively simple, since we are able to derive the exact values of the equilibrium state in terms of the
parameters. This allows a detailed analysis of the evolution of this equilibrium in an oxygen gradient from 21 % to 0 % O2.

An essential feature of our model that differs from a previous model in (Kohn et al., 2004), is the lack of switch-like
behavior for the HIF concentration as a function of oxygen. Namely, there is no region in parameter space where more than
one stable equilibrium state can exist. Moreover we show experimental biological evidence confirming the progressive, without
sharp transition behavior of the HIF protein induction.

We explain that the sharp transition previously observed in (Kohn et al., 2004) is an indirect consequence of protein
sequestration effect occurring because the system is put in very particular and non-physiological conditions (production and
degradation rate of PHD equal to zero).

We illustrate this result by making a simulation within the setting of (Kohn et al., 2004) (see Figure 10).
On the other hand, the analytic expression of the total HIF protein concentration (Equation in Lemma 2.1) allows to

exhibit three new parameters which are combinations of the initial ones, which entirely determine quantitatively the HIF
concentration as a function of O2. Using experimental data we fit the model to the experiment. This model gives new insight
into the way FIH can modulate the spectrum of HIF-targeted adaptation genes. In the context of a virtual oxygen gradient,
it clearly shows that FIH is able to displace the C-TAD repertoire into highly hypoxic areas while N-TAD genes express in
mildly hypoxic zones. In accordance with biological reality, this mechanism leads to a better understanding of how the oxygen
sensors drive the gene expression pattern from a blood vessel to its hypoxic periphery.

Notice that three isoforms of the α subunit have been characterized. Here we consider the presence of only one isoform
that we call HIFα. Note that the cell line that we use (LS174) is indeed a HIF-1α only cell line (data not shown).

4.2 Building the models

4.2.1 Molecular Interaction Map

Basing on a previous MIM (Kohn et al., 2004), the originality of our model relies in three aspects:

• Based on the fact that HIF bears two distinct and functional transactivation domains (TAD) (Dayan et al., 2006),
(Gothie et al., 2000), our hypothesis is that both the N-TADand the C-TADcan potentially stimulate the spectrum of
HIF downstream genes. In order to differentiate these two domains, we chose to assess the sensitivity to the C-TAD with
a sensitivity coefficient q ≥ 0, which is characteristic of a given gene, with a given HRE. When FIH hydroxylates HIF
on its Asn-residue target, this C-TADrelated stimulation is blocked. A hypothetical HRE with q = 0 does not respond
to the C-TAD domain. Its regulation is not sensitive to FIH, and entirely controlled by PHD. On the other side, a
HRE with q > 0 is activated by both transactivation domains of HIF: its regulation is strongly controlled by FIH, and
q reflects the amplitude of this modulation.

• In agreement with the molecular description of hydroxylation of HIF by PHD, we take into account that HIF is hy-
droxylated on two proline residues and the reaction involves two dioxygen molecules (Masson et al., 2001), (Chan et al.,
2005).

• we assume that the dynamics of the β subunit of HIF (species ARNT in (Kohn et al., 2004) ) is not relevant in itself,
and is not limiting for the other reactions.

In Table 1, we list the variables of our model. Figure 2 is the underlying MIM. The parameters are:
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• Kinetic parameters: association/dissociation constants ai,di, conversion constants (ki,bi), degradation constants (li). In
Table 2 C), we give a set of parameter values obtained by fitting the model to experimental data (see Sections 2.1.3 and
2.4). See also Table 2 B) for units;

• Molecular species: Precursors of HIF (S0), PHD (S1), FIH (S2), VHL (S3); Oxygen ([O2]).

In the following, we always suppose that, otherwise stated, all parameters are non zero.

4.2.2 Dynamical equations

From the static picture given by the MIM, we derive the system of differential equations which models the dynamics. Each
reaction in the MIM is supposed to follow the principle of mass action: its rate is proportional to the product of the
concentrations of the reactants to the power of the stoechiometric coefficient. Equations are obtained by making a mass
balance for each vertex of the MIM. The equations are given in Figure 11.

Remark 4.1 Since we have assumed the double hydroxylation of HIF by PHD on Pro 402 and Pro 564 (see 2.1.4 for further
analysis of prolyl hydroxylation, and (Schofield and Ratcliffe, 2004)), O2 appears as a second order in the rates of the
elementary reactions involved in this hydroxylation. For that reason, one encounters the term [O2]2 in the equations.

