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The theoretical model of West, Brown and Enquist (hereafter WBE) proposed the fractal geometry of the transport system as the origin of the allometric scaling laws observed in nature. The WBE model has either been criticized for some restrictive and biologically unrealistic constraints or its reliability debated on the evidence of empirical tests. In this work, we revised the structure of the WBE model for vascular plants, highlighting some critical assumptions and simplifications and discuss them with regard to empirical evidence from plant anatomy and physiology. We conclude that the WBE model had the distinct merit of shedding light on some important features such as conduit tapering.

Nonetheless, it is over-simplistic and a revised model would be desirable with an ontogenetic perspective that takes some important phenomena into account, such as the transformation of the inner sapwood into heartwood and the effect of hydraulic constraints in limiting the growth in height.

Introduction

The fractal-like model of West, Brown and Enquist (1999, hereafter WBE) proposed that the hydraulic transport system (xylem) of all vascular plants is structured in order to maintain a constant flow rate along the entire path length (i.e., the roots-to-leaves distance). Due to the effect of the tapering of xylem A c c e p t e d m a n u s c r i p t 3 conduits [START_REF] Becker | Tapered conduits can buffer hydraulic conductance from path-length effects[END_REF], plants can substantially avoid the effect of the increase in height on the total path length conductance so that the metabolism of a single leaf becomes size-independent and that of the whole organism scales simply with the geometry of the branching architecture.

While the mathematical and logical propriety of the theoretical structure of the WBE model (West et al., 1997;West et al., 1999) have been challenged by many authors [START_REF] Dodds | Re-examination of the "3/4-law" of metabolism[END_REF][START_REF] Kozlowski | Is West, Brown and Enquist's model of allometric scaling mathematically correct and biologically relevant?[END_REF][START_REF] Makarieva | Metabolic inequity of living tissues provides clues for the observed allometric scaling rules[END_REF][START_REF] Chaui-Berlinck | A critical understanding of the fractal model of metabolic scaling[END_REF][START_REF] Coomes | Challenges to the generality of WBE theory[END_REF][START_REF] Apol | Revisiting the evolutionary origin of allometric metabolic scaling in biology[END_REF], with the ensuing clarifications by West and colleagues not always appearing entirely convincing [START_REF] Brown | West, Brown and Enquist's model of allometric scaling is both mathematically correct and biologically relevant[END_REF]Savage et al., 2007), the novel ecological perspective that natural selection drove all plants to adopt a universal architecture of the xylem transport system whose efficiency is independent of plant height seems to contrast with the empirical evidence that tree height is limited by increased hydraulic constraints [START_REF] Koch | The limits to tree height[END_REF]. Nonetheless, of the universal predictions of the WBE model have been tested and substantially supported by empirical measurements (e.g., [START_REF] Anfodillo | Convergent tapering of xylem conduits in different woody species[END_REF]Weitz et al., 2006;[START_REF] Coomes | Scaling of tree vascular transport systems along gradients of nutrient supply and altitude[END_REF][START_REF] Petit | Tapering of xylem conduits and hydraulic limitations in sycamore (Acer pseudoplatanus) trees[END_REF].

In this paper, we analyze some important features of the WBE model, highlighting their ecological significance and their agreement (or inconsistency)

with the ontogenesis and physiology of real plants.

WBE model

A brief comparison between the geometry of the WBE model for cardiovascular systems in animals (West et al., 1997) and that for the stem branching and

A c c e p t e d m a n u s c r i p t

1. The fractal geometry of the transport system in WBE 97 is the same as that of stem branching in WBE 99. Fractality combined with the conservation of flow rate at each k-th level are proposed as the origin of the universal 3/4 power scaling of metabolism with body mass (cf., eq. 3 and eq. 5 in West et al., 1997).

