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Evolution of cell motility in an

individual-based model of tumour growth

P. Gerleea, ∗, A.R.A. Andersonb

aNiels Bohr Institute, Center for Models of Life, Blegdamsvej 17, 2100

Copenhagen Ø, Denmark

b H. Lee Moffitt Cancer Center & Research Institute, Integrated Mathematical

Oncology,12902 Magnolia Drive, Tampa FL 33612

Abstract

Tumour invasion is driven by proliferation and importantly migration into the sur-

rounding tissue. Cancer cell motility is also critical in the formation of metastases

and is therefore a fundamental issue in cancer research. In this paper we investigate

the emergence of cancer cell motility in an evolving tumour population using an

individual-based modelling approach. In this model of tumour growth each cell is

equipped with a microenvironment response network that determines the behaviour

or phenotype of the cell based on the local environment. The response network is

modelled using a feed-forward neural network, which is subject to mutations when

the cells divide. With this model we have investigated the impact of the micro-

environment on the emergence of a motile invasive phenotype. The results show

that when a motile phenotype emerges the dynamics of the model are radically

changed and we observe faster growing tumours exhibiting diffuse morphologies.

Further we observe that the emergence of a motile subclone can occur in a wide

range of micro-environmental growth conditions. Iterated simulations showed that

in identical growth conditions the evolutionary dynamics either converge to a prolif-
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erating or migratory phenotype, which suggests that the introduction of cell motility

into the model changes the shape of fitness landscape on which the cancer cell pop-

ulation evolves and that it now contains several local maxima. This could have

important implications for cancer treatments which focus on the gene level, as our

results show that several distinct genotypes and critically distinct phenotypes can

emerge and become dominant in the same micro-environment.

Key words: Mathematical model, cellular automaton, tumour invasion,

haptotaxis, evolutionary dynamics, clonal evolution, microenvironment.
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1 Introduction

Cancer cell motility is a crucial aspect of tumour invasion as it facilitates

invasion of the healthy tissue in a more efficient way than only cell prolifer-

ation can. Cells with motile capabilities can access new nutrient sources and

infiltrate the surrounding tissue and this process is instrumental in the for-

mation of metastases, as the cancer cells need to actively move to and from

the blood vessels which transport them to new sites in the body. The transi-

tion from cancer cells which are predominately proliferative to cells which are

motile could therefore be a crucial step in the progression of the disease, and

a greater understanding of this process could lead to improved treatment of

the disease.

It is an established fact that evolution plays an important role in the devel-

opment of a tumour (Nowell, 1976; Merlo et al., 2006; Smalley et al., 2005),

and the emergence of motile cancer cells therefore has to be viewed from an

evolutionary perspective. This view implies that cell motility will only evolve

if it confers a selective advantage in the micro-environment in which the tu-

mour grows. It is generally believed that cancer cells cannot move and pro-

liferate simultaneously, a mechanism known as the “go-or-grow” hypothesis

(Giese et al., 2003), and this suggests that that the cancer cells are faced with

a trade-off: in a harsh low nutrient micro-environment they might be more

likely to survive if they migrate, but on the other hand they will be less likely

to proliferate and consequently spread their genetic material. Migratory be-

haviour therefore has a dual effect on the fitness of a cell, it increases the

probability that the cell will survive, but at the same time reduces the likeli-

hood that the cell will divide. This suggests that the question of when and how
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a motile subclone emerges (under the assumption that the initating subclone

is non-motile) is far from trivial and is influenced by the complex interactions

between the cancer cell population and the micro-environment of the tumour.

However, there are many cell types (e.g. fibroblasts, lymphocytes) that have a

predominantly motile phenotype and therefore this question is not applicable

to them.

In this paper we present a mathematical model aimed at investigating the

emergence of cancer cell motility in tumour invasion. The model is based on

previous models of solid tumour growth (Gerlee and Anderson, 2007a, 2008,

2009), but is extended here in order to take cell movement into account. In

particular we have focused on haptotaxis, cell movement driven up gradients in

the extra-cellular matrix density (ECM), which is known to be the dominant

mode of movement in tumour invasion (Hood and Cheresh, 2002). In the

model the cancer cells are treated as individual entities while extra-cellular

factors such as oxygen and the ECM concentration are modelled as continuous

quantities, making the model hybrid in nature. In order to capture the fact

that tumours are heterogeneous and consist of a large number of subclones

competing for space and nutrients, the behaviour of each cell in the model

is determined from a response network which is subject to mutations when

the cells divide. This means that the behaviour of the cells can change from

one generation to the next, and implies that the model has the capability to

capture the evolutionary dynamics of tumour growth.
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1.1 Biological background

The model presented here will focus on the pre-vascular stages of tumour

growth, and we will therefore discuss the structure of the tumour at this stage

in detail. Although cancer cells have, due to mutations, escaped normal growth

control (Hanahan and Weinberg, 2000), most avascular tumours exhibit a

layered structure, which is due to the diffusion limited supply of nutrients

(Sutherland, 1988). As the tumour grows, gradients of nutrients (e.g. oxygen,

glucose) and waste products (e.g. lactate, hydrogen ions) develop, and when

the tumour reaches a critical size, diffusion is insufficient to supply the inner

parts of the tumour with nutrients. This leads to cell death or necrosis in

the core of the tumour. Outside the necrotic core a rim of quiescent cells is

found and further out a thin rim of proliferating cells. The mitotic activity

therefore only takes place in a small fraction of the tumour, while the majority

of the tumour consists of cells that are either quiescent or dead. It has been

established that the limiting nutrient for avascular tumours is oxygen, and

that the width of the proliferating rim is determined by the region where the

oxygen concentration is in the viable range. Inside the proliferating rim the

glucose concentration might still be high, but the usual aerobic metabolism

of human cells requires oxygen to produce energy. There is one way for the

cancer cells to circumvent this limitation, and that is to utilise the anaerobic

metabolic pathway which only uses glucose and does not require any oxygen.

In fact this seems to be a ubiquitous feature of solid tumour growth and will

be included in the model (Gatenby and Gillies, 2004).

Another important aspect of tumour invasion is the capability of the cancer

cells to degrade the surrounding extra-cellular matrix (ECM) (Liotta et al.,
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1983; Stetler-Stevenson et al., 1993) and to migrate along gradients of ECM,

a phenomenon known as haptotaxis (Lawrence and Steeg, 1996).The ECM is

a complex mixture of macro-molecules, containing collagens, fibronectin etc.,

which functions as a scaffold for the cells to grow on. Degradation of the

ECM is accomplished by production of matrix-degrading-enzymes (MDEs)

by the cancer cells. A large number of different MDEs have been identified,

of which matrix metalloproteinases (MMPs) constitute a large family (Ennis

and Matrisian, 1993). Most of these are soluble, but it has been shown that

a considerable part of matrix degradation is accounted for by membrane an-

chored MMPs (MT-MMPs) and the plasminogen activator system (Hotary

et al., 2000).

The ECM is known to play both a structural and signaling role influencing

cell behavior that includes migration, proliferation and survival (Hynes, 1992;

Anderson et al., 2006). The mechanical/biological properties of the ECM are

multiple and are dynamically modified by cell interactions, via degradation,

alignment and production. The movement of cancer cells in the ECM is known

to occur in two distinct modes: “path-generation” and “path-finding” (Friedl

and Wolf, 2003). In the “path-generating mode” the cell degrades the ECM

in the direction of movement and creates a path through the matrix, it then

attaches to the matrix at the leading edge using integrins expressed at the cell

surface and pulls itself forward. The other mode of movement occurs without

degradation of the ECM and the cell instead pushes itself through existing

gaps in the matrix and is therefore modulated by the ECM pore size (Zaman

et al., 2005, 2006).

Cancer cell migration is tightly linked to metastases, an important step in

tumour progression (Sahai, 2007). Metastases are formed from cells that break
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away from the main tumour mass, and form secondary tumours at new sites

in the body. In order for a tumour to metastasise, one or several cancer cells

need to go through a series of crucial steps: first the cells needs to migrate

away from the primary tumour, and then enter the blood stream through a

process known as intravasation. The cell then needs to survive long enough in

the blood stream to get the opportunity to exit the vessel via extravasation.