Remark 4.2 Species HRE plays a particular role, due to the fact that there is usually one such element per cell and it cannot
be considered to evolve in time as a continuous variable. To avoid this difficulty, it is typical to assume that we are modeling
the mean behavior of a population of identical cells. Then, the variable x4 stands for the proportion of HIF-free HRE in
the population, x13, x15, x14 and x16 are proportions of HRE bounded to HIF, HIFOHa, HIF(OHp)2 and HIFOHa(OHp)2
respectively. They are real numbers between 0 and 1, and their sum is 1 (because we suppose that the total amount of HRE
is constant).

4.2.3 Numerical fitting

We evaluated the numerical values of the parameters from experimental data by nonlinear fitting with the help of the software
Mathematica c© [Wolfram Research, Inc., Mathematica, Version 6, Champaign, IL (2007)].

4.3 Quasi-steady state model reduction

The quasi-steady state model reduction consists in applying the standard Briggs-Haldane quasi-steady state approximation
(see, for instance (Briggs and Haldane, 1925)) For instance, consider the hydroxylation of HIF by PHD: our initial model
decomposes this process into two reactions, namely the formation/dissociation of the complex HIF:PHD with rates a1 and
d1 respectively, and the binding with [O2] with release of PHD, with rate b1. If one assumes that d[HIF:PHD]/dt = 0
(Briggs-Haldane approximation), then hydroxylation is well represented by one reaction, with a rate of production, say V0, of
HIF(OHp)2 which follows a Michaelis-Menten equation:

V0 =
V 1

max[HIF]
K1

M + [HIF]

and we have:

V 1
max = b1[PHD][O2]2 , K1

M =
d1 + b1[O2]2

a1

Let us define the following parameter:

τ1 =
V 1

max

K1
M

which is the steepness of the Michealis-Menten curve near the origin. This parameter appears naturally in the sequel.
In the same way, we define the parameters τ2, which is related to the hydroxylation of HIF by FIH, and τ3, related to the

degradation through VHL by the following formulae:

V 2
max = b2[FIH] [O2] , K2

M =
d2 + b2[O2]

a2
, τ2 =

V 2
max

K2
M

and

V 3
max = b3[VHL] , K3

M =
d3 + b3

a3
, τ3 =

V 3
max

K3
M

Figure 3 illustrates diagrammatically the quasi-steady state model reduction.
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Remark 4.3 Recall that in enzymology (see for instance (Cornish-Bowden, 1995)) the specificity constant measures the
efficiency of an enzyme in converting a substrate into product. For the enzyme PHD and substrate HIF it equals:

kPHD
HIF =

b1[O2]2

K1
M

=
a1b1[O2]2

d1 + b1[O2]2

In this context
τ1 = kPHD

HIF [PHD].

Analogously, we can introduce the specificity constant of FIH for HIF and the one of VHL for HIF(OHp)2 and HIFOHa(OHp)2:

kFIH
HIF =

b2[O2]
K2

M

=
a2b2[O2]

d2 + b2[O2]

kVHL
HIF(OHp)2

=
b3

K3
M

=
a3b3

d3 + b3

so that the coefficients τ2 and τ3 read:
τ2 = kFIH

HIF[FIH] τ3 = kVHL
HIF(OHp)2

[VHL]

4.4 Experimental biology

4.4.1 Immunoblotting and quantification

LS174 cells were lysed in 1.5x Laemmli buffer. The protein concentration was determined using the bicinchoninic acid assay.
Whole-cell extracts (40μg for HIF-1α) were resolved by SDSPAGE (7.5%) and transferred onto a polyvinylidene difluoride
membrane (Millipore, Bedford, MA). Immunoreactive bands were visualized with the enhanced chemiluminescence system
(Amersham Biosciences, Buckinghamshire, UK).

Anti-HIF-1α (antiserum 2087) and anti-Erk (antiserum E1B4) were produced and characterized previously (Richard et al.,
1999), (Brondello et al., 1999).

The intensity of the specific HIF-1α band was quantified using the GeneTool program (Syngene / Synoptics, Cambridge,
UK). The loading control was done with the anti-Erk antibody.

4.4.2 Cell culture and cell line production

Genetically modified cell lines, overexpressing or invalidating FIH (shRNA) were previously described in (Dayan et al., 2006).