Yet the xylem transport system in plants differs substantially from the cardiovascular one in animals. In plants, nutrients are delivered from the roots to the leaves throughout a complex of small conduits that ecologists typically simplify as a set of bundles of tubes running independently and in parallel from roots to leaves (pipe model theory: Shinozaki et al., 1964aShinozaki et al., , 1964b) under a negative pressure gradient (Tyree, 2003). In animals, the blood flows under a positive pressure determined by the pulsatile heart-pump throughout a network in which a single proximal big conduit (aorta) branches continuously into smaller conduits until the terminal units (capillaries). One key simplification of the WBE model is that the flow rate, Q, (i.e., the metabolic rate, B) of the terminal units is size invariant. In WBE 97, the flow rate is maintained throughout the transport network because, due to the self-similarity, the total volume of the n k conduits is constant at each k-th level. Instead, in WBE 99, where the conduits are independent of one another, they must taper in order to maintain the flow rate constant at each k-th level. Indeed, since the total flow rate of conduits at the kth level is

k k N k P Δ q n Q ⋅ ⋅ =
, where q k and ΔP k are the conductance and pressure gradient of the k-th element respectively, given the constancy of the pressure gradient (ΔP) at each k-th level, the conservation of the flow rate among levels can be expressed as A c c e p t e d m a n u s c r i p t
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Eq. 4

Hence, the conductance, or its reverse, the resistance (R k ), of the k-th element must be conserved among levels, so, by using the Hagen-Poiseuille formula for laminar flows in cylindrical tubes (e.g., Tyree and Ewers, 1991), it follows that
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Eq. 5

where η is the fluid viscosity. Combining this equation with equations 1 and 3 in Fig. 1, it follows that

4 β γ =
Eq. 6

a 2 3 / 1 n n - - =
Eq. 7 which gives ā=1/6, that represents the precise degree of conduit tapering at which the flow rate is conserved at each k-th level. This is an important feature of the whole transport system, because it strongly affects the behaviour of the whole-path resistance from the basal to the terminal level (R TOT ), which is given by
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Eq. 8

where L is the total path length (i.e., tree height) and l N and R N are the length and hydraulic resistance of the terminal elements respectively. When L>>l N , the behaviour of R critically depends on the degree of conduit tapering, that is whether ā is less than, more than, or equal to 1/6. In order to stabilize R with the increased path length (L), West and colleagues stated that ā must be ≥1/6.

According to [START_REF] Becker | Tapered conduits can buffer hydraulic conductance from path-length effects[END_REF], the effect of ā in making the resistance independent of path length is even more evident for fixed conduit lengths, but
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6 this seems quite reasonable as the conduit radii would increase exponentially (rather than with a power function) from the terminal to the basal level. Despite [START_REF] Mäkelä | The quarter power scaling model does not imply size-invariant hydraulic resistance in plants[END_REF] correctly showing that the WBE model considers the total hydraulic resistance as a succession of equal resistances connected in series and hence it increases isometrically with the number of levels (k+1), the rate of this increase in resistance for a unit length (ΔRr) becomes irrelevant after a short distance (Fig. 2). Theoretically, this implies that either the metabolism of leaves becomes slightly reduced or that the pressure gradient (ΔP) between the basal and terminal elements slightly increases during the very start of the longitudinal growth. However, this effect would become negligible after a couple of metres (Fig. 2).

Given the area preserving branching constraint (i.e., a=1 in Eq. 2 of Fig. 1) and the tapered shape of conduits (i.e., ā=1/6 in Eq. 3 of Fig. 1), it follows that

6 / 7 k , TOT k , CT A A ∝ Eq. 14
where A CT,k and A TOT,k are the area of conductive tissues and total area of the kth level respectively. This means that there must be some non-conductive tissue compensating for the decrease in conduction areas with the increasing levels (k+1). As stated by [START_REF] Mcculloh | Patterns in hydraulic architecture and their implications for transport efficiency[END_REF], this condition would suggest an unrealistic top-heavy structure. Also, it seems to hamper the essential WBE assumption that the density of wood must be uniform within the plant. The authors overcame both problems by simply stating that the "tubes are loosely packed in sapwood and there may be non-conducting heartwood providing additional mechanical stability". In this way, they assumed that heartwood is a heavier tissue than sapwood and, since its formation is an age-
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7 related phenomenon so that its proportion increases with the stem diameter (e.g., Sellin, 1994), it can compensate for the reduction in non-conductive tissue with the stem diameter and so guarantee the constancy of the wood density.