The final step in this chain of events is that the cell has to be able to migrate

into and proliferate in the new tissue to form a tumour. If the metastases are

formed in vital organs such as the liver or intestine this might be fatal. The

acquisition of motile capabilities is the first step in this sequence of events and

understanding how and why it occurs could lead to improved prevention and

treatment of metastases.

1.2 Previous work

Mathematical modelling of tumour growth and invasion has a long history

dating back to the work of Burton (1966), who was the first to propose that

tumour growth is limited by the diffusion and consumption of nutrients. Sub-

sequent work using a different modelling approach took into account the me-

chanical properties of the tissue and in particular considered the pressure

inside the tumour (Greenspan, 1975). This model introduces a velocity field

for the tumour cells which depends on the pressure in the tumour and as-

sumes that the cells flow though the ECM according to Darcy’s law, i.e. just

like flow through a porous medium. This model has been further developed

by introducing the effect of apoptosis (Byrne and Chaplain, 1996) or differ-

ent cell types (Breward et al., 2002) and different cell responses (Chaplain
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et al., 2006). A more recent example of this modelling approach is the model

by Cristini et al. (2003) in which they investigate the impact of the micro-

environment and show that it plays a significant role in shaping the resulting

tumour morphology. For a long time reaction-diffusion models were the dom-

inant modelling approach (see for example Casciari et al. (1992b); Byrne and

Chaplain (1997); Anderson et al. (2000); Marchant et al. (2001); Swanson et al.

(2003)), but recently individual-based models of tumour growth have gained

more attention (Anderson et al., 2007). A wide range of approaches have been

used for single-cell modelling such as off-lattice models (Drasdo and Forgacs,

2000; Palsson and Othmer, 2000), cellular Potts models (Stott et al., 1999;

Hogeweg, 2000), cellular automata (Deutsch and Dormann, 2005) and hybrid

continuous-discrete models (Anderson et al., 1997; Anderson and Chaplain,

1998; Schofield et al., 2005; Anderson, 2005).

Mathematical modelling of the evolutionary dynamics of tumour growth has

generally been constrained to models where the fitness of the mutant cells is

predefined, and have mostly focused on the modelling of mutational pathways

(Iwasa et al., 2006; Nowak et al., 2006; Komarova, 2006). These models have

provided useful insight into the evolutionary dynamics of early tumour growth,

for example investigating the role of chromosomal instability (Komarova et al.,

2003) and the impact of tissue architecture in colon cancer (Michor et al.,

2004).

Game theory has also proven to be a suitable tool for investigating evolu-

tionary systems (Nowak and May, 1992), and the evolutionary dynamics of

carcinogenesis has been investigated by Gatenby and Vincent (2003), using

continuous techniques from game theory and population dynamics. With this

approach they identify conditions necessary for invasive growth and suggest
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that the ordinary cytotoxic treatment of the tumour is often unsuccessful due

to the adaptation of the cancer cells to new growth conditions. The evolution

of glycolysis and invasion has also been investigated in a game theoretic frame-

work (Basanta et al., 2008b). They show that glycolytic cells are more likely

to emerge prior to invasion, which could explain the ubiquitous presence of

invasive growth in malignant tumours. The emergence of cancer cell motility

was also investigated in a similar model (Basanta et al., 2008a). With this

model it was shown that motile phenotypes are more likely to evolve in low

oxygen concentrations, and further they suggest that this could have implica-

tions for cancer therapy. Game-theory has also been applied to other aspects

of tumour growth, such as evolution of cytotoxin production (Tomlinson and

Bodmer, 1997) and evolution of cellular interactions (Tomlinson, 1997; Bach

et al., 2003).

To this date only a few models have investigated the evolutionary dynamics

of tumour growth in a spatial and individual-based setting. One example is

the hybrid model introduced in Anderson (2005), which was used for investi-

gating the role of the ECM on tumour growth and evolution. This model is

essentially a CA-model, with the difference that it derives the migratory be-

haviour of the cancer cells from a discretisation of a PDE and that it couples

the cell dynamics to continuous fields of oxygen, ECM and matrix degrading

enzymes (MDEs). The cells also posses different phenotypes, which are passed

on, under mutations, during cell division. Results from this model show that

the micro-environment can have a significant impact on both the morphology

and phenotypic composition of the tumour, specifically that tumours grown in

harsh growth conditions tend to exhibit branched morphologies and contain

more aggressive phenotypes. These phenotypes were also particularly motile
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with decreased cell-cell adhesion and increased haptotaxis.

A similar approach was used in Smallbone et al. (2007), in order to investigate

the evolutionary origin of the glycolytic phenotype, but here the phenotypes

correspond to boolean (true/false) properties of the cells such as the property

of being hyperplastic. Mutations during cell division alter the phenotype of

the cells, and in agreement with the Anderson model it exhibits evolution

towards more aggressive phenotypes. This builds on previous work by Gatenby

and colleagues that has examined both theoretically and experimentally acid-

mediated tumour invasion (Gatenby and Gawlinski, 1996; Gatenby and Gillies,

2004; Gatenby et al., 2006). The emergence of mutant subclones has also been

investigated in a 3-dimensional cellular automaton using a Voronoi tesselation

approach (Kansal et al., 2000). They show that the survival probability of a

subclone depends on the growth advantage over other subclones, but they also

show that it is non-zero although no growth advantage exists. The evolution

of cell motility was investigated in a game theoretic , individual-based setting

by Mansury et al. (2006). Assuming that the tumour consists of proliferative

and motile genotypes the authors show that the growth dynamics depends on

pay-offs for different cell interactions, and further that there exists an optimal

pay-off for which the tumour growth rate is maximised.

The model presented in this paper is an extension of two previous models of

tumour growth which have been used to investigate the impact of the micro-

environment on tumour growth and evolution. The results from the first model

revealed that tumours grown in low oxygen concentrations exhibited branched

morphologies, but more importantly it also showed that the oxygen concen-

tration has an impact on the evolutionary dynamics (Gerlee and Anderson,

2007a). The low oxygen concentration environment gave rise to tumours with
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a higher genetic diversity and also containing cells that had evolved further

away from the ancestral cell. A subsequent extension of the model which in-

cluded the effect of the ECM and anaerobic metabolism was used to examine

the emergence of the glycolytic phenotype (Gerlee and Anderson, 2008). The

results from that study were consistent with the previous observations and

further showed that a glycolytic phenotype was most likely to occur in low

oxygen concentrations and a dense ECM.

In this paper we focus on the evolution of cell motility and will initially present

the modified model, with details on each of the processes and components con-

sidered and how they interact. In section 3 we discuss the simulation process

and in section 4 we present a suite of results from the model. Finally in section

5 we have an extended discussion about the implications of the model results

and conclude in section 6.

2 The Model

We consider a generic tissue which is represented by a two-dimensional grid

on which the cancer cells reside. Each point on the grid holds the local con-

centration of ECM, nutrients and can be either occupied by a cancer cell or be

empty. This is of course a highly simplified picture of real tumour-host inter-

actions. The surrounding tissue contains a variety of host cells like fibroblasts,

macrophages and blood vessels, all of which have been shown to be important

factors in tumourigenesis (Rubin, 2003), but in order to focus on the impact

of nutrient concentration and the ECM we have chosen to disregard these as-

pects of tumour growth. In the current model the vascularity is also modelled

in a simplified manner, by incorporating it into the boundary conditions. The
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model consists of discrete individual tumour cells, continuous chemical fields

(oxygen, glucose, hydrogen ions) and ECM density, which interact with one

another on the grid via the cellular automaton. We now discuss each of these

variables and processes in more detail in the following sections.

2.1 Cell Dynamics

2.1.1 Phenotype

Each cancer cell in the simulation is equipped with a decision mechanism,

which determines the behaviour of the cell based on the micro-environment in

which it resides. The decision mechanism is modelled using an artificial feed-

forward neural network (Haykin, 1999). This neural network approach only

serves as an abstract model of cellular behaviour, but still shares some features

of the real signaling and regulatory network of the cell. The input layer of the

network can be thought of as receptors on the cell surface that interact with

extra-cellular molecules. The weight matrix between the input and hidden

layer represent the signaling strength of these receptors. The hidden layer

functions as regulatory genes that control the behaviour of the cell through

the weights of the connection matrix between the hidden and output layer.