4.4.3 RNA Extraction

Total RNA was extracted from LS174 cells using Trizol reagent (Life Technologies) according to the manufacturer’s instruc-
tions. Briefly, cultured cells were homogenized in 1 mL Trizol, centrifuged after adding chloroform and precipitating RNA
with isopropanol, and washed with 75% ethanol. The RNA purity was evaluated by spectrophotometry. Total RNA (2μg)
from LS174 cells was added to a 20μL reverse transcription-PCR (RT-PCR) reaction using the Omniscript kit (Qiagen, Inc.,
Valencia, CA).

4.4.4 Quantification of gene expression by real-time PCR

The relative expression level of the series of HIF-downstream targets was quantified by real-time RT-PCR using the Taqman
PCR Master Mix (Eurogentec) on an ABI Prism 7300 Sequence Detection System (Applied Biosystems, Foster City, CA)
according to the manufacturer’s instructions. For each gene, the relative induction (with 36B4 as a reference gene) was
calculated by using the equation 2 ΔΔCT, where ΔCT = CT(gene) - CT(36B4) and ΔΔCT = ΔCT(stimulated condition)
−ΔCT(unstimulated condition). Each gene was amplified using the appropriate specific primers. Each individual induction
is the mean of two amplifications.

Appendix

Dynamical model

The differential equations governing the MIM in Figure 2 are given in the following Figure 11.
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Equilibrium state analysis

Equilibria of the system are solutions to the set of equations

dxi

dt
= 0 i = 0, . . . 16.

We suppose that all parameters are non-zero. In the following, we show that the equilibrium equations can be solved
analytically: the equilibrium values can be expressed as functions of the parameters of the system. We denote ei the equilibrium
value of the variable xi.

First, by summing Eq. (1), (8) and (11) in Fig. 11, we find the equilibrium value for [PHD]:

e1 = [PHD]0 =
k1S1

l1
(9)

Then, the equilibium value for [FIH] is obtained by summing Eq. (2) and (9) in Fig. 11:

e2 = [FIH]0 =
k2S2

l2
(10)

To find the equilibrium value of [VHL], we sum Eq. (3), (10) and (12) in Fig. 11:

e3 = [VHL]0 =
k3S3

l3
(11)

We express the equilibrium values of the intermediary products in terms of parameters and the other variables by solving
ẋ8 = ẋ9 = ẋ10 = ẋ11 = ẋ12 = 0.

e8 = a1e5e0
d1+b1[O2]2

e9 = a2e6e0
d2+b2[O2]

e10 = a3e16e3
d3+b3

e11 = a1e5e4
d1+b1[O2]2

e12 = a3e16e2
d3+b3

Using equations [1], [5], [2] for the definition of τ1, τ2 and τ3 we get

HIF e0 = k0S0
l0+τ1([O2])+τ2([O2])

HIF(OHp)2 e5 = τ1
τ3

e0

HIFOHa e6 = τ2
l0+τ1

e0

HIFOHa(OHp)2 e7 = τ1
τ3

τ2
l0+τ1

e0

The function [HIFTOT] = e0 + e5 + e6 + e7 reads:

[HIFTOT] =
k0S0

l0

1 + τ1([O2])
τ3

1 + τ1([O2])
l0

Remark A.1 If one of the degradation rates l1 or l2 is 0, for instance l1 = 0, then Equation [9] is no more valid. There are
two possibilities:

• If k1S1 is not zero, then PHD keeps on accumulating, and does not reach any equilibrium.

• If k1S1 = 0, then, for all time, dx1
dt + dx8

dt + dx11
dt = 0 that is the equilibrium value of PHD depends on HIF and Equation [3]

in Lemma 2.1 is not valid anymore.