The amount of non-conducting tissues was also proposed as the key factor limiting tree growth. Indeed, given the total cross-section area of a k-th level

(
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), the sum of the areas of all the cell lumina, i.e., the conduction
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Eq. 15

where

2 N N N , CT d π n A =
is the conduction area of the terminal element. The proportion of conducting tissue relative to the total cross-section area is
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Eq. 16

This ratio must be ≤1 and the three-dimensional plant growth is limited by the absence of non-conducting tissue at the basal level, i.e., f=0. It follows that the maximum height (l TOT,MAX ) and maximum basal radius (r 0,MAX ) are given by ( )
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Eq. 17
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Eq. 18
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Implications for plant anatomy and physiology

The ideal plant described by the WBE model is very simplistic. Not only the geometry and morphology differ from those of real plants, but also some assumptions and simplifications made in order to derive its universal scaling predictions can be disproved by evidence from plant anatomy and physiology.

Firstly, the branching geometry proposed by the WBE model is quite unlikely to be found in real plants, where branches can easily be of different length and diameter even when generated at the same internode. Internodes are also unlikely to be likened to the WBE branching ranks (or levels), not only because the internode lengths do not seem to scale as the conduit/branch lengths in the WBE model, but also because conduits continue to taper along the internodes (cf., [START_REF] Anfodillo | Convergent tapering of xylem conduits in different woody species[END_REF][START_REF] Petit | Tapering of xylem conduits and hydraulic limitations in sycamore (Acer pseudoplatanus) trees[END_REF]. Secondly,

The WBE model substantially lacks an ontogenetic perspective. The presence of heartwood, for instance, is tacitly proposed to be functional to the maintenance of an overall constancy of the wood density, so that it must be present throughout the plant regardless of the plant size. Instead, the formation of heartwood, or, better, the loss of conductivity of the internal sapwood, is an important, but yet not very well-known, process during ontogenesis and may have a considerable impact on the whole tree hydraulic efficiency (e.g., [START_REF] Mcdowell | The relationship between tree height and leaf area: sapwood area ratio[END_REF], and hence on its metabolism. The sapwood is described as a set of conduits contained within a matrix, presumably constituted of cell walls, fibres and parenchimatic rays. Given equation 14, it follows that in the WBE model the "sapwood" (as commonly considered by ecologists) scales isometrically with the basal area and must not be confused with what is called to test whether the actual sapwood area scales with the stem diameter raised to 2.33 (rather than 2) would be a simple misinterpretation of the model.

A key trait of the WBE model is a precise degree of conduit diameter. Conduit diameters were found to increase from the apices downwards rather than from the stem base towards the periphery [START_REF] Anfodillo | Convergent tapering of xylem conduits in different woody species[END_REF]Weitz et al., 2006;[START_REF] Coomes | Scaling of tree vascular transport systems along gradients of nutrient supply and altitude[END_REF][START_REF] Petit | Tapering of xylem conduits and hydraulic limitations in sycamore (Acer pseudoplatanus) trees[END_REF], with a degree of tapering similar to that predicted by the WBE model. This apical control of conduit size (see Aloni 1987) also determines a "radial" conduit tapering from the pith to the last annual ring. This feature of the xylem must be carefully taken into account when measuring the sapwood permeability, which is actually an averaged measure of the different portions along the sapwood thickness. Theoretically, given two trees with equal radial profile of conduit diameter, but different sapwood widths, a higher sapwood permeability can paradoxically be measured in that with the thinner sapwood.