Finally the output layer can be thought of as the phenotype, as it determines

the behaviour of the cell (see fig. 1). With this analogy in mind we can think

of changing a connection between the input and hidden layer as changing

the expression level of a certain type of receptor and changing a connection

between the hidden and output layer as altering the expression level of a

regulatory gene.
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In our model the input to the network is the number of neighbours of the cell

(n), local oxygen concentration (c), glucose concentration (g), H+ concentra-

tion (h) and ECM gradient (∇m). This implies that the input to the network

ξ will have five components ξ = (n(�x, t), c(�x, t), g(�x, t), h(�x, t),∇m(�x, t)). The

phenotype of the cell is then determined by the output of the network. The

output nodes represent the response for proliferation, quiescence, movement,

apoptosis and metabolic pathway. As the first four form a group of mutually

exclusive behaviours (a cell can not perform these responses simultaneously)

the behaviour with the strongest response is chosen from these four, we call

this the life-cycle response. If the proliferation node has the strongest response

the cell divides and produces a daughter cell and if the quiescence node has

the strongest response the cell remains dormant. On the other hand if move-

ment has the strongest response the cell goes into a migratory mode, while

if the apoptosis node is strongest then the cell dies via apoptosis. The initial

network is designed so that the behaviour of the ancestral cell resembles that

of an non-invasive cancer cell (for further details on the decision mechanism

and the neural network implementation please consider Gerlee and Anderson

(2007a)). A graphical representation of the response network can be seen in

fig. 1.

2.1.2 Metabolism

The network modulates the metabolism of the cell in three separate ways:

Firstly the strength of the life-cycle response determines the overall energy

consumption of the cell, secondly the nutrient consumption is lowered if the

cell is quiescent, and finally the network determines the metabolic pathway

of the cell. Real cells may rely on a combination of aerobic and anaerobic
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metabolism (Gatenby and Gillies, 2004), but for simplicity we will let the cells

utilise either aerobic or anaerobic metabolism. If the response of the metabolic

node is negative the cell uses glycolysis and if the response is positive the

normal aerobic pathway is utilised. This choice is modelled by letting the cells

utilising the anaerobic pathway consume 18 times more glucose and produce

acid whilst not consuming any oxygen.

2.1.3 Mutations

When the cells divide the network parameters are copied to the daughter

cell under mutations. The number of mutations that occur in the daughter

cell network parameters is chosen from a Poisson distribution with parameter

p. These mutations are then distributed equally over the network weights

and nodes (see fig. 1 and Gerlee and Anderson (2007a) for further details).

The incorrect copying is modelled by adding a normal distributed number

s ∈ N(0, σ) to the daughter cell parameter, which means that x → x + s,

for those parameters x that are chosen for mutation. The mutations alter the

connection strength between the nodes, which in turn changes how the cells

responds to the micro-environment. If for example a mutation occurs in a

connection which links the ECM gradient with the movement node this may

create a subclone with a more motile behaviour.

2.2 Chemical Fields

The metabolism of cancer cells includes a large number of different chemicals

that are all needed for maintenance and cell division, but oxygen and glu-

cose concentrations are two key metabolites known to limit the growth of the
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tumour (Sutherland, 1988). We therefore only choose to focus on these two

fields in the model as well as a field for the hydrogen ion concentration, as

glycolytic cells produce an excess of acid. For the chemical fields we apply

Dirichlet boundary conditions with constant functions, meant to imitate a sit-

uation where the tissue is surrounded by blood vessels, with constant nutrient

and hydrogen ion concentrations, that supply the tumour with nutrients and

remove hydrogen ions from the tissue. The decay rates of the metabolites are

known to be considerably smaller than the respective cellular consumption

rates and for simplicity we therefore disregard these in the equations. This

allows us to develop a minimal model of the chemical fields, similar to those

in the models of Patel et al. (2001) and Ferreira et al. (2002). The time evo-

lution of the oxygen (1), glucose (2) and hydrogen ion (3) fields are therefore

governed by the following set of partial differential equations,

∂c(�x, t)

∂t
= Dc∇2c(�x, t)− fc(�x, t) (1)

∂g(�x, t)

∂t
= Dg∇2g(�x, t)− fg(�x, t) (2)

∂h(�x, t)

∂t
= Dh∇2h(�x, t) + fh(�x, t) (3)

where Di are the diffusion constants and the fi(�x, t) are the individual cell

consumption or production functions of the chemical i = c, g, h for the cell

at position �x at time t. Note that the hydrogen ion production fh(�x, t) is

only non-zero if the cell relies on glycolytic metabolism. The solution of the

chemical field equations are calculated on a grid of the same step size as the

cells using an Alternating Direction Implicit (ADI) scheme for both numerical

accuracy and efficiency (Press et al., 1996). This choice of space step implies

that the consumption and production terms in (1)-(3) are determined by each
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individual cell. The fi(�x, t)’s are thus defined in the following way,

fi(�x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if the automaton element at �x is empty i.e. no tumour

cell at that lattice point

riF (�x) if the automaton element is occupied, i.e tumour

cell exists at that lattice point

(4)

where ri are the base consumption/production rates and F (�x) is the mod-

ulated energy consumption of the individual cell occupying the automaton

element at �x. This modulation of the consumption is introduced in order to

take into account the difference in energy consumption between different sub-

clones, and is modelled as

F = max(k(R− Tr) + 1, 0.25), (5)

where k determines the strength of the modulation, R is the response of the

network and Tr is the target response, corresponding to the response of a

normal cell. The use of max(•, 0.25) ensures that the cell has a metabolism

which is at least a quarter of the base-line consumption rate (Anderson, 2005).

The use of this function implies that a cell with a stronger network response

will have a higher nutrient consumption.

2.3 The Extracellular Matrix

The interactions between cancer cells and the surrounding ECM are known

to play an important role in carcinogenesis. The ECM is a complex mixture
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of macro-molecules such as collagens and fibronectin. This fibrous concoction

of ECM molecules can be very heterogeneous with cross-linking between the

fibres which modulates both the degradability of the ECM as well as the pore

sizes contained within it (Zaman et al., 2006). This complexity has been mod-

elled when cell-ECM interactions are considered as the sole focus of the model

(Zaman et al., 2006, 2005), or when the ECM degradation (via invadopodia)

has been considered in more detail (Enderling et al., 2008). However, due to

the complexity of our current model and our motivation for understanding the

emergence of a migratory phenotype we will represent the ECM as a single

concentration. The ECM will therefore act as a constraint on proliferation and

facilitate migration via a minimal modelling approach.

It has been shown that a considerable part of matrix degradation is accounted

for by membrane anchored MMPs (MT-MMPs) (Hotary et al., 2000) as well

as the plasminogen activator system (Chaplain and Lolas, 2005, 2006). This

implies that a majority of the ECM degradation has a very short range and can

therefore be approximated by contact degradation (Enderling et al., 2008). We

include this effect in the model by letting the ECM be degraded with a rate ec

at all grid points adjacent to cancer cells. The ECM also serves as a physical

growth restraint of the tumour as cells can not move into regions of the tissue

which are too dense, unless they have degraded it sufficiently. This effect is

incorporated by introducing a threshold et above which no cells can occupy a

grid point. Another mechanism that is included in the model is acid-induced

ECM degradation. The exact dynamics of this process is poorly understood,

but has been shown to involve stromal cells, e.g. fibroblasts (Rozhin et al.,

1994). For simplicity we will assume that the matrix degradation is propor-

tional to the excess acid concentration and model it by letting the ECM be
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degraded at a rate eh proportional to the excess acid concentration and matrix

concentration. In summary the ECM obeys

∂m(�x, t)

∂t
= −ecI(�x, t)m(�x, t)− eh(h(�x, t)− h0)m(�x, t), (6)

where I(�x, t) is an indicator function that returns the number of cancer cells

adjacent to site �x and h0 is the normal acid concentration in the tissue. In order

to avoid lattice anisotropy (favouring a certain direction of growth) the cancer

cells alternate between degrading matrix in the immediate neighbouring and

diagonal neighbouring sites every time step, which is implemented by letting

I(�x, t) alternate between orthogonal and diagonal neighbourhoods.