The equilibrium equations for the HRE and its complexed forms with HIF read:

HIF:HRE e13 = a4
d4

e4e0

HIF(OHp)2:HRE e14 = a4
d4

e5e4

HIFOHa:HRE e15 = a4
d4

e6e4

HIFOHa(OHp)2:HRE e16 = a4
d4

e7e4

The quantities e0,e5, e6 and e7 have been computed before. All HRE complexes have been expressed as functions of free HRE,
that is e4. In order to compute e4, we use the relation e4 = 1− e13 − e14 − e15 − e16 (See Remark 4.2). It gives:

e4 =
1

1 + a4
d4

(e0 + e5 + e6 + e7)
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For a q−gene, the stimulation function Gq = e13 + e14 + e15 + e16 + q(e13 + e14) (see Equation [4]) equals:

Gq([O2]) =
a4

d4
e4([HIFTOT]([O2]) + q(e0 + e5))

It can be written in terms of the coefficients τi (Equation [6]):

Gq([O2]) =
a4

d4

k0S0

l0

1 + τ1
τ3

1 + τ1
l0

+ a4
d4

k0S0
l0

(1 + τ1
τ3

)
(1 + q

1 + τ1
τ3

1 + τ1
l0

+ τ2
l0

)

Fitting the stimulation function and coefficient q

We use the coefficients a, b and c estimated in the fitting of the function h.
Expressing gq (Equation [7]) in terms of those coefficients gives:

gq =
100c(1 + a4

d4
[HIF]0)([O2]2 + b)

(q + 1)((b + ca4
d4

[HIF]0)[O2]2 + bc(1 + a4
d4

[HIF]0))
.

(1 + q
δ1([O2]2 + c)([O2] + d2

b2
)

δ1([O2]2 + c)([O2] + d2
b2

) + c([O2]2 + δ1)
a2[FIH]0

l0
[O2]

)

which is Equation [8].
When the ratio of induction at some p[O2] is known, it is possible to extract the expression of q from the equation:

gq(x) = y

where y is the ratio of induction at x = 3%. We get an expression of the form:

q =
y0 − y

y − y1

where y0 is the induction rate for a N-TAD -only gene:

y0 =
(100(9 + b)c(1 + ρ))
(9cρ + b(9 + c + cρ))

and:

y1 =
80(9 + c)δ1(9 + δ2)

27cε1 + δ1(9(3 + δ2) + c(3 + δ2 + 3ε1))

The quantity y1 represents the vertical asymptote value of the graph of q.
We identify the following set of independent parameters which remain to be fitted:

q, ρ =
a4

d4
[HIF]0, ε1 =

a2[FIH]0
l0

, δ1 =
d1

b1
, δ2 =

d2

b2

We choose the maximum induction rate x0 = 80% and and the minimum induction rate x4 = 3.5%, from which we derive:

ρ =
36b− 45c− bc

(9 + b)c

and

ε1 =
δ1(4257 + 473c + 459δ2 + 51cδ2)

c(63 + 7δ1)

Experimental induction of the gene ca-IX give three data points, which we use to numerically fit δ1 and δ2 and qca−IX .
The result of Mathematica c© fitting is:

δ1 = 15269.2, δ2 = 6498.53, qCA9 = 3.60055

We admit that ρ, ε1 and δ2 are independent on q, that is on the specific gene used for the fit, and use the preceding values
and the experimental data from quantitative PCR performed on a series of 25 genes to evaluate their C-TAD -sensitivity
coefficient q.
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Figure Legends

Figure 1 Structural view of the regulation of HIF by the two oxygen sensors. In the presence of oxygen, HIFα
is hydroxylated by two enzymes called oxygen sensors. The hydroxylation on proline by PHD promotes the interaction
between HIF and pVHL, leading to massive proteasomal degradation (Jaakkola et al., 2001), (Ivan et al., 2001). Moreover
FIH hydroxylates an asparagine residue on the C-TAD that results in an inactivation of this domain (Lando et al., 2002a),
(Lando et al., 2002b); (Mahon et al., 2001). In such conditions the N-TAD is the only domain carrying the activity of HIF.
In the absence of oxygen PHD and FIH are inhibited and consequently HIF is stabilized and active via its two TADs.
Figure 2 Molecular Interaction Map. S0 stands for HIF precursor. We have added a precursor to VHL and a degradation
reaction to avoid non linear effects due to artifactual protein sequestration (See Paragraph 2.5); S1 is the PHD precursor; S2