The WBE model proposes the tapering of xylem conduits as the most effective mechanism to minimize the effect of increased plant height on the root-to-leaf hydraulic resistance, and empirical measurements seemed to support this theory [START_REF] Petit | Tapering of xylem conduits and hydraulic limitations in sycamore (Acer pseudoplatanus) trees[END_REF]. However, as a plant gets taller, the stabilizing effect of conduit tapering appears to be critically dependent on the possibility of enlarging the basal conduits. It has been proposed that growing in height without enlarging the basal elements and without another effective mechanism resistance [START_REF] Anfodillo | Convergent tapering of xylem conduits in different woody species[END_REF][START_REF] Petit | Tapering of xylem conduits and hydraulic limitations in sycamore (Acer pseudoplatanus) trees[END_REF]. A departure from the WBE prediction for conduit tapering and the consequent outcome of a progressive hydraulically related decrease in metabolism were observed in trees and proposed as the cause of the limit to tree height. However, despite it is commonly accepted that the maximum height is set by the increase in hydraulic constraints [START_REF] Koch | The limits to tree height[END_REF], if we allowed the conduit tapering to vary in the WBE model, we would obtain the paradox that it predicts taller heights and larger basal diameters for plants hydraulically less efficient, i.e., with lower values of ā for a fixed diameter of apical conduits or with narrower apical conduits for a given ā (Fig. 3).

Conclusions

The WBE model had the distinct merit of introducing a novel perspective in the study of tree physiology: that is the natural selection drove all living organisms towards self similarity of the transport system in order to minimize the hydrodynamic resistance of nutrient transport and to maximize the exchange surfaces with the environment. Recent findings highlighted that the tapering of xylem conduits more or less follows the WBE trajectory in plants of different size and species [START_REF] Anfodillo | Convergent tapering of xylem conduits in different woody species[END_REF]Weitz et al., 2006;[START_REF] Coomes | Scaling of tree vascular transport systems along gradients of nutrient supply and altitude[END_REF][START_REF] Petit | Tapering of xylem conduits and hydraulic limitations in sycamore (Acer pseudoplatanus) trees[END_REF] and that it is likely the most efficient strategy to reduce the effect of height on the total path-length resistance [START_REF] Petit | Tapering of xylem conduits and hydraulic limitations in sycamore (Acer pseudoplatanus) trees[END_REF]. Despite the important contribution of these researches to the progress of knowledge, it would be desirable that such analyses on scaling relationships were also To conclude, we have highlighted the important role played by the very simplistic model of West et al. (1999) in shedding light on an important feature of plant anatomy and physiology. Nonetheless, the theoretical structure of an ideal WBE tree is over-simplistic and does not account for important modifications to the transport system that occur during ontogenesis, such as heartwood formation.

A necessary step forward in modelling plants would be to include an ontogenetic perspective, which might be important in the analyses and interpretations of some important phenomena, such as the variation of the scaling parameters during the different ontogenetic phases (Pilli et al., 2006), the reduction of longitudinal growth in very tall plants and maximum tree height (Ryan and Yoder, 1997;[START_REF] Koch | The limits to tree height[END_REF]. Fig. 2 The relative variation in total hydraulic resistance (ΔR) for a unit distance (ΔL, in cm) plotted against the distance from the stem apex (i.e., tree height, L).
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Left: the geometry of the single root-to-leaf pipe follows the WBE prediction (length and diameter of the k-th conduit given respectively by Eq. 1 and Eq. 3 of 

  i.e., the total surface of cell lumina. This means that what is usually considered and measured as sapwood does not actually correspond to the conductive tissues in the WBE model, so any empirical measurement aimed

  likely hampered by the faster increase in hydraulic

  -quantitative measurements of other important physiological processes, such as the loss of conductivity of the inner sapwood (i.e., the heartwood formation) and the ontogenetic variation of the proportion of conductive and non-conductive tissues.

  Fig. 1 Schematic geometry and fundamental relationships of WBE 97 for the

  Fig.2The relative variation in total hydraulic resistance (ΔR) for a unit distance
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 1 Fig. 1, with n=2), with the terminal unit of 10 mm in length. Right: the length of

Fig. 3

 3 Fig. 3 WBE model predictions for the maximum height (L MAX , left) and basal diameter (r 0,MAX , right) as functions of conduit tapering (ā) for various conduit radii (d N ) and given length (l N ) and radius (r N ) of the terminal elements. The black circles are the prediction for the specific value of ā WBE =1/6. In the example l N =0.05 m ; r N =0.5 mm, n=2 and N N = 200, as in West et al. (1999).
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