2.4 Cell Movement

Haptotaxis is the directed movement of cells in response to gradients in the

ECM. This implies that the cells need to be able to sense the local gradient

of ECM and respond to it. It is believed that cancer cells cannot move and

proliferate simultaneously (Giese et al., 2003), and therefore the haptotaxis

output node will be part of the life-cycle response just like proliferation, qui-

escence and apoptosis. In other words if the haptotaxis node gets the strongest

response the cell will go into a migratory mode and will not be able to prolif-

erate.

The ECM gradient sensed by the cell is chosen to be the larger of the two

gradients in the x- and y-direction, which means that for a cell at position

(i, j) we calculate the central difference

Δxm = |mi−1,j −mi+1,j | (7)
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and

Δym = |mi,j−1 −mi,j+1|, (8)

where mi,j is the ECM concentration at position (i, j). We then pick the larger

of the two and use it as input to the network. If the haptotaxis node gets the

strongest response then the cell will move one grid point in the direction of

the largest gradient towards higher ECM concentration. If the grid point is

already occupied movement fails and the cell remains stationary. Due to the

different time scales operating upon migration, proliferation and chemical dif-

fusion (although this is addressed via the implementation of an ADI numerical

scheme) we must ensure the cells migrate on the right timescale. Therefore,

in order to modulate the speed of movement, each time the response of the

network is haptotaxis, a random number r between 0 and 1 is generated, then

if R(ξ, G) · pm > r the cell is allowed to move, if not the cell remains sta-

tionary. Here R(ξ, G) represents the output from the network which ranges

from 0 to 1, i.e. the value of the movement node (with respect to input ξ

and genotype G) and pm is the movement probability. This formulation im-

plies that a cell with a stronger haptotactic response will on average move

more often (i.e. faster), and also makes the movement node subject to possi-

ble evolutionary change (as mutations to the network can change the strength

of the response). Haptotaxis is known to occur through two distinct modes:

“path-finding” (where the cell moves between the fibres through the pores

of the ECM) and “path-generating” (where the cell creates a path through

the matrix by degrading the fibers) (Friedl and Wolf, 2003). Little is known

about what determines the mode of movement, and we have therefore decided

to focus solely on the “path-finding” mode. This means that the movement
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of the cells is not subject to the restraint that the ECM poses with respect

to cell proliferation, i.e. a cell can move to a neighbouring site although the

ECM concentration is higher than the threshold et. The movement through

the tissue matrix consumes energy, but on the other hand motile cells do not

spend energy on synthesis of DNA and other cell material. We have therefore

assumed that the motile cells have a energy consumption lower than that of

proliferating cells, and consequently they consume less nutrients.

2.5 Cellular Automaton

The slice of tissue under consideration is represented by a N × N grid. The

spacing of the grid is defined by a grid constant Δx, which determines the size

of the cells. The grid points are identified by a coordinate �x = Δx(i, j) where

i, j = 0, 1, ...., N − 1. The chemical concentrations interact with the cells ac-

cording to cellular production or consumption rates and are given appropriate

initial and boundary conditions. Each time step the chemical concentrations

are solved using the ADI-scheme and all tumour cells are updated in a random

order. Every time step each cell is updated according to the flowchart in fig.

2 and as follows:

(i) The input vector ξ is sampled from the local environment (i.e the grid

point where the cell resides).

(ii) A response R = R(ξ, G) is calculated from the network.

(iii) The cell consumes nutrients according to the action taken and the metabolic

pathway chosen. If there is not sufficient nutrients present the cell dies

from necrosis.

(iv) The life-cycle action determined by the network is carried out:
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• If proliferation (P) is chosen, check if the cell has reached proliferation

age and if there is space for a daughter cell. If both are true the cell

divides and the daughter cell is placed in a neighbouring grid point, if

not the cell does nothing until the next update

• If quiescence (Q) is chosen the cell becomes quiescent.

• If movement (M) is chosen the cell moves one grid point (in the von

Neumann neighbourhood) in the direction of the steepest ECM gradi-

ent. If the grid point is occupied the movement fails and the cell remains

quiescent until next update.

• If apoptosis (A) is chosen the cell dies.

If a cell dies from either apoptosis or necrosis it is no longer updated. If the

cell dies by apoptosis the grid point where it resided is considered empty, but

if the cell dies from necrosis (starvation) the cell still occupies the grid point.

The reason for this is that the two death processes occur in different ways.

When apoptosis occurs the cell membrane collapses and the cell shrinks, while

when necrosis occurs the cell keeps it shape and thus still occupies physical

space (Alberts et al., 1994). In order to account for the activity of the immune

system, which removes necrotic debris (Kerr et al., 1994), necrotic cells are

removed after a given time tN .

2.6 Parameters

The initial network, which is used as a ”seed” in every simulation, is chosen so

that the behaviour of the cell resembles that of an initial cancer cell phenotype

which has lost normal growth inhibition. The response of the network therefore

has to capture the essential behaviour of real cancer cells. The important
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features that we want to capture are:

• Cells should perform apoptosis if the oxygen concentration c(�x, t) falls below

a certain threshold cap.

• Cells should die if the glucose concentration g(�x, t) falls below a certain

threshold gap.

• Cells should not divide if there is no space for the daughter cell (contact

inhibition) i.e if n(�x, t) > 3

• Cells should perform apoptosis if the acidity h(�x, t) is a above a certain

threshold hap.

• Cells should move in response to the ECM gradient if it is above a value

mh, which also depends on the number of neighbours of the cell

• Cells should switch to anaerobic metabolism if the oxygen concentration

c(�x, t) falls below cm

The value of cap is difficult to estimate as it depends on the cell type under

consideration, but measurements performed in several types of tumours reveal

that the oxygen concentration in the necrotic centre of the tumour is 0.5-30%

of the concentration in the surrounding tissue (Brown and Wilson, 2004). We

therefore estimate cap to be 15 % of the initial oxygen concentration. For

high values this parameter is known to have an effect on the morphology of

the tumour (Gerlee and Anderson, 2007b; Anderson et al., 2008), but for the

relatively small values we consider this effect is negligible. The threshold for

glucose induced necrosis is set to 50% of the normal glucose concentration,

below which hypoglycemia occurs (Ganong, 1999). The acidity threshold hap

is set to match the critical pH = 7.1 below which normal cells go into apoptosis

(Casciari et al., 1992a). As there is a physical limit to the acidity a cell can

survive we also introduce another threshold h̃ap, which is the acid concentra-
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tion at which a cell will go into apoptosis regardless of the network response,

this is set to match pH=6.5.

We are interested in studying the emergence of motility and therefore we

parametrise the initial network so that it has a weak haptotactic response i.e.

the haptotaxis node will only be selected if the ECM gradient is sufficiently

large (see section 2.4). Cell movement is also affected by cell-cell adhesion, as

a cell which is surrounded by many other cells is less likely to move due to the

higher number of adhesive bonds. We take this into account by making the

response for haptotaxis a decreasing function of the number of neighbours.

This is of course a crude way of modelling cell adhesion, for more detailed

models please consider Armstrong et al. (2006) and Gerisch and Chaplain

(2008).

The metabolic threshold is set to cm = 0, as we are also interested in the

emergence of cells that utilise the anaerobic pathway.