is the FIH precursor.
Figure 3 The quasi-steady state model reduction. All intermediary complexes have been eliminated. Parameters τ1,
τ2 and τ3 are defined by Equations [1], [5] and [2], respectively. See also Section 4.3 for explanation.
Figure 4 [HIF] versus [O2] variation. (A) The ratio l0/τ3 reflects the equilibrium between non specific and oxygen
dependent (i.e proteasomal) degradation of HIF. When this ratio is < 1, [HIF] is a decreasing function of oxygen. This
corresponds to the physiological context, when τ3 (proportional to the oxygen dependent degradation rate of HIF by VHL,
see Equation [2]) is greater than the non specific degradation rate l0. On the opposite, if these two degradation pathways are
equivalent, [HIF] is no longer dependent on [O2]. Finally, when this ratio is > 1, [HIF] is artificially an increasing function of
oxygen. (B) The sharpness of the hypoxic stabilisation of HIF is highly dependent on a1, the association constant between
HIF and PHD.
Figure 5 Quantification of total HIF protein (A) Experimental quantification of [HIF] in response to hypoxia. Lower
panel: the induction of HIF is detected by immunoblotting. LS174 cells (colon carcinoma cell line) were incubated for 24h
at different percentages of [O2] as indicated. Upper panel: based on immunoblotting, the quantification of the HIFα protein
induction (using the Gene Tool(R) program) is plotted as a function of oxygen. AU = Arbitrary Unit. Note that this
quantification is normalized by a hypoxia-independent loading control (not shown). These data are at the basis of our fitting
calculation. (B)Nonlinear fitting of [HIFTOT], with data shown on the left, realized with Mathematica c©.
Figure 6 Quantification of the HIF-targeted gene ca-IX The nonlinear fitting of the normalized stimulation function gq

(Equation [7]) of the gene ca-IX was realized with Mathematica c©. The score of the fitting reads d = 6.08. Red dots represent
represent measures from QPCR experiments.
Figure 7 HIF-targeted gene stimulation: FIH relocalizes C-TAD -sensitive genes in strongly hypoxic areas.
Numerical simulations are run using parameter values given in Table 2, that are optimized according to experimental data
and thus reflect the physiological cellular context. Gene induction is plotted as a function of oxygen for different q values (i.e.
different C-TADsensitivities). Maximal inductions are normalized to 100. Starting from the arbitrary value of [FIH] = 100
we simulated an overexpression and an inhibition of FIH. Dotted lines and arrows indicate the % of oxygen associated to a
fixed threshold of gene induction for N-TAD only genes (q = 0) and for (N+C)-TAD-sensitive genes (here for q = 100). These
experiments show how FIH modulates the profile of HIF-targeted genes. Its activity leads to a release of the C-TAD -sensitive
genes in highly hypoxic regions while N-TAD dominant genes are localized in mildly hypoxic zones. The level of FIH directly
impacts on the amplitude of this gene modulation.
Figure 8 Nonlinear fitting of q, realized with Mathematica c©. The blue squares correspond to genes previously
qualified as FIH-sensitive genes, while green diamonds correspond to non FIH−inhibited genes (see (Dayan et al., 2006)).
FIH−sensitive genes have the highest coefficient q. The red dotted line represents the lower limit for the percentage of gene
induction at 3%[O2]. See Equation [4] for the exact definition of q, and the last section of Appendix for the numerical fitting
of the sensitivity coefficient q. Inset : table of calculated q for each gene.
Figure 9 Confrontation of FIH modulation experiments vs estimated q. The C-TAD sensitivity coefficient q (Equa-
tion [4]) is calculated using our model and experimental data coming from partial hypoxia experiments (see Table 1, (Dayan
et al., 2006); FIH sensitivity score is calculated on the basis of an independent experiment using genetic modulation of FIH
(Dayan et al., 2006). The correlation between these two quantities corroborates the validity of our model, and allows to
classify these genes according to their preferential N-TAD (green diamonds, cluster A) or C-TAD (blue squares, clusters B and
C) dominancy. Note that phd3, trefoil factor 3, p21 and bnip3 escape this classification and that consequently they are likely
to be regulated by extra-factors that are not present in our MIM, or even unknown.
Figure 10 Switch-like behavior is not generic. Simulations are made for [FIH]0 = 0. A switch-like behavior is obtained
only for production and degradation rates of PHD equal to 0. Moreover, no irreversibility, and thus no switch, is numerically
observed. Parameters and initial concentrations are taken from (Kohn et al., 2004).
Figure 11 Dynamical system. Dynamical equations are built on the basis of the MIM (Figure 2) by applying the mass-
action principle to each reaction. The dot over each variable on the left hand side denotes the time derivative of the variable.
O2 is second order in all equations that account for hydroxylation of HIF by PHD, because this hydroxylation is supposed to
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occur on two sites: see Remark 4.1 and Section 2.1.4. This biological hypothesis is confirmed by numerical optimization on
our data (Table 3). See Table 1 for species’ names.
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Figure 10:

(0) ẋ0 = k0S0 − l0x0 − a0x0x1 + d0x8 − a1x0x2 + d1x9 − a2x0x4 + d2x13 (9) ẋ9 = a1x0x2 − d1x9 − b1[O2]x9

(1) ẋ1 = k1S1 − l1x1 − a0(x0 + x6)x1 + d0(x8 + x11) + b0[O2]2(x8 + x11) (10) ẋ10 = a3x5x3 − d3x10 − b3x10

(2) ẋ2 = k2S2 − l2x2 − a1x0x2 + d1x9 + b1[O2]x9 (11) ẋ11 = a0x6x1 − d0x11 − b0[O2]2x11

(3) ẋ3 = k3S3 − l3x3 − a3(x5 + x7)x3 + (d3 + b3)(x10 + x12) (12) ẋ12 = a3x7x3 − d3x12 − b3x12

(4) ẋ4 = −a2x4(x0 + x5)− a4x4(x6 + x7) + d2(x13 + x14) + d4(x15 + x16) (13) ẋ13 = a2x0x4 − d2x13

(5) ẋ5 = b0[O2]2x8 − a2x4x5 + d2x14 − a3x5x3 + d3x10 (14) ẋ14 = a2x4x5 − d2x14

(6) ẋ6 = −a4x4x6 − l0x6 + d4x15 + b1[O2]x9 − a0x6x1 + d0x11 (15) ẋ15 = a4x6x4 − d4x15

(7) ẋ7 = b0[O2]2x11 − a4x4x7 + d4x16 − a3x7x3 + d3x12 (16) ẋ16 = a4x4x7 − d4x16

(8) ẋ8 = a0x0x1 − d0x8 − b0[O2]2x8

Figure 11:
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Tables

Table 1: Molecular species.

Species Species Species Species
no. identifier no. identifier
x0 HIF x9 HIF:FIH

x1 PHD x10 HIF(OHp)2 : VHL

x2 FIH x11 HIFOHa:PHD

x3 VHL x12 HIFOHa(OHp)2:VHL

x4 HRE x13 HIF:HRE

x5 HIF(OHp)2 x14 HIF(OHp)2:HRE

x6 HIFOHa x15 HIFOHa:HRE

x7 HIFOHa(OHp)2 x16 HIFOHa(OHp)2:HRE

x8 HIF:PHD

Table 2: Set of enzymatic values consistent with numerical fitting. Enzymatic parameters units: t stands for time unit and
M = Mol.l−1 is the concentration unit.

A) Numerical values B) Constraints C) Enzymatic parameters
a = 0.36 k0S0

l0
= a

R k0 = 0.0035 t−1 l0 = 1 t−1 S0 = 100M
b = 11641.60 k1S1

l1
= ( δ1

c − 1) l0
a1

k1 = 5.77 t−1 l1 = 1 t−1 S1 = 100M
c = 26.42 k2S2

l2
= ε1l0

a2
k2 = 635.34 t−1 l2 = 1 t−1 S2 = 100M

ρ = 0.36 k3S3
l3

= d3+b3
a3b3

(
δ1
c −1)

(
δ1
b −1)

l0 k3 = 37.04 t−1 l3 = 1 t−1 S3 = 100M

δ1 = 15269.20 d1
b1

= δ1 a1 = 1 t−1M−1 b1 = 0.000065 t−1M−2 d1 = 1 t−1

δ2 = 6498.53 d2
b2

= δ2 a2 = 1 t−1M−1 b2 = 0.000154t−1M−1 d2 = 1 t−1

ε1 = 63534.3 a4 = ρl0
k0S0

d4 a3 = 1 t−1M−1 b3 = 1 t−1 d3 = 1 t−1

a4 = 1.007 t−1M−1 d4 = 0.1 t−1

Table 3: To measure the accuracy of the fitting, we computed the euclidean distance between the experimental and theoretical
values. Namely: d = ((156−h(0.2))2 +(153−h(1))2 +(117−h(3))2 +(41−h(9))2 +(9−h(21))2)

1
2 . The asterisk corresponds

to the optimal value for n.
n 1 2 3 4 1.98*
d 33.38 2.35 13.90 19.83 2.29
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