A network which matches the above criteria was constructed by hand and

the behaviour of the initial cell with respect to number of neighbours, oxy-

gen concentration and ECM gradient is shown in fig. 3. The ancestral cell is

unlikely to move because it requires very steep gradients in the ECM for the

haptotaxis node to be selected. A cell at the tumour boundary, which continu-

ously degrades the surrounding ECM creates a gradient, but if this cell has the

initial response network it will proliferate before the gradient becomes steep

enough to move via haptotaxis. The initial cell therefore has the potential to

move, but is more likely to proliferate, however, subsequent mutations to the

ancestral network can naturally change this.
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In order to simplify the analysis and simulations of the model we nondimen-

sionalise the model in the standard way. Time is rescaled by the typical time

of the cell-cycle, τ = 16 h (Calabresi and Schein, 1993), and the length by

the typical length scale of an early stage tumour and its microenvironment,

L = 1 cm. The chemical concentrations are rescaled using background concen-

trations (see Table 2) and consumption rates are rescaled using a tumour cell

density n0 = Δx−2 = 0.0025−2 = 1.6 × 105 cells cm−2 (since the cells reside

on a 2-dimensional grid). All cell specific parameters are summarised in Table

1 and we refer to Gerlee and Anderson (2007a) for a more detailed discussion

on the parametrisation and non-dimensionalisation of the model.

The degradation rates and threshold density of the ECM have not been mea-

sured experimentally and we will therefore use non-dimensional estimates for

these parameters. In our simulations we will let et be in the range [0.65, 0.9],

which corresponds to 35-10% of the ECM requiring degradation before it can

be occupied by a cell. Instead of using this threshold as a measure of the den-

sity we introduce an effective matrix density E = 1 − et, which will serve as

a measure of the growth constraint imposed by the matrix. For a high matrix

threshold we will have a low effective matrix density and vice versa. The ma-

trix degradation rate of the cells is set to ec = 0.1, which implies that a cell

needs 1-4 cell cycles (corresponding to E = 0.1 − 0.35) to degrade the ECM

in a neighbouring grid point to a level below et. The combined effect of acid

on the matrix is poorly characterised and we therefore set it to eh = 10−3,

considerably smaller than the degradation by the cells, in order to make the

growth advantage of acid-producing cells smaller.

The speed at which haptotaxis occurs has not been experimentally determined

and depends on many factors such as ECM composition, ECM density and
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cell type. We estimate the movement probability pm, which controls the speed,

to be pm = 0.5. If we assume a maximal response of R = 1, this implies that

a cell will on average move 1/2 grid point per time step. The time step in the

simulation is set to Δt = 10−1 cell cycles and the space step to Δx = 25μm,

which means that the average speed will be approximately 2× 10−7 cm/s, in

agreement with the measurements of Zaman et al. (2006) which range from

3− 12μm/hr = 5.4× 10−8 − 3.2× 10−7cm/s. The nutrient consumption rate

of moving cells is assumed to lie in between that of proliferating and quiescent

cells and is set to be 2-fold lower than the base consumption rate.

The grid size was set to N = 200, corresponding to a domain of size 0.5 cm2

and which means that we can simulate a tumour of radius 100 cells, which if

we assume radial symmetry in a 3-dimensional setting would correspond to a

tumour consisting of approximately 1003 or 1 million cells. The time step in

the simulation was set to Δt = 10−1 and the space step to Δx = 0.0025.

3 Simulations

In the following suite of simulations we investigate both the impact of cancer

cell motility on tumour growth and the micro-environmental conditions in

which a motile phenotype is most likely to evolve. We focused on the impact

of the oxygen concentration and the ECM density (by varying c0 and E) and

examined the dynamics of the model for a range of values of these two factors.

The growth dynamics were analysed by measuring the time evolution of the

total number of cells and the invasive distance of the tumour, and we also

examined the spatial distribution of cancer cells.
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The evolutionary dynamics were analysed by measuring the evolution of phe-

notypes in the population and we also compared the motility of cancer cell

populations that had evolved in different oxygen concentrations and ECM

densities. To gain further insight into phenotype evolution and the long-term

influence of the micro-environment we also performed “reseed”-simulations.

In these simulations the most abundant genotype, at the end of the simula-

tion, was used as an ancestor in a new simulation, and this process was then

repeated as many times as desired. This technique is similar to selective cell

culture experiments where cells are passaged through several assays to select

for cells with certain phenotypes (Dairkee et al., 1995).

Each simulation was started with a homogeneous concentration of oxygen,

glucose and hydrogen ions at background values (c(�x, 0) = g(�x, 0) = h(�x, 0) =

1), and with the boundary conditions c(�x, t) = g(�x, t) = h(�x, t) = 1 for �x ∈
∂Ω. Variations in the matrix density were accounted for by setting the initial

condition for ECM to m(�x, 0) = 1 + s, where s ∈ [−0.2, 0.2] is a random

variable with a uniform distribution, and each simulation was started with a

population of 4 cancer cells at the centre of the grid.

Instead of comparing tumours of the same age we decided to compare tumour

of the same size, and the duration of each simulation was therefore determined

by the time it took the tumour to reach an invasive distance of 0.45N , where

the invasive distance is defined as the distance from the center of the tumour

to the most distant cancer cell. This is because the evolutionary component of

the model makes it difficult to estimate the time it takes a tumour to reach a

given size. If for example a mutation, which triggers haptotaxis, occurs early

in the simulation the tumour will reach a much larger size compared to a

tumour where haptotaxis never emerges in the same amount of time.
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4 Results

4.1 Growth Dynamics

Figure 4 and 5 show two examples of tumour growth where haptotaxis has

emerged, both lasting 90 time steps (approximately 60 days). The first figure

shows a tumour growing in an intermediate oxygen concentration (c0 = 0.5)

and a low density matrix (E = 0.1). In this simulation a motile subclone

emerged on the left hand side of the tumour as revealed by the fragmented

tumour boundary consisting of motile (cyan coloured) cells at t = 60 and

90. The part of the tumour dominated by motile cells expands at a higher

rate compared to the non-motile (right) side, and this leads to an asymmetric

morphology where the tumour has grown more towards the left part of the

domain.

Although some parts of the tumour are exposed directly to the matrix they still

exhibit necrosis and this is due to the competition for oxygen and the screening

effect which cells closer to the oxygen source exert. At the later stages of the

simulation the tumour exhibits a layered structure, with a necrotic core and

a viable rim, and is approximately 7–8 mm in diameter. This is larger than

avascular tumours normally are found to be (2–3 mm), and the reason for this

is our choice of cell size (25 μm), which possibly is a slight over-estimate of

the normal tumour cell size.

The second example shows a tumour growing in a harsher micro-environment

where the oxygen concentration is low (c0 = 0.1) and the matrix density is high

(E = 0.3). In agreement with other models the low oxygen environment gives
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rise to a branched morphology (Gerlee and Anderson, 2007a; Anderson et al.,

2006; Anderson, 2005; Ferreira et al., 2002), but there is an obvious difference

between upper and lower parts of the tumour. The lower part exhibits a pat-

tern with compact branches, while the top part on the other hand exhibits a

diffuse fingering pattern induced by the haptotactic motility which evolved in

this part of the tumour. As with the solid fingers the living cells only reside

at the tips of the fingers, although in this case we observe a mix of proliferat-

ing, quiescent and motile cells. Both of these types of morphologies have been

observed in other models of tumour growth (Macklin and Lowengrub, 2007;

Frieboes et al., 2006; Cristini et al., 2005), where the morphological changes

are driven by micro-environmental parameters such as the nutrient diffusion

rate, matrix stiffness and cell-cell adhesion (via surface tension). In particu-

lar, more invasive morphologies are observed under harsh micro-environmental

conditions which is in agreement with the authors previous work and others

(Rejniak, 2005; Anderson et al., 2008).

The time evolution of the invasive distance and the number of cells for the two

simulations is shown in fig. 6. We see, as expected, that the number of cancer

cells grows at a higher rate in a high oxygen concentration, but we can also

observe that the difference in the invasive distance is considerably smaller.

This is partly due to the fractal morphology (Gerlee and Anderson, 2007b),

but is also exacerbated by the non-compact structure of the branches in the

motile part of the tumour. These have a lower average density and this means

that the tumour consists of a relatively small number of cells while still invad-

ing a considerable distance into the healthy tissue. The figure also shows that

an increase in ECM density leads to a decrease in invasive distance, which

is somewhat unexpected since the cells can migrate regardless of the ECM
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density, therefore it is probably due to inhibition of proliferation rather than

migration. Zaman and co-workers found a more complex relationship between

ECM density and migration which was maximal at intermediate concentra-

tions (Zaman et al., 2006), however, we would require a more sophisticated

model of cell migration to capture these dynamics which is beyond the scope

of this paper.

These two examples were particularly chosen to illustrate the impact of cell

motility. However, in some simulations haptotaxis does not emerge at all, and

the tumour grows only through cell proliferation as in the previous version

of the model, and we refer to Gerlee and Anderson (2008) for an in-depth

discussion of that growth process.

4.2 Evolutionary Dynamics

The evolution of phenotypes in the population was characterised by measur-

ing the average response vector as a function of time. The response vector

measures the fraction of the input space that each of the life-cycle responses

(proliferation, quiescence, apoptosis and movement) occupy. Formally we de-

fine four sets xi = {ξ ∈ I; R(ξ) = i}, where R(ξ) is the network response to

input vector ξ, i = P, Q, M, A and I is the set of all possible inputs to the

network. The sizes of these sets are now given by,

|xi| = 1

B

∫

I

δi,R(x)dx (9)

where δij is the Kronecker delta (δij = 1 if i = j, 0 otherwise) and B is

the volume of the entire 5-dimensional input space. From this the average

response vector defined as S = (|xP | , |xQ| , |xM | , |xA|) can be calculated. In
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order to focus on the impact of the oxygen concentration and ECM density

in determining cell behaviour we reduced the input space to 3-dimensions by

fixing the glucose and hydrogen ion concentrations to their background values.

The initial cell has response vector S = (0.46, 0.15, 0.21, 0.18) (compare with

fig. 3), while a cell which, for example, has evolved to a state where it prolif-

erates in all possible environmental conditions would have a response vector

S = (1, 0, 0, 0). Every time step of the simulation the response vector was

calculated for every active cell and averaged over the entire population. This

measure is shown in fig. 7a and b for the two simulations discussed in the

previous section. In both cases we can observe an increase in the movement

potential of the cells. The initial movement potential is only 18 %, but at the

end of the simulations it has increased to approximately 50% in both simula-

tions, and this increase in movement has mainly occurred at the expense of

quiescence and apoptosis.

In fig. 7c and d as a comparison, we also show the evolution of the average re-

sponse vector in two simulations where haptotaxis did not emerge. In this case

the population instead evolves to a state where the dominant behaviour is pro-

liferation. These simulations occurred in exactly the same micro-environments

as (a) and (b) respectively, the only difference coming from the random nature

of mutations.

The above simulations are however only four isolated examples of the possible

dynamics of the system, and to get a more complete understanding of the

emergence of haptotaxis we examined the dynamics of the system for 5 ×
5 = 25 different points in the (c0, E)-parameter space. The most straight-

forward measure of motility in the population would simply be to calculate
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the fraction of cells that are in a motile state at the end of the simulation,

but this turned out not to be very informative. Such an approach worked

well when we considered the emergence of the glycolytic phenotype, and the

reason for this is that the cells are glycolytic independent of the life-cycle

response. Movement on the other hand only occurs when the cells reside on

the tumour boundary, and more so only in certain environmental conditions

(crucially they also need to proliferate to spread their genetic material). This

implies that the fraction of the population which actually moves is usually

small (< 10%) and therefore this is not a useful measure for determining the

extent of haptotaxis. Instead we measured the average movement potential

(i.e. the fourth component of S) of the cancer cell population at the end of

each simulation. This measure ranges from 0 to 1, where 0 corresponds to a

population where no cells have the capability to move and 1 corresponds to

the (highly unlikely) situation where all the cells in the population only have

the capability to move (and not to proliferate). The result of this parameter

exploration can be seen in fig. 8, where the results have been averaged over

50 different simulations in each point in parameter space. The surface plot

shows that the highest movement potential occurs in intermediate oxygen

concentration (c0 = 0.5) and a soft tissue matrix (E = 0.1), where it takes the

value M = 0.21. The lowest value of M = 0.1 on the other hand occurs in low

oxygen concentration (c0 = 0.1) and dense matrix (E = 0.35). The general

trend seems to be that M decreases with increasing matrix density, and that

it is highest at intermediate oxygen concentrations. But it should be noted

that the surface plot is quite rugged, which suggests that the results are not

fully conclusive.
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In order to examine the sensitivity of these results to our choice of the move-

ment parameter (pm, see section 2.4) we did the exact same analysis for a

range of values, pm = 0.25, 0.5, 0.75, 1, where pm = 0.5 was the default value

used in the above simulations. Intriguingly, the evolutionary dynamics re-

mained unchanged (in relation to fig. 8), with no major increases or decreases

in movement potential being observed (data not shown). However, there was

a significant change in the growth rate of the tumour with an obvious increase

in growth for larger values of pm (as the cells on average move more often). It

is worth noting that the evolutionary dynamics will change if we reduce the

value of pm considerably, since then the movement and proliferation timescales

are the same (if not slower for the movement). This results in suppression of

the migratory phenotype as there is no evolutionary advantage to movement,

since cells can invade faster purely via proliferation.

We were also interested in measuring how the introduction of cell motility

affects the emergence of the glycolytic phenotype. This was quantified by

calculating the probability pgl that the population was dominated by anaerobic

cells, i.e. we calculated the fraction of simulations for each point in parameter

space where 90 % or more of the cells were glycolytic. The probability was

estimated from 50 simulations at each point in the (c0, E)-parameter space

and the result can be seen in fig. 9. The general shape of the pgl surface plot is

similar to what we observed with our previous model (Gerlee and Anderson,

2008). The highest probability of finding a tumour dominated by glycolytic

cells occurs at a low oxygen concentration and within dense tissue matrix, but

compared to the previous result the probability is now smaller (pgl ≈ 0.6 vs.

0.8).
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The results obtained so far suggest that the dynamics of the model are vari-

able and that the population can adapt to the micro-environment by either

evolving a proliferative or migratory phenotype. Another way of looking at it

is to say that the addition of haptotaxis to the model has reshaped the fit-

ness landscape the cancer cell population evolves on, and that multiple local

fitness maxima now exist. This hypothesis was tested by performing reseed-

simulations which consist of multiple sub-simulations. In these sub-simulations

the most abundant genotype (the largest proportion of cells in the population

with the same network wiring) at the end of the simulation (when the in-

vasive distance had reached 0.45N) was saved and subsequently used as the

genotype of four initiating cells in the next sub-simulation, this process was

repeated n times (see fig. 10). Note that the micro-environment was also re-

set for every sub-simulation i.e. the cells always experience the same initial

micro-environment conditions.

The results of two such reseed simulations can be seen in fig. 11, where n = 10

and the micro-environmental parameters were set to (c0, E) = (0.1, 0.35). The

left panel shows the average phylogenetic depth as a function of time, which is

the number of mutational steps from the ancestral genotype to each cell in the

population. This measure shows how far the population has evolved away from

the initial cell and also gives a measure of the rate of evolutionary change. From

this plot it is clear that most evolutionary change occurs at the early stages

in both simulations. After that the phylogenetic depth seems to stagnate, and

the sawtooth pattern seen for t > 500 in the solid line is due to the fact

that the dominant genotype, which is used to seed the sub-simulations for

t > 500 has a phylogenetic depth of 8. In each sub-simulations new genotypes

emerge which have a phylogenetic depth larger than 8, but these never come
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to dominate the population and therefore the phylogenetic depth returns to

8 at the start of every sub-simulation. A similar behaviour is seen in the

other simulation (dashed line) suggesting that the evolutionary dynamics in

both cases have converged on a successful subclone, but interestingly the right

panel, which shows the evolution of the average response for proliferation and

movement, reveals that the dominant phenotypes in the two simulations are

very different. In the simulation corresponding to the solid line the dominant

phenotype only has the capability to proliferate, while in the other simulation

the dominant phenotype is highly motile with approximately 80% of the input

space corresponding to haptotaxis. The duration of the reseed-simulation is

determined by the total time it takes the tumour to reach an invasive distance

of 0.45N in each of the n sub-simulations. If the growth rate of the tumour is

high then it will obviously take a shorter time to do this, and this effect can

also be seen in the two plots. The duration of the simulation corresponding

to the dashed line is shorter, and again this shows that a motile phenotype

invades the tissue at a higher rate.

5 Discussion

From the results presented here we have seen that the emergence of a migra-

tory phenotype is somewhat rare but when it does occur it has the capability to

alter the dynamics of the model significantly. In simulations where haptotaxis

emerges we observe different tumour morphologies and the tumours also grow

at a higher rate due to motile cells invading the surrounding ECM. Tumour

growth driven by haptotaxis exhibits both compact and branched morpholo-

gies depending on the tissue oxygen concentration, and as in other models
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normal oxygen concentrations give rise to compact growth while branched

growth occurs in low oxygen concentrations. But notable is that motile cells

give rise to diffuse morphologies with lower average cancer cell density. Occur-

ring together with branched growth this diffuse morphology allows for a large

invasive distance while the number of cells (and therefore also the number of

cell divisions) remains low.

For a motile subclone to spread in the population it has to evolve a mechanism

that allows the cells to switch between haptotaxis and proliferation, as a cell

which only moves never has the chance to spread its genetic material. This

presents an interesting trade-off as cells which are highly motile can access

more nutrients and are therefore more likely to survive, but on the other

hand are less likely to divide and give rise to daughter cells. Three examples

of the life-cycle response from evolved genotypes can be seen in fig. 12. In

(a) and (b) we observe the most common mechanism, which is to use the

ECM gradient as a switch between movement and proliferation. When the

cell senses a sufficiently large gradient in the ECM it moves along it, but

when no gradient is present it goes into a proliferative state. This gives rise

to a switching behaviour of the cells at the boundary and also implies that

the tumour grows at a higher rate than before as the cells can move much

faster than they proliferate. The response shown in (c) is a slightly different

solution to the problem. Here the behaviour of the cell again is a function of the

ECM gradient, but there is also a dependency on the oxygen concentration.

When the oxygen concentration is low the ECM gradient required to switch

to haptotaxis is smaller, and we can therefore say that this subclone exhibits

hypoxia-driven motility.

Apart from the ECM gradient the switch between proliferation and hapto-
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taxis in the initial phenotype also depended on the number of neighbours,

a simplified way to include the effects of cell adhesion. For a larger number

of neighbours the cell requires a steeper ECM gradient to go into haptotaxis

(fig. 3). This effect is diminished in the phenotypes shown in fig. 12, and in

particular in fig. 12b where the switch between haptotaxis and proliferation

is independent of the number of neighbours, which suggests that selection

favours cells with low cell adhesion.

The selection for haptotaxis was investigated by measuring how the average

response for movement depends on the micro-environment. Unfortunately the

results from that parameter exploration were inconclusive, although there is an

indication that a haptotactic phenotype is most likely to emerge in intermedi-

ate oxygen concentrations in a soft tissue matrix. One possible explanation for

this is that in high oxygen concentrations the micro-environment is relatively

mild and consequently the general selection pressure on the population is low.

On the other hand in low oxygen concentrations the selection pressure for

cells with a large proliferation potential is possibly so strong that it overshad-

ows the selection for motility. The dependency on the ECM seems somewhat

harder to explain as the ECM in fact does not impede cell movement. One

possible explanation is that non-motile cells grow at a higher density and

therefore cooperatively degrade the matrix at a higher rate compared to mov-

ing cells which tend to grow at a lower density. This is surprising because in

our model although the dense ECM does not pose a direct restraint to the

moving cells, a motile subclone is less likely to emerge in a dense tissue matrix.

Of course these results could be investigated experimentally, via techniques

such as the sandwich assay (Hlatky and Alpen, 1985; Dairkee et al., 1995)

where the cells are grown between two cover slips covered in a given substrate
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which allows for both continuous imaging of the cells and a variable nutrient

supply. With this assay it would be possible to grow cancer cells under a range

of micro-environmental conditions and continuously measure both phenotypic

and genotypic properties of the cells, making a comparison with the model

results possible.

When the cell dynamics are restricted to proliferation (quiescence and apop-

tosis) the most efficient strategy for a subclone is to proliferate whenever there

is space to do so (Gerlee and Anderson, 2007a, 2008). Now that the cells also

have the capability to move the optimal strategy is no longer obvious. Al-

though the fitness of a cell in this model is not only a function of its genotype,

but also of the environment, it can still be instructive to imagine a fitness

landscape on which the population evolves. Formally the dimensionality of

this landscape is equal to the number of parameters in the network, but we

shall rather use it for qualitative reasoning about the evolutionary dynamics.

When cells are immobile the most effective way for a cell to spread its genetic

material is to proliferate at all times. This means that the fittest cells are

those with a response vector S = (1, 0, 0, 0), and we can therefore think of this

phenotype as occupying a peak in the fitness landscape. In fact all popula-

tions evolve towards this proliferative state, although the micro-environment

affects the rate at which this occurs. When we allow the cells to move we

alter the structure of the fitness landscape. This is obvious from the evolu-

tion of the average response vector (fig. 7), where the population no longer

evolves towards an exclusively proliferative state, but rather to a combination

between proliferation and haptotaxis, e.g. S = (0.5, 0, 0, 0.5). The implication

is that the one peaked fitness landscape driven purely by proliferation has now

turned into a multifaceted landscape with multiple local maxima combining
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both proliferation and migration.

Evidence for this hypothesis can be seen in the results of the reseed-simulations.

The two simulations are started with the same ancestral genotype and the pop-

ulations evolved in identical micro-environments and still the outcomes are

very different. In one of the simulations the population becomes completely

proliferative, while the other highly motile. The evolutionary trajectories of

the simulations have clearly diverged and the populations occupy two separate

peaks in the fitness landscape. The stagnation in the phylogenetic depth also

highlights this fact and shows that the two evolutionary processes have con-

verged on different phenotypes. The trajectory taken by the system depends

on which mutations occur in the population, and because the mutations are

random, different peaks maybe traversed in different simulations of the sys-

tem. This is a well-known property of evolutionary systems, and highlights

the importance of contingency (i.e. the dependency on previous events) in

evolution (Taylor and Hallam, 1998).

These results also highlight the fact that most of the mutations occur very

early in the simulations (as observed in the phylogenetic depth, fig. 11a) im-

plying that all of the key mutations occur early in the tumour development.

In an experiment similar to these reseed simulations it was observed that

primary breast cancer cells acquired genetic changes (aneuploidy, p53 muta-

tions) and phenotypic changes (CK19–expression) associated with late stage

cancer (Dairkee et al., 1995). This occurred after only 10 rounds of reseeding,

corresponding to approximately 70 days of evolution, which appears to be

consistent with our simulation results.

The evolution of cell motility in cancer has so far only been treated in a
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few modelling studies. It was for example investigated in a game-theoretic

framework by Mansury et al. (2006). They consider a tumour consisting of

two genotypes: one highly proliferative and the other highly migratory, where

the success of each genotype depends on pay-offs it receives when the cells

interact. They show that the tumour can be driven by both proliferative and

migratory expansion and that this depends on the pay-off for the interaction

between proliferating cells, where the highest rate of tumour invasion occurs

for intermediate pay-offs for proliferating cells. The model presented here also

exhibits two different modes of tumour growth, and complementary to our

analysis their investigation shows that the nature of cell-cell interactions also

can influence the evolution of cell motility.

The emergence of a motile subclone was also investigated in a game-theoretic

framework by Basanta et al. (2008a,b). They conclude that the appearance

of a motile phenotype is more likely in a nutrient starved micro-environment

and specifically after the emergence of a glycolytic phenotype. There is some

similarity with our results, in that we only see the emergence of both glycolytic

and migratory phenotypes after the onset of necrosis (i.e. nutrient starvation).

However, the precise order of the emergence in our model is unclear (data not

shown) and requires further investigation.

The impact of the micro-environment on tumour evolution and in particu-

lar haptotaxis was examined in Anderson et al. (2006). They show, using

a hybrid individual-based model, that tumours which grow in harsh micro-

environments are more likely to contain aggressive phenotypes. In the context

of that model a harsh micro-environment is defined by a heterogeneous tissue

matrix and also by low oxygen concentration. A key feature of the aggressive

phenotypes which evolved in these conditions was an increase of haptotaxis
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and a decrease in cell adhesion, which is similar to what we observed in this

model. Again this implicates that the selection pressure created by a harsh

micro-environment is a driving force in the evolution of cell motility.

Experimental studies have shown that hypoxia is an important factor in the se-

lection for cell motility (Sullivan and Graham, 2007). For example it is known

that hypoxia triggers ECM degradation through upregulation of urokinase-

type plasminogen activator receptor (uPAR) expression and that it enhances

cell motility via hypoxia-induced hepatocyte growth factor (HGF)-MET recep-

tor signaling. Hypoxia also triggers the up regulation of glycolosis via HIF1-α

(Gatenby and Gillies, 2004). These mechanisms are present in normal cells,

but extended periods of hypoxia selects for subclones in which these pathways,

because of specific mutations, are enhanced. The loss of cell-cell adhesion is

also a common feature of cancer cells and is thought to be the first crucial

step for metastases to form (Cavallaro and Christofori, 2004).

In agreement with these studies our results highlight the importance of tu-

mour cell/micro-environment interactions in driving hypoxia, and subsequent

evolutionary dynamics which lead to the emergence of glycolytic and migra-

tory phenotypes. These phenotypes tend to have a lower dependence on the

number of neighbouring cells (cf. cell-cell adhesion) and an increased sensitiv-

ity to ECM gradients. These steps culminate in the formation of an aggressive

tumour capable of invading the surrounding tissue.
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6 Conclusions and Outlook

In this paper we have presented an individual-based model of tumour growth

aimed at investigating the evolution of cancer cell movement. We focused on

haptotaxis, directed movement along ECM gradients in the tissue, and imple-

mented this mechanism in a model which has previously been used for inves-

tigating the evolutionary dynamics of tumour growth (Gerlee and Anderson,

2007a, 2008).

Probably the most important conclusion of this paper is that the introduc-

tion of cell motility changes the fitness landscape on which the population

evolves. Without movement the fitness landscape is single peaked, where ex-

clusively proliferating cells are the most fit, but when cells are allowed to move

this makes the fitness landscape more complicated. This was highlighted with

reseed-experiments which clearly showed that the population can evolve to

different peaks in the fitness landscape under identical conditions. This po-

tentially could have important implications for gene therapy which targets

cancer cells on the genotype level and implicitly assumes that there is a spe-

cific genetic signature linked to the tumour. Our results on the other hand

show that not even a specific phenotype can be associated with a given micro-

environment and even less so a particular genotype.

This paper has shown the important role that evolutionary dynamics play in

both the development and progression of a growing tumour and how they are

modulated by the micro-environemnt. In the future we would like to pursue

this relationship further as well as refine certain aspects of the model. In

particular a more accurate description of both cell-cell adhesion and cell-ECM

41



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

adhesion, as well as a more complete model of the ECM incorporating pore

size distributions and fibre realignment should be considered. This will allow

us to better characterise the mechanical interactions between cells (e.g. cell

pushing) and between cells and the ECM (e.g. pore constrained migration),

and ultimately produce a more physiologically realistic model of the tumour.
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Fig. 1. The layout of the response network which determines the phenotype or

behaviour of the cancer cells. The micro-environmental variables are fed into the

input layer of the network which then processes the information and produces a

response at the output layer. The response depends on the network matrices w and

W , which are subject to mutations when the cells divide.
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Fig. 2. The life-cycle of the cancer cells represented as a flowchart.

53



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

0

1

2

3

4

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Number of neighboursOxygen concentration

E
C

M
 g

ra
di

en
t Proliferation

Quiescence

Apoptosis

Haptotaxis
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ion concentrations are kept at to their background values.

54



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

t = 30 t = 90t = 60

Fig. 4. Spatial distribution of the cells at t = 30, 60 and 90 (approx. 20, 40 and

60 days) for c0 = 0.5 and E = 0.1 on a grid of size 200×200. Proliferating cells

are shown as red, quiescent cells as green, necrotic cells as yellow, moving cells

as cyan, dead cells as blue and empty grid points are white. In this simulation a

haptotactic subclone emerges on the left side of the tumour leading to an asym-

metric morphology. A supplementary movie of this simulation can be found at:

http://www.nbi.dk/∼gerlee/Fig4.mov
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t = 40 t = 120t = 80

Fig. 5. Spatial distribution of the cells at t = 40, 80 and 120 ( approx. 27, 53

and 80 days) for c0 = 0.1 and E = 0.3 on a grid of size 200×200. Proliferating

cells are shown as red, quiescent cells as green, necrotic cells as yellow, moving

cells as cyan, dead cells as blue and empty grid points are white. Haptotaxis in

low oxygen concentration gives rise to a branched tumour morphology although the

branches are not as well defined compared to the lower part of the tumour which

is dominated by immobile cells. A supplementary movie of this simulation can be

found at: http://www.nbi.dk/∼gerlee/Fig5.mov
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Fig. 6. The time evolution of the (a) invasive distance and (b) number of cells for

the simulations shown in fig. 4 and 5.
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Fig. 7. The time evolution of the average response vector for (a) the simulation

shown in fig. 4 and (b) fig. 5. Panel (c) and (d) show the result of two simulations that

occurred in identical micro-environmental conditions as (a) and (b) respectively, but

instead evolved towards a proliferating population.
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Note that the general shape of the surface is similar to the results obtained in

Gerlee and Anderson (2008) where the cells were immobile, but that pgl in this case

is smaller.
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simulation. This process is then repeated n times, and the resulting phenotype is

usually highly evolved and aggressive.
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reseeded 10 times, but the smaller number of total time steps in one of the simula-

tions (dashed lines) implies that the growth rate in that case was higher.
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the ECM as a switch between proliferation (red) and haptotaxis (cyan), while in

(c) the oxygen concentration also influences the choice.
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Table 1

A summary of the cell specific parameters in the model.

Parameter Meaning Value Reference

rc base oxygen 2.3× 10−16 (Freyer and Sutherland, 1986)

consumption rate mol cells−1 s−1

ra
g aerobic glucose 3.8× 10−17 Calculated from

consumption rate mol cells−1 s−1 (Freyer and Sutherland, 1986)

ran
c anaerobic glucose 6.9× 10−16 Calculated from

consumption rate mol cells−1 s−1 (Freyer and Sutherland, 1986)

rh hydrogen ion 1.5× 10−18 (Patel et al., 2001)

production rate mol cells−1 s−1

cap hypoxia induced 2.5× 10−9 (Brown and Wilson, 2004)

apoptosis threshold mol cm−2

gap hypoglycemia threshold 6.5× 10−9 mol cm−2 (Ganong, 1999)

hap acid induced pH = 7.1 (Casciari et al., 1992a)

apoptosis threshold

h̃ap maximal acid pH = 6.5 (Casciari et al., 1992a)

concentration
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Table 1

Continued from previous page.

Parameter Meaning Value Reference

Ap proliferation age 16 h (Calabresi and Schein, 1993)

p mutation probability 0.01 (Anderson, 2005)

q quiescent metabolism factor 5 (Freyer et al., 1984)

Tr target response 0.675 Model specific

k modulation strength 6 Model specific

σ mutation strength 0.25 Model specific
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Table 2

A summary of the micro-environment specific parameters in the model in dimen-

sional units.

Parameter Meaning Value Reference

Dc oxygen diffusion constant 1.8 × 10−5cm2 s−1 (Grote et al., 1977)

Dg glucose diffusion constant 9.1 × 10−5cm2 s−1 (Crone and Levitt, 1984)

Dc hydrogen ion diffusion constant 1.1 × 10−5cm2 s−1 (Crone and Levitt, 1984)

c0 oxygen background conc. 1.7 × 10−8 mol cm−2 (Anderson, 2005)

g0 glucose background conc. 1.3 × 10−8 mol cm−2 (Walenta et al., 2001)

h0 hydrogen ion background conc. 1.0 × 10−13 mol cm−2 (Patel et al., 2001)

(pH = 7.4)

n0 cancer cell density 1.6 × 105 cells cm−2 (Casciari et al., 1992a)

tN necrotic cell removal rate 5 cell cycles Estimated